EP2986502B1 - Optimization of a drive system comprising a variable pitch propeller in a water vehicle during a stopping maneuver - Google Patents

Optimization of a drive system comprising a variable pitch propeller in a water vehicle during a stopping maneuver Download PDF

Info

Publication number
EP2986502B1
EP2986502B1 EP14707769.7A EP14707769A EP2986502B1 EP 2986502 B1 EP2986502 B1 EP 2986502B1 EP 14707769 A EP14707769 A EP 14707769A EP 2986502 B1 EP2986502 B1 EP 2986502B1
Authority
EP
European Patent Office
Prior art keywords
propeller
speed
water vehicle
drive system
variable pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14707769.7A
Other languages
German (de)
French (fr)
Other versions
EP2986502A1 (en
Inventor
Kay Tigges
Jens Wietoska
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2986502A1 publication Critical patent/EP2986502A1/en
Application granted granted Critical
Publication of EP2986502B1 publication Critical patent/EP2986502B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/50Slowing-down means not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H3/00Propeller-blade pitch changing
    • B63H3/10Propeller-blade pitch changing characterised by having pitch control conjoint with propulsion plant control

Definitions

  • the invention relates to a method for operating a propulsion system of a watercraft in a stop maneuver, wherein the drive system comprises at least one variable pitch propeller, each having propeller blades with adjustable blade angle and which is driven by a motor, wherein the engine can exert a motor torque on the variable pitch propeller, wherein a speed of the watercraft and a propeller speed of the at least one variable pitch propeller are determined. Furthermore, the invention relates to a controller, a watercraft, a computer program and a computer program product for carrying out the method.
  • Such a method and such a drive system are used, for example, in watercraft in which good maneuverability or widely varying steady-state speeds are required, e.g. Ferries, passenger ships, feeder.
  • the propeller blades are rotatably mounted on the hub of the "controllable pitch propeller" or variable pitch propeller.
  • the pitch can be infinitely adjusted from zero thrust to maximum thrust in the direction forward or backward, wherein the pitch angle or the pitch ratio can also be referred to as blade angle.
  • the machine To accelerate the vessel from standstill, the machine is started at zero thrust and ramped up, for example, to cruise speed. It is not loaded by drive torque when starting. Consequently, the vehicle does not immediately travel when the engine is started. A spin of the propeller shaft and the so Connected engine by flow (eg from passing ships in the harbor) is prevented by the propeller standing on zero thrust.
  • Watercraft with variable pitch propellers usually do not have a reverse gear, at most a reducer in fast-rotating engines. This eliminates a significant weakness in the drive system compared to conventional drive systems. The efficiency is cheaper at different speeds than in the case of a fixed propeller.
  • the drive can be reversed with the engine running from "ahead” to "back", which is associated with considerable time savings because the machine no longer has to be stopped or not shut down to minimum speed. This significantly improves maneuverability.
  • a control method and system for a watercraft variable pitch propeller wherein multiple modes of operation are provided, for example a maneuvering mode, a driving mode and a test mode. Furthermore, transition sub-modes are provided for a smooth transition between the drive mode and the maneuvering mode and vice versa.
  • the invention has for its object to provide a method of the type mentioned above, which allows a quick deceleration of the vessel in a simple manner.
  • a characteristic curve for the vessel is determined in advance, which different initial velocities of the vessel at the beginning of the stop maneuver with at least a temporal course of the blade angle and a time course the propeller speed linked such that the operated during the stop maneuver according to the characteristic drive system results in the shortest possible Aufstoppweg the vessel and the propeller speed does not exceed a predetermined, critical speed value, the drive system is operated during the stop maneuver according to the previously determined characteristic.
  • a controller which comprises means for carrying out the method according to the invention, wherein the means comprise a computer program according to claim 5 for running in the controller, wherein the means comprise at least one computer unit and a memory unit, on which the advance for the Watercraft determined characteristic is stored.
  • this object is achieved by a watercraft with at least one drive system and the aforementioned control, wherein the drive system comprises at least one rotatable variable pitch propeller, each having propeller blades with adjustable blade angle and which is drivable by means of a motor, wherein by means of the motor, a motor torque on the Variable pitch propeller (1) is exercisable, wherein by means of a respective sensor at least one speed of the watercraft and a propeller speed of the at least one variable pitch propeller can be determined.
  • the object is also achieved by a computer program according to claim 5 and a computer program product according to claim 6.
  • the speed of the ship is determined, taking into account also the flow velocity of the water with respect to the ship or the propeller can be.
  • sensors can be used for this purpose.
  • the propeller speed is also determined, for example by means of further sensors, in particular in the form of a transmitter.
  • the propeller speed can be determined, for example, via electrical currents with which the motor is acted upon by the converter.
  • the propeller torque of the at least one variable pitch propeller can be determined.
  • the time change of the propeller speed is proportional to the difference between the engine torque and the propeller torque, wherein in a converter-fed drive system, the engine torque can be determined based on the engine-supplied torque-generating current.
  • the inventive method is used in watercraft with pitch-adjustable propeller blades and a pitch adjuster for adjusting the pitch of the propeller blades used.
  • a controller may be provided which can process the data from sensors and can pass commands to the pitch adjuster, the engine, the inverter and possibly other ship components and parts of the ship propulsion system.
  • the characteristic according to which the drive system is operated during a stop maneuver can be determined, for example, by means of a calculation or a simulation, which is carried out for a specific vessel or for a particular type of vessel.
  • a calculation or a simulation which is carried out for a specific vessel or for a particular type of vessel.
  • forces acting on the vessel during a stop maneuver such as the resistance of the hull of the vessel due to the forward drive, the resistance of the rudder and the thrust of the propeller.
  • the resistance of the vessel and the resistance of the rotor for example, by model tests or semiempirical functions are described.
  • the mass inertia of the vessel can be taken into account, which can be assumed to be known.
  • the ship's propulsion system generates propulsion and the at least one variable pitch propeller has a positive blade angle so that a positive torque is applied to the pitch propeller.
  • positive blade angle are understood as those blade angle, which cause a feed of the ship at a given direction of rotation of the variable pitch propeller.
  • Negative blade angles are thus understood as those blade angles which cause a repulsion of the ship in the same given direction of rotation of the variable pitch propeller.
  • the blade angle is changed by a positive blade angle until the blade angle is reached at which the variable pitch propeller no longer generates any feed. Subsequently, the blade angle can be further changed until finally a negative blade angle is reached and a recoil arises.
  • the speed of the variable pitch propeller can be changed. This can be done by specifying a setpoint speed to the motor or, for example, also be achieved in that the drive motor is disconnected from its power supply.
  • the stopping maneuver results in the shortest possible stopping distance of the watercraft, with the propeller speed not exceeding the specifiable, critical speed value.
  • the critical speed value can in particular be selected such that serious damage to the ship propulsion system can be avoided.
  • the characteristic curve initially provides for maintaining the blade angle, in particular in order to prevent "windmilling".
  • Aufstoppweg can provide an advantageous especially at lower initial velocities of the vessel, initially to increase the propeller speed, but at most up to the critical speed value.
  • a distance of the vessel is determined to a collision obstacle, wherein the drive system additionally performs an evasive maneuver, if the distance traveled during the stop maneuver of the vessel Aufstoppweg is greater than the distance of the vessel to the collision obstacle.
  • the collision obstacle may be stationary obstacles such as reefs, docks and the like, or even mobile obstacles such as other watercraft.
  • the determination of the distance of the watercraft to the collision obstacle can be made in particular optically or by means of radar measurements.
  • position data of the obstacle can be supplied to the drive system to determine the distance.
  • an obstruction path traveled by the collision obstruction during the stop maneuver may be taken into account in determining the distance.
  • the obstacle path may increase or decrease an allowable stopping distance of the vessel, depending on which direction the collision obstacle is moving.
  • the avoidance maneuver can be optimized, for example, that the drive system current position data of the vessel are accessible.
  • possible avoidance maneuvers can be checked for feasibility, and finally an evasive maneuver can be selected which is feasible and at the same time ensures a safe distance to the possible collision obstacle.
  • FIG. 1 shows a schematic representation of an embodiment of a drive system according to the invention.
  • a variable pitch propeller 1 is a reduction gear 4 of a motor 3 driven.
  • the variable pitch propeller 1 has propeller blades, which each have an adjustable blade angle 12, which can be changed by an adjustment unit 5.
  • the motor 3 is supplied with energy by a converter 2, wherein the converter 2 receives set values relating to the engine speed 10 from a controller 6.
  • the controller 6 is supplied with the actual propeller speed 11 determined by a transmitter 7 and the controller 6 continues to supply set values with respect to the blade angle 12 to the adjustment unit 5.
  • FIG. 2 shows time courses of a blade angle 12 according to an exemplary characteristic.
  • the characteristic curve was determined in advance and ensures that a drive system of an associated vessel operated during a stop maneuver results in the shortest possible stop-up distance and the propeller speed 11 does not exceed a predefinable critical speed value.
  • forces acting on the vessel such as the resistance of the hull of the vessel due to the forward drive, the resistance of the rudder and the thrust of the propeller can be taken into account.
  • the inertia of the watercraft can be used to determine the characteristic curve.
  • the initial speed 17 is plotted in arbitrary units.
  • the stop maneuver is started for different initial speeds 17.
  • the time to completely reverse the blade angle 12 depends on the initial speed 17: At low initial velocities 17, the blade angle 12 can be reversed very quickly, with larger initial velocities 17, this exemplary characteristic provides more time for the reversal of the blade angle 12.
  • the determined characteristic curve can furthermore take into account that different blade angles 12 are present during the operation of the watercraft before the stop maneuver. For the sake of simplicity, a corresponding graphical representation is dispensed with.
  • FIG. 3 shows time profiles of a propeller speed 11 according to another exemplary characteristic. Shown are different time profiles of the propeller speed 11, wherein the time on the x-axis, the propeller speed 11 on the y-axis and the initial speed 17 on the z-axis are each plotted in arbitrary units.
  • the stop maneuver is started, wherein before the start of the stop maneuver different propeller speeds 11 are present.
  • the propeller speed 11 is increased rapidly and considerably at the beginning of the stopping maneuver.
  • the propeller speed 11 is maintained according to the present characteristic.
  • the propeller speed 11 is lowered during the course of the stop maneuver.
  • FIG. 4 shows a first example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft. Furthermore, exemplary time profiles of a blade angle 12 and a moment coefficient 14 are shown, wherein the respective absolute value of the measured variable is plotted on the ordinate axis and the time, in each case in arbitrary units, on the abscissa.
  • a positive torque coefficient 14 means that on the variable pitch propeller 1 a total of positive Torque acts. This can, as in the following figures, the curves shown in particular of the in the FIG. 2 and 3 Distinguish exemplary curves illustrated.
  • the determined speed 13 and the propeller speed 11 of the vessel are constant and comparatively high.
  • a stop maneuver is initiated and the blade angle 12 is reduced and finally changed to negative angles.
  • the propeller speed 11 is increased by the engine speed 10 is increased until a maximum speed is reached.
  • the maximum speed can be selected, for example, so that the propeller speed 11 does not exceed a predetermined, critical speed value.
  • the torque coefficient 14 abruptly drops, but remains positive.
  • a negative torque coefficient 14 would indicate that a negative torque acts on the variable pitch propeller 1 and thus "windmilling" occurs.
  • the detected speed of the vessel 13 drops relatively quickly and the torque coefficient 14 takes after a certain period of time larger values than at the beginning of the stop maneuver, in which the direction of rotation of the propeller is always maintained.
  • the determined speed 13 is steadily reduced until it finally assumes the value zero and the vessel is stationary.
  • FIG. 5 shows a second example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft.
  • the determined speed 13 and the propeller speed 11 are lower before the start of the stop maneuver.
  • the propeller speed becomes 11 solid increases, wherein the blade angle 12 is reversed only gradually. This results in an ascertained speed 13 at the beginning of the stop maneuver, which is subsequently reduced to zero.
  • the torque coefficient 14 always remains positive, so that no "windmilling" occurs.
  • FIG. 6 shows a third example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft.
  • the propeller speed 11 remains unchanged and the blade angle 12 is gradually reversed.
  • the torque coefficient 14 remains positive during the entire stop maneuver and the determined speed 13 is lowered continuously until the vessel is at a standstill.
  • FIG. 7 shows a fourth example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft.
  • the determined speed 13 and the propeller speed 11 are comparatively large before the start of the stop maneuver.
  • the blade angle 12 is reversed relatively quickly, the engine 3 is separated from the inverter 2, so that the propeller speed 11 initially drops rapidly.
  • the torque coefficient 14 becomes negative for a certain period of time, the "windmilling" effect occurs so that the propeller speed 11 increases again.
  • the moment coefficient 14 again assumes positive values.
  • the determined speed 13 is continuously reduced, and furthermore the propeller speed 11 remains below the predefinable critical speed during the entire stop maneuver.
  • the invention relates to a method for operating a propulsion system of a watercraft in a stop maneuver, wherein the drive system comprises at least one rotatable variable pitch propeller, each of which propeller blades having an adjustable blade angle and which is driven by a motor, wherein the engine can exert a motor torque on the variable pitch propeller, wherein a speed of the watercraft and a propeller speed of the at least one variable pitch propeller are determined.
  • the invention relates to a controller, a watercraft, a computer program and a computer program product for carrying out the method.
  • a characteristic curve for the vessel be determined in advance, which different initial velocities of the vessel at the beginning of the stop maneuver with at least a time course of the blade angle and a time course of the propeller speed linked so that the operated during the stop maneuver according to the characteristic drive system results in the shortest possible Aufstoppweg the vessel and the propeller speed does not exceed a predetermined, critical speed value, the drive system is operated during the stop maneuver according to the previously determined characteristic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Wind Motors (AREA)
  • Stopping Of Electric Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Antriebssystems eines Wasserfahrzeugs bei einem Stoppmanöver, wobei das Antriebssystem mindestens einen drehbaren Verstellpropeller aufweist, welcher jeweils Propellerblätter mit verstellbarem Blattwinkel aufweist und welcher mittels eines Motors angetrieben wird, wobei der Motor ein Motordrehmoment auf den Verstellpropeller ausüben kann, wobei eine Geschwindigkeit des Wasserfahrzeugs und eine Propellerdrehzahl des mindestens einen Verstellpropellers ermittelt werden. Weiterhin betrifft die Erfindung eine Steuerung, ein Wasserfahrzeug, ein Computerprogramm und ein Computerprogrammprodukt zur Durchführung des Verfahrens.The invention relates to a method for operating a propulsion system of a watercraft in a stop maneuver, wherein the drive system comprises at least one variable pitch propeller, each having propeller blades with adjustable blade angle and which is driven by a motor, wherein the engine can exert a motor torque on the variable pitch propeller, wherein a speed of the watercraft and a propeller speed of the at least one variable pitch propeller are determined. Furthermore, the invention relates to a controller, a watercraft, a computer program and a computer program product for carrying out the method.

Ein derartiges Verfahren und ein derartiges Antriebssystem kommen beispielsweise bei Wasserfahrzeugen zum Einsatz, bei denen gute Manövrierbarkeit oder stark unterschiedliche Dauergeschwindigkeiten gefordert sind, z.B. Fähren, Passagierschiffe, Feeder.Such a method and such a drive system are used, for example, in watercraft in which good maneuverability or widely varying steady-state speeds are required, e.g. Ferries, passenger ships, feeder.

Im Unterschied zum konventionellen Propeller mit fester Steigung sind beim "Controllable Pitch Propeller" oder Verstellpropeller die Propellerblätter drehbar an der Nabe befestigt. Damit lässt sich die Steigung ("pitch") stufenlos von Nullschub bis Maximalschub in Richtung Voraus oder Zurück verstellen, wobei der Steigungswinkel oder das Steigungsverhältnis auch als Blattwinkel bezeichnet werden kann.In contrast to the conventional fixed-pitch propeller, the propeller blades are rotatably mounted on the hub of the "controllable pitch propeller" or variable pitch propeller. Thus, the pitch can be infinitely adjusted from zero thrust to maximum thrust in the direction forward or backward, wherein the pitch angle or the pitch ratio can also be referred to as blade angle.

Zum Beschleunigen des Wasserfahrzeugs vom Stillstand wird die Maschine bei Nullschub angelassen und beispielsweise auf Marschdrehzahl hochgefahren. Dabei wird sie beim Starten nicht durch Antriebsdrehmoment belastet. Folglich nimmt das Fahrzeug nicht unmittelbar Fahrt auf, wenn die Maschine gestartet wird. Ein Durchdrehen der Propellerwelle und des damit verbundenen Motors durch Strömung (z.B. von vorbeifahrenden Schiffen im Hafen) wird durch den auf Nullschub stehenden Propeller verhindert.To accelerate the vessel from standstill, the machine is started at zero thrust and ramped up, for example, to cruise speed. It is not loaded by drive torque when starting. Consequently, the vehicle does not immediately travel when the engine is started. A spin of the propeller shaft and the so Connected engine by flow (eg from passing ships in the harbor) is prevented by the propeller standing on zero thrust.

Wasserfahrzeuge mit Verstellpropeller besitzen üblicherweise kein Wendegetriebe, allenfalls ein Reduziergetriebe bei schnell drehenden Motoren. Somit entfällt ein wesentlicher Schwachpunkt im Antriebssystem im Vergleich mit konventionellen Antriebssystemen. Die Effizienz ist bei unterschiedlichen Geschwindigkeiten günstiger als im Falle eines Festpropellers.Watercraft with variable pitch propellers usually do not have a reverse gear, at most a reducer in fast-rotating engines. This eliminates a significant weakness in the drive system compared to conventional drive systems. The efficiency is cheaper at different speeds than in the case of a fixed propeller.

Der Antrieb kann bei laufendem Motor von "voraus" auf "zurück" umgesteuert werden, was mit erheblicher Zeitersparnis verbunden ist, da die Maschine nicht mehr gestoppt beziehungsweise nicht auf Mindestdrehzahl heruntergefahren werden muss. Damit ist die Manövrierbarkeit wesentlich verbessert.The drive can be reversed with the engine running from "ahead" to "back", which is associated with considerable time savings because the machine no longer has to be stopped or not shut down to minimum speed. This significantly improves maneuverability.

Insbesondere bei dieselelektrischen Schiffsantrieben mit Verstellpropeller entsteht allerdings beim Not-Aufstoppen ein Leistungsrückfluss vom Propeller über den Elektromotor, da der Propeller als Turbine fungiert und der Elektromotor als Generator arbeitet. Dieser Effekt, bei dem im Gegensatz zum normalen Antriebsbetrieb ein negatives Drehmoment auf den Propeller wirkt, ist auch als "windmilling" bekannt. Die Leistung, mit der der Propeller angetrieben wird, muss entweder mit entsprechenden Stromrichtern in das Bordnetz rückgespeist werden oder über sogenannte Bremswiderstände verheizt werden. Um die Stabilität des Bordnetzes sicherzustellen und die Dieselgeneratoren nicht in den Rückleistungsbereich zu treiben, wird daher ein großer baulicher und logistischer Aufwand betrieben. Außerdem sind die rückspeisefähigen Umrichter wesentlich teurer als die rein motorisch betreibbare Ausführung.Especially in diesel-electric ship propulsion systems with pitch propellers, however, a backflow of power from the propeller via the electric motor occurs during emergency stop, since the propeller acts as a turbine and the electric motor works as a generator. This effect, in which unlike the normal drive operation, a negative torque acts on the propeller, is also known as "windmilling". The power with which the propeller is driven must either be fed back into the on-board power supply with appropriate power converters or burned out via so-called braking resistors. In order to ensure the stability of the electrical system and not drive the diesel generators in the reverse power range, therefore, a large structural and logistical effort is operated. In addition, the regenerative converters are much more expensive than the purely motor-operated design.

Aus der WO 2005/044659 A1 ist ein Steuerungsverfahren und - system für einen Verstellpropeller eines Wasserfahrzeugs bekannt, wobei mehrere Betriebsmodi vorgesehen sind, zum Beispiel ein Manövriermodus, ein Fahrmodus und ein Prüfmodus. Weiterhin sind Übergangs-Submodi für einen sanften Übergang zwischen dem Fahrmodus und dem Manövriermodus und umgekehrt vorgesehen.From the WO 2005/044659 A1 For example, a control method and system for a watercraft variable pitch propeller is known wherein multiple modes of operation are provided, for example a maneuvering mode, a driving mode and a test mode. Furthermore, transition sub-modes are provided for a smooth transition between the drive mode and the maneuvering mode and vice versa.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art bereitzustellen, das in einfacher Weise ein schnelles Abbremsen des Wasserfahrzeugs erlaubt.The invention has for its object to provide a method of the type mentioned above, which allows a quick deceleration of the vessel in a simple manner.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art mit den folgenden Verfahrensschritten dadurch gelöst, dass vorab eine Kennlinie für das Wasserfahrzeug ermittelt wird, welche verschiedene Anfangs-Geschwindigkeiten des Wasserfahrzeugs bei Beginn des Stoppmanövers mit zumindest jeweils einem zeitlichen Verlauf des Blattwinkels und einem zeitlichen Verlauf der Propellerdrehzahl derart verknüpft, dass das während des Stoppmanövers gemäß der Kennlinie betriebene Antriebssystem in einem möglichst kurzen zurückgelegten Aufstoppweg des Wasserfahrzeugs resultiert und die Propellerdrehzahl einen vorgebbaren, kritischen Drehzahlwert nicht überschreitet, wobei das Antriebssystem während des Stoppmanövers gemäß der vorab ermittelten Kennlinie betrieben wird.This object is achieved in a method of the type mentioned in the following process steps in that a characteristic curve for the vessel is determined in advance, which different initial velocities of the vessel at the beginning of the stop maneuver with at least a temporal course of the blade angle and a time course the propeller speed linked such that the operated during the stop maneuver according to the characteristic drive system results in the shortest possible Aufstoppweg the vessel and the propeller speed does not exceed a predetermined, critical speed value, the drive system is operated during the stop maneuver according to the previously determined characteristic.

Diese Aufgabe wird weiter gelöst durch eine Steuerung, welche Mittel zur Durchführung des erfindungsgemäßen Verfahrens aufweist, wobei die Mittel ein Computerprogramm nach Anspruch 5 zum Ablauf in der Steuerung umfassen, wobei die Mittel zumindest eine Rechnereinheit und eine Speichereinheit umfassen, auf welcher die vorab für das Wasserfahrzeug ermittelte Kennlinie gespeichert ist. Weiterhin wird diese Aufgabe gelöst durch ein Wasserfahrzeug mit zumindest einem Antriebssystem und der zuvor genannten Steuerung, wobei das Antriebssystem mindestens einen drehbaren Verstellpropeller aufweist, welcher jeweils Propellerblätter mit verstellbarem Blattwinkel aufweist und welcher mittels eines Motors antreibbar ist, wobei mittels des Motors ein Motordrehmoment auf den Verstellpropeller (1) ausübbar ist, wobei mittels eines jeweiligen Sensors zumindest eine Geschwindigkeit des Wasserfahrzeugs und eine Propellerdrehzahl des mindestens einen Verstellpropellers ermittelbar sind. Schließlich wird die Aufgabe ebenfalls durch ein Computerprogramm gemäß Anspruch 5 und ein Computerprogrammprodukt gemäß Anspruch 6 gelöst.This object is further achieved by a controller, which comprises means for carrying out the method according to the invention, wherein the means comprise a computer program according to claim 5 for running in the controller, wherein the means comprise at least one computer unit and a memory unit, on which the advance for the Watercraft determined characteristic is stored. Furthermore, this object is achieved by a watercraft with at least one drive system and the aforementioned control, wherein the drive system comprises at least one rotatable variable pitch propeller, each having propeller blades with adjustable blade angle and which is drivable by means of a motor, wherein by means of the motor, a motor torque on the Variable pitch propeller (1) is exercisable, wherein by means of a respective sensor at least one speed of the watercraft and a propeller speed of the at least one variable pitch propeller can be determined. Finally, the object is also achieved by a computer program according to claim 5 and a computer program product according to claim 6.

Erfindungsgemäß wird die Geschwindigkeit des Schiffes ermittelt, wobei auch die Strömungsgeschwindigkeit des Wassers in Bezug auf das Schiff beziehungsweise den Propeller berücksichtigt werden kann. Hierzu können beispielsweise Sensoren zum Einsatz kommen. Auch die Propellerdrehzahl wird ermittelt, beispielsweise mittels weiterer Sensoren, insbesondere in Form eines Gebers. Bei einem umrichtergespeisten Antriebssystem mit einem elektrischen Antriebsmotor kann die Propellerdrehzahl beispielsweise über elektrische Ströme, mit welchen der Motor durch den Umrichter beaufschlagt wird, ermittelt werden.According to the invention, the speed of the ship is determined, taking into account also the flow velocity of the water with respect to the ship or the propeller can be. For example, sensors can be used for this purpose. The propeller speed is also determined, for example by means of further sensors, in particular in the form of a transmitter. In a converter-fed drive system with an electric drive motor, the propeller speed can be determined, for example, via electrical currents with which the motor is acted upon by the converter.

Zusätzlich kann auch das Propellerdrehmoment des mindestens einen Verstellpropellers ermittelt werden. Hierzu kann verwendet werden, dass die zeitliche Änderung der Propellerdrehzahl proportional ist zur Differenz zwischen dem Motordrehmoment und dem Propellerdrehmoment, wobei bei einem umrichtergespeisten Antriebssystem das Motordrehmoment anhand des dem Motors zugeführten momentenbildenden Stroms bestimmt werden kann.In addition, the propeller torque of the at least one variable pitch propeller can be determined. For this purpose, it can be used that the time change of the propeller speed is proportional to the difference between the engine torque and the propeller torque, wherein in a converter-fed drive system, the engine torque can be determined based on the engine-supplied torque-generating current.

Das erfindungsgemäße Verfahren kommt bei Wasserfahrzeugen mit steigungsverstellbaren Propellerblättern sowie einem Steigungsversteller zum Einstellen der Steigung der Propellerblätter zum Einsatz. Weiterhin kann eine Steuerung vorgesehen sein, die die Daten von Sensoren verarbeiten kann und Befehle an den Steigungsversteller, den Motor, den Umrichter und gegebenenfalls weitere Schiffskomponenten und Teile des Schiffsantriebssystems übergeben kann.The inventive method is used in watercraft with pitch-adjustable propeller blades and a pitch adjuster for adjusting the pitch of the propeller blades used. Furthermore, a controller may be provided which can process the data from sensors and can pass commands to the pitch adjuster, the engine, the inverter and possibly other ship components and parts of the ship propulsion system.

Die Kennlinie, gemäß welcher das Antriebssystem während eines Stoppmanövers betrieben wird, kann beispielsweise mittels einer Berechnung bzw. einer Simulation ermittelt werden, welche für ein bestimmtes Wasserfahrzeug bzw. für einen bestimmten Wasserfahrzeugstyp durchgeführt wird. Zur Ermittlung der Kennlinie kann verwendet werden, dass während eines Stoppmanövers Kräfte auf das Wasserfahrzeug wirken, wie zum Beispiel der Widerstand des Rumpfes des Wasserfahrzeugs aufgrund der Vorausfahrt, der Widerstand des Ruders sowie der Schub des Propellers. Dabei können der Widerstand des Wasserfahrzeugs und der Widerstand des Rotors beispielsweise durch Modellversuche oder semiempirische Funktionen beschrieben werden. Für eine aussagekräftige Bewegungsgleichung als Grundlage der Berechnung bzw. der Simulation kann auch die Massenträgheit des Wasserfahrzeugs berücksichtigt werden, welche als bekannt vorausgesetzt werden kann.The characteristic according to which the drive system is operated during a stop maneuver can be determined, for example, by means of a calculation or a simulation, which is carried out for a specific vessel or for a particular type of vessel. To determine the characteristic, it is possible to use forces acting on the vessel during a stop maneuver, such as the resistance of the hull of the vessel due to the forward drive, the resistance of the rudder and the thrust of the propeller. The resistance of the vessel and the resistance of the rotor, for example, by model tests or semiempirical functions are described. For a meaningful equation of motion as the basis of the calculation or the simulation, the mass inertia of the vessel can be taken into account, which can be assumed to be known.

Bei der Ermittlung der Kennlinie können insbesondere bei dieselelektrischen Antrieben zwei Situationen unterschieden werden: greift am Verstellpropeller ein positives Drehmoment an, so kann die Propellerdrehzahl im Rahmen der verfügbaren Motorleistung frei eingestellt werden. Greift hingegen ein negatives Drehmoment am Propeller an, tritt der "windmilling"-Effekt ein und der Propeller wird vom Wasser angetrieben, wodurch sich die Propellerdrehzahl erhöht.When determining the characteristic curve, two situations can be distinguished, in particular in the case of diesel-electric drives: If a positive torque acts on the variable-pitch propeller, the propeller speed can be freely set within the scope of the available engine power. On the other hand, if a negative torque acts on the propeller, the "windmilling" effect occurs and the propeller is driven by the water, which increases the propeller speed.

Während des normalen Betriebs des Schiffes erzeugt das Schiffsantriebssystem Vorschub und der mindestens eine Verstellpropeller weist einen positiven Blattwinkel auf, so dass ein positives Drehmoment am Verstellpropeller anliegt. Denn positive Blattwinkel werden als jene Blattwinkel verstanden, welche bei einer gegebenen Drehrichtung des Verstellpropellers einen Vorschub des Schiffes bewirken. Negative Blattwinkel werden folglich als jene Blattwinkel verstanden, welche bei derselben gegebenen Drehrichtung des Verstellpropellers einen Rückschub des Schiffes bewirken.During normal operation of the ship, the ship's propulsion system generates propulsion and the at least one variable pitch propeller has a positive blade angle so that a positive torque is applied to the pitch propeller. Because positive blade angle are understood as those blade angle, which cause a feed of the ship at a given direction of rotation of the variable pitch propeller. Negative blade angles are thus understood as those blade angles which cause a repulsion of the ship in the same given direction of rotation of the variable pitch propeller.

Abhängig von der zuvor ermittelten Kennlinie kann beispielsweise vorgesehen sein, dass während eines Stoppmanövers der Blattwinkel von einem positiven Blattwinkel derart geändert wird, bis jener Blattwinkel erreicht wird, bei dem der Verstellpropeller keinen Vorschub mehr erzeugt. Anschließend kann der Blattwinkel weiter geändert werden bis schließlich ein negativer Blattwinkel erreicht wird und ein Rückschub entsteht. Insbesondere aufgrund der Reibung des am Rumpf des Schiffes vorbeiströmenden Wassers kann während dieses Vorganges insgesamt eine Verzögerung des Schiffes bewirkt werden. Gleichzeitig kann auch die Drehzahl des Verstellpropellers geändert werden. Dies kann durch Vorgabe einer Solldrehzahl an den Motor oder beispielsweise auch dadurch erreicht werden, dass der Antriebsmotor von seiner Energieversorgung getrennt wird. Erfindungsgemäß resultiert das Stoppmanöver in einem möglichst kurzen zurückgelegten Aufstoppweg des Wasserfahrzeugs, wobei die Propellerdrehzahl den vorgebbaren, kritischen Drehzahlwert nicht überschreitet. Der kritische Drehzahlwert kann insbesondere derart gewählt werden, dass gravierende Beschädigungen des Schiffsantriebssystems vermieden werden.Depending on the previously determined characteristic curve, it may be provided, for example, during a stop maneuver, that the blade angle is changed by a positive blade angle until the blade angle is reached at which the variable pitch propeller no longer generates any feed. Subsequently, the blade angle can be further changed until finally a negative blade angle is reached and a recoil arises. In particular, due to the friction of the water flowing past the hull of the ship, a delay of the ship can be effected overall during this process. At the same time, the speed of the variable pitch propeller can be changed. This can be done by specifying a setpoint speed to the motor or, for example, also be achieved in that the drive motor is disconnected from its power supply. According to the invention, the stopping maneuver results in the shortest possible stopping distance of the watercraft, with the propeller speed not exceeding the specifiable, critical speed value. The critical speed value can in particular be selected such that serious damage to the ship propulsion system can be avoided.

Abhängig von den Charakteristika des Wasserfahrzeugs und der Anfangs-Geschwindigkeit des Wasserfahrzeugs zu Beginn des Stoppmanövers ist prinzipiell auch denkbar, dass die Kennlinie vorsieht, den Blattwinkel zunächst beizubehalten, insbesondere um "windmilling" zu verhindern. Für einen möglichst kurzen, während des Stoppmanövers zurückgelegten Aufstoppweg kann eine insbesondere bei niedrigeren Anfangs-Geschwindigkeiten des Wasserfahrzeugs vorteilhafte Kennlinie vorsehen, die Propellerdrehzahl zunächst zu erhöhen, jedoch maximal bis zum kritischen Drehzahlwert.Depending on the characteristics of the watercraft and the initial speed of the vessel at the beginning of the stop maneuver, it is also conceivable that the characteristic curve initially provides for maintaining the blade angle, in particular in order to prevent "windmilling". For a shortest, as far as possible during the stop maneuver Aufstoppweg can provide an advantageous especially at lower initial velocities of the vessel, initially to increase the propeller speed, but at most up to the critical speed value.

Bei einer vorteilhaften Ausgestaltung der Erfindung wird eine Entfernung des Wasserfahrzeugs zu einem Kollisionshindernis ermittelt, wobei das Antriebssystem zusätzlich ein Ausweichmanöver durchführt, falls der während des Stoppmanövers vom Wasserfahrzeug zurückgelegte Aufstoppweg größer als die Entfernung des Wasserfahrzeugs zu dem Kollisionshindernis ist.In an advantageous embodiment of the invention, a distance of the vessel is determined to a collision obstacle, wherein the drive system additionally performs an evasive maneuver, if the distance traveled during the stop maneuver of the vessel Aufstoppweg is greater than the distance of the vessel to the collision obstacle.

Bei dem Kollisionshindernis kann es sich um stationäre Hindernisse, wie beispielsweise Riffe, Hafenanlagen und dergleichen, oder auch mobile Hindernisse, wie beispielsweise andere Wasserfahrzeuge, handeln. Die Ermittlung der Entfernung des Wasserfahrzeugs zu dem Kollisionshindernis kann insbesondere optisch oder anhand von Radarmessungen erfolgen. Ebenso können dem Antriebssystem Positionsdaten des Hindernisses zugeführt werden, um die Entfernung zu ermitteln.The collision obstacle may be stationary obstacles such as reefs, docks and the like, or even mobile obstacles such as other watercraft. The determination of the distance of the watercraft to the collision obstacle can be made in particular optically or by means of radar measurements. Likewise, position data of the obstacle can be supplied to the drive system to determine the distance.

Wenn das Kollisionshindernis mobil und in Bewegung ist, kann insbesondere ein durch das Kollisionshindernis während des Stoppmanövers zurückgelegter Hindernisweg bei der Ermittlung der Entfernung berücksichtigt werden. Somit kann der Hindernisweg einen zulässigen Aufstoppweg des Wasserfahrzeugs vergrößern oder verkleinern, je nachdem, in welche Richtung sich das Kollisionshindernis bewegt.In particular, when the collision obstacle is mobile and in motion, an obstruction path traveled by the collision obstruction during the stop maneuver may be taken into account in determining the distance. Thus, the obstacle path may increase or decrease an allowable stopping distance of the vessel, depending on which direction the collision obstacle is moving.

Das Ausweichmanöver kann beispielsweise dadurch optimiert werden, dass dem Antriebssystem aktuelle Positionsdaten des Wasserfahrzeugs zugänglich sind. Beispielsweise anhand von hinterlegten Navigationsdaten bzw. die Wassertiefe umfassende Karten können dadurch mögliche Ausweichmanöver auf Machbarkeit geprüft werden und schließlich ein Ausweichmanöver ausgewählt werden, welches machbar ist und gleichzeitig einen sicheren Abstand zum möglichen Kollisionshindernis gewährleistet.The avoidance maneuver can be optimized, for example, that the drive system current position data of the vessel are accessible. By means of stored navigation data or maps comprising the water depth, for example, possible avoidance maneuvers can be checked for feasibility, and finally an evasive maneuver can be selected which is feasible and at the same time ensures a safe distance to the possible collision obstacle.

Im Folgenden wird die Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen:

FIG 1
eine Schemadarstellung eines Ausführungsbeispiels eines erfindungsgemäßen Antriebssystems,
FIG 2
zeitliche Verläufe eines Blattwinkels gemäß einer beispielhaften Kennlinie,
FIG 3
zeitliche Verläufe einer Propellerdrehzahl gemäß einer weiteren beispielhaften Kennlinie,
FIG 4
ein erstes Beispiel eines zeitlichen Verlaufs einer Propellerdrehzahl gemäß der Kennlinie und einer Geschwindigkeit eines Wasserfahrzeugs,
FIG 5
ein zweites Beispiel,
FIG 6
ein drittes Beispiel, und
FIG 7
ein viertes Beispiel.
In the following the invention will be described and explained in more detail with reference to the embodiments illustrated in the figures. Show it:
FIG. 1
a schematic representation of an embodiment of a drive system according to the invention,
FIG. 2
time courses of a blade angle according to an exemplary characteristic,
FIG. 3
time profiles of a propeller speed according to another exemplary characteristic,
FIG. 4
a first example of a time profile of a propeller speed according to the characteristic curve and a speed of a watercraft,
FIG. 5
a second example,
FIG. 6
a third example, and
FIG. 7
a fourth example.

Figur 1 zeigt eine Schemadarstellung eines Ausführungsbeispiels eines erfindungsgemäßen Antriebssystems. Ein Verstellpropeller 1 wird über ein Reduziergetriebe 4 von einem Motor 3 angetrieben. Der Verstellpropeller 1 weist dabei Propellerblätter auf, welche jeweils einen verstellbaren Blattwinkel 12 aufweisen, die von einer Verstelleinheit 5 geändert werden können. Der Motor 3 wird von einem Umrichter 2 mit Energie versorgt, wobei der Umrichter 2 Sollwerte bezüglich der Motordrehzahl 10 von einer Steuerung 6 erhält. Der Steuerung 6 wird die tatsächliche, von einem Geber 7 ermittelte Propellerdrehzahl 11 zugeführt und die Steuerung 6 gibt weiterhin Sollwerte bezüglich des Blattwinkels 12 an die Verstelleinheit 5. FIG. 1 shows a schematic representation of an embodiment of a drive system according to the invention. A variable pitch propeller 1 is a reduction gear 4 of a motor 3 driven. The variable pitch propeller 1 has propeller blades, which each have an adjustable blade angle 12, which can be changed by an adjustment unit 5. The motor 3 is supplied with energy by a converter 2, wherein the converter 2 receives set values relating to the engine speed 10 from a controller 6. The controller 6 is supplied with the actual propeller speed 11 determined by a transmitter 7 and the controller 6 continues to supply set values with respect to the blade angle 12 to the adjustment unit 5.

Figur 2 zeigt zeitliche Verläufe eines Blattwinkels 12 gemäß einer beispielhaften Kennlinie. Die Kennlinie wurde dabei, wie auch für die folgenden Figuren, vorab ermittelt und stellt sicher, dass ein während eines Stoppmanövers gemäß der Kennlinie betriebenes Antriebssystem eines zugehörigen Wasserfahrzeugs in einem möglichst kurzen zurückgelegten Aufstoppweg resultiert und die Propellerdrehzahl 11 einen vorgebbaren, kritischen Drehzahlwert nicht überschreitet. Für die Berechnung bzw. Simulation zur Ermittlung der Kennlinie können dabei auf das Wasserfahrzeug wirkende Kräfte, wie zum Beispiel der Widerstand des Rumpfes des Wasserfahrzeugs aufgrund der Vorausfahrt, der Widerstand des Ruders sowie der Schub des Propellers berücksichtigt werden. Weiterhin kann die Massenträgheit des Wasserfahrzeugs für die Ermittlung der Kennlinie verwendet werden. FIG. 2 shows time courses of a blade angle 12 according to an exemplary characteristic. As in the following figures, the characteristic curve was determined in advance and ensures that a drive system of an associated vessel operated during a stop maneuver results in the shortest possible stop-up distance and the propeller speed 11 does not exceed a predefinable critical speed value. For the calculation or simulation for determining the characteristic, forces acting on the vessel, such as the resistance of the hull of the vessel due to the forward drive, the resistance of the rudder and the thrust of the propeller can be taken into account. Furthermore, the inertia of the watercraft can be used to determine the characteristic curve.

Dargestellt werden verschiedene zeitliche Verläufe des Blattwinkels 12, wobei auf der x-Achse die Zeit, auf der y-Achse der Blattwinkel 12 und auf der z-Achse die Anfangs-Geschwindigkeit 17 jeweils in willkürlichen Einheiten aufgetragen ist. Bei der Darstellung wird angenommen, dass vor Beginn des Stoppmanövers immer ein bestimmter positiver Blattwinkel 12 anliegt, beispielsweise jener Blattwinkel 12, der für maximalen Vorschub sorgt. Beim Zeitpunkt tS wird für verschiedene Anfangs-Geschwindigkeiten 17 das Stoppmanöver begonnen. Wie gut zu erkennen ist, hängt die Zeit zur vollständigen Umkehr des Blattwinkels 12 von der Anfangs-Geschwindigkeit 17 ab: Bei geringen Anfangs-Geschwindigkeiten 17 kann der Blattwinkel 12 sehr schnell umgekehrt werden, bei größeren Anfangs-Geschwindigkeiten 17 sieht diese beispielhafte Kennlinie mehr Zeit für die Umkehr des Blattwinkels 12 vor.Shown are different time courses of the blade angle 12, wherein on the x-axis time, on the y-axis of the blade angle 12 and on the z-axis, the initial speed 17 is plotted in arbitrary units. In the illustration it is assumed that before the beginning of the stop maneuver always a certain positive blade angle 12 is applied, for example, that blade angle 12, which provides for maximum feed. At time t S , the stop maneuver is started for different initial speeds 17. As can be seen well, the time to completely reverse the blade angle 12 depends on the initial speed 17: At low initial velocities 17, the blade angle 12 can be reversed very quickly, with larger initial velocities 17, this exemplary characteristic provides more time for the reversal of the blade angle 12.

Die ermittelte Kennlinie kann weiterhin berücksichtigen, dass beim Betrieb des Wasserfahrzeugs vor dem Stoppmanöver unterschiedliche Blattwinkel 12 anliegen. Der Einfachheit halber wird auf eine entsprechende grafische Darstellung verzichtet.The determined characteristic curve can furthermore take into account that different blade angles 12 are present during the operation of the watercraft before the stop maneuver. For the sake of simplicity, a corresponding graphical representation is dispensed with.

Figur 3 zeigt zeitliche Verläufe einer Propellerdrehzahl 11 gemäß einer weiteren beispielhaften Kennlinie. Dargestellt sind verschiedene zeitliche Verläufe der Propellerdrehzahl 11, wobei auf der x-Achse die Zeit, auf der y-Achse die Propellerdrehzahl 11 und auf der z-Achse die Anfangs-Geschwindigkeit 17 jeweils in willkürlichen Einheiten aufgetragen ist. Wiederum wird beim Zeitpunkt tS für verschiedene Anfangs-Geschwindigkeiten 17 das Stoppmanöver begonnen, wobei vor Beginn des Stoppmanövers verschiedene Propellerdrehzahlen 11 vorliegen. Bei niedrigen Anfangs-Geschwindigkeiten 17 und wie in diesem Beispiel auch bei niedrigen Propellerdrehzahlen 11 wird zu Beginn des Stoppmanövers die Propellerdrehzahl 11 schnell und beträchtlich erhöht. Bei einer vergleichsweise großen Anfangs-Geschwindigkeit 17 wird die Propellerdrehzahl 11 gemäß der vorliegenden Kennlinie beibehalten. Bei noch höheren Anfangs-Geschwindigkeiten 17 wird im Verlauf des Stoppmanövers die Propellerdrehzahl 11 erniedrigt. FIG. 3 shows time profiles of a propeller speed 11 according to another exemplary characteristic. Shown are different time profiles of the propeller speed 11, wherein the time on the x-axis, the propeller speed 11 on the y-axis and the initial speed 17 on the z-axis are each plotted in arbitrary units. Again, at time t S for different initial speeds 17, the stop maneuver is started, wherein before the start of the stop maneuver different propeller speeds 11 are present. At low initial speeds 17 and, as in this example, even at low propeller speeds 11, the propeller speed 11 is increased rapidly and considerably at the beginning of the stopping maneuver. At a comparatively high initial speed 17, the propeller speed 11 is maintained according to the present characteristic. At even higher initial speeds 17, the propeller speed 11 is lowered during the course of the stop maneuver.

Figur 4 zeigt ein erstes Beispiel eines zeitlichen Verlaufs einer Propellerdrehzahl 11 gemäß der Kennlinie und einer Geschwindigkeit 13 eines Wasserfahrzeugs. Weiterhin sind beispielhafte zeitliche Verläufe eines Blattwinkels 12 und eines Momentenbeiwerts 14 dargestellt, wobei auf der Ordinatenachse der jeweilige absolute Wert der genannten Messgröße und auf der Abszisse die Zeit, jeweils in willkürlichen Einheiten aufgetragen sind. Ein positiver Momentenbeiwert 14 bedeutet dabei, dass auf den Verstellpropeller 1 insgesamt ein positives Drehmoment wirkt. Dabei können sich, wie auch bei den folgenden Figuren, die dargestellten Kurven insbesondere von den in den Figur 2 und 3 dargestellten beispielhaften Kurven unterscheiden. FIG. 4 shows a first example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft. Furthermore, exemplary time profiles of a blade angle 12 and a moment coefficient 14 are shown, wherein the respective absolute value of the measured variable is plotted on the ordinate axis and the time, in each case in arbitrary units, on the abscissa. A positive torque coefficient 14 means that on the variable pitch propeller 1 a total of positive Torque acts. This can, as in the following figures, the curves shown in particular of the in the FIG. 2 and 3 Distinguish exemplary curves illustrated.

Zu Beginn sind die ermittelte Geschwindigkeit 13 und die Propellerdrehzahl 11 des Wasserfahrzeugs konstant und vergleichsweise hoch. Hierzu liegt ein positiver Blattwinkel 12 an, welcher in einem positiven Momentenbeiwert 14 resultiert.At the beginning, the determined speed 13 and the propeller speed 11 of the vessel are constant and comparatively high. For this purpose, there is a positive blade angle 12, which results in a positive moment coefficient 14.

Zum Zeitpunkt tS wird ein Stoppmanöver eingeleitet und der Blattwinkel 12 verringert und schließlich zu negativen Winkeln geändert. Dabei wird gleichzeitig die Propellerdrehzahl 11 erhöht, indem die Motordrehzahl 10 erhöht wird bis eine Maximaldrehzahl erreicht wird. Die Maximaldrehzahl kann beispielsweise so gewählt werden, dass die Propellerdrehzahl 11 einen vorgebbaren, kritischen Drehzahlwert nicht überschreitet. Diese Maßnahmen haben zur Folge, dass der Momentenbeiwert 14 abrupt sinkt, aber noch positiv bleibt. Ein negativer Momentenbeiwert 14 würde anzeigen, dass ein negatives Drehmoment auf den Verstellpropeller 1 wirkt und somit "windmilling" auftritt. Währenddessen sinkt die ermittelte Geschwindigkeit 13 des Wasserfahrzeugs vergleichsweise schnell und der Momentenbeiwert 14 nimmt nach einer gewissen Zeitspanne größere Werte als zu Beginn des Stoppmanövers an, bei welchem die Drehrichtung des Propellers stets beibehalten wird. Bei erhöhter Propellerdrehzahl 11 und anliegendem negativen Blattwinkel 12 wird die ermittelte Geschwindigkeit 13 stetig verringert bis sie schließlich den Wert Null annimmt und das Wasserfahrzeug stillsteht. Für nicht dargestellte und hier aufgeführte Bezugszeichen siehe die weiteren Figuren.At time t S , a stop maneuver is initiated and the blade angle 12 is reduced and finally changed to negative angles. At the same time the propeller speed 11 is increased by the engine speed 10 is increased until a maximum speed is reached. The maximum speed can be selected, for example, so that the propeller speed 11 does not exceed a predetermined, critical speed value. As a result of these measures, the torque coefficient 14 abruptly drops, but remains positive. A negative torque coefficient 14 would indicate that a negative torque acts on the variable pitch propeller 1 and thus "windmilling" occurs. Meanwhile, the detected speed of the vessel 13 drops relatively quickly and the torque coefficient 14 takes after a certain period of time larger values than at the beginning of the stop maneuver, in which the direction of rotation of the propeller is always maintained. At increased propeller speed 11 and adjacent negative blade angle 12, the determined speed 13 is steadily reduced until it finally assumes the value zero and the vessel is stationary. For not shown and listed here reference numerals see the other figures.

Figur 5 zeigt ein zweites Beispiel eines zeitlichen Verlaufs einer Propellerdrehzahl 11 gemäß der Kennlinie und einer Geschwindigkeit 13 eines Wasserfahrzeugs. Im Vergleich zur Figur 4 sind die ermittelte Geschwindigkeit 13 und die Propellerdrehzahl 11 vor Beginn des Stoppmanövers niedriger. Während des Stoppmanövers wird die Propellerdrehzahl 11 massiv erhöht, wobei der Blattwinkel 12 nur allmählich umgekehrt wird. Dies resultiert in einer anfangs des Stoppmanövers erhöhten ermittelten Geschwindigkeit 13, welche anschließend bis auf null reduziert wird. Während des gesamten Stoppmanövers bleibt der Momentenbeiwert 14 stets positiv, so dass kein "windmilling" auftritt. FIG. 5 shows a second example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft. Compared to Figure 4, the determined speed 13 and the propeller speed 11 are lower before the start of the stop maneuver. During the stop maneuver, the propeller speed becomes 11 solid increases, wherein the blade angle 12 is reversed only gradually. This results in an ascertained speed 13 at the beginning of the stop maneuver, which is subsequently reduced to zero. During the entire stop maneuver, the torque coefficient 14 always remains positive, so that no "windmilling" occurs.

Figur 6 zeigt ein drittes Beispiel eines zeitlichen Verlaufs einer Propellerdrehzahl 11 gemäß der Kennlinie und einer Geschwindigkeit 13 eines Wasserfahrzeugs. Während des Stoppmanövers bleibt die Propellerdrehzahl 11 unverändert und der Blattwinkel 12 wird allmählich umgekehrt. Der Momentenbeiwert 14 bleibt während des gesamten Stoppmanövers positiv und die ermittelte Geschwindigkeit 13 wird kontinuierlich bis zum Stillstand des Wasserfahrzeugs erniedrigt. FIG. 6 shows a third example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft. During the stop maneuver, the propeller speed 11 remains unchanged and the blade angle 12 is gradually reversed. The torque coefficient 14 remains positive during the entire stop maneuver and the determined speed 13 is lowered continuously until the vessel is at a standstill.

Figur 7 zeigt ein viertes Beispiel eines zeitlichen Verlaufs einer Propellerdrehzahl 11 gemäß der Kennlinie und einer Geschwindigkeit 13 eines Wasserfahrzeugs. Die ermittelte Geschwindigkeit 13 und die Propellerdrehzahl 11 sind vor Beginn des Stoppmanövers vergleichsweise groß. Zu Beginn des Stoppmanövers wird der Blattwinkel 12 vergleichsweise schnell umgekehrt, wobei der Motor 3 vom Umrichter 2 getrennt wird, so dass die Propellerdrehzahl 11 zunächst schnell absinkt. Da zu Beginn des Stoppmanövers der Momentenbeiwert 14 für eine gewisse Zeitspanne negativ wird, tritt der "windmilling"-Effekt auf, so dass die Propellerdrehzahl 11 wieder ansteigt. Nachdem die Zeitspanne, während der "windmilling" auftritt, verstrichen ist, nimmt der Momentenbeiwert 14 wieder positive Werte an. Während des gesamten Stoppmanövers wird die ermittelte Geschwindigkeit 13 kontinuierlich erniedrigt, wobei außerdem die Propellerdrehzahl 11 während des gesamten Stoppmanövers unterhalb der vorgebbaren, kritischen Drehzahl bleibt. FIG. 7 shows a fourth example of a time course of a propeller speed 11 according to the characteristic and a speed 13 of a watercraft. The determined speed 13 and the propeller speed 11 are comparatively large before the start of the stop maneuver. At the beginning of the stop maneuver, the blade angle 12 is reversed relatively quickly, the engine 3 is separated from the inverter 2, so that the propeller speed 11 initially drops rapidly. Since at the beginning of the stop maneuver the torque coefficient 14 becomes negative for a certain period of time, the "windmilling" effect occurs so that the propeller speed 11 increases again. After the time period during which "windmilling" occurs has elapsed, the moment coefficient 14 again assumes positive values. During the entire stop maneuver, the determined speed 13 is continuously reduced, and furthermore the propeller speed 11 remains below the predefinable critical speed during the entire stop maneuver.

Zusammenfassend betrifft die Erfindung ein Verfahren zum Betrieb eines Antriebssystems eines Wasserfahrzeugs bei einem Stoppmanöver, wobei das Antriebssystem mindestens einen drehbaren Verstellpropeller aufweist, welcher jeweils Propellerblätter mit verstellbarem Blattwinkel aufweist und welcher mittels eines Motors angetrieben wird, wobei der Motor ein Motordrehmoment auf den Verstellpropeller ausüben kann, wobei eine Geschwindigkeit des Wasserfahrzeugs und eine Propellerdrehzahl des mindestens einen Verstellpropellers ermittelt werden. Weiterhin betrifft die Erfindung eine Steuerung, ein Wasserfahrzeug, ein Computerprogramm und ein Computerprogrammprodukt zur Durchführung des Verfahrens. Um in einfacher Weise ein schnelles Abbremsen des Wasserfahrzeugs zu erlauben, wird vorgeschlagen, dass vorab eine Kennlinie für das Wasserfahrzeug ermittelt wird, welche verschiedene Anfangs-Geschwindigkeiten des Wasserfahrzeugs bei Beginn des Stoppmanövers mit zumindest jeweils einem zeitlichen Verlauf des Blattwinkels und einem zeitlichen Verlauf der Propellerdrehzahl derart verknüpft, dass das während des Stoppmanövers gemäß der Kennlinie betriebene Antriebssystem in einem möglichst kurzen zurückgelegten Aufstoppweg des Wasserfahrzeugs resultiert und die Propellerdrehzahl einen vorgebbaren, kritischen Drehzahlwert nicht überschreitet, wobei das Antriebssystem während des Stoppmanövers gemäß der vorab ermittelten Kennlinie betrieben wird.In summary, the invention relates to a method for operating a propulsion system of a watercraft in a stop maneuver, wherein the drive system comprises at least one rotatable variable pitch propeller, each of which propeller blades having an adjustable blade angle and which is driven by a motor, wherein the engine can exert a motor torque on the variable pitch propeller, wherein a speed of the watercraft and a propeller speed of the at least one variable pitch propeller are determined. Furthermore, the invention relates to a controller, a watercraft, a computer program and a computer program product for carrying out the method. In order to allow a quick deceleration of the vessel in a simple manner, it is proposed that a characteristic curve for the vessel be determined in advance, which different initial velocities of the vessel at the beginning of the stop maneuver with at least a time course of the blade angle and a time course of the propeller speed linked so that the operated during the stop maneuver according to the characteristic drive system results in the shortest possible Aufstoppweg the vessel and the propeller speed does not exceed a predetermined, critical speed value, the drive system is operated during the stop maneuver according to the previously determined characteristic.

Claims (6)

  1. Method for operating a drive system of a water vehicle during a stopping manoeuvre,
    wherein the drive system has at least one rotatable variable pitch propeller (1), which in each case has propeller blades with an adjustable blade angle (12) and which is driven by means of a motor (3),
    wherein the motor (3) is able to exert a motor torque (15) on the variable pitch propeller (1),
    wherein a speed (13) of the water vehicle and a rotational propeller speed (11) of the at least one variable pitch propeller (1) are determined,
    characterised in that a characteristic line for the water vehicle is determined beforehand, linking different initial speeds (17) of the water vehicle at the start of the stopping manoeuvre to at least one temporal profile of the blade angle (12) and one temporal profile of the rotational propeller speed (11) in each instance in such a manner that when the drive system is operated according to the characteristic line during the stopping manoeuvre it results in the water vehicle covering the shortest possible stopping path and the rotational propeller speed (11) does not exceed a predefinable, critical rotational speed value,
    wherein the drive system is operated according to the previously determined characteristic line during the stopping manoeuvre.
  2. Method according to claim 1,
    wherein a distance between the water vehicle and a collision obstacle is determined, and
    wherein the drive system additionally performs an evasion manoeuvre if the stopping path covered by the water vehicle during the stopping manoeuvre is longer than the distance between the water vehicle and the collision obstacle.
  3. Controller (6) for a water vehicle having at least one drive system,
    wherein the controller (6) has means for performing a method according to claim 1 or 2,
    wherein the means comprise a computer program for operation in the controller (6),
    wherein the means comprise at least one computer unit and a memory unit, on which the characteristic line determined previously for the water vehicle is stored.
  4. Water vehicle having
    - at least one drive system and
    - a controller (6), which is configured according to claim 3, wherein the drive system has at least one rotatable variable pitch propeller (1), which in each case has propeller blades with an adjustable blade angle (12) and which is able to be driven by means of a motor (3),
    wherein the motor (3) is able to exert a motor torque (15) on the variable pitch propeller (1),
    wherein at least a speed (13) of the water vehicle and a rotational propeller speed (11) of the at least one variable pitch propeller (1) can be determined by means of a respective sensor.
  5. Computer program for performing a method according to one of claims 1 - 2 when operating in a controller (6) according to claim 3.
  6. Computer-readable storage medium on which a computer program according to claim 5 is stored.
EP14707769.7A 2013-05-21 2014-03-04 Optimization of a drive system comprising a variable pitch propeller in a water vehicle during a stopping maneuver Active EP2986502B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013209337.3A DE102013209337A1 (en) 2013-05-21 2013-05-21 Optimization of a drive system with a variable pitch propeller in a watercraft during a stop maneuver
PCT/EP2014/054114 WO2014187584A1 (en) 2013-05-21 2014-03-04 Optimization of a drive system comprising a variable pitch propeller in a water vehicle during a stopping maneuver

Publications (2)

Publication Number Publication Date
EP2986502A1 EP2986502A1 (en) 2016-02-24
EP2986502B1 true EP2986502B1 (en) 2018-10-03

Family

ID=50193506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14707769.7A Active EP2986502B1 (en) 2013-05-21 2014-03-04 Optimization of a drive system comprising a variable pitch propeller in a water vehicle during a stopping maneuver

Country Status (7)

Country Link
EP (1) EP2986502B1 (en)
KR (1) KR101825282B1 (en)
AU (1) AU2014270720B2 (en)
DE (1) DE102013209337A1 (en)
DK (1) DK2986502T3 (en)
ES (1) ES2704097T3 (en)
WO (1) WO2014187584A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287006B1 (en) * 2015-12-18 2019-05-14 Amazon Technologies, Inc. Adjustable propeller blades for sound control
KR20180016810A (en) * 2016-08-08 2018-02-20 월드콥터코리아 주식회사 Automatic control device for controllable pitch airboat propeller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4611209A (en) * 1979-10-12 1986-09-09 Lemelson Jerome H Navigation warning system and method
JP2702558B2 (en) * 1989-08-09 1998-01-21 株式会社新潟鐵工所 Ship collision prevention device
CN101445152A (en) * 2003-10-28 2009-06-03 艾姆博里治有限公司 Control method and control system for a controllable pitch marine propeller
US7131385B1 (en) * 2005-10-14 2006-11-07 Brunswick Corporation Method for braking a vessel with two marine propulsion devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2014270720B2 (en) 2016-09-22
KR20160004350A (en) 2016-01-12
EP2986502A1 (en) 2016-02-24
WO2014187584A1 (en) 2014-11-27
DK2986502T3 (en) 2019-01-21
AU2014270720A1 (en) 2015-11-19
ES2704097T3 (en) 2019-03-14
DE102013209337A1 (en) 2014-11-27
KR101825282B1 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
DE112015001403B4 (en) Electrified aircraft and method for controlling regenerative electrical power of an electrified aircraft
DE102008011791B4 (en) Integrated multifunctional wheel drive system for aircraft
EP2417019B1 (en) Ship propulsion system
EP2616327A1 (en) Method for operating a ship, in particular a cargo ship, with at least one magnus rotor
EP2279111A2 (en) Submarine with a propulsive derive comprising an annular electric motor
WO2014019866A1 (en) Method and device for operating a vehicle
DE102007048061A1 (en) Steering actuator for a steer-by-wire vessel control system and method for operating the steering actuator
AT523262B1 (en) Device for adjusting the inclination of the rotor blades of a rotor
EP2877397B1 (en) Auxiliary drive system for a helicopter
EP2028099A1 (en) Propulsion system with a controllable pitch propeller
EP2986502B1 (en) Optimization of a drive system comprising a variable pitch propeller in a water vehicle during a stopping maneuver
EP1790566A1 (en) Method for decrease roll movement of a watercraft
DE112013002003T5 (en) Electric motor powered rotor drive for slow rotor wing aircraft
DE3539617A1 (en) DEVICE FOR CONTROLLING A CYCLOID PROPELLER FOR SHIPS
WO2016155883A1 (en) Device and method for moving an aircraft, in particular a helicopter, on board a ship
DE102018109085A1 (en) Drive arrangement for compensation and / or to reduce and / or reduce the rolling motion and / or the pitching motion of a watercraft
EP4257476A1 (en) Control method for a ship with a controllable pitch propeller
EP2062813B1 (en) Method and device for the fastest possible shut-down of electrically-driven ship propellers
DE102015016971B4 (en) Method for operating a drive device for a motor vehicle and corresponding drive device
DE102015016969B4 (en) Method for operating a drive device for a motor vehicle and corresponding drive device
DE102011116528A1 (en) Method for rotational torque control of hydrostatic drive unit of e.g. municipal vehicle, involves determining actual torque from absorption volume of hydraulic motor and pressure in closed circuits, and changing absorption volume
EP2143632A2 (en) Method and device for controlling the propeller propulsion of an electrically driven ship drive system
EP2226245B1 (en) Drive system for a ship
DE10108173A1 (en) Torque control or regulation for electric motor e.g. for vehicle steer-by-wire system, involves estimating motor magnetic flux using phase currents and voltages, and controlling or regulating torque depending on estimated flux
CH715437A1 (en) Method and device for regenerative drive for flow-around vehicles with jet drive.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WIETOSKA, JENS

Inventor name: TIGGES, KAY

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1048306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009628

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190109

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181003

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2704097

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009628

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

26N No opposition filed

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190304

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190304

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190304

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1048306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014009628

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230424

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231228

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20240403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 11

Ref country code: FR

Payment date: 20240326

Year of fee payment: 11

Ref country code: DK

Payment date: 20240326

Year of fee payment: 11