EP2975618A1 - Kern für eine elektrische Induktionseinrichtung - Google Patents

Kern für eine elektrische Induktionseinrichtung Download PDF

Info

Publication number
EP2975618A1
EP2975618A1 EP14177246.7A EP14177246A EP2975618A1 EP 2975618 A1 EP2975618 A1 EP 2975618A1 EP 14177246 A EP14177246 A EP 14177246A EP 2975618 A1 EP2975618 A1 EP 2975618A1
Authority
EP
European Patent Office
Prior art keywords
core
laminated cores
laminated
partial
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14177246.7A
Other languages
English (en)
French (fr)
Other versions
EP2975618B1 (de
Inventor
Jörg FINDEISEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14177246.7A priority Critical patent/EP2975618B1/de
Priority to PCT/EP2015/065002 priority patent/WO2016008727A1/de
Priority to US15/326,886 priority patent/US9941043B2/en
Publication of EP2975618A1 publication Critical patent/EP2975618A1/de
Application granted granted Critical
Publication of EP2975618B1 publication Critical patent/EP2975618B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations

Definitions

  • the invention relates to a core of an electrical induction device, preferably a transformer or a throttle.
  • the state of the art is laminated from sheets (also called magnetic sheets or core sheets) layered cores, these are also called stack cores. Such cores can be performed by cutting different width sheets, graded for each individual laminated core. Furthermore, cores (also called band cores) are known in which the sheet is wound coil-shaped largely uninterrupted.
  • the material used for the sheets mainly grain-oriented, cold-rolled sheet is used, which has a magnetic preferred direction in the rolling direction. Due to the layering of the core from these grain-oriented sheets, the heat resulting from the no-load losses is dissipated to and across the layer plane at different extents from the surface. This is expressed in a usually by the factor 6 ... 7 different thermal conductivity.
  • cooling ducts are used parallel to the layer plane in transformer construction, since they can be easily formed by inserting strips or spacers (for example, ceramic disks).
  • a disadvantage of this cooling channel formation is that the arrangement of the cooling channels can not exploit the favorable heat conduction parallel to the layer direction of the sheets.
  • amorphous core materials are used in distribution transformers.
  • the state of the art with regard to the use of amorphous core material is disclosed, for example, in the European published patent application EP 2 474 985 and Japanese Patent Publication JP 2010 289 858 described.
  • the invention has for its object to provide a core for an electrical induction device, which ensures better heat dissipation than previous cores.
  • the invention provides that at least one of the laminated cores is segmented and at least two partial laminated cores, which are two sheet packages each with their sheet metal end faces, which are transversely, in particular perpendicular to the layer plane of the laminated sheets, face each other, the sheet metal end faces of the two partial laminated cores a distance have to each other through which a gap extending perpendicular to the layer plane between the two partial laminated cores is formed and the gap forms a cooling channel or at least a portion of a cooling channel whose channel longitudinal direction extends transversely, in particular perpendicular, to the layer plane of the laminated sheets.
  • An essential advantage of the core according to the invention is that the good thermal longitudinal conductivity is achieved by the described arrangement of the cooling channels or transversely to the layer plane of the sheets the sheets is used for cooling the core. As a result, it is advantageously possible to achieve a reduction in the space requirement required for cooling and an increase in the filling factor for the core limb.
  • a further significant advantage of the core according to the invention is the fact that the described formation of the core of partial laminated cores is suitable both for cores layered from individual sheets and for cores wound from magnetic tapes.
  • the width of the laminated cores is different to form steps between stacked laminated cores.
  • the cross section of the core is adapted at least in sections to a circular cross section.
  • the number of different sheet widths in the partial laminated cores is preferably at most one third of the number of stages. Particularly preferably, the number of different sheet widths in the partial laminated cores is a maximum of three.
  • the sheet widths in the partial laminated cores are preferably identical.
  • At least two stacked laminated cores have an identical number of equally wide partial laminated cores but are nevertheless of different widths, wherein at least two partial corrugated iron packages are separated from one another by the or one of the cooling channels in the case of the broader laminated core.
  • the core viewed from the inside to the outside alternately has a laminated core of the first type and a laminated core of the second type, wherein in a laminated core of the first kind, at least two partial laminated cores, preferably all partial corrugated iron layers, are separated from each other by a gap or cooling channel, and wherein at least two partial laminated cores, preferably all partial laminated cores, lie without gaps on each other in a laminated core of the second type.
  • At least two stacked laminated cores of the first and second type have the same number of equally wide partial laminated cores.
  • the sheets are formed by a thin-walled strip material, preferably an amorphous strip material, and the laminated cores are each wound from this strip material.
  • At least one cooling channel is preferably additionally present whose channel longitudinal direction extends parallel to the layer plane of the laminated sheets.
  • a further preferred embodiment provides that the laminated cores are bent in sections, wherein the bending radii of at least two stacked laminated cores are selected such that in the bending region between these laminated cores, a cavity, preferably in the form of an arcuate gap, is formed, wherein the cavity with a the cooling channels or all the cooling channels communicates and allows feeding of a coolant through the cavity into the one or more cooling channels.
  • the width of the widest partial laminated core is preferably an integer multiple of the narrowest partial laminated core.
  • Tension bands are preferably used for the mechanical stabilization. Accordingly, it is provided in a further preferred embodiment of the core, that the wound partial laminated cores are stabilized and fixed by means of clamping bands, wherein the clamping bands are arranged on the laminated cores, that they each in their position to the clamping band of adjacent partial laminated core are offset and are designed such that forms a cooling channel in the space between the partial laminated cores.
  • clamping bands are arranged on the laminated cores, that they each in their position to the clamping band of adjacent partial laminated core are offset and are designed such that forms a cooling channel in the space between the partial laminated cores.
  • straps made of metallic non-magnetic material are preferably used.
  • windings with circular coils which are placed on the limbs of the core are preferred for transformers and chokes.
  • the cross-section of the limb is preferably stepped several times.
  • a further advantageous embodiment of the core provides for the formation of core stages from the laminated cores and thus an approximation to the circular shape of the winding when using core sheets only one or less sheet widths. At the same time the formation of effective and space-saving cooling channels is made possible.
  • the preferred core configurations are also suitable for cores of electrical induction devices which operate in the high-frequency range, since the above-mentioned advantages due to the frequency dependency of the magnetic reversal losses in these preferably come into effect and the application even with relatively small benefits offers economic benefits.
  • the bending radii of the wound partial laminated core of a composite core are each selected such that in each case a gap is formed for the circulation of a cooling fluid in the arc between leg and yoke.
  • the lower sheet for receiving the cooling fluid which flows transversely to the winding direction, is distributed within the arc on the cooling channels between the partial laminated cores to then ascend by the heating and exit at the upper arc between leg and yoke again.
  • the FIG. 1 shows an embodiment of a core 1 for an electromagnetic induction device, not shown.
  • the core 1 consists of a plurality of laminated cores 2, which are each formed by laminated sheets 11 of magnetizable material, wherein the laminated cores are parallel to the layer plane of the laminated sheets 11 to each other.
  • the laminated cores 2 is segmented and has a plurality of partial laminated cores 3.
  • the partial laminated cores 3 are at least partially arranged such that at the joint between the sheet metal end faces 3a of the partial laminated cores a gap results, which is dimensioned such that the flow of a coolant allows and a cooling channel 4 is formed.
  • the total width of the individual laminated cores 2 is determined in each case.
  • the height of the laminated cores 2 is adjusted by the number of layered sheets 11.
  • a stepped core is formed.
  • all core lamination packages 2 are formed from core sheet metal stiffeners or partial lamination stacks 3 of the same width.
  • the partial laminated cores 3 are each arranged alternately with or without a gap, that is, with or without cooling channels between the partial laminated cores 3. This results in a different overall width of the laminations 2 forming the steps of the core 1.
  • Every second laminated core has cooling channels 4, so that the number of stages doubles again, without the need for additional sheet metal widths. In this way it is possible to achieve a substantial approximation of a core leg to a circular shape. Consequently The use of round windings with high filling factor of the core is possible without the use of a variety of different sheet widths.
  • FIG. 2 shows a top view of the sectional view of a layer of magnetic laminated leg 6 of another embodiment of a core 1.
  • the leg 6 and connected thereto yoke 7 are stacked in the embodiment of individual sheets.
  • the individual sheets form in the transition region between the legs and yoke joints, which are offset in layers against each other and form a tapping.
  • the illustrated arrangement of the cooling channels 4 along the cut edges of the sheets 11 not only a good thermal conductivity of the sheets 11 is used transversely to the layer plane, but it can continue to use targeted cooling channels in the thermally highly stressed areas of the core.
  • Cooling channels in the already well cooled edge layers of the core 1 can be omitted, and a further increase in the filling factor of the core 1 is possible.
  • the FIG. 3 shows a third embodiment in which a five-stage core 1 using two different widths for the sheets 11.1 and 11.2 of the partial laminated cores 3 is executed. As a result, it is possible to form a finely graded core of high number of stages with only two different sheet widths of the core material.
  • the width of the largest partial laminated core 3 forms a multiple of the smallest width of a partial laminated core. Due to the aforementioned formation of multiples of the width of the partial laminated cores 3, the formation of connections between the cooling channels 4 of the successive laminated cores is simplified.
  • the embodiment according to FIG. 3 are provided by this design all stages with cooling channels 4, which are connected to each other such that a cooling medium can flow transversely to the laminar layer direction of the sheets 11.1 and 11.2.
  • the FIG. 4 shows a fourth embodiment;
  • the laminated sheets 11 of the laminated cores 2 are formed by means of a wound strip material.
  • This embodiment lends itself, for example, to sheets with preferred magnetic direction, since the sheet is obtained in strip form and can be wound without interruption.
  • the individual turns of the ribbon core are separated so staggered that in each case only one point of application lies in the magnetic circuit.
  • This wound core design is particularly suitable for the use of strips of amorphous core material or strips of nanocrystalline metals.
  • the layering of the winding layers is in the FIG. 4 shown in the sectional view of the leg 6. You can see that here only strip material of a width is used.
  • the strip material is continuous, each comprising two legs 6 and the yokes 7, wound.
  • the composition of the middle laminated cores from a plurality of partial laminated cores 3 creates a stepped core, which is adapted to the circular shape 8.
  • the laminated cores which form the central core stage, each provided with transverse to the layer plane cooling channels 4.
  • FIG. 4 shows a three-dimensional sectional view of the three-limb core wound from strip material.
  • the strip material is wound circumferentially to form the cooling channels 4 designed as described above, each in partial laminated cores 3, which respectively form corresponding legs 6 and yoke sections 7.
  • the cooling channels 4 of the core legs 6 are continued in the yokes 7 of the core.
  • FIG. 6 shows the full view of an embodiment of the active part of a three-phase transformer, which is provided with a cooling channels 43 provided with core 1. On the legs 6 windings 9 of the three-phase transformer are arranged in the embodiment.
  • the partial laminated core of the core 1 are formed in the embodiment of amorphous strip material.
  • FIG. 7 shows a sectional view of the in FIG. 6 shown embodiment in more detail.
  • the bending radii 17 of the mutually stacked laminated core 3 of a composite core 1 are each selected such that in the arc between leg 6 and yoke 7 each arcuate gap 23 and thus a cooling channel 43 is formed for the circulation of a cooling fluid.
  • FIG. 8 shows a section through the leg 6 of a further embodiment of a core 1, in which the partial laminated cores 3 of the metal sheets 2 are produced by means of a wound strip material.
  • the seven-stage core shown in the example uses only plates 11 of a single bandwidth to form the steps.
  • the lower yoke 7 of the core 1 is seen in full view.
  • the strip material is continuous, each comprising two legs 6 and the yokes 7, wound.
  • FIG. 9 shows the core 1 according to FIG. 8 in a three-dimensional view obliquely from the side.
  • FIG. 10 shows a sectional view through the axis of the central limb of another embodiment of a three-limb core parallel to the plane of the core band. Between the partial laminated cores 3 of the leg 6 vertical cooling channels 4 are arranged.
  • the winding radii 17 of the partial laminated core 3 of the core 1 are each chosen such that in the arc between leg 6 and yoke 7 each have a curved gap 23 is formed to form a cooling channel 43 for the circulation of the coolant.
  • This arcuate gap 23 is connected to the cooling channels 4 between the partial laminated cores 3.
  • the lower sheet for receiving the coolant which flows transversely to the winding direction, is distributed within the arc on the cooling channels 43 between the bands to then ascend by the heating and exit at the upper arc between leg 6 and yoke 7 again.
  • FIG. 11 shows a partial view of the leg-yoke transition of in FIG. 10 described embodiment in more detail.
  • FIG. 12 shows the front view of an embodiment with wound ribbon core of amorphous material, in which the laminations 2 are radially spaced from each other by means of inserts 48 such that a cooling channel 42 for supplying the cooling channels (not visible) is formed between the mutually parallel partial laminated cores.
  • FIG. 13 shows an embodiment of the center leg 6 of a three-phase transformer, each with a plurality of the center leg 6 with a neighboring leg magnetically coupling partial laminated cores. It can be seen in the region of the associated with the yoke 7 leg 6 radial cooling channels 42 between the partial laminated cores.
  • the mechanical Stabilizing clamping bands 52 are used, which include the partial laminated cores at the periphery. These can be arranged both transversely and longitudinally to the winding direction. In the embodiment according to FIG. 13 the arrangement is longitudinal, ie parallel to the winding direction.
  • the clamping bands 52 are preferably positioned in the transverse direction on the partial laminated cores in such a way that they are offset in their position relative to the clamping band of the adjacent partial laminated core and the space between the partial laminated cores forms a cooling channel.
  • FIG. 14 shows a three-dimensional view of the three-limb core according to FIG. 13 .
  • FIGS. 15 and 16 show an embodiment of a five-limb core.
  • the core is preferably formed from wound partial laminated cores of a strip material.
  • the three inner legs are provided for mounting windings, while the outer serve as a return leg.
  • the cores are made of wound segments of preferably amorphous strip material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Die Erfindung betrifft einen Kern (1) für eine elektrische Induktionseinrichtung mit einer Vielzahl an Blechpaketen (2), die jeweils durch laminierte Bleche (11, 11.1, 11.2) gebildet sind, wobei die Blechpakete (2) parallel zur Schichtebene der laminierten Bleche (11, 11.1, 11.2) aufeinander liegen. Erfindungsgemäß ist vorgesehen, dass zumindest eines der Blechpakete (2) segmentiert ist und zumindest zwei Teilblechpakete (3) aufweist, die zwei Teilblechpakete (3) jeweils mit ihren Blechstirnseiten (3a), die quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche (11, 11.1, 11.2) stehen, einander gegenüber liegen, die Blechstirnseiten (3a) der zwei Teilblechpakete (3) einen Abstand zueinander aufweisen, durch den ein sich senkrecht zur Schichtebene erstreckender Spalt zwischen den zwei Teilblechpaketen (3) gebildet wird und der Spalt einen Kühlkanal (4) oder zumindest einen Abschnitt eines Kühlkanals (4) bildet, dessen Kanallängsrichtung sich quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche (11, 11.1, 11.2) erstreckt.

Description

  • Die Erfindung betrifft einen Kern einer elektrischen Induktionseinrichtung, vorzugsweise eines Transformators oder einer Drossel.
  • Stand der Technik sind laminar aus Blechen (auch Magnetbleche oder Kernbleche genannt) geschichtete Kerne, diese werden auch Stapelkerne genannt. Solche Kerne können durch den Zuschnitt unterschiedlich breiter Bleche, für jedes einzelne Blechpaket gestuft, ausgeführt werden. Weiterhin sind Kerne (auch Bandkerne genannt) bekannt, bei welchen das Blech spulenförmig weitgehend unterbrechungsfrei aufgewickelt wird.
  • Als Werkstoff für die Bleche wird vorwiegend kornorientiertes, kaltgewalztes Blech verwendet, das eine magnetische Vorzugsrichtung in Walzrichtung besitzt. Durch die Schichtung des Kerns aus diesen kornorientierten Blechen wird die von den Leerlaufverlusten herrührende Wärme längs und quer zur Schichtebene unterschiedlich stark zur Oberfläche abgeleitet. Dies kommt in einer zumeist um den Faktor 6 ...7 unterschiedlichen Wärmeleitfähigkeit zum Ausdruck.
  • Derzeit werden im Transformatorenbau Kühlkanäle parallel zur Schichtebene eingesetzt, da sich diese leicht durch Einlegen von Leisten oder Distanzkörpern (zum Beispiel Keramikscheiben) bilden lassen. Nachteilig bei dieser Kühlkanalbildung ist, dass die Anordnung der Kühlkanäle die günstige Wärmeleitung parallel zur Schichtrichtung der Bleche nicht ausnutzen kann.
  • Auch sind spezielle externe Kühlflächen zum Kühlen von Kernen bekannt; solche sind beispielsweise in der deutschen Patentschrift DE 35 05 120 beschrieben.
  • Zur weiteren Verringerung der Leerlaufverluste kommen bei Verteilertransformatoren heutzutage verstärkt amorphe Kernmaterialien zum Einsatz. Der Stand der Technik bezüglich des Einsatzes amorphen Kernmaterials ist beispielsweise in der europäischen Offenlegungsschrift EP 2 474 985 und der japanischen Offenlegungsschrift JP 2010 289 858 beschrieben.
  • Auf Grund der hohen Materialkosten für amorphe Kernmaterialien, die schwierige Verarbeitung sowie die eingeschränkten Gestaltungsmöglichkeiten haben sich amorphe Materialien, insbesondere bei größeren Leistungstransformatoren, jedoch bis heute noch nicht durchsetzen können.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Kern für eine elektrische Induktionseinrichtung anzugeben, der eine bessere Wärmeabfuhr gewährleistet als bisherige Kerne.
  • Diese Aufgabe wird erfindungsgemäß durch einen Kern mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Kernes sind in Unteransprüchen angegeben.
  • Danach ist erfindungsgemäß vorgesehen, dass zumindest eines der Blechpakete segmentiert ist und zumindest zwei Teilblechpakete aufweist, die zwei Teilblechpakete jeweils mit ihren Blechstirnseiten, die quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche stehen, einander gegenüber liegen, die Blechstirnseiten der zwei Teilblechpakete einen Abstand zueinander aufweisen, durch den ein sich senkrecht zur Schichtebene erstreckender Spalt zwischen den zwei Teilblechpaketen gebildet wird und der Spalt einen Kühlkanal oder zumindest einen Abschnitt eines Kühlkanals bildet, dessen Kanallängsrichtung sich quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche erstreckt.
  • Ein wesentlicher Vorteil des erfindungsgemäßen Kernes besteht darin, dass durch die beschriebene Anordnung des oder der Kühlkanäle quer zur Schichtebene der Bleche die gute Wärmelängsleitfähigkeit der Bleche zur Kühlung des Kernes ausgenutzt wird. Dies führt dazu, dass sich in vorteilhafter Weise eine Reduzierung des für die Kühlung benötigten Raumbedarfs und eine Erhöhung des Füllfaktors für den Kernschenkel erreichen lässt.
  • Ein weiterer wesentlicher Vorteil des erfindungsgemäßen Kernes ist darin zu sehen, dass sich die beschriebene Bildung des Kernes aus Teilblechpaketen sowohl für aus Einzelblechen geschichtete Kerne als auch für aus magnetischen Bändern gewickelte Kerne eignet.
  • Vorzugsweise ist die Breite der Blechpakete unter Bildung von Stufen zwischen aufeinander liegenden Blechpaketen unterschiedlich.
  • Vorteilhaft ist es, wenn durch die Stufenbildung der Querschnitt des Kernes zumindest abschnittsweise an einen kreisförmigen Querschnitt angepasst ist.
  • Die Anzahl unterschiedlicher Blechbreiten in den Teilblechpaketen beträgt bevorzugt maximal ein Drittel der Anzahl an Stufen. Besonders bevorzugt beträgt die Anzahl unterschiedlicher Blechbreiten in den Teilblechpaketen maximal drei.
  • Die Blechbreiten in den Teilblechpaketen sind vorzugsweise identisch.
  • Als vorteilhaft wird es auch angesehen, wenn zumindest zwei aufeinander liegende Blechpakete eine identische Anzahl an gleich breiten Teilblechpaketen aufweisen, aber dennoch unterschiedlich breit sind, wobei bei dem breiteren Blechpaket zumindest zwei Teilblechpakete durch den oder einen der Kühlkanäle voneinander getrennt sind.
  • Eine besonders bevorzugte Ausgestaltung sieht vor, dass der Kern von innen nach außen betrachtet abwechselnd ein Blechpaket erster Art und ein Blechpaket zweiter Art aufweist, wobei bei einem Blechpaket erster Art zumindest zwei Teilblechpakete, vorzugsweise alle Teilblechpakete, durch einen Spalt oder Kühlkanal voneinander getrennt sind, und wobei bei einem Blechpaket zweiter Art zumindest zwei Teilblechpakete, vorzugsweise alle Teilblechpakete, spaltfrei aufeinander liegen.
  • Vorzugsweise weisen zumindest zwei aufeinander liegende Blechpakete erster und zweiter Art dieselbe Anzahl an gleich breiten Teilblechpaketen auf.
  • Auch ist es vorteilhaft, wenn die Bleche durch ein dünnwandiges Bandmaterial, vorzugsweise ein amorphes Bandmaterial gebildet sind, und die Blechpakete jeweils aus diesem Bandmaterial gewickelt sind.
  • Zur weiteren Kühlung ist vorzugsweise zusätzlich zumindest ein Kühlkanal vorhanden, dessen Kanallängsrichtung sich parallel zur Schichtebene der laminierten Bleche erstreckt.
  • Eine weitere bevorzugte Ausgestaltung sieht vor, dass die Blechpakete abschnittsweise gebogen sind, wobei die Biegeradien zumindest zweier aufeinander liegender Blechpakete derart gewählt sind, dass im Biegebereich zwischen diesen Blechpaketen ein Hohlraum, vorzugsweise in Form eines bogenförmigen Spalts, gebildet wird, wobei der Hohlraum mit einem der Kühlkanäle oder allen Kühlkanälen in Verbindung steht und ein Einspeisen eines Kühlmittels durch den Hohlraum hindurch in den oder die Kühlkanäle ermöglicht.
  • Die Breite des breitesten Teilblechpaketes beträgt bevorzugt ein ganzzahliges Vielfaches des schmalsten Teilblechpaketes.
  • Für die mechanische Stabilisierung kommen bevorzugt Spannbänder zum Einsatz. Demgemäß ist bei einer weiteren bevorzugten Ausgestaltung des Kernes vorgesehen, dass die gewickelten Teilblechpakete mittels Spannbändern stabilisiert und fixiert sind, wobei die Spannbänder derart auf den Blechpaketen angeordnet sind, dass sie in ihrer Lage jeweils zum Spannband des benachbarten Teilblechpaketes versetzt sind und derart gestaltet sind, dass sich in dem Raum zwischen den Teilblechpaketen ein Kühlkanal bildet. Aus Kostengründen werden vorzugsweise Spannbänder aus metallischem unmagnetischem Material eingesetzt.
  • Bei Einsatz des Kernes in Drosseln können Luftspalteinlagen vorgesehen werden, die mit dem Kernmaterial verklebt werden.
  • Besonders vorteilhaft ist die oben beschriebene Stufung des Kerns bei Kernen aus amorphem oder nanokristallinem Bandmaterial, da die Verwendung runder kurzschlussfester Wicklungen ermöglicht wird.
  • Um die bei Kurzschluss auftretenden radialen Wicklungskräfte einfach zu beherrschen, werden für Transformatoren und Drosseln vorzugsweise Wicklungen mit kreisförmigen Spulen bevorzugt, welche auf die Schenkel des Kernes aufgesetzt werden.
  • Um für den Kernschenkel einen hohen Füllfaktor (optimale Füllung des kreisförmigen Querschnittes der Wicklung mit magnetischem Material) zu erreichen, wird der Querschnitt des Schenkels vorzugsweise mehrfach abgestuft.
  • Eine weitere vorteilhafte Ausführung des Kernes sieht die Bildung von Kernstufen aus den Blechpaketen und damit eine Annäherung an die Kreisform der Wicklung bei Einsatz von Kernblechen nur einer oder weniger Blechbreiten vor. Gleichzeitig wird die Bildung von effektiven und raumsparenden Kühlkanälen ermöglicht.
  • Wie sich den obigen Erläuterungen entnehmen lässt, sind die bevorzugten Kernausgestaltungen auch für Kerne von elektrischen Induktionseinrichtungen geeignet, welche im Hochfrequenzbereich arbeiten, da die oben angegebenen Vorteile auf Grund der Frequenzabhängigkeit der Ummagnetisierungsverluste bei diesen bevorzugt zur Geltung kommen und die Anwendung auch bei relativ kleinen Leistungen wirtschaftliche Vorteile bietet.
  • In einer bevorzugten Ausführungsform werden die Biegeradien der gewickelten Teilblechpakete eines zusammengesetzten Kernes jeweils derart gewählt, dass im Bogen zwischen Schenkel und Joch jeweils ein Spalt zur Zirkulation eines Kühlfluides gebildet wird. Dabei dient der untere Bogen zur Aufnahme des Kühlfluides, welches quer zur Wickelrichtung einströmt, sich innerhalb des Bogens auf die Kühlkanäle zwischen den Teilblechpaketen verteilt, um dann durch die Erwärmung aufzusteigen und am oberen Bogen zwischen Schenkel und Joch wieder auszutreten.
  • Die Erfindung wird nachfolgend anhand von bevorzugten Ausführungsbeispielen näher erläutert, diese sind in den Figuren 1 bis 16 näher dargestellt.
  • In den Figuren werden der Übersicht halber für identische - oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet.
  • Die Figur 1 zeigt ein Ausführungsbeispiel für einen Kern 1 für eine nicht weiter dargestellte elektromagnetische Induktionseinrichtung. Der Kern 1 besteht aus mehreren Blechpaketen 2, welche jeweils durch laminierte Bleche 11 aus magnetisierbarem Material gebildet sind, wobei die Blechpakete parallel zur Schichtebene der laminierten Bleche 11 aufeinander liegen.
  • Bei dem Ausführungsbeispiel ist zumindest ein Teil der Blechpakete 2 segmentiert und weist mehrere Teilblechpakete 3 auf. Die Teilblechpakete 3 werden zumindest teilweise derart zueinander angeordnet, dass sich an der Stoßstelle zwischen den Blechstirnseiten 3a der Teilblechpakete ein Spalt ergibt, welcher derart dimensioniert wird, dass die Strömung eines Kühlmittels ermöglicht und ein Kühlkanal 4 gebildet wird.
  • Bei einem Blechpaket mit rechteckigem Querschnitt stellen sich neutrale Ebenen mit der höchsten Temperatur ein, die jeweils senkrecht zur Richtung des betrachteten Wärmeflusses stehen und die Paketachsen schneiden. Von ihnen ausgehend sinkt die Kerntemperatur parabelförmig bis zur Kernoberfläche, um dort innerhalb der Strömungszone des Kühlmittels auf den Betrag der Öltemperatur abzufallen. Die Wärmestromdichte an der Kernoberfläche ist weitgehend vom inneren Wärmewiderstand des Körpers abhängig. Dieser ist in der Schichtebene bedeutend kleiner als quer dazu. Die Verluste hingegen sind weitgehend gleichmäßig auf den Blechkörper verteilt. Mit den Kühlkanälen 4 senkrecht zur Schichtebene lässt sich somit eine besonders effektive Kühlung erreichen. Durch die folglich mögliche Reduzierung des Querschnittsbedarfs für die Kühlkanäle 4 lässt sich eine Erhöhung des Füllfaktors des Eisenkreises und damit eine Reduzierung des Kernquerschnittes erzielen.
  • Durch die Anzahl der Teilblechpakete 3 wird jeweils die Gesamtbreite der einzelnen Blechpakete 2 bestimmt. Die Höhe der Blechpakete 2 wird durch die Anzahl der geschichteten Bleche 11 eingestellt. Durch entsprechende Auswahl der genannten Parameter wird ein gestufter Kern gebildet. Im Ausführungsbeispiel gemäß Figur 1 werden alle Kernblechpakete 2 aus Kernblechsteifen bzw. Teilblechpaketen 3 der gleichen Breite gebildet.
  • Bei dem Ausführungsbeispiel gemäß Figur 1 sind die Teilblechpakete 3 jeweils abwechselnd mit oder ohne Spalt, also mit oder ohne Kühlkanälen zwischen den Teilblechpaketen 3, angeordnet. Damit ergibt sich eine unterschiedliche Gesamtbreite der die Stufen des Kernes 1 bildenden Blechpakete 2.
  • Bei dem Ausführungsbeispiel gemäß Figur 1 hat jedes zweite Blechpaket Kühlkanäle 4, so dass sich die Stufenzahl nochmals verdoppelt, ohne dass zusätzliche Blechbreiten benötigt werden. Auf diese Weise ist es möglich, eine weitgehende Annäherung eines Kernschenkels an eine Kreisform zu erreichen. Somit wird der Einsatz runder Wicklungen bei gleichzeitig hohem Füllfaktor des Kernes ohne die Nutzung einer Vielzahl verschiedener Blechbreiten möglich.
  • Die Figur 2 zeigt in einer Draufsicht die Schnittdarstellung eines aus Magnetblechen geschichteten Schenkels 6 eines weiteren Ausführungsbeispiels für einen Kern 1. Der Schenkel 6 und ein mit diesem verbundenes Joch 7 sind im Ausführungsbeispiel aus Einzelblechen gestapelt. Die Einzelbleche bilden im Übergangsbereich zwischen Schenkel und Joch Stoßstellen, welche schichtweise gegeneinander versetzt sind und eine Verzapfung bilden.
  • Durch die dargestellte Segmentierung der Blechpakete 2 in Teilblechpakte 3 und die damit mögliche Anordnung der Kühlkanäle 4 an den Schnittkanten des Bleches wird die Nutzung der hohen thermischen Längsleitfähigkeit der Bleche 11 möglich.
  • Durch die dargestellte Anordnung der Kühlkanäle 4 längs der Schnittkanten der Bleche 11 wird nicht nur eine gute Wärmeleitfähigkeit der Bleche 11 quer zur Schichtebene ausgenutzt, sondern es lassen sich weiterhin Kühlkanäle gezielt in den thermisch hochbeanspruchten Bereichen des Kernes einsetzen.
  • Bei dem Ausführungsbeispiel gemäß Figur 2 ist das die mittlere Kernstufe bildende Blechpaket mit drei Kühlkanälen 4 und die zweite Kernstufe mit einem einzigen Kühlkanal 4 versehen. Kühlkanäle in den ohnehin gut gekühlten Randlagen des Kernes 1 können entfallen, und eine weitere Erhöhung des Füllfaktors des Kernes 1 wird möglich.
  • Die Figur 3 zeigt ein drittes Ausführungsbeispiel, bei dem ein fünfstufiger Kern 1 unter Verwendung von zwei unterschiedlichen Breiten für die Bleche 11.1 und 11.2 der Teilblechpakete 3 ausgeführt wird. Dadurch lässt sich mit nur zwei verschiedenen Blechbreiten des Kernmaterials ein feingestufter Kern hoher Stufenzahl bilden.
  • In der in der Figur 3 dargestellten Ausführungsform bildet die Breite des größten Teilblechpaketes 3 ein Vielfaches der kleinsten Breite eines Teilblechpaketes. Durch die genannte Bildung von Vielfachen der Breite der Teilblechpakete 3 wird die Bildung von Verbindungen zwischen den Kühlkanälen 4 der aufeinander folgenden Blechpakete vereinfacht. Im Ausführungsbeispiel gemäß Figur 3 sind durch diese Gestaltung alle Stufen mit Kühlkanälen 4 versehen, welche derart miteinander verbunden sind, dass ein Kühlmedium quer zur laminaren Schichtrichtung der Bleche 11.1 bzw. 11.2 strömen kann.
  • Die Figur 4 zeigt ein viertes Ausführungsbeispiel; bei diesem sind die laminierten Bleche 11 der Blechpakete 2 mittels eines gewickelten Bandmaterials gebildet. Diese Ausführung bietet sich beispielsweise für Bleche mit magnetischer Vorzugsrichtung an, da das Blech in Bandform bezogen wird und unterbrechungsfrei gewickelt werden kann. Um die elektrischen Wicklungen aufzusetzen, werden die einzelnen Windungen des Bandkernes so versetzt aufgetrennt, dass im magnetischen Kreis jeweils nur eine Verzapfungsstelle liegt. Besonders geeignet ist diese gewickelte Kernausführung für die Nutzung von Bändern aus amorphem Kernmaterial oder Bändern aus nanokristallinen Metallen.
  • Die Schichtung der Wickellagen ist in der Figur 4 in der Schnittdarstellung des Schenkels 6 dargestellt. Man sieht, dass hier nur Bandmaterial einer Breite zum Einsatz kommt. Das Bandmaterial ist fortlaufend, jeweils zwei Schenkel 6 und die Joche 7 umfassend, gewickelt. Durch die Zusammensetzung der mittleren Blechpakete aus jeweils mehreren Teilblechpaketen 3 entsteht ein gestufter Kern, welcher der Kreisform 8 angepasst ist.
  • Wie ersichtlich, sind die Blechpakete, welche die mittlere Kernstufe bilden, mit jeweils quer zur Schichtebene angeordneten Kühlkanälen 4 versehen.
  • Die Figur 5 zeigt eine dreidimensionale Schnittdarstellung des aus Bandmaterial gewickelten Dreischenkelkernes gemäß Figur 4. Das Bandmaterial ist unter Bildung der - wie oben beschrieben - gestalteten Kühlkanäle 4 jeweils in Teilblechpaketen 3, welche jeweils entsprechende Schenkel 6 und Jochabschnitte 7 bilden, umlaufend gewickelt. Im Ausführungsbeispiel gemäß Figur 5 werden die Kühlkanäle 4 der Kernschenkel 6 in den Jochen 7 des Kernes fortgeführt.
  • Die Figur 6 zeigt die Vollansicht eines Ausführungsbeispiels für den Aktivteil eines Dreiphasentransformators, welcher mit einem mit Kühlkanälen 43 versehenen Kern 1 ausgestattet ist. Auf den Schenkeln 6 sind im Ausführungsbeispiel Wicklungen 9 des Dreiphasentransformators angeordnet. Die Teilblechpakete des Kerns 1 werden im Ausführungsbeispiel aus amorphem Bandmaterial gebildet.
  • Die Figur 7 zeigt eine Schnittdarstellung des in Figur 6 gezeigten Ausführungsbeispiels näher im Detail. Bei dem Ausführungsbeispiel sind die Biegeradien 17 der aufeinander angeordneten Teilblechpakete 3 eines zusammengesetzten Kernes 1 jeweils derart gewählt, dass im Bogen zwischen Schenkel 6 und Joch 7 jeweils ein bogenförmiger Spalt 23 und damit ein Kühlkanal 43 zur Zirkulation eines Kühlfluides gebildet wird.
  • Die Figur 8 zeigt einen Schnitt durch den Schenkel 6 eines weiteren Ausführungsbeispiels für einen Kern 1, bei dem die Teilblechpakete 3 der Blechpakte 2 mittels eines gewickelten Bandmaterials hergestellt werden. Der im Beispiel dargestellte siebenstufige Kern nutzt zur Bildung der Stufen lediglich Bleche 11 einer einzigen Bandbreite.
  • Im Hintergrund ist das untere Joch 7 des Kernes 1 in Vollansicht zu sehen. Das Bandmaterial ist fortlaufend, jeweils zwei Schenkel 6 und die Joche 7 umfassend, gewickelt.
  • Die Figur 9 zeigt den Kern 1 gemäß Figur 8 in einer dreidimensionalen Sicht schräg von der Seite.
  • Die Figur 10 zeigt eine Schnittdarstellung durch die Achse des Mittelschenkels eines weiteren Ausführungsbeispiels für einen Dreischenkelkern parallel zur Ebene des Kernbandes. Zwischen den Teilblechpaketen 3 des Schenkels 6 sind vertikale Kühlkanäle 4 angeordnet.
  • Bei dem Ausführungsbeispiel gemäß Figur 10 sind die Wickelradien 17 der Teilblechpakete 3 des Kernes 1 jeweils derart gewählt, dass im Bogen zwischen Schenkel 6 und Joch 7 jeweils ein bogenförmiger Spalt 23 zur Bildung eines Kühlkanals 43 zur Zirkulation des Kühlmittels gebildet wird. Dieser bogenförmige Spalt 23 ist mit den Kühlkanälen 4 zwischen den Teilblechpaketen 3 verbunden. Dabei dient der untere Bogen zur Aufnahme des Kühlmittels, welches quer zur Wickelrichtung einströmt, sich innerhalb des Bogens auf die Kühlkanäle 43 zwischen den Bändern verteilt, um dann durch die Erwärmung aufzusteigen und am oberen Bogen zwischen Schenkel 6 und Joch 7 wieder auszutreten.
  • Die Figur 11 zeigt eine Teilansicht des Schenkel-Joch-Übergangs des in Figur 10 beschriebenen Ausführungsbeispiels näher im Detail.
  • Die Figur 12 zeigt die Vorderansicht eines Ausführungsbeispiels mit gewickeltem Bandkern aus amorphem Material, bei dem die radial aufeinander befindlichen Blechpakete 2 mittels Beilagen 48 derart zueinander beabstandet sind, dass ein Kühlkanal 42 zur Versorgung der Kühlkanäle (nicht sichtbar) zwischen den parallel zueinander angeordneten Teilblechpaketen gebildet wird.
  • Die Figur 13 zeigt ein Ausführungsbeispiel für den Mittelschenkel 6 eines Dreiphasentransformators mit jeweils mehreren, den Mittelschenkel 6 mit einem Nachbarschenkel magnetisch verkoppelnden Teilblechpaketen. Man erkennt im Bereich des mit dem Joch 7 in Verbindung stehenden Schenkels 6 radiale Kühlkanäle 42 zwischen den Teilblechpaketen. Für die mechanische Stabilisierung kommen Spannbänder 52 zum Einsatz, welche die Teilblechpakete am Umfang umfassen. Diese können sowohl quer als auch längs zur Wickelrichtung angeordnet sein. Bei dem Ausführungsbeispiel gemäß Figur 13 erfolgt die Anordnung längs, also parallel zur Wickelrichtung.
  • Die Spannbänder 52 werden in Querrichtung vorzugsweise derart auf den Teilblechpaketen positioniert, dass sie in ihrer Lage jeweils zum Spannband des benachbarten Teilblechpaketes versetzt sind und der Raum zwischen den Teilblechpaketen einen Kühlkanal bildet.
  • Die Figur 14 zeigt eine dreidimensionale Ansicht des Dreischenkelkernes gemäß Figur 13.
  • Die Figuren 15 und 16 zeigen ein Ausführungsbeispiel für einen Fünfschenkelkern. Dabei wird der Kern vorzugsweise aus gewickelten Teilblechpaketen eines Bandmaterials gebildet.
  • Die drei inneren Schenkel sind zur Montage von Wicklungen vorgesehen, während die äußeren als Rückschlussschenkel dienen. Auch hier sind die Kerne aus gewickelten Segmenten aus vorzugsweise amorphem Bandmaterial gebildet.

Claims (14)

  1. Kern (1) für eine elektrische Induktionseinrichtung mit einer Vielzahl an Blechpaketen (2), die jeweils durch laminierte Bleche (11, 11.1, 11.2) gebildet sind, wobei die Blechpakete (2) parallel zur Schichtebene der laminierten Bleche (11, 11.1, 11.2) aufeinander liegen,
    dadurch gekennzeichnet, dass
    - zumindest eines der Blechpakete (2) segmentiert ist und zumindest zwei Teilblechpakete (3) aufweist,
    - die zwei Teilblechpakete (3) jeweils mit ihren Blechstirnseiten (3a), die quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche (11, 11.1, 11.2) stehen, einander gegenüber liegen,
    - die Blechstirnseiten (3a) der zwei Teilblechpakete (3) einen Abstand zueinander aufweisen, durch den ein sich senkrecht zur Schichtebene erstreckender Spalt zwischen den zwei Teilblechpaketen (3) gebildet wird und
    - der Spalt einen Kühlkanal (4) oder zumindest einen Abschnitt eines Kühlkanals (4) bildet, dessen Kanallängsrichtung sich quer, insbesondere senkrecht, zur Schichtebene der laminierten Bleche (11, 11.1, 11.2) erstreckt.
  2. Kern (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Breite der Blechpakete (2) unter Bildung von Stufen zwischen aufeinander liegenden Blechpaketen (2) unterschiedlich ist.
  3. Kern (1) nach Anspruch 2,
    dadurch gekennzeichnet, dass
    durch die Stufenbildung der Querschnitt des Kernes (1) zumindest abschnittsweise an einen kreisförmigen Querschnitt angepasst ist.
  4. Kern (1) nach einem der voranstehenden Ansprüche 2-3,
    dadurch gekennzeichnet, dass
    die Anzahl unterschiedlicher Blechbreiten in den Teilblechpaketen (3) maximal ein Drittel der Anzahl an Stufen beträgt.
  5. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Anzahl unterschiedlicher Blechbreiten in den Teilblechpaketen (3) maximal drei beträgt.
  6. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Blechbreiten in den Teilblechpaketen (3) identisch sind.
  7. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - zumindest zwei aufeinander liegende Blechpakete (2) eine identische Anzahl an gleich breiten Teilblechpaketen (3) aufweisen, aber dennoch unterschiedlich breit sind,
    - wobei bei dem breiteren Blechpaket (2) zumindest zwei Teilblechpakete (3) durch den oder einen der Kühlkanäle (4) voneinander getrennt sind.
  8. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - der Kern (1) von innen nach außen betrachtet abwechselnd ein Blechpaket erster Art und ein Blechpaket zweiter Art aufweist,
    - wobei bei einem Blechpaket erster Art zumindest zwei Teilblechpakete (3), vorzugsweise alle Teilblechpakete (3), durch einen Spalt oder Kühlkanal (4) voneinander getrennt sind, und
    - wobei bei einem Blechpaket zweiter Art zumindest zwei Teilblechpakete (3), vorzugsweise alle Teilblechpakete (3), spaltfrei aufeinander liegen.
  9. Kern (1) nach Anspruch 8,
    dadurch gekennzeichnet, dass
    zumindest zwei aufeinander liegende Blechpakete (2) erster und zweiter Art dieselbe Anzahl an gleich breiten Teilblechpaketen (3) aufweisen.
  10. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - die Bleche (11, 11.1, 11.2) durch ein dünnwandiges Bandmaterial, vorzugsweise ein amorphes Bandmaterial gebildet sind, und
    - die Blechpakete (2) jeweils aus diesem Bandmaterial gewickelt sind.
  11. Kern (1) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich zumindest ein Kühlkanal (4) vorhanden ist, dessen Kanallängsrichtung sich parallel zur Schichtebene der laminierten Bleche (11, 11.1, 11.2) erstreckt.
  12. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - die Blechpakete (2) abschnittsweise gebogen sind, wobei die Biegeradien zumindest zweier aufeinander liegender Blechpakete (2) derart gewählt sind, dass im Biegebereich zwischen diesen Blechpaketen (2) ein Hohlraum, insbesondere in Form eines bogenförmigen Spalts (23), gebildet wird,
    - wobei der Hohlraum mit einem der Kühlkanäle (4) oder allen Kühlkanälen in Verbindung steht und ein Einspeisen eines Kühlmittels durch den Hohlraum hindurch in den oder die Kühlkanäle (4) ermöglicht.
  13. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Breite des breitesten Teilblechpaketes ein ganzzahliges Vielfaches des schmalsten Teilblechpaketes beträgt.
  14. Kern (1) nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - die gewickelten Teilblechpakete (3) mittels Spannbändern (52) stabilisiert und fixiert sind,
    - wobei die Spannbänder (52) derart auf den Blechpaketen (2) angeordnet sind, dass sie in ihrer Lage jeweils zum Spannband des benachbarten Teilblechpakets (3) versetzt sind und derart gestaltet sind, dass sich in dem Raum zwischen den Teilblechpaketen (3) ein Kühlkanal (4) bildet.
EP14177246.7A 2014-07-16 2014-07-16 Kern für eine elektrische Induktionseinrichtung Active EP2975618B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14177246.7A EP2975618B1 (de) 2014-07-16 2014-07-16 Kern für eine elektrische Induktionseinrichtung
PCT/EP2015/065002 WO2016008727A1 (de) 2014-07-16 2015-07-01 Kern für eine elektrische induktionseinrichtung
US15/326,886 US9941043B2 (en) 2014-07-16 2015-07-01 Core for an electrical induction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14177246.7A EP2975618B1 (de) 2014-07-16 2014-07-16 Kern für eine elektrische Induktionseinrichtung

Publications (2)

Publication Number Publication Date
EP2975618A1 true EP2975618A1 (de) 2016-01-20
EP2975618B1 EP2975618B1 (de) 2019-05-29

Family

ID=51176978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14177246.7A Active EP2975618B1 (de) 2014-07-16 2014-07-16 Kern für eine elektrische Induktionseinrichtung

Country Status (3)

Country Link
US (1) US9941043B2 (de)
EP (1) EP2975618B1 (de)
WO (1) WO2016008727A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373311A1 (de) * 2017-02-17 2018-09-12 Vysoké Ucení Technické V Brne Skelett für magnetkern und verfahren zu seiner herstellung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068346A (ja) * 2018-10-26 2020-04-30 三菱重工サーマルシステムズ株式会社 リアクタ及び室外機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR573664A (fr) * 1923-02-22 1924-06-27 Alsacienne Constr Meca Procédé pour le refroidissement du circuit magnétique des appareils électriques et notamment des transformateurs
GB830688A (en) * 1955-04-13 1960-03-16 Gen Electric Improvements in laminated magnetic cores
US2991437A (en) * 1955-09-20 1961-07-04 Elin Ag Fur Elek Sche Ind Magnetic core
DE3505120C1 (de) 1985-02-14 1986-10-09 Hans O. Habermann Transformatoren -Elektroapparate, 7898 Lauchringen Transformator
EP2474985A1 (de) 2010-12-27 2012-07-11 Hitachi Industrial Equipment Systems Co., Ltd. Amorpher Transformator
EP2704161A1 (de) * 2012-08-31 2014-03-05 GE Energy Power Conversion Technology Ltd Magnetkern für magnetische Komponente mit Wicklung mit verbesserten Kühlmitteln

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157850A (en) * 1959-04-29 1964-11-17 Moloney Electric Company Magnetic cores
US3183461A (en) * 1962-02-05 1965-05-11 Westinghouse Electric Corp Magnetic core structure with cooling passages therein
US3967226A (en) * 1975-06-10 1976-06-29 Westinghouse Electric Corporation Electrical inductive apparatus having magnetic shielding cores and a gapped main core structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR573664A (fr) * 1923-02-22 1924-06-27 Alsacienne Constr Meca Procédé pour le refroidissement du circuit magnétique des appareils électriques et notamment des transformateurs
GB830688A (en) * 1955-04-13 1960-03-16 Gen Electric Improvements in laminated magnetic cores
US2991437A (en) * 1955-09-20 1961-07-04 Elin Ag Fur Elek Sche Ind Magnetic core
DE3505120C1 (de) 1985-02-14 1986-10-09 Hans O. Habermann Transformatoren -Elektroapparate, 7898 Lauchringen Transformator
EP2474985A1 (de) 2010-12-27 2012-07-11 Hitachi Industrial Equipment Systems Co., Ltd. Amorpher Transformator
EP2704161A1 (de) * 2012-08-31 2014-03-05 GE Energy Power Conversion Technology Ltd Magnetkern für magnetische Komponente mit Wicklung mit verbesserten Kühlmitteln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373311A1 (de) * 2017-02-17 2018-09-12 Vysoké Ucení Technické V Brne Skelett für magnetkern und verfahren zu seiner herstellung

Also Published As

Publication number Publication date
EP2975618B1 (de) 2019-05-29
US20170213631A1 (en) 2017-07-27
US9941043B2 (en) 2018-04-10
WO2016008727A1 (de) 2016-01-21

Similar Documents

Publication Publication Date Title
EP2463869B1 (de) Induktives Bauelement mit verbesserten Kerneigenschaften
EP2688183B1 (de) Gießtechnisch hergestellte elektrische Spule
EP1725420B1 (de) Magnetanordnung für trag-, für- und/oder bremssysteme bei magnetschwebefahrzeugen
EP3815221A1 (de) Aktiv gekühlte spule
EP2924697B1 (de) Magnetkern mit plattenförmigem Streukörper und induktives Bauelement
DE102015101230A1 (de) Drosselspule
EP3649655B1 (de) Speicherdrossel
WO2010133286A2 (de) Transformatorkern
EP3320546A1 (de) Magnetkern sowie drossel bzw. transformator mit einem solchen magnetkern
EP2975618B1 (de) Kern für eine elektrische Induktionseinrichtung
DE102013009588A1 (de) Transformator und Verfahren zur Anbringung von Wicklungen
DE102006026466B3 (de) Induktives elektrisches Element, insbesondere Transformator, Übertrager, Drossel, Filter und Wickelgut
DE102011007334A1 (de) Flüssigkeitsgekühlte induktive Komponente
EP1501106B1 (de) Ferritkern für ein Induktivitätsbauteil
DE102005015006B4 (de) Magnetkern
DE112022000924T5 (de) Spulengerät und Leistungskonvertierungsgerät
EP2867906B1 (de) Induktives bauteil
WO2021239403A1 (de) Spulenelement
DE19920268C1 (de) Induktivitätsanordnung
EP0264611A1 (de) Transformator bzw. Drosselspule
DE2259465C3 (de) MehrschenkUger Schichtkern für Transformatoren hoher Leistung
DE202021105084U1 (de) Spule
EP3301694A1 (de) Kühlung von induktiven bauelementen
WO2019129491A1 (de) Magnetkern mit rückschlussschenkel
DE102019135462A1 (de) Streufeldtransformator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160719

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FINDEISEN, JOERG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1138756

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011796

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011796

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

26N No opposition filed

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190716

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190716

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1138756

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014011796

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220908 AND 20220914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230626

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 10

Ref country code: GB

Payment date: 20230725

Year of fee payment: 10

Ref country code: CH

Payment date: 20230801

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230726

Year of fee payment: 10

Ref country code: FR

Payment date: 20230725

Year of fee payment: 10

Ref country code: DE

Payment date: 20230726

Year of fee payment: 10