EP2997197B1 - Method for pre-stressing a steel structure, and steel structure pre-stressed using said method - Google Patents

Method for pre-stressing a steel structure, and steel structure pre-stressed using said method Download PDF

Info

Publication number
EP2997197B1
EP2997197B1 EP14722518.9A EP14722518A EP2997197B1 EP 2997197 B1 EP2997197 B1 EP 2997197B1 EP 14722518 A EP14722518 A EP 14722518A EP 2997197 B1 EP2997197 B1 EP 2997197B1
Authority
EP
European Patent Office
Prior art keywords
reinforced
steel
carbon fibre
steel structure
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14722518.9A
Other languages
German (de)
French (fr)
Other versions
EP2997197A1 (en
Inventor
Masoud MOTAVALLI
Elyas GHAFOORI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S&P Clever Reinforcement Co AG
Original Assignee
S&P Clever Reinforcement Co AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S&P Clever Reinforcement Co AG filed Critical S&P Clever Reinforcement Co AG
Publication of EP2997197A1 publication Critical patent/EP2997197A1/en
Application granted granted Critical
Publication of EP2997197B1 publication Critical patent/EP2997197B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D6/00Truss-type bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/10Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • E04C5/085Tensile members made of fiber reinforced plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/30Metal
    • E01D2101/32Metal prestressed

Definitions

  • This invention relates to a method for prestressing a steel structure, both on a new construction and preferably on an existing steel structure, especially on bridge structures.
  • the European railway Administrations confirm that there are approximately 220,000 railway bridges in Europe alone and that they are located in a wide variety of climatic areas.
  • About 22% of these are metal or steel structures, which are often referred to as iron bridges.
  • 3% are cast iron bridges, 25% are welded steel structures, and 53% are made of steel, and approx.
  • CFRP Carbon Fiber Reinforced Polymers
  • the object of this invention is to provide a method for prestressing a steel structure and also a steel structure prestressed therewith. This prestressing is intended to prevent the formation of cracks on a new or existing steel structure, or to crack existing cracks or to stop or at least slow their further growth.
  • FIG 1 a steel structure in the form of an iron bridge 1 with sub-struts 2 is shown, with the lowest horizontal steel beam 3 Train is loaded.
  • iron bridges there are always steel girders that are under pressure and those that are under tension. Bending moments also have an effect, especially if the bridge is temporarily loaded, for example if a train is rolling over it. Every axle load causes vibrations and this contributes to the fatigue of the material, so that over the years cracks can appear in the steel beams, which weaken the steel beams more and more.
  • the aim is to stop this process or at least slow it down.
  • CFRP tapes carbon fiber reinforced polymer tapes
  • CFRP tapes are exceptionally strong under tensile stress and are also not subject to corrosion, they are ideal for reinforcing steel beams under tensile stress.
  • the most efficient way would be to pre-tension steel girders with tensile loads using such belts.
  • Proposals have become known for subsequently reinforcing concrete structures with prestressed bands in order to improve their tensile strength.
  • the strips are strongly pre-tensioned using a special device and, in this pre-tensioned state, moved up to the concrete structure and laminated onto the concrete using epoxy resin adhesives. After the adhesive has cured, the device that created and maintained the tension is removed, after which the pre-tensioned CFRP tape permanently applies its tension to the structure.
  • the bridge behind Figure 1 has a sub-strut 2, that is to say the lowest horizontal strut 3 is loaded with tension, and it can be reinforced by means of CFRP bands 4, for which the procedure is as follows.
  • a CFRP band 4 is at its two end regions over a section or over the whole Length of a structural part that is subjected to tension is connected to the same in a traction-locking manner.
  • a CFRP band 4 is stretched over the entire length of the underside of the horizontal lower steel beam 3, the end anchorages 5 being fastened on both sides in the vicinity of the ends of the steel beam 3.
  • the band 4 is stretched slack.
  • a lifting element 7 is installed between the steel beam 3 and the CFRP band 4 in the middle of the CFRP band 4, that is to say over half the length.
  • This lifting element 7 can be a hydraulically, pneumatically, electrically or mechanically actuated lifting element 7, which offers such a translation that high lifting forces can be generated, for example a few 10k Newtons. Short reaction paths are now generated with comparatively long action paths.
  • CFRP tape 4 not only a single CFRP tape 4 has to be attached, but a whole set of CFRP tapes 4 can be installed over the width of the bridge, or also sections of the length of the bridge several CFRP tapes 4 in succession or CFRP tapes 4 which overlap in length can be attached, which are positioned next to one another and run parallel to one another, or even overlap in height, that is to say they can lie one above the other or can cross.
  • the strips 4 are not laid on the steel girders exactly in the direction of travel, but at a slightly oblique angle to them, so that the strips 4 intersect.
  • FIG 2 you can see the steel structure Figure 1 after insertion a lifting element 7. It was mounted under the slackly attached CFRP band 4, for example by means of a mechanical connection to the steel beam 3, by welding or screwing.
  • This lifting element 7 can be constructed in the manner of a jack, so that it can be raised hydraulically by means of an external hydraulic pump by temporarily connecting a hydraulic line to the lifting element 7. Sufficiently large forces can be generated with an appropriate translation.
  • the lifting is then secured by means of a mechanical jack or by means of mechanical documents. Such mechanical documents are installed after the working stroke of the lifting element 7, which in this case is raised somewhat above the ultimate tensile stress, next to the same between the band 4 and the steel beam 3 to be reinforced.
  • the lifting element 7 is relieved again somewhat, so that the target tension is reached and the supporting force is then absorbed by the documents.
  • the lifting element 7 can also be operated pneumatically. Then a compressor hose can be coupled, and the extension of the lifting element 7 takes place due to pneumatic pressure with a sufficient ratio.
  • an electrical variant of a lifting element 7 is also conceivable in that an EL motor inside generates a sufficiently large lifting force by means of a short translation, for example by means of spindles and levers. In this case, only an electrical line needs to lead to the lifting element 7, and it can be easily adjusted if necessary.
  • the Figure 3 shows the steel structure Figure 1 after the insertion of two lifting elements 7. If two lifting elements 7 are used, they are advantageously extended at the same time, so that the tension builds up uniformly over the length of the belt. As an alternative, the one lifting element 7 can be extended a little, then the second a similarly small distance, then again the first, then again the second, etc., so that the tractive force gradually alternates to a certain extent by the two lifting elements 7 is produced.
  • the Figure 4 shows a steel structure in the form of an iron bridge with upper struts 6 with a slack CFRP band 4 connected to it.
  • the attached CFRP band 4 runs along the lowest horizontal steel girder, in practice, of course, there are several such steel girders, the longitudinal the bridge, and each is equipped with at least one CFRP band 4, each with two end anchors 5, which at the ends of the band 4 connect this to the structure or the said steel girder.
  • the Figure 5 shows this steel structure Figure 4 after the insertion of three lifting elements 7, which are arranged distributed over the length of each CFRP band 4 and are again extended at the same time, or else the two outer ones are extended a little and then the middle is slightly further, so that a uniform tension over the entire length of the CFRP tape 4 is generated.
  • the Figure 6 finally shows a steel structure in the form of an iron bridge with an arched sub-strut 2.
  • a tensile force acts on the arched longitudinal beams 8 at the lower end of the bridge.
  • CFRP bands 4 can be laid and attached along these curved beam supports 8.
  • a single CFRP band 4 runs over the entire length of the bridge along the lower support arch 8 and is firmly attached to the steel support 8 at both end regions of the anchoring elements 5 attached there Bridge 1 connected.
  • Five lifting elements 7 are used here distributed over the belt length. These are all raised uniformly in order to generate a voltage build-up in the CFRP band 4 that is as uniform or homogeneous as possible. This tensioning force is then introduced into the structure 1 via the anchoring elements 5.
  • Such reinforcements can in some cases close cracks or gaps in steel structures, i.e. in the elements that are subject to tension. In other cases, further growth of these cracks and crevices can be prevented, or at least the weakening process can be slowed down considerably, and overall the structures can be decisively strengthened and stabilized so that their lifespan is extended or, if necessary, the load capacity is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Bridges Or Land Bridges (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)

Description

Diese Erfindung betrifft ein Verfahren zum Vorspannen eines Stahl-Bauwerkes, und das sowohl an einer Neukonstruktion sowie vorzugsweise an einem bestehenden Stahl-Bauwerk, vorallem an Brückenkonstruktionen. Gemäss einer Studie von Bien J. Elfgren L. und Olofsson J. mit dem Titel Sustainable Bridges, Assessment for Future Traffic Demands and Longer Lives, Wroclaw, Dolnoslaskie Wydawnictwo Edukacyjne, 2007 , bestätigen die Europäischen Eisenbahnverwaltungen, dass es in Europa alleine ca. 220'000 Eisenbahnbrücken gibt, und sich diese in verschiedensten klimatischen Gebieten befinden. Etwa 22% davon sind Metall- bzw. Stahlkonstruktionen, die oft auch als Eisenbrücken bezeichnet werden. 3% sind Gusseiserne Brücken, 25% sind geschweisste Stahlkonstruktionen, und 53% sind in Stahl gefertigt, und ca. 20% aus einem nicht eindeutig identifizierbaren Material. 28% dieser Metallkonstruktionen sind mehr als 100 Jahre alt und fast 70% der Brücken sind mehr als 50 Jahre alt. Weil heute Eisenbahnzüge immer länger, schwerer und schneller werden, steigt die Belastung dieser Brücken stark an. Jede Achslast erzeugt Vibrationen, und so entstehen mit der Zeit kleine Risse und Spalten in den Bauwerken, und die Ermüdung der Träger schreitet immer rascher voran. Die EP 1 396 582 A2 und die US 2012/180407 A1 offenbaren, ein Stahlbauwerk mit einem Zugband und über die Verwendung von Hubelementen vorzuspannen.This invention relates to a method for prestressing a steel structure, both on a new construction and preferably on an existing steel structure, especially on bridge structures. According to a study by Bien J. Elfgren L. and Olofsson J. entitled Sustainable Bridges, Assessment for Future Traffic Demands and Longer Lives, Wroclaw, Dolnoslaskie Wydawnictwo Edukacyjne, 2007 , the European Railway Administrations confirm that there are approximately 220,000 railway bridges in Europe alone and that they are located in a wide variety of climatic areas. About 22% of these are metal or steel structures, which are often referred to as iron bridges. 3% are cast iron bridges, 25% are welded steel structures, and 53% are made of steel, and approx. 20% are made of a material that cannot be clearly identified. 28% of these metal structures are more than 100 years old and almost 70% of the bridges are more than 50 years old. Because railway trains are getting longer, heavier and faster these days, the load on these bridges increases significantly. Every axle load generates vibrations, which means that small cracks and gaps develop in the structures over time, and the fatigue of the beams progresses faster and faster. The EP 1 396 582 A2 and the US 2012/180407 A1 disclose to prestress a steel structure with a tension band and about the use of lifting elements.

Versuche an der EMPA in CH-Dübendorf zeigten, dass sich mit der Applikation von Kohlefaser-verstärkten Polymeren (CFRP = Carbon Fiber Reinforced Polymers) die Stahlträger im Grundsatz verstärken lassen. Diese CFRP werden mittels Klebestoffen an den Stahlträgern befestigt und vermögen eine Zugbelastung aufzunehmen, was die Rissbildung verlangsamt oder sogar stoppt. Klebstoffe eignen sich allerdings vielerorts nur bedingt, denn Stahl wird durch die Sonneneinstrahlung stark erhitzt und das kann den Klebstoff an seine Glastransformationsgrenze bringen. Zu beachten sind in diesem Zusammenhang die Publikationen Engineering Structures 45 (2012) 270-283 sowie international Journal of Fatigue 44 (2012) 303-315 im Elsevier Journal (www.elsevier.com ) . Tests at the EMPA in CH-Dübendorf showed that the application of carbon fiber reinforced polymers (CFRP = Carbon Fiber Reinforced Polymers) can in principle reinforce the steel beams. These CFRPs are attached to the steel girders with adhesive and are capable of holding absorb a tensile load, which slows down or even stops cracking. Adhesives are, however, only suitable to a limited extent in many places, because steel is strongly heated by the sun's rays and this can bring the adhesive to its glass transformation limit. The publications should be noted in this context Engineering Structures 45 (2012) 270-283 as well as internationally Journal of Fatigue 44 (2012) 303-315 in the Elsevier Journal (www.elsevier.com ) .

Ein weiterer Problemkreis bildet die galvanische Korrosion. Obwohl CFRP nicht korrosiv sind, bilden sie in Verbindung mit Stahl galvanische Zellen. Dann gibt es viele genietete Eisenbrücken. Bei diesen besteht das Problem darin, wie man die flachen CFRP Bänder am bestens an den Eisenträgern befestigt. Und schliesslich muss oft auch auf den Denkmalschutz Rücksicht genommen werden, indem etwa gefordert wird, dass historisch bedeutsame Bauwerke bei Bedarf wieder in ihren ursprünglichen Zustand zurückversetzt werden können müssen, was mit aufgeklebten CFRP Bändern kaum realisierbar ist. Und schliesslich wäre es erwünscht, die Bauwerke nicht nur zu verstärken, sondern unter eine Vorspannung zu setzen, um damit bereits bestehende Risse und Spalten völlig zu verschliessen und ein Weiterwachsen dieser Risse und Spalten dauerhaft zu unterbinden. Eines der wichtigsten Aufgaben eines Verstärkungssystems ist daher die sachdienliche Wahl des mechanischen Verankerungssystems, sodass dieses genügend Klemmkraft entwickelt, einer minimalen Korrosion unterworfen ist, möglichst keine direkte Berührung der CFRP Bänder mit dem Stahl bedingt, und die Stress-Einleitung in das Verankerungssystem graduell erfolgt.Another problem area is galvanic corrosion. Although CFRP are not corrosive, they form galvanic cells when combined with steel. Then there are many riveted iron bridges. The problem with these is how best to attach the flat CFRP straps to the iron girders. And finally, historical preservation often has to be taken into account, for example by demanding that historically significant buildings can be restored to their original state if necessary, which is hardly feasible with CFRP tapes glued on. And finally, it would be desirable not only to reinforce the structures, but also to put them under a prestress in order to completely close existing cracks and gaps and to permanently prevent these cracks and gaps from growing. One of the most important tasks of a reinforcement system is therefore the appropriate choice of the mechanical anchoring system so that it develops sufficient clamping force, is subject to minimal corrosion, if possible does not cause the CFRP bands to come into direct contact with the steel, and the stress is gradually introduced into the anchoring system.

Die Aufgabe dieser Erfindung ist es, ein Verfahren zum Vorspannen eines Stahl-Bauwerkes anzugeben, sowie auch ein damit vorgespanntes Stahl-Bauwerk. Dabei soll mittels dieser Vorspannung die Rissbildung an einem neuen oder bestehenden Stahl-Bauwerk verhindert werden, oder schon vorhandene Risse sollen geschlossen werden oder deren weiteres Wachsen soll gestoppt oder mindestens verlangsamt werden.The object of this invention is to provide a method for prestressing a steel structure and also a steel structure prestressed therewith. This prestressing is intended to prevent the formation of cracks on a new or existing steel structure, or to crack existing cracks or to stop or at least slow their further growth.

Die Aufgabe wird gelöst von einem Verfahren gemäss den Merkmalen des Anspruchs 1.The object is achieved by a method according to the features of claim 1.

Die Aufgabe wird weiter gelöst von einem Stahlbauwerk gemäss den Merkmalen des Anspruchs 9.The object is further achieved by a steel structure according to the features of claim 9.

In den Figuren wird die Erfindung schematisch dargestellt und anhand dieser beispielsweisen Figuren nachfolgend beschrieben und die Funktion des Verfahrens wie auch des damit verstärkten Bauwerks wird beschrieben.The invention is shown schematically in the figures and described below with reference to these exemplary figures, and the function of the method and of the structure reinforced with it is described.

Es zeigt:

Figur 1:
Ein Stahlbauwerk in Form einer Eisenbrücke mit Unterverstrebungen mit einem schlaff mit ihrer auf Zug belasteten Unterseite verbundenen CFRP-Band;
Figur 2:
Das Stahlbauwerk nach Figur 1 nach dem Einsetzen eines Hubelementes;
Figur 3:
Das Stahlbauwerk nach Figur 1 nach dem Einsetzen von zwei Hubelementen;
Figur 4:
Ein Stahlbauwerk in Form einer Eisenbrücke mit Oberverstrebungen mit einem schlaff mit ihrer auf Zug belasteten Unterseite verbundenen CFRP-Band;
Figur 5:
Das Stahlbauwerk nach Figur 4 nach dem Einsetzen von drei Hubelementen;
Figur 6:
Ein Stahlbauwerk in Form einer Eisenbrücke mit bogenförmiger Unterverstrebung mit einem applizierten CFRP-Band und mehreren Hubelementen für dessen Vorspannung.
It shows:
Figure 1:
A steel structure in the form of an iron bridge with sub-struts with a CFRP band slackly connected to its underside under tension;
Figure 2:
The steel structure after Figure 1 after inserting a lifting element;
Figure 3:
The steel structure after Figure 1 after inserting two lifting elements;
Figure 4:
A steel structure in the form of an iron bridge with upper struts with a CFRP band slack with its underside, which is subjected to tension;
Figure 5:
The steel structure after Figure 4 after inserting three lifting elements;
Figure 6:
A steel structure in the form of an iron bridge with an arched strut with an applied CFRP band and several lifting elements for its pretensioning.

In Figur 1 ist ein Stahlbauwerk in Form einer Eisenbrücke 1 mit Unterverstrebungen 2 dargestellt, wobei der unterste horizontale Stahlträger 3 auf Zug belastet ist. Bei solchen Eisenbrücken gibt es stets Stahlträger, die auf Druck beansprucht sind, und solche, die auf Zug beansprucht sind. Es wirken ausserdem Biegemomente, besonders wenn die Brücke temporär belastet wird, wenn etwa ein Eisenbahnzug darüber rollt. Jede Achslast verursacht Schwingungen und diese tragen zur Ermüdung des Materials bei, sodass über die Jahre in den Stahlträgern Risse auftreten können, welche die Stahlträger mehr und mehr schwächen. Es gilt, diesen Prozess zu stoppen oder mindestens zu verlangsamen. Weil Kohlenstoff-Faser verstärkte Polymerbänder (CFRP-Bänder) aussergewöhnlich stark auf Zug belastbar sind und ausserdem keiner Korrosion unterliegen, bieten sie sich an, auf Zug belastete Stahlträger zu verstärken. Am effizientesten wäre es, mittels solcher Bänder auf Zug belastete Stahlträger vorzuspannen. Es sind Vorschläge bekanntgeworden, um Betonbauwerke nachträglich mit vorgespannten Bändern zu bewehren, um ihre Zugfestigkeit zu verbessern. Die Bänder werden in diesem Fall mittels einer speziellen Vorrichtung stark vorgespannt und in diesem vorgespannten Zustand an das Betonbauwerk herangefahren und mittels Epoxyharz-Klebern auf den Beton aufkaschiert. Nach dem Aushärten des Klebstoffes wird die Vorrichtung, welche die Spannung erzeugte und aufrechterhielt, entfernt, wonach das vorgespannte CFRP-Band seine Spannung dauerhaft in das Bauwerk einleitet. Eine solche Methode lässt sich jedoch an Stahlkonstruktionen nicht einsetzen. Erstens weisen diese in aller Regel keine glatten Oberflächen auf, und zweitens erweist sich der Einsatz von Klebstoffen bei Stahlträgern als wenig geeignet, weil sich Stahlkonstruktionen unter intensiver Sonneneinstrahlung stark erwärmen und somit den Klebstoff an seine Grenzen heranführen. Ausserdem ist das Heranführen einer schweren Vorrichtung zum Vorspannen der Bänder in vielen Fällen aufgrund der örtlichen Bedingungen oder aus Platzgründen nicht durchführbar. Gerade wenn sich eine Brücke in grosser Höhe über eine grosse Weite erstreckt, ist diese Methode nicht einsetzbar.In Figure 1 a steel structure in the form of an iron bridge 1 with sub-struts 2 is shown, with the lowest horizontal steel beam 3 Train is loaded. With such iron bridges, there are always steel girders that are under pressure and those that are under tension. Bending moments also have an effect, especially if the bridge is temporarily loaded, for example if a train is rolling over it. Every axle load causes vibrations and this contributes to the fatigue of the material, so that over the years cracks can appear in the steel beams, which weaken the steel beams more and more. The aim is to stop this process or at least slow it down. Because carbon fiber reinforced polymer tapes (CFRP tapes) are exceptionally strong under tensile stress and are also not subject to corrosion, they are ideal for reinforcing steel beams under tensile stress. The most efficient way would be to pre-tension steel girders with tensile loads using such belts. Proposals have become known for subsequently reinforcing concrete structures with prestressed bands in order to improve their tensile strength. In this case, the strips are strongly pre-tensioned using a special device and, in this pre-tensioned state, moved up to the concrete structure and laminated onto the concrete using epoxy resin adhesives. After the adhesive has cured, the device that created and maintained the tension is removed, after which the pre-tensioned CFRP tape permanently applies its tension to the structure. However, such a method cannot be used on steel structures. Firstly, these generally do not have smooth surfaces, and secondly, the use of adhesives for steel girders proves to be unsuitable, because steel structures heat up strongly under intense sunlight and thus bring the adhesive to its limits. In addition, the introduction of a heavy device for pretensioning the tapes cannot be carried out in many cases due to the local conditions or for reasons of space. This method cannot be used, especially when a bridge stretches across a large area at great heights.

Die Brücke nach Figur 1 weist eine Unterverstrebung 2 auf, das heisst die unterste horizontale Strebe 3 ist auf Zug belastet, und sie kann mittels CFRP-Bändern 4 verstärkt werden, wozu wie folgt vorgegangen wird. Ein CFRP-Band 4 wird an seinen beiden Endbereichen über einen Abschnitt oder über die ganze Länge eines auf Zug beanspruchten Bauwerkteils zugkraftschlüssig mit demselben verbunden. Hierzu gibt es aus dem Stand der Technik geeignete Endverankerungen 5, zum Beispiel in Form von Klemmschuhen, mittels derer die Bänder 4 mechanisch dauerhaft und hoch zugkraftschlüssig mit dem Stahlträger 3 verbindbar sind. Im gezeigten Beispiel ist ein CFRP-Band 4 über die ganze Länge der Unterseite des horizontalen unteren Stahlträgers 3 gespannt, wobei die Endverankerungen 5 beidseits in der Nähe der Enden des Stahlträgers 3 befestigt sind. Das Band 4 ist dabei schlaff gespannt. Weiter ist im gezeigten Beispiel in der Mitte des CFRP-Bandes 4, das heisst auf halber Länge, ein Hubelement 7 zwischen dem Stahlträger 3 und dem CFRP-Band 4 eingebaut. Dieses Hubelement 7 kann ein hydraulisch, pneumatisch, elektrisch oder mechanisch betätigbares Hubelement 7 sein, welches eine derartige Übersetzung bietet, dass hohe Hubkräfte generierbar sind, zum Beispiel einige 10k Newton. Es werden nun mit vergleichsweisen langen Aktionswegen kurze Reaktionswege erzeugt. Wenn eine derartige Hubkraft im Wesentlichen senkrecht auf das an seinen Endbereichen eingespannte CFRP-Band 4 wirkt und es vom Stahlträger 3 abhebt, so entstehen übersetzt weit stärkere Zugkräfte auf das CFRP-Band 4 selbst, und diese werden dann über die Endverankerungen 5 in das Bauwerk 1 eingeleitet. Ein solcherart vorgespannter Stahlträger 3 erfährt dadurch eine sehr wesentliche Verstärkung. Wenn er bereits Mikrorisse oder gar ernsthafte Risse aufweist, so lassen sich diese in vielen Fällen mittels einer solchen Vorspannung schliessen oder mindestens lässt sich erreichen, dass diese Risse nicht weiter wachsen. Es versteht sich, dass nicht bloss ein einzelnes CFRP-Band 4 angebracht werden muss, sondern eine ganze Schar von CFRP-Bändern 4 über die Breite der Brücke verbaut werden kann, oder auch abschnittsweise über die Länge der Brücke mehrere CFRP-Bänder 4 nacheinander oder einander in der Länge überlappende CFRP Bänder 4 angebracht werden können, die nebeneinander positioniert sind und parallel zueinander verlaufen, oder sich gar in der Höhe überlappen, also übereinander liegen oder sich kreuzen können. In diesem Fall sind die Bänder 4 nicht genau in der Verlaufrichtung der Stahlträger auf denselben verlegt, sondern leicht schiefwinklig dazu, sodass Kreuzungen der Bänder 4 entstehen.The bridge behind Figure 1 has a sub-strut 2, that is to say the lowest horizontal strut 3 is loaded with tension, and it can be reinforced by means of CFRP bands 4, for which the procedure is as follows. A CFRP band 4 is at its two end regions over a section or over the whole Length of a structural part that is subjected to tension is connected to the same in a traction-locking manner. For this purpose, there are suitable end anchors 5 from the prior art, for example in the form of clamping shoes, by means of which the straps 4 can be connected mechanically permanently and with high tensile strength to the steel carrier 3. In the example shown, a CFRP band 4 is stretched over the entire length of the underside of the horizontal lower steel beam 3, the end anchorages 5 being fastened on both sides in the vicinity of the ends of the steel beam 3. The band 4 is stretched slack. Furthermore, in the example shown, a lifting element 7 is installed between the steel beam 3 and the CFRP band 4 in the middle of the CFRP band 4, that is to say over half the length. This lifting element 7 can be a hydraulically, pneumatically, electrically or mechanically actuated lifting element 7, which offers such a translation that high lifting forces can be generated, for example a few 10k Newtons. Short reaction paths are now generated with comparatively long action paths. If such a lifting force acts essentially perpendicularly on the CFRP band 4 clamped at its end regions and lifts it from the steel beam 3, then much stronger tensile forces are created on the CFRP band 4 itself, and these are then transferred to the structure via the end anchorages 5 1 initiated. A steel beam 3 which is prestressed in this way is thereby very significantly reinforced. If it already has microcracks or even serious cracks, in many cases these can be closed by means of such a pretension or at least it can be achieved that these cracks do not continue to grow. It goes without saying that not only a single CFRP tape 4 has to be attached, but a whole set of CFRP tapes 4 can be installed over the width of the bridge, or also sections of the length of the bridge several CFRP tapes 4 in succession or CFRP tapes 4 which overlap in length can be attached, which are positioned next to one another and run parallel to one another, or even overlap in height, that is to say they can lie one above the other or can cross. In this case, the strips 4 are not laid on the steel girders exactly in the direction of travel, but at a slightly oblique angle to them, so that the strips 4 intersect.

In Figur 2 sieht man das Stahlbauwerk nach Figur 1 nach dem Einsetzen eines Hubelementes 7. Es wurde unter das schlaff gespannt angebrachte CFRP-Band 4 montiert, zum Beispiel mittels einer mechanischen Verbindung mit dem Stahlträger 3, durch Anschweissen oder Anschrauben. Dieses Hubelement 7 kann nach Art eines Wagenhebers konstruiert sein, sodass es mittels einer externen Hydraulikpumpe hydraulisch anhebbar ist, indem eine Hydraulikleitung temporär an das Hubelement 7 angeschlossen wird. Mit einer entsprechenden Übersetzung lassen sich hinreichend grosse Kräfte generieren. Die Anhebung wird dann mittels einer mechanischen Klinke oder mittels mechanischer Unterlagen gesichert. Solche mechanische Unterlagen werden nach erfolgtem Arbeitshub des Hubelementes 7, welches in diesem Fall etwas über die endgültig zu erreichende Zugspannung hinaus gehoben wird, neben demselben zwischen das Band 4 und dem zu verstärkenden Stahlträger 3 eingebaut. Dann wird das Hubelement 7 wieder etwas entlastet, sodass die Zielspannung erreicht wird und die Stützkraft dann von den Unterlagen aufgefangen wird. Als Alternative kann das Hubelement 7 auch pneumatisch betätigbar sein. Dann kann ein Kompressorschlauch angekuppelt werden, und das Ausfahren des Hubelementes 7 erfolgt aufgrund von pneumatischem Druck mit einer hinreichenden Übersetzung. Schliesslich ist auch eine elektrische Variante eines Hubelementes 7 denkbar, indem ein inliegender EL-Motor über eine kurze Übersetzung, zum Beispiel mittels Spindeln und Hebeln, eine hinreichend grosse Hubkraft generiert. In diesem Fall braucht bloss eine elektrische Leitung zum Hubelement 7 zu führen, und es kann bei Bedarf leicht nachgestellt werden. Schliesslich ist auch eine rein mechanische Ausführung denkbar, ebenfalls mit Spindel und/oder Hebeln ausgerüstet, wobei dann mit einer anzuschliessenden Kurbel von Hand oder motorisch die nötige Hubkraft erzeugt wird. Auf jeden Fall wird das schlaff gespannte CFRP-Band 4 mittels des Hubelementes 7 gespannt und erzeugt dann wegen der Hebelwirkung eine grosse Zugkraft auf das Band 4, welche um ein Vielfaches grösser als die Hubkraft ist. Während die Verankerungen 5 praktisch stationär bleiben oder nur ganz geringfügig zusammen mit dem Bauwerk nachgeben, kann der Hub des Hubelementes 7 mehrere Zentimeter betragen. Aufgrund der Geometrie ergibt sich, dass in dieser Weise sehr grosse Zugkräfte von x mal 10k N auf das Bauwerk übertragbar sind.In Figure 2 you can see the steel structure Figure 1 after insertion a lifting element 7. It was mounted under the slackly attached CFRP band 4, for example by means of a mechanical connection to the steel beam 3, by welding or screwing. This lifting element 7 can be constructed in the manner of a jack, so that it can be raised hydraulically by means of an external hydraulic pump by temporarily connecting a hydraulic line to the lifting element 7. Sufficiently large forces can be generated with an appropriate translation. The lifting is then secured by means of a mechanical jack or by means of mechanical documents. Such mechanical documents are installed after the working stroke of the lifting element 7, which in this case is raised somewhat above the ultimate tensile stress, next to the same between the band 4 and the steel beam 3 to be reinforced. Then the lifting element 7 is relieved again somewhat, so that the target tension is reached and the supporting force is then absorbed by the documents. As an alternative, the lifting element 7 can also be operated pneumatically. Then a compressor hose can be coupled, and the extension of the lifting element 7 takes place due to pneumatic pressure with a sufficient ratio. Finally, an electrical variant of a lifting element 7 is also conceivable in that an EL motor inside generates a sufficiently large lifting force by means of a short translation, for example by means of spindles and levers. In this case, only an electrical line needs to lead to the lifting element 7, and it can be easily adjusted if necessary. Finally, a purely mechanical design is also conceivable, likewise equipped with a spindle and / or levers, the lifting force then being generated by hand or by means of a crank to be connected. In any case, the slack CFRP band 4 is tensioned by means of the lifting element 7 and then generates a large tensile force on the band 4 due to the leverage, which is many times greater than the lifting force. While the anchors 5 remain practically stationary or yield only very slightly together with the building, the stroke of the lifting element 7 can be several centimeters. Due to the geometry, very large tensile forces of x 10k N can be transferred to the building in this way.

Die Figur 3 zeigt das Stahlbauwerk nach Figur 1 nach dem Einsetzen von zwei Hubelementen 7. Im Falle des Einsatzes von zwei Hubelementen 7 werden diese vorteilhaft gleichzeitig ausgefahren, damit sich die Spannung gleichmässig über die Bandlänge verteilt aufbaut. Als Alternative kann das eine Hubelement 7 ein kleines Stück weit ausgefahren werden, dann das zweite ein ebensolches kleines Stück weit, dann wieder das erste, dann wieder das zweite, usw., sodass die Zugkraft nach und nach abwechslungsweise durch die beiden Hubelemente 7 gewissermassen aufschaukelnd erzeugt wird.The Figure 3 shows the steel structure Figure 1 after the insertion of two lifting elements 7. If two lifting elements 7 are used, they are advantageously extended at the same time, so that the tension builds up uniformly over the length of the belt. As an alternative, the one lifting element 7 can be extended a little, then the second a similarly small distance, then again the first, then again the second, etc., so that the tractive force gradually alternates to a certain extent by the two lifting elements 7 is produced.

Die Figur 4 zeigt ein Stahlbauwerk in Form einer Eisenbrücke mit Oberverstrebungen 6 mit einem schlaff mit ihm verbundenen CFRP-Band 4. In diesem Fall verläuft das angebaute CFRP-Band 4 längs des untersten horizontalen Stahlträgers, wobei es in der Praxis natürlich mehrere solche Stahlträger sind, die längs der Brücke verlaufen, und jeder mit mindestens einem CFRP-Band 4 ausgerüstet wird, mit je zwei Endverankerungen 5, die an den Enden des Bandes 4 dieses zugkraftschlüssig mit dem Bauwerk bzw. dem besagten Stahlträger verbinden.The Figure 4 shows a steel structure in the form of an iron bridge with upper struts 6 with a slack CFRP band 4 connected to it. In this case, the attached CFRP band 4 runs along the lowest horizontal steel girder, in practice, of course, there are several such steel girders, the longitudinal the bridge, and each is equipped with at least one CFRP band 4, each with two end anchors 5, which at the ends of the band 4 connect this to the structure or the said steel girder.

Die Figur 5 zeigt dieses Stahlbauwerk nach Figur 4 nach dem Einsetzen von drei Hubelementen 7, die über die Länge jedes CFRP-Bandes 4 verteilt angeordnet sind und wiederum gleichzeitig ausgefahren werden oder aber es werden zunächst die beiden äusseren ein Stück weit ausgefahren und hernach das mittlere etwas weiter, sodass eine gleichmässige Spannung über die ganze Länge des CFRP-Bands 4 erzeugt wird.The Figure 5 shows this steel structure Figure 4 after the insertion of three lifting elements 7, which are arranged distributed over the length of each CFRP band 4 and are again extended at the same time, or else the two outer ones are extended a little and then the middle is slightly further, so that a uniform tension over the entire length of the CFRP tape 4 is generated.

Die Figur 6 zeigt schliesslich noch ein Stahlbauwerk in Form einer Eisenbrücke mit bogenförmiger Unterverstrebung 2. Hier wirkt durch das Eigengewicht der Brücke 1 sowie durch deren Belastung eine Zugkraft auf die bogenförmigen Längsträger 8 am unteren Ende der Brücke. In diesem Fall können CFRP-Bänder 4 längs dieser gebogenen Strahlträger 8 verlegt und angebaut werden. Im gezeigten Beispiel verläuft ein einzelnes CFRP-Band 4 über die ganze Brückenlänge längs des unteren Trägerbogens 8 und ist an beiden Endbereichen von dort angebrachten Verankerungselementen 5 fest mit dem Stahlträger 8 der Brücke 1 verbunden. Es sind hier über die Bandlänge verteilt fünf Hubelemente 7 eingesetzt. Diese werden alle gleichmässig angehoben, um einen möglichst gleichmässigen bzw. homogenen Spannungsaufbau im CFRP-Band 4 zu erzeugen. Diese Spannkraft wird dann über die Verankerungselemente 5 in das Bauwerk 1 eingeleitet.The Figure 6 finally shows a steel structure in the form of an iron bridge with an arched sub-strut 2. Here, due to the dead weight of the bridge 1 and its loading, a tensile force acts on the arched longitudinal beams 8 at the lower end of the bridge. In this case, CFRP bands 4 can be laid and attached along these curved beam supports 8. In the example shown, a single CFRP band 4 runs over the entire length of the bridge along the lower support arch 8 and is firmly attached to the steel support 8 at both end regions of the anchoring elements 5 attached there Bridge 1 connected. Five lifting elements 7 are used here distributed over the belt length. These are all raised uniformly in order to generate a voltage build-up in the CFRP band 4 that is as uniform or homogeneous as possible. This tensioning force is then introduced into the structure 1 via the anchoring elements 5.

Mittels solcher Verstärkungen können Risse oder Spalte in Stahlbauwerken, das heisst in den Elementen, die auf Zug belastet sind, in manchen Fällen geschlossen werden. In anderen Fällen kann ein weiteres Wachsen dieser Risse und Spalten verhindert werden, oder mindestens kann der Schwächungsprozess wesentlich verlangsamt werden, und insgesamt können die Bauwerke entschieden verstärkt und stabilisiert werden, sodass ihre Lebensdauer verlängert wird, oder bedarfsweise die Belastungsfähigkeit gesteigert wird.Such reinforcements can in some cases close cracks or gaps in steel structures, i.e. in the elements that are subject to tension. In other cases, further growth of these cracks and crevices can be prevented, or at least the weakening process can be slowed down considerably, and overall the structures can be decisively strengthened and stabilized so that their lifespan is extended or, if necessary, the load capacity is increased.

Claims (10)

  1. Method for prestressing a steel structure, in which at least one carbon fibre-reinforced polymer strip (4) is attached at each of its end regions with end anchorages (5) in a tensile force-locking manner to a steel beam to be reinforced of the steel structure (1), and thereafter, in a region between these end anchorages (5), at least one lifting element (7) arranged between the respective carbon fibre-reinforced polymer strip (4) and the steel beam (3, 8) to be reinforced is extended substantially perpendicular to the carbon fibre-reinforced polymer strip (4), such that a uniform tension is generated over the entire length of the carbon fibre reinforced polymeric band (4), to effect a tensile force tension between the end anchors (5) of the respective carbon fibre reinforced polymeric band (4), which tensile force is many times greater than the lifting force due to the leverage effect, and which tensile force is introduced into the structure via the end anchors (5), the lifting of the respective carbon fibre reinforced polymeric band (4) being secured by means of a mechanical support.
  2. Method for prestressing a steel structure according to claim 1, characterised in that the length of the stroke of the at least one lifting element (7) is several centimetres.
  3. Method for prestressing a steel structure according to one of claims 1 or 2, characterised in that several polymer strips (4) reinforced with carbon fibre are applied to the steel beam (3, 8) to be reinforced over the length of the latter.
  4. Method for prestressing a steel structure according to one of claims 1 or 2, characterised in that several carbon fibre-reinforced polymer strips (4) are aligned parallel to one another over the length of the steel beam (3, 8) to be reinforced and are each applied to the steel beam (3, 8) over its entire length.
  5. Method for prestressing a steel structure according to one of claims 1 or 2, characterised in that a plurality of carbon-fibre-reinforced polymer strips (4) are applied over the length of the steel beam (3, 8) to be reinforced, aligned parallel to one another over partial sections of the length of the steel beam (3, 8).
  6. Mmethod for prestressing a steel structure in accordance with one of claims 1 or 2, characterised in that over the length of the steel beam (3, 8) to be reinforced, a plurality of carbon fibre-reinforced polymer strips (4) are applied over partial sections of the length of the steel beam (3, 8), aligned parallel to one another, so that they lie next to one another and overlap one another in partial sections with respect to their length.
  7. Method for prestressing a steel structure in accordance with one of claims 1 or 2, characterised in that a plurality of carbon fibre-reinforced polymer strips (4) are laid over the length of the steel beam (3, 8) to be reinforced, which are arranged so as to extend in a direction deviating from the longitudinal direction of the steel beam (3, 8) and cross each other.
  8. Method for prestressing a steel structure in accordance with one of the preceding claims, characterised in that each carbon fibre-reinforced polymer strip (4) is prestressed by means of at least one hydraulically, pneumatically, electrically or mechanically operable lifting element (7), and the lifting element (7) is relieved of load by means of a mechanical support between the respective strip (4) and the steel beam (3, 8) to be reinforced after lifting work has been carried out.
  9. Steel structure, characterized in that at least one carbon fibre-reinforced polymer strip (4) is connected in each case at its end regions in a tensile-force-locking manner to a steel beam to be reinforced of the steel structure (1), wherein in the region between these end regions at least one lifting element (7) or a mechanical support is inserted between the respective carbon fibre-reinforced polymer strip (4) and the steel carrier (3, 8) to be reinforced, by means of which the respective carbon fibre-reinforced polymer strip (4) is held under tensile stress after substantially vertical lifting from the steel carrier (3, 8) and thus prestressing.
  10. Steel structure according to claim 9, characterised in that the stroke of the respective carbon fibre-reinforced polymer strip is several centimetres.
EP14722518.9A 2013-05-14 2014-04-16 Method for pre-stressing a steel structure, and steel structure pre-stressed using said method Active EP2997197B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00950/13A CH706630B1 (en) 2013-05-14 2013-05-14 Method for pretensioning steel structure e.g. iron bridge, involves vertically driving lifting element to polymer tapes in region between end anchorages for causing traction force tensioning between end regions of polymer tapes
PCT/CH2014/000049 WO2014183224A1 (en) 2013-05-14 2014-04-16 Method for pre-stressing a steel structure, and steel structure pre-stressed using said method

Publications (2)

Publication Number Publication Date
EP2997197A1 EP2997197A1 (en) 2016-03-23
EP2997197B1 true EP2997197B1 (en) 2020-04-22

Family

ID=49773102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14722518.9A Active EP2997197B1 (en) 2013-05-14 2014-04-16 Method for pre-stressing a steel structure, and steel structure pre-stressed using said method

Country Status (14)

Country Link
US (2) US20160145815A1 (en)
EP (1) EP2997197B1 (en)
KR (1) KR102267298B1 (en)
CN (1) CN105518218A (en)
AU (1) AU2014268098B2 (en)
BR (1) BR112015028588B1 (en)
CA (1) CA2918395C (en)
CH (1) CH706630B1 (en)
EA (1) EA031304B1 (en)
ES (1) ES2802887T3 (en)
NZ (1) NZ713701A (en)
PT (1) PT2997197T (en)
WO (1) WO2014183224A1 (en)
ZA (1) ZA201509090B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326313B2 (en) 2013-05-14 2022-05-10 S&P Clever Reinforcement Company Ag Method for pre-stressing a steel structure, and steel structure pre-stressed using said method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2533817A (en) * 2015-01-05 2016-07-06 Bae Systems Plc Mobile bridge module
GB2533818B (en) 2015-01-05 2021-03-03 Bae Systems Plc Mobile bridge apparatus
PT108710A (en) * 2015-07-21 2017-01-23 António Saraiva Pires Da Fonseca João SYSTEM FOR ARC BRIDGE STRUCTURE, WITH MOBILIZATION OF EXTERIOR REACTIONS THROUGH DEFINITIVE STRETCHERS.
JP2017214699A (en) * 2016-05-30 2017-12-07 東日本旅客鉄道株式会社 Girder reinforcement structure
CN107060349A (en) * 2017-06-20 2017-08-18 中国华西企业有限公司 A kind of large-span steel girder upper air installing system in place and its construction
CN107152078B (en) * 2017-06-29 2023-04-07 中国建筑第二工程局有限公司 Hinge device and construction method for releasing welding internal stress of steel gallery by using hinge device
CN108103965B (en) * 2018-01-12 2019-04-09 长沙理工大学 Prestressed Bailey beam for reinforcement and construction method thereof
WO2019175065A1 (en) * 2018-03-15 2019-09-19 Re-Fer Ag Method for creating a prestress on a component made of steel, metal or an alloy by means of an sma plate, and component prestressed in such a manner
CN108867393A (en) * 2018-08-02 2018-11-23 中铁二院工程集团有限责任公司 A kind of long-span continuous rigid-framed bridge external prestressing load system
CN109537475B (en) * 2018-11-26 2023-07-14 山东交通学院 Method for reinforcing capping beam by using carbon fiber and reinforcing structure
JP7115324B2 (en) * 2019-01-09 2022-08-09 日本製鉄株式会社 Steel member reinforcement structure and reinforcement method
CN111395210B (en) * 2020-04-07 2021-10-22 浙江大学 Method for improving bearing capacity of truss girder bridge by using external prestressed tendons
CN112412097B (en) * 2020-11-29 2022-03-25 恒上建设有限公司 Jacking reinforcing apparatus with adjustable gaseous film building top bearing is prevented caving in
CN112942144B (en) * 2021-01-27 2022-05-10 招商局重庆交通科研设计院有限公司 Reinforced concrete arch bridge reinforcing method based on thermal expansion principle
CN112942890A (en) * 2021-04-07 2021-06-11 上海悍马建筑科技有限公司 Method for simultaneously reinforcing positive and negative bending moments of concrete flexural member
CN114457706A (en) * 2022-02-28 2022-05-10 广西交科集团有限公司 Method for reinforcing assembled abdominal arch ring of double-arch bridge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110072745A1 (en) * 2008-06-12 2011-03-31 Pantelides Chris P Anchoring, splicing and tensioning elongated reinforcement members

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US238130A (en) * 1881-02-22 Bridge
US762632A (en) * 1904-02-18 1904-06-14 Joseph W Headley Truss-bridge.
US3427811A (en) * 1967-03-22 1969-02-18 Claude C White Mine roof support system
US3909863A (en) * 1972-09-11 1975-10-07 Krupp Gmbh Bridge crane girder
BE810043A (en) * 1974-01-22 1974-05-16 PROCEDURE FOR PRE-STRESSING AND COUNTER-REFLECTION OF MIXED STEEL AND CONCRETE BEAMS.
US4021875A (en) * 1975-04-10 1977-05-10 The United States Of America As Represented By The Secretary Of The Army Pivotable and extensible tension post for a cable bridge structure
GB1576322A (en) * 1976-05-19 1980-10-08 Gleeson M J Frameworks for buildings and like structures
US4129915A (en) * 1978-04-14 1978-12-19 The United States Of America As Represented By The Secretary Of The Army Cable tensioning means for king post structuring
FR2520777A1 (en) * 1982-01-29 1983-08-05 Bouygues Sa METHOD AND DEVICES FOR REALIZING A BRIDGE APRON AND SIMILAR STRUCTURES, AND ARTICLES OBTAINED
US4631772A (en) * 1983-12-28 1986-12-30 Bonasso S G Tension arch structure
FR2629111B1 (en) * 1988-03-25 1990-11-30 Muller Jean APRON FOR LARGE LENGTH BRIDGE
US5313749A (en) * 1992-04-28 1994-05-24 Conner Mitchel A Reinforced steel beam and girder
US6170209B1 (en) * 1996-11-05 2001-01-09 University Of Maine Prestressing system for wood structures and elements
GB2340144B (en) * 1998-08-06 2000-06-28 Keller Ltd Ground anchorage
DE19849605A1 (en) * 1998-10-28 2000-05-04 Goehler Andrae Und Partner Ber Tensioning device for a band-shaped tension member
KR100301431B1 (en) * 1998-11-07 2001-10-29 박상일 Prestressed concrete girder with regulable tensile force
US6065257A (en) * 1999-05-24 2000-05-23 Hubbell, Roth & Clark, Inc. Tendon alignment assembly and method for externally reinforcing a load bearing beam
KR20010036486A (en) * 1999-10-08 2001-05-07 박상일 Method for designing and fabricating multi-step tension prestressed girder
KR20000063499A (en) * 2000-07-18 2000-11-06 박창열 Tension method of PS steel to improve bridge performance.
US20020194808A1 (en) * 2001-06-22 2002-12-26 Ratliff Frank W. Lightweight high load capacity reinforced beam and method of making same
KR100438113B1 (en) * 2002-03-30 2004-07-02 조병완 non-metallic anchorage apparatus for prestressed concrete structure and pre-stressing method using the same
DE10237968B3 (en) * 2002-08-20 2004-02-05 Leonhardt, Andrä und Partner Beratende Ingenieure VBI GmbH Process for mounting a pre-stressed tension element on a concrete supporting framework comprises pre-stressing the tension element via a temporary anchor and then pressing the tension element onto the surface using a permanent anchor clamp
JP3732468B2 (en) * 2002-09-04 2006-01-05 朝日エンヂニヤリング株式会社 Reinforcement structure of truss bridge or arch bridge
DE10249266B3 (en) * 2002-10-23 2004-04-08 Leonhardt, Andrä und Partner Beratende Ingenieure VBI GmbH Tension device for belt-like traction members on concrete support structures has guide member locally fixed between tension bar and tension anchor and supporting traction member for sliding movement upwards
US7748180B1 (en) * 2005-06-23 2010-07-06 Plavidal Richard W Joist stiffening system
US7895799B2 (en) * 2006-01-13 2011-03-01 HC Bridge Company, LLC Hybrid composite beam and beam system
US8925279B2 (en) * 2008-06-12 2015-01-06 The University Of Utah Research Foundation Anchoring, splicing and tensioning elongated reinforcement members
KR101115160B1 (en) * 2009-02-27 2012-02-24 서울시립대학교 산학협력단 Prestessed steel beam using 3D cross type bilateral anchorage
US20120180407A1 (en) * 2011-01-13 2012-07-19 Rees Kyle J Roof truss kit to enable support of solar panels on roof structures
CN102140780A (en) * 2011-04-08 2011-08-03 浙江省电力设计院 Method and device for reinforcing bridge by external pre-stressed strands under bridge
CN102322025B (en) * 2011-08-22 2014-07-30 陈东军 Pre-stressing reinforced and widened bridge structure
CH706630B1 (en) 2013-05-14 2013-12-31 S & P Clever Reinforcement Company Ag Method for pretensioning steel structure e.g. iron bridge, involves vertically driving lifting element to polymer tapes in region between end anchorages for causing traction force tensioning between end regions of polymer tapes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110072745A1 (en) * 2008-06-12 2011-03-31 Pantelides Chris P Anchoring, splicing and tensioning elongated reinforcement members

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHLAICH MIKE, ZWINGMANN BERND, LIU YUE, GOLLER RALF: "Zugelemente aus CFK und ihre Verankerungen", BAUTECHNIK, vol. 89, 31 December 2012 (2012-12-31), pages 841 - 850, ISSN: 0932-8351, DOI: 10.1002/bate.201200057 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326313B2 (en) 2013-05-14 2022-05-10 S&P Clever Reinforcement Company Ag Method for pre-stressing a steel structure, and steel structure pre-stressed using said method

Also Published As

Publication number Publication date
CA2918395C (en) 2021-10-26
EA031304B1 (en) 2018-12-28
KR20160015255A (en) 2016-02-12
US20200299911A1 (en) 2020-09-24
BR112015028588B1 (en) 2021-11-23
NZ713701A (en) 2019-01-25
AU2014268098B2 (en) 2018-04-26
US11326313B2 (en) 2022-05-10
ZA201509090B (en) 2017-01-25
PT2997197T (en) 2020-07-03
KR102267298B1 (en) 2021-06-21
EP2997197A1 (en) 2016-03-23
CN105518218A (en) 2016-04-20
CH706630B1 (en) 2013-12-31
BR112015028588A2 (en) 2018-07-24
CA2918395A1 (en) 2014-11-20
US20160145815A1 (en) 2016-05-26
EA201501078A1 (en) 2016-06-30
AU2014268098A1 (en) 2015-11-26
WO2014183224A1 (en) 2014-11-20
ES2802887T3 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
EP2997197B1 (en) Method for pre-stressing a steel structure, and steel structure pre-stressed using said method
EP2914790B1 (en) Method for producing a tower construction from reinforced concrete
EP0803020B1 (en) Securing of reinforcing strips
DE102011107804A1 (en) Construction principle for tower construction for wind turbines
DE102008032209B4 (en) Steel-concrete composite trough as a bridge superstructure and method for its production
WO1993020296A1 (en) Process and device for increasing the shearing resistance of a structure component
EP0073733B1 (en) Grid-like girder for the support of underground galleries and shafts
EP2817465A1 (en) Device for introducing a force into tension members made of fiber-reinforced flat-strip plastic lamellas
DE10002383A1 (en) Transverse stressed steel or stressed concrete part has reinforcement layers on surfaces and a flat surface component placed at right angles to surface and over entire structural thickness between reinforcement layers
DE727429C (en) Reinforced concrete structure, especially for girder bridges
DE102011102987A1 (en) Incremental launching method for mounting road- and railway bridges with beam cross section, involves providing two steel main girders and carriageway slab made from steel, reinforced concrete or prestressed concrete
EP2459812B1 (en) Reinforced concrete component reinforced with z-shaped sheet metal pieces
DE2705483C2 (en)
CH637719A5 (en) Vaulted structure.
DE202011004948U1 (en) Lattice girder for a lattice girder extension frame
AT306314B (en) Device for increasing the load-bearing capacity of a girder built into an existing structure
DE10140733A1 (en) Bridge, esp. arched bridge has arched top booms coupled via suspension trusses to bottom booms of pre-stressed or reinforced concrete
EP1335083A1 (en) Method for renovating power pylons consisting of steel lattices
DE102016121713A1 (en) segment bridge
EP0947640A2 (en) Reinforcement with high adherence
DE1124075B (en) Method for prestressing statically indeterminate composite beams, in particular bridge beams
DE3833202C2 (en) Beam-like supporting element made of prestressed concrete
DE1434057A1 (en) Composite construction
DE2451574C3 (en) Prestressed concrete deck slab for bridge structures as well as laying equipment and process for their manufacture
CH201557A (en) Procedure for the creation of a reinforced concrete structure.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOTAVALLI, MASOUD

Inventor name: GHAFOORI, ELYAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200304

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOTAVALLI, MASOUD

Inventor name: GHAFOORI, ELYAS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014039

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2997197

Country of ref document: PT

Date of ref document: 20200703

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200625

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER UND PARTNER AG, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2802887

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014039

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1260202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140416

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230406

Year of fee payment: 10

Ref country code: FR

Payment date: 20230424

Year of fee payment: 10

Ref country code: DE

Payment date: 20230221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230420

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240524

Year of fee payment: 11