EP2975350A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP2975350A1
EP2975350A1 EP15173792.1A EP15173792A EP2975350A1 EP 2975350 A1 EP2975350 A1 EP 2975350A1 EP 15173792 A EP15173792 A EP 15173792A EP 2975350 A1 EP2975350 A1 EP 2975350A1
Authority
EP
European Patent Office
Prior art keywords
tubes
heat exchanger
surface structure
exchanger according
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15173792.1A
Other languages
German (de)
French (fr)
Other versions
EP2975350B1 (en
Inventor
Thomas Gora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kelvion Machine Cooling Systems GmbH
Original Assignee
GEA Maschinenkuhltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Maschinenkuhltechnik GmbH filed Critical GEA Maschinenkuhltechnik GmbH
Priority to PL15173792T priority Critical patent/PL2975350T3/en
Publication of EP2975350A1 publication Critical patent/EP2975350A1/en
Application granted granted Critical
Publication of EP2975350B1 publication Critical patent/EP2975350B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the invention relates to a heat exchanger with the features of claim 1.
  • Heat exchangers of the type in question have tubes which extend in an axial direction and are flowed through by a first fluid.
  • the tubes may be ribbed on the outside. Larger ribs can be interspersed by several tubes.
  • the ribs may be flat or contoured, in particular wavy or rippled. With corrugated or ribbed ribs it is possible to achieve better heat transfer, but with higher pressure losses compared to flat ribs. The pressure losses attributable to the changed flow conditions require more energy expenditure in forced-ventilation heat exchangers, since the pressure loss must be compensated for by correspondingly stronger fans.
  • ribs having additional openings, so that the inflowing fluid can pass from a heat exchanger side of the rib on the other side of the rib.
  • turbulators at the additional openings can lead to the improvement of the heat transfer and, depending on the design, also reduce the pressure losses in comparison to the first two mentioned rib designs.
  • hygiene problems can occur with this rib design, since it is possible, in particular in the region of the openings and adjacent to turbulators, for soiling, which can be removed less easily than with closed ribs.
  • a heat exchanger in which also a non-profiled ring is provided with a collar.
  • a second surface structure with a ring-shaped circumferential, triangular in cross section recess provided outside the unprofiled ring. This depression is then followed by a zig-zag-shaped corrugated structure.
  • the object of the invention is to develop a heat exchanger to the effect that the heat transfer performance is increased at low pressure losses.
  • the heat exchanger according to the invention comprises tubes which extend in an axial direction.
  • the pipes are intended to be flown from the outside.
  • the tubes are externally in contact with ribs.
  • the ribs extend transversely to the axial direction of the tubes.
  • the ribs have openings for receiving the tubes.
  • the ribs have first and second areas. At least the second areas have a surface structure.
  • the term surface structure means in the present invention that the surface is not flat, that is profiled, in particular provided with embossments.
  • the first regions of the ribs can be free of a surface structure, that is to say they can be flat.
  • the first regions may also have a surface structure, that is, not be even.
  • the two surface structures differ in their structuring from each other.
  • first surface structures and second surface structures will be explained below, wherein the advantages of the invention over completely unprofiled ribs also arise when surface structures are arranged only in the second regions. An improvement is achieved by surface structures in the first and in the second areas.
  • the two surface structures are not flat in each case.
  • the first surface structure is a uniform repetition in the direction of flow of the tubes profiling.
  • the tubes are flowed transversely to the axial direction, that is radially.
  • the direction of flow is therefore perpendicular to the tubes.
  • at a uniform repetitive profiling results in a wave-like expression.
  • a wave-like expression is in the context of the invention, a corrugation or a waveform to understand.
  • surface structures can be seen, such as zig-zag or sawtooth curves, ie profiles with sharp edges in the range of amplitudes. For rounded transitions in the range of amplitudes in the context of the invention of wave-like expressions is mentioned.
  • Wave-like characteristics are not limited to strictly sinusoidal curves. It may also be combinations of wave-like and corrugated sections, but each repeat uniformly. The uniform repetition creates a wavefront which extends transversely to the direction of flow.
  • the wavefront can be straight or curved. Significantly, it repeats uniformly at regular intervals.
  • the second surface structure deviates from the first surface structure and has at least one annular depression and, in addition, preferably at a radial distance to an annularly extending increase.
  • the at least one elevation and at least one depression surround the openings for receiving the tubes annularly.
  • the new rib design leads to improved heat transfer with only slightly higher pressure drops. This means that the size of the heat exchanger and thus the manufacturing costs can be reduced, with otherwise the same heat exchanger performance. Furthermore, the energy efficiency and / or the acoustic properties of the heat exchanger units can be improved, which is also due to the improved heat transfer and the only slightly higher pressure losses.
  • the design of the heat exchangers complies with current hygiene standards as the ribs do not have any slots, notches or openings.
  • the combination of two different surface structures contributes significantly to the improvement of the heat transfer.
  • the profiling leads to an increase in the flow velocity between adjacent ribs, since the flow is accelerated by the radial circumferential ridges and depressions in the region of the tubes. That leads to one remarkably improved heat transfer in a large part of the fin surface.
  • the special feature is that a stall is largely avoided, although the flow velocity is accelerated in the region of the tubes.
  • the surface structure of the ribs is preferably a combination of a corrugated or wave-shaped profile and an annular profile with radially encircling annular elevations and depressions.
  • This second surface structure is preferably sinusoidal in its radial propagation in cross section, so that this structure can be described as a wave propagating wavefront.
  • the first surface structure may have a sinusoidal but in particular a zigzag-shaped profiling.
  • a corrugated surface structure In the context of this application is also spoken of a corrugated surface structure.
  • the combination of a corrugated, in particular zig-zag profiling with the sinusoidal corrugated circumferential portions of the tubes results in a greatly improved heat transfer performance. Without the first surface structure, a large part of the flow would flow past the pipes at a greater distance.
  • the first surface structure mainly ensures that a larger part of the flow is brought closer to the tubes.
  • the second surface structure accelerates the flow radially to the tube and significantly increases the heat transfer area. At the same time, however, the heat transfer at the greater distance from the tubes is also improved by the first surface structure.
  • the second surface structure causes an increase in the heat transfer surface compared to a smooth in this area rib and thus improves the heat transfer performance.
  • the second surface structures each have exactly one annularly extending elevation and a single annular depression.
  • this second surface structure in each case has a plurality of annularly extending elevations and depressions. As the radial distance increases, the height of the ridges and valleys may decrease.
  • the wavelength of the second surface structure is tuned to the wavelength of the corrugated or wave-like first surface structure and is in an integer ratio +/- 10%. It is advantageous if the second surface structures have a radial outer diameter which corresponds to twice the wavelength of the corrugated first surface structure +/- 10%.
  • the recesses and elevations of the second surface structures are the same.
  • the center planes of the first surface structure and the second surface structures can be arranged at an axial distance from one another. That is to say, the second center plane, from which the depressions and elevations of the second surface structure are exposed, is arranged at an axial distance from the first center plane of the first surface structure.
  • the median plane of the first surface structure is the plane from which the corrugations or undulations on both sides of the medial plane are exposed.
  • the spacing of the center planes in this case preferably corresponds to the amplitudes of the elevations of the second surface structure +/- 10%.
  • the amplitudes of the first surface structure may correspond to the spacing of the center planes +/- 10%.
  • the amplitudes of the first surface structure are preferably the same size as the amplitudes of the second surface structure.
  • the height of the rib measured in the axial direction is as large as 3 amplitudes of the respective surface structures.
  • the tubes pass through the ribs at a distance which is twice the wavelength of the first surface structure. This distance is measured in the direction of flow radially to the tubes, wherein the axial directions of the tubes coincide with the troughs. That means in every second trough there is a pipe.
  • the tubes have a diameter which is within a range of 80 to 100% of the wavelength of the first surface structure. Therefore, the annular second surface structures have an inner diameter of 80 to 100% of a wavelength and an outer diameter of preferably 190 to 210%, in particular 200% of the wavelength of the first surface structure.
  • the second center plane coincides with the wave troughs of the first surface structure, so that no cracks occur in those regions which lie upstream and downstream of the tubes in the flow direction.
  • the flow may enter into the sinusoidal corrugated annular regions of the second surface structure in a manner accessible to a pipe through the corrugation trough of the corrugation, where the flow is passed and accelerated close to the pipe.
  • Each rib has two opposite sides which serve as heat exchange surfaces, with the sides, with the exception of the openings passing through the tubes, being free of further openings. Hygienic standards can be more easily adhered to because no soiling can stick to any openings. The pressure losses are accordingly low.
  • the rib design does not provide turbulence to enhance heat transfer but to increase the flow velocity between the ribs, and particularly near the tubes, without substantial flow separation.
  • the ribs have a predetermined distance from each other, which is determined by spacers or a collar on the ribs.
  • the collar increases the contact area between tube and rib and improves the heat transfer.
  • a mutual centering of adjacent ribs can take place via the collar.
  • an axially flared centering can connect radially outside of the unprofiled ring.
  • the collar holds in this centering shoulder, so that the openings in the ribs are aligned.
  • the collar may additionally be widened radially outwardly at one end. This creates a transitional area that serves as an insertion aid for a pipe.
  • the mutual centering in combination with an expansion on the collar simplifies the handling of a larger number of ribs during assembly.
  • FIG. 1 shows a rib 1 as part of a heat exchanger.
  • the heat exchanger comprises in addition to a plurality of mutually parallel ribs 1 tubes 2, which pass through openings 3 in the ribs 1.
  • the tubes 2 are circular in this embodiment, just like the openings 3.
  • the rib 1 is profiled, that is not flat, as in the sectional views in the FIGS. 2 and 3 can be seen.
  • the arrow P in the Figures 1 and 2 indicates the flow direction.
  • Several such ribs 1 are in placed stacked arrangement parallel to each other and are in contact with the tubes 2, which are flowed through by a first heat exchange medium.
  • the second flow medium flows around the tubes 2 on the outside.
  • it is preferably a cooler / heater, in which the tubes 2 are flowed through by a liquid or a refrigerant and in which outside of the tubes 2 cooling air is passed.
  • the rib 1 can be divided into two areas with regard to their surface structure.
  • a first region 5 has a first, zig-zag-shaped surface structure 6.
  • the zigzag-shaped surface structure 6 has a straight wavefront which propagates in the direction of the arrow P.
  • the zig-zag-shaped surface structure 6 is a uniformly repeating profiling and extends over the entire length of the flow path transversely to the flow direction.
  • first surface structure 6 second regions 7 are embedded with another surface structure 8.
  • the second regions 7 are configured annularly and surround the openings 3 for the tubes 2.
  • the annular second regions 7 have an annular peripheral elevation 10 and at a radial distance therefrom an annular depression 9 (FIG. FIG. 3 ).
  • the in FIG. 3 top side referred to as the top 4.
  • the terms indent 9 and elevation 10 are synonymous for reciprocal exhibitions in relation to a median plane. When viewed from the top, the elevation 10 of the opening 3 is radially closer than the recess 9.
  • the distance D of two successive openings 3 in the flow direction corresponds to twice the wavelength L of the zig-zag-shaped corrugated first surface structure 6.
  • the tubes 2 and the openings 3 are located in the region of a wave trough 11. That is, the longitudinal axes of the tubes 2 identical to the axial directions A coincide with the respective wave troughs 11, that is to say the respective deepest points in the top 4 of the 1 rib-shaped serrations.
  • the openings 3 are arranged offset in two successive troughs 11 to each other transversely to the flow direction P by the pitch T / 2.
  • the tubes 2 have a diameter D1 which is almost equal in relation to the wavelength L. He is only slightly smaller.
  • the openings 3 are surrounded by a narrow, unprofiled ring 12, which is aligned transversely to the axial direction A of the tubes 2.
  • the tubes 2 with the ribs 1 in contact.
  • the ring 12 may have a collar pointing in the axial direction, which can serve as a spacer between adjacent ribs 1 and increases the contact area with the tube 2. This is followed by the second surface structure with the recesses 9 and elevations 10 connects.
  • the outer diameter D2 of the annular second surface structures 8 corresponds to twice the wavelength L, as shown in FIG. 1 can be seen.
  • the FIGS. 2 to 7 show that the second surface structure 8 is corrugated sinusoidally at a constant amplitude.
  • the annular second region 7 corresponds in its radial extent exactly the wavelength of a sinusoid plus the radial extent of the ring 12, so that a single annular extension 10 and an equally large annular recess 9 is formed.
  • the uniform corrugation of the first surface structure 6 is mutually deflected about a center plane M1, which can also be referred to as a neutral plane.
  • the sinusoidal profiling of the second surface structure 8 is mutually deflected about a second center plane M2, which can also be referred to as a neutral plane.
  • FIG. 2 shows that these two center planes M1, M2 are arranged at an axial distance A1 to each other.
  • the profiling of the first surface structure 6 does not project beyond the second center plane M2.
  • the elevations 10 of the second surface structure 8 do not project beyond the first center plane M1.
  • the two surface structures 6, 8 therefore overlap only by the height of a maximum amplitude.
  • the rib 1 in this embodiment has an extension in the axial direction of the tubes 2, which corresponds to three times the amplitudes of the first and second surface structures 6, 8.
  • the flow is transferred when flowing against a pipe 2 by a falling edge of the corrugated first surface structure 6 without obstacles in the second surface structure 8. There, the flow along the annular elevations 10 and depressions 9 is controlled and passed close to the tubes 2 and finally fed back to the first surface structure 6 when the diametrically opposite end of the second surface structure 8 is reached without a barrier.
  • the edge regions of the second surface surface structures 8 also coincide with the wave troughs 11 transversely to the flow direction. Only in the transition to the wave crests 13 are edge edges of the second surface structures 8 transition flanks 14 formed, but for the most part point in the flow direction P and thereby do not contribute significantly to increase the Strömungswiederstandes.
  • the transition flanks 14 are a support of the annular ridges 9 and recesses 10 with the aim of passing the flow close to the tubes 2.
  • the triangular transition flanks 14 are at most as large as twice the amplitude of the zigzag-shaped surface structure 6.
  • FIG. 4 shows a perspective view of a rib 1 in a slightly larger extension.
  • the flow direction is indicated by the arrow P.
  • the sinusoidal second surface structure 8 can be clearly seen, which merges into the zigzag-shaped first surface structure 6 in the flow direction P in front of and behind the respective openings 3 in the region of the wave troughs 11 without jump or offset.
  • the transition surfaces 14 between the first surface structure 6 and the second surface structure 8 are comparatively small and in particular extend in the circumferential direction of the circular second surface structure 8 and thus influence the flow so that it is forced towards the tubes becomes.
  • FIG. 5 is a perspective view similar to the FIG. 3 ,
  • the arrow P again illustrates the flow direction. From this perspective, the profile differences between the surface structure 6 and the second surface structure 8 become even clearer. In particular, it can be seen that the sinusoidal surface structure 8 not only in the in the FIGS. 2 and 3 Section shown is located but also in the sectional plane transverse to FIG. 3 , The second surface structures 8 are rotationally symmetric with a circular wavefront.
  • FIGS. 6 and 7 show again perspective views of the ribs 1, once in the direction of the top 4 ( FIG. 6 ) and once in the direction of the bottom 15 ( FIG. 7 ).
  • the wave troughs 11 are exposed to the viewer.
  • the second surface structures 8 in the region of the wave troughs 11 merge into the first surface structure 6 without offset.
  • Cartesian coordinate systems whereby A in FIG. 2 means axial direction of the pipes, P means the direction of flow and Q the transverse direction in which the wave troughs 11 and peaks 13 of the first surface structure 6 extend.
  • FIGS. 8 and 9 show a further embodiment of a rib, wherein for substantially the same components, the reference numbers introduced to the previous figures are used.
  • the rib 1 differs from that of the FIGS. 1 to 7 in that the first regions 5 have no surface structure in the sense of a profiling or exhibition.
  • the first areas 5 are flat.
  • the second regions 7 are provided in the same way with the second surface structure 8, as in the above-described FIGS. 1 to 7 can be seen.
  • FIG. 9 shows the recesses 9 and elevations 10 of the second surface structure 8.
  • FIGS. 1 to 7 Referenced.
  • FIG. 10 shows a portion of a rib 1 in section, said rib 1 has an axially facing collar 16.
  • the collar 16 is on the unprofiled ring 12 is formed, which surrounds the opening 3 in the rib 1.
  • Radially on the outside, a centering shoulder 17 connects to the ring 12. He is trained circumferentially and issued in the picture plane down. He points away from the collar 16.
  • the centering shoulder 17 is followed by the second surface structure 8 with a ring-shaped elevation 10 and with a recess 9.
  • the first surface structure 6 is zig-zag-shaped, as in the preceding exemplary embodiments.
  • the collar 16 has at its free end a funnel-shaped widening 18.
  • the outer diameter of the widening 18 is adapted to the outer diameter of the ring 12, so that the widening 18 is arranged in a stacked arrangement of the ribs 1 within the centering shoulder 17.
  • the centering 17 serves as a stacking aid for identical ribs. 1

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Wärmetauscher umfassend Rohre 2, 1.1. die sich in eine Axialrichtung erstrecken und dafür vorgesehen sind, quer zur Axialrichtung von außen angeströmt zu werden, 1.2. und mit den Rohren außenseitig in Kontakt stehende Rippen 1 die sich quer zur Axialrichtung der Rohre erstrecken, 1.3. wobei die Rippen 1 Öffnungen 3 zur Aufnahme der Rohre besitzen, 1.4. wobei die Öffnungen 3 von einem unprofilierten Ring der Rippen 1 umgeben sind, der quer zur Axialrichtung der Rohre ausgerichtet ist, 1.5. wobei die Rippen 1 erste Bereiche und hinsichtlich ihrer Oberflächenstruktur 6, 8 abweichende zweite Bereiche besitzen, wobei die Oberflächenstrukturen 8 der zweiten Bereiche nicht eben sind, 1.6. wobei die zweiten Oberflächenstrukturen 8 wenigstens eine ringförmig verlaufende Vertiefung aufweisen, welche die Öffnungen 3 zur Aufnahme der Rohre umgeben, dadurch gekennzeichnet , dass 1.7. die zweiten Oberflächenstrukturen 8 im radialen Abstand zur ringförmig verlaufenden Vertiefung wenigstens eine ringförmig verlaufende Erhöhung aufweisen.The present invention relates to a heat exchanger comprising tubes 2, 1.1. which extend in an axial direction and are intended to be flowed transversely to the axial direction from the outside, 1.2. and ribs 1 which are in contact with the tubes on the outside and which extend transversely to the axial direction of the tubes, 1.3. wherein the ribs 1 have openings 3 for receiving the tubes, 1.4. wherein the openings 3 are surrounded by an unprofiled ring of the ribs 1, which is aligned transversely to the axial direction of the tubes, 1.5. the ribs 1 having first regions and second regions differing with respect to their surface structure 6, 8, the surface structures 8 of the second regions not being planar, 1.6. wherein the second surface structures 8 have at least one annular recess which surrounds the openings 3 for receiving the tubes, characterized in that 1.7. the second surface structures 8 have at least one ring-shaped elevation at a radial distance from the annular recess.

Description

Die Erfindung betrifft einen Wärmetauscher mit den Merkmalen des Patentanspruches 1.The invention relates to a heat exchanger with the features of claim 1.

Wärmetauscher der hier in Rede stehenden Bauart besitzen Rohre, die sich in eine Axialrichtung erstrecken und von einem erstem Fluid durchströmt werden. Zur Vergrößerung der Wärmetauscherfläche können die Rohre außenseitig berippt sein. Größere Rippen können von mehreren Rohren durchsetzt sein. Die Rippen können flach oder konturiert, insbesondere gewellt oder geriffelt sein. Mit gewellten oder geriffelten Rippen ist es möglich, einen besseren Wärmeübergang zu erreichen, allerdings mit höheren Druckverlusten im Vergleich zu ebenen Rippen. Die auf die geänderten Strömungsbedingungen zurückzuführenden Druckverluste bedingen bei zwangsbelüfteten Wärmetauschern einen höheren Energieaufwand, da der Druckverlust durch entsprechend stärkere Lüfter ausgeglichen werden muss. Um den Druckverlust zu reduzieren, gibt es Rippen, die zusätzliche Öffnungen aufweisen, so dass das anströmende Fluid von einer Wärmeaustauscherseite der Rippe auf die andere Seite der Rippe gelangen kann. Auch Turbulatoren an den zusätzlichen Öffnungen können zur Verbesserung des Wärmeübergangs führen und je nach Gestaltung auch die Druckverluste im Vergleich zu den ersten beiden genannten Rippendesigns reduzieren. Allerdings können bei diesem Rippendesign Hygieneprobleme auftreten, da es insbesondere im Bereich der Durchbrüche und benachbart von Turbulatoren zur Verschmutzungen kommen kann, die sich schlechter entfernen lassen, als bei geschlossenen Rippen.Heat exchangers of the type in question have tubes which extend in an axial direction and are flowed through by a first fluid. To increase the heat exchanger surface, the tubes may be ribbed on the outside. Larger ribs can be interspersed by several tubes. The ribs may be flat or contoured, in particular wavy or rippled. With corrugated or ribbed ribs it is possible to achieve better heat transfer, but with higher pressure losses compared to flat ribs. The pressure losses attributable to the changed flow conditions require more energy expenditure in forced-ventilation heat exchangers, since the pressure loss must be compensated for by correspondingly stronger fans. Around To reduce the pressure loss, there are ribs having additional openings, so that the inflowing fluid can pass from a heat exchanger side of the rib on the other side of the rib. Also turbulators at the additional openings can lead to the improvement of the heat transfer and, depending on the design, also reduce the pressure losses in comparison to the first two mentioned rib designs. However, hygiene problems can occur with this rib design, since it is possible, in particular in the region of the openings and adjacent to turbulators, for soiling, which can be removed less easily than with closed ribs.

Im Stand der Technik sind durch die US 5,927,393 A1 Wärmetauscher bekannt, bei welchen der Wärmeübergang verbessert werden soll, während gleichzeitig die Druckverluste reduziert werden. Es wird vorgeschlagen, sinusförmig gewellte Rippen zu verwenden, die sich quer zur Axialrichtung der Rohre erstrecken. Die Rohre durchsetzen die Rippen in einem der Wellenlänge der Wellung entsprechenden Abstand. Die Rippen besitzen Öffnungen zur Aufnahme der Rohre, wobei die Öffnungen in ringförmigen Basisbereichen der Rippen angeordnet sind. An die ringförmigen Basisbereiche schließen sich wiederum Übergangsbereiche zum Übergang der kreisrunden Kontur auf die Wellung der Rippe an. Da die Rohre im Verhältnis zur Wellenlänge der gewellten Rippe einen großen Durchmesser haben, sind sowohl die ringförmigen Basisbereiche als auch die Übergangsbereiche entsprechend groß. Dies führt dazu, dass sich in den Übergangsbereichen Taschen bilden, in denen Verwirbelungen auftreten, die strömungstechnisch ungünstig sind und zu erhöhten Druckverlusten führen.In the prior art are by the US 5,927,393 A1 Heat exchangers are known in which the heat transfer to be improved, while reducing the pressure losses. It is proposed to use sinusoidal corrugated fins extending transversely to the axial direction of the tubes. The tubes pass through the ribs at a distance corresponding to the wavelength of the corrugation. The ribs have openings for receiving the tubes, wherein the openings are arranged in annular base regions of the ribs. Transition regions for the transition of the circular contour to the corrugation of the rib in turn adjoin the annular base regions. Since the tubes have a large diameter relative to the wavelength of the corrugated fin, both the annular base areas and the transition areas are correspondingly large. As a result, pockets form in the transition regions in which turbulences occur that are unfavorable in terms of flow and lead to increased pressure losses.

Zum Stand der Technik ist die US 6,889,759 B2 zu nennen, die ebenfalls einen Wärmetauscher mit einem gewellten Blech offenbart. Im Umgebungsbereich der Rippen, die das Blech durchsetzen, ist die Wellung aufgehoben. Dort ist ein sich in Längsrichtung der Rippe erstreckender verbreiterter Kragen ausgebildet. Der Kragen ist in Relation zum Durchmesser der Rohre relativ breit.The state of the art is the US Pat. No. 6,889,759 B2 to name, which also discloses a heat exchanger with a corrugated sheet. In the surrounding area of the ribs, which penetrate the sheet, the corrugation is canceled. There, a broadened collar extending in the longitudinal direction of the rib is formed. The collar is relatively wide in relation to the diameter of the tubes.

In der US 5,207,270 wird ein Wärmetauscher beschrieben, bei dem ebenfalls ein unprofilierter Ring mit einem Kragen vorgesehen ist. Zusätzlich ist außerhalb des unprofilierten Ringes eine zweite Oberflächenstruktur mit einer ringförmig umlaufenden, im Querschnitt dreieckförmigen Vertiefung vorgesehen. An diese Vertiefung schließt sich dann eine zick-zack-förmig gewellte Struktur an.In the US 5,207,270 a heat exchanger is described, in which also a non-profiled ring is provided with a collar. In addition, outside the unprofiled ring, a second surface structure with a ring-shaped circumferential, triangular in cross section recess provided. This depression is then followed by a zig-zag-shaped corrugated structure.

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, einen Wärmetauscher dahingehend weiterzubilden, dass die Wärmeübergangsleistung bei geringen Druckverlusten gesteigert wird.Proceeding from this, the object of the invention is to develop a heat exchanger to the effect that the heat transfer performance is increased at low pressure losses.

Diese Aufgabe ist bei einem Wärmetauscher mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved with a heat exchanger having the features of patent claim 1.

Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous developments of the invention are the subject of the dependent claims.

Der erfindungsgemäße Wärmetauscher umfasst Rohre, die sich in eine Axialrichtung erstrecken. Die Rohre sind dafür vorgesehen von außen angeströmt zu werden. Die Rohre stehen außenseitig mit Rippen in Kontakt. Die Rippen erstrecken sich quer zur Axialrichtung der Rohre. Die Rippen besitzen Öffnungen zur Aufnahme der Rohre. Die Rippen besitzen erste und zweite Bereiche. Wenigstens die zweiten Bereiche besitzen eine Oberflächenstruktur. Der Begriff Oberflächenstruktur bedeutet bei der vorliegenden Erfindung, dass die Oberfläche nicht eben ist, das heißt profiliert ist, insbesondere mit Prägungen versehen ist. Die ersten Bereiche der Rippen können hingegen frei von einer Oberflächenstruktur sein, das heißt eben sein. Alternativ können auch die ersten Bereiche eine Oberflächenstruktur besitzen, das heißt nicht eben sein. Die beiden Oberflächenstrukturen weichen aber in ihrer Strukturierung voneinander ab.The heat exchanger according to the invention comprises tubes which extend in an axial direction. The pipes are intended to be flown from the outside. The tubes are externally in contact with ribs. The ribs extend transversely to the axial direction of the tubes. The ribs have openings for receiving the tubes. The ribs have first and second areas. At least the second areas have a surface structure. The term surface structure means in the present invention that the surface is not flat, that is profiled, in particular provided with embossments. By contrast, the first regions of the ribs can be free of a surface structure, that is to say they can be flat. Alternatively, the first regions may also have a surface structure, that is, not be even. However, the two surface structures differ in their structuring from each other.

Nachfolgend wird die Variante mit ersten Oberflächenstrukturen und zweiten Oberflächenstrukturen erläutert, wobei sich die Vorteile der Erfindung gegenüber völlig unprofilierten Rippen auch dann ergeben, wenn Oberflächenstrukturen nur in den zweiten Bereichen angeordnet sind. Eine Verbesserung wird durch Oberflächenstrukturen in den ersten und in den zweiten Bereichen erzielt.The variant with first surface structures and second surface structures will be explained below, wherein the advantages of the invention over completely unprofiled ribs also arise when surface structures are arranged only in the second regions. An improvement is achieved by surface structures in the first and in the second areas.

Die beiden Oberflächenstrukturen sind jeweils nicht eben. Vorzugsweise ist die erste Oberflächenstruktur eine sich in Anströmrichtung der Rohre gleichförmig wiederholende Profilierung. Die Rohre werden quer zur Axialrichtung, das heißt radial angeströmt. Die Anströmrichtung steht daher senkrecht zu den Rohren. Bei einer sich gleichförmig wiederholenden Profilierung ergibt sich eine wellenartige Ausprägung. Unter einer wellenartigen Ausprägung ist im Sinne der Erfindung eine Riffelung oder auch eine Wellenform zu verstehen. Unter Riffelung sind Oberflächenstrukturen zu erkennen, wie z.B. Zick-zack- oder Sägezahnkurven, also Profilierungen mit scharfkantigeren Übergängen im Bereich der Amplituden. Bei gerundeten Übergängen im Bereich der Amplituden ist im Sinne der Erfindung von wellenartigen Ausprägungen die Rede. Wellenartige Ausprägungen sind nicht auf streng sinusförmige Kurvenverläufe beschränkt. Es können auch Kombinationen von wellenartigen und geriffelten Abschnitten sein, die sich aber jeweils gleichförmig wiederholen. Durch die gleichförmige Wiederholung entsteht eine Wellenfront, die sich quer zur Anströmrichtung erstreckt. Die Wellenfront kann gerade oder gekrümmt sein. Maßgeblich ist, dass sie sich in bestimmten Abständen gleichförmig wiederholt.The two surface structures are not flat in each case. Preferably, the first surface structure is a uniform repetition in the direction of flow of the tubes profiling. The tubes are flowed transversely to the axial direction, that is radially. The direction of flow is therefore perpendicular to the tubes. at a uniform repetitive profiling results in a wave-like expression. Under a wave-like expression is in the context of the invention, a corrugation or a waveform to understand. Under corrugations surface structures can be seen, such as zig-zag or sawtooth curves, ie profiles with sharp edges in the range of amplitudes. For rounded transitions in the range of amplitudes in the context of the invention of wave-like expressions is mentioned. Wave-like characteristics are not limited to strictly sinusoidal curves. It may also be combinations of wave-like and corrugated sections, but each repeat uniformly. The uniform repetition creates a wavefront which extends transversely to the direction of flow. The wavefront can be straight or curved. Significantly, it repeats uniformly at regular intervals.

Die zweite Oberflächenstruktur weicht von der ersten Oberflächenstruktur ab und besitzt wenigstens eine ringförmig verlaufende Vertiefung und bevorzugt zusätzlich im radialen Abstand dazu eine ringförmig verlaufende Erhöhung. Die wenigstens eine Erhöhung und wenigstens eine Vertiefung umgeben die Öffnungen zur Aufnahme der Rohre ringförmig.The second surface structure deviates from the first surface structure and has at least one annular depression and, in addition, preferably at a radial distance to an annularly extending increase. The at least one elevation and at least one depression surround the openings for receiving the tubes annularly.

Das neue Rippendesign führen zu einem verbesserten Wärmeübergang bei nur geringfügig höheren Druckverlusten. Das bedeutet, dass die Größe des Wärmetauschers und damit die Fertigungskosten reduziert werden können, bei im Übrigen gleicher Wärmetauscherleistung. Des Weiteren können die Energieeffizienz und/oder die akustischen Eigenschaften der Wärmetauschereinheiten verbessert werden, was ebenfalls auf den verbesserten Wärmeübergang und die nur geringfügig höheren Druckverluste zurückzuführen ist. Das Design der Wärmetauscher ist konform zu aktuellen Hygienestandards, da die Rippen keinerlei Schlitze, Einkerbungen oder Öffnungen besitzen.The new rib design leads to improved heat transfer with only slightly higher pressure drops. This means that the size of the heat exchanger and thus the manufacturing costs can be reduced, with otherwise the same heat exchanger performance. Furthermore, the energy efficiency and / or the acoustic properties of the heat exchanger units can be improved, which is also due to the improved heat transfer and the only slightly higher pressure losses. The design of the heat exchangers complies with current hygiene standards as the ribs do not have any slots, notches or openings.

Die Kombination aus zwei unterschiedlichen Oberflächenstrukturen trägt entscheidend zu der Verbesserung des Wärmeübergangs bei. Die Profilierung führt zu einem Anstieg der Strömungsgeschwindigkeit zwischen einander benachbarten Rippen, da die Strömung durch die radial umlaufenden Erhöhungen und Vertiefungen im Bereich der Rohre beschleunigt wird. Das führt zu einem bemerkenswert verbesserten Wärmeübergang in einem großen Teil der Rippenoberfläche. Das besondere ist, dass ein Strömungsabriss weitestgehend vermieden wird, obwohl die Strömungsgeschwindigkeit im Bereich der Rohre beschleunigt wird.The combination of two different surface structures contributes significantly to the improvement of the heat transfer. The profiling leads to an increase in the flow velocity between adjacent ribs, since the flow is accelerated by the radial circumferential ridges and depressions in the region of the tubes. That leads to one remarkably improved heat transfer in a large part of the fin surface. The special feature is that a stall is largely avoided, although the flow velocity is accelerated in the region of the tubes.

Die Oberflächenstruktur der Rippen ist bevorzugt eine Kombination aus einem geriffelten oder wellenartig ausgeprägten Profil und einem kreisringförmigen Profil mit radial umlaufend ringförmigen Erhöhungen und Vertiefungen. Diese zweite Oberflächenstruktur ist in ihrer radialen Ausbreitung im Querschnitt vorzugsweise sinuskurvenförmig, so dass diese Struktur als sich kreisförmig ausbreitende Wellenfront beschrieben werden kann.The surface structure of the ribs is preferably a combination of a corrugated or wave-shaped profile and an annular profile with radially encircling annular elevations and depressions. This second surface structure is preferably sinusoidal in its radial propagation in cross section, so that this structure can be described as a wave propagating wavefront.

Die erste Oberflächenstruktur kann eine sinusförmige aber eine insbesondere zick-zack-förmige Profilierung besitzen. Im Kontext dieser Anmeldung wird auch von einer geriffelten Oberflächenstruktur gesprochen. Die Kombination aus einer geriffelten, insbesondere zick-zack-förmigen Profilierung mit den sinusförmig gewellten Umfangsbereichen der Rohre führt zu einer stark verbesserten Wärmeübertragungsleistung. Ohne die erste Oberflächenstruktur würde ein großer Teil der Strömung in einem größeren Abstand an den Rohren vorbeiströmen. Die erste Oberflächenstruktur sorgt hauptsächlich dafür, dass ein größerer Teil der Strömung näher an die Rohre herangeführt wird. Die zweite Oberflächenstruktur beschleunigt die Strömung radial zum Rohr und erhöht erheblich die Wärmeübertragungsfläche. Gleichzeitig wird durch die erste Oberflächenstruktur allerdings auch die Wärmeübertragung im größeren Abstand zu den Rohren verbessert. Insgesamt bewirkt die zweite Oberflächenstruktur im Vergleich zu einer in diesem Bereich glatten Rippe eine Vergrößerung der Wärmeübertragerfläche und verbessert damit die Wärmeübertragungsleistung.The first surface structure may have a sinusoidal but in particular a zigzag-shaped profiling. In the context of this application is also spoken of a corrugated surface structure. The combination of a corrugated, in particular zig-zag profiling with the sinusoidal corrugated circumferential portions of the tubes results in a greatly improved heat transfer performance. Without the first surface structure, a large part of the flow would flow past the pipes at a greater distance. The first surface structure mainly ensures that a larger part of the flow is brought closer to the tubes. The second surface structure accelerates the flow radially to the tube and significantly increases the heat transfer area. At the same time, however, the heat transfer at the greater distance from the tubes is also improved by the first surface structure. Overall, the second surface structure causes an increase in the heat transfer surface compared to a smooth in this area rib and thus improves the heat transfer performance.

Gute Ergebnisse haben sich ergeben, wenn die zweiten Oberflächenstrukturen jeweils genau eine ringförmig verlaufende Erhöhung und eine einzige ringförmig verlaufende Vertiefung besitzen. Die Erfindung schließt jedoch nicht aus, dass diese zweite Oberflächenstruktur jeweils mehrere ringförmig verlaufende Erhöhungen und Vertiefungen aufweist. Mit zunehmendem radialen Abstand kann die Höhe der Erhöhungen und Vertiefungen abnehmen.Good results have been obtained when the second surface structures each have exactly one annularly extending elevation and a single annular depression. However, the invention does not exclude that this second surface structure in each case has a plurality of annularly extending elevations and depressions. As the radial distance increases, the height of the ridges and valleys may decrease.

Bevorzugt ist die Wellenlänge der zweiten Oberflächenstruktur auf die Wellenlänge der geriffelten oder wellenartig ausgeprägten ersten Oberflächenstruktur abgestimmt und steht in einem ganzzahligen Verhältnis +/- 10%. Es ist von Vorteil, wenn die zweiten Oberflächenstrukturen einen radialen Außendurchmesser besitzen, welcher der doppelten Wellenlänge der geriffelten ersten Oberflächenstruktur +/- 10% entspricht.Preferably, the wavelength of the second surface structure is tuned to the wavelength of the corrugated or wave-like first surface structure and is in an integer ratio +/- 10%. It is advantageous if the second surface structures have a radial outer diameter which corresponds to twice the wavelength of the corrugated first surface structure +/- 10%.

Zudem ist es von Vorteil, wenn die Vertiefungen und Erhöhungen der zweiten Oberflächenstrukturen gleich sind. Bei einer sinusförmigen Wellung bedeutet dies, dass die Amplituden der Wellungen in beiden Richtungen gleich groß sind.In addition, it is advantageous if the recesses and elevations of the second surface structures are the same. For sinusoidal corrugation, this means that the amplitudes of the corrugations are the same in both directions.

Um die Übergänge zwischen den beiden Oberflächenstrukturen möglichst sanft zu gestalten, können die Mittelebenen der ersten Oberflächenstruktur und der zweiten Oberflächenstrukturen in axialem Abstand zueinander angeordnet sind. Das heißt, dass die zweite Mittelebene, aus welcher die Vertiefungen und Erhöhungen der zweiten Oberflächenstruktur ausgestellt sind, im axialen Abstand zu der ersten Mittelebene der ersten Oberflächenstruktur angeordnet ist. Die Mittelebene der ersten Oberflächenstruktur ist die Ebene, aus welcher heraus die Riffelungen oder wellenartige Ausprägungen beiderseits der Mittelebene ausgestellt sind.In order to make the transitions between the two surface structures as gentle as possible, the center planes of the first surface structure and the second surface structures can be arranged at an axial distance from one another. That is to say, the second center plane, from which the depressions and elevations of the second surface structure are exposed, is arranged at an axial distance from the first center plane of the first surface structure. The median plane of the first surface structure is the plane from which the corrugations or undulations on both sides of the medial plane are exposed.

Der Abstand der Mittelebenen entspricht hierbei vorzugsweise den Amplituden der Erhöhungen der zweiten Oberflächenstruktur +/- 10%. Zusätzlich können die Amplituden der ersten Oberflächenstruktur dem Abstand der Mittelebenen +/- 10% entsprechen. Mit anderen Worten sind die Amplituden der ersten Oberflächenstruktur bevorzugt genauso groß wie die Amplituden der zweiten Oberflächenstruktur. Bei dieser Konstellation ist die in Axialrichtung gemessene Höhe der Rippe so groß wie 3 Amplituden der jeweiligen Oberflächenstrukturen.The spacing of the center planes in this case preferably corresponds to the amplitudes of the elevations of the second surface structure +/- 10%. In addition, the amplitudes of the first surface structure may correspond to the spacing of the center planes +/- 10%. In other words, the amplitudes of the first surface structure are preferably the same size as the amplitudes of the second surface structure. In this constellation, the height of the rib measured in the axial direction is as large as 3 amplitudes of the respective surface structures.

Bevorzugt durchsetzen die Rohre die Rippen in einem Abstand, welcher der doppelten der Wellenlänge der ersten Oberflächenstruktur entspricht. Dieser Abstand wird in Anströmrichtung radial zu den Rohren gemessen, wobei die Axialrichtungen der Rohre mit den Wellentälern zusammenfallen. Das heißt in jedem zweiten Wellental befindet sich ein Rohr.Preferably, the tubes pass through the ribs at a distance which is twice the wavelength of the first surface structure. This distance is measured in the direction of flow radially to the tubes, wherein the axial directions of the tubes coincide with the troughs. That means in every second trough there is a pipe.

Vorteilhaft besitzen die Rohre einen Durchmesser, der einen Bereich von 80 bis 100% der Wellenlänge der ersten Oberflächenstruktur liegt. Daher besitzen die ringförmigen zweiten Oberflächenstrukturen einen Innendurchmesser von 80 bis 100% einer Wellenlänge und einen Außendurchmesser von vorzugsweise 190 - 210%, insbesondere 200% der Wellenlänge der ersten Oberflächenstruktur. Dadurch fällt die zweite Mittelebene mit den Wellentälern der ersten Oberflächenstruktur zusammen, so dass in denjenigen Bereichen, die in Strömungsrichtung vor- und hinter den Rohren liegen, keine Sprünge entstehen. Die Strömung kann vor einem Rohr durch das Wellental der Riffelung gewissermaßen barrierefrei in die sinusförmig gewellten ringförmigen Bereiche der zweiten Oberflächenstruktur eintreten, wo die Strömung nah an dem Rohr vorbeigeführt und beschleunigt wird.Advantageously, the tubes have a diameter which is within a range of 80 to 100% of the wavelength of the first surface structure. Therefore, the annular second surface structures have an inner diameter of 80 to 100% of a wavelength and an outer diameter of preferably 190 to 210%, in particular 200% of the wavelength of the first surface structure. As a result, the second center plane coincides with the wave troughs of the first surface structure, so that no cracks occur in those regions which lie upstream and downstream of the tubes in the flow direction. The flow may enter into the sinusoidal corrugated annular regions of the second surface structure in a manner accessible to a pipe through the corrugation trough of the corrugation, where the flow is passed and accelerated close to the pipe.

Jede Rippe besitzt zwei gegenüberliegende Seiten, die als Wärmetauscherflächen dienen, wobei die Seiten mit Ausnahmen der von den Rohren durchsetzen Öffnungen frei sind von weiteren Öffnungen. Hygienische Standards können leichter eingehalten werden, weil sich keine Verschmutzungen an etwaigen Öffnungen festsetzen können. Die Druckverluste sind dementsprechend gering. Das Rippendesign sieht nicht vor, Turbulenzen zu erzeugen, um den Wärmeübergang zu verbessern, sondern die Strömungsgeschwindigkeit zwischen den Rippen und insbesondere in der Nähe der Rohre zu erhöhen, ohne dass es zu wesentlichen Strömungsablösungen kommt.Each rib has two opposite sides which serve as heat exchange surfaces, with the sides, with the exception of the openings passing through the tubes, being free of further openings. Hygienic standards can be more easily adhered to because no soiling can stick to any openings. The pressure losses are accordingly low. The rib design does not provide turbulence to enhance heat transfer but to increase the flow velocity between the ribs, and particularly near the tubes, without substantial flow separation.

Die Rippen haben einen vorgegebenen Abstand zueinander, der durch Distanzelemente oder auch einen Kragen an den Rippen bestimmt ist. Der Kragen vergrößert die Kontaktfläche zwischen Rohr und Rippe und verbessert den Wärmeübergang. Zusätzlich kann über den Kragen auch eine gegenseitige Zentrierung benachbarter Rippen erfolgen. Hierzu kann sich radial außen an den unprofilierten Ring ein axial ausgestellter Zentrierabsatz anschließen. Der Kragen fasst in diesen Zentrierabsatz, so dass die Öffnungen in den Rippen fluchten. Der Kragen kann zusätzlich an einem Ende nach radial außen aufgeweitet sein. Dadurch wird ein Übergangsbereich geschaffen, der als Einführhilfe für ein Rohr dient. Die gegenseitige Zentrierung in Kombination mit einer Aufweitung am Kragen vereinfacht die Handhabung auch einer größeren Anzahl von Rippen während der Montage.The ribs have a predetermined distance from each other, which is determined by spacers or a collar on the ribs. The collar increases the contact area between tube and rib and improves the heat transfer. In addition, a mutual centering of adjacent ribs can take place via the collar. For this purpose, an axially flared centering can connect radially outside of the unprofiled ring. The collar holds in this centering shoulder, so that the openings in the ribs are aligned. The collar may additionally be widened radially outwardly at one end. This creates a transitional area that serves as an insertion aid for a pipe. The mutual centering in combination with an expansion on the collar simplifies the handling of a larger number of ribs during assembly.

Die Erfindung wird nachfolgend anhand des in den schematischen Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:

Figur 1
eine Draufsicht auf einen Teilbereich einer Rippe eines Wärmetauschers;
Figur 2
die Rippe der Figur 1 im Längsschnitt entlang der Linie II in Fig. 1;
Figur 3
eine perspektivische Ansicht einer Schnittdarstellung durch die Rippe der Figur 1;
Figur 4
eine weitere perspektivische Ansicht einer Rippe in Bauart der Rippe der Figur 1;
Figur 5
eine weitere perspektivische Ansicht eines Teilbereichs der Rippe der Figur 1, ähnlich Figur 3;
Figur 6
einen größeren Teilbereich einer Rippe gemäß der Ausführungsform der Figur 1 in einer perspektivischen Ansicht von oben;
Figur 7
die Rippe der Figur 6 in einer anderen Perspektive in der Ansicht von unten;
Figur 8
eine Variante der Rippe in perspektivischer Darstellung;
Figur 9
die Rippe der Figur 8 im Schnitt und
Figur 10
einen Teilbereich einer Variante einer Rippe im Schnitt.
The invention will be explained in more detail with reference to the embodiment shown in the schematic drawings. It shows:
FIG. 1
a plan view of a portion of a rib of a heat exchanger;
FIG. 2
the rib of the FIG. 1 in longitudinal section along the line II in Fig. 1 ;
FIG. 3
a perspective view of a sectional view through the rib of FIG. 1 ;
FIG. 4
another perspective view of a rib of the rib of the FIG. 1 ;
FIG. 5
a further perspective view of a portion of the rib of FIG. 1 , similar FIG. 3 ;
FIG. 6
a larger portion of a rib according to the embodiment of the FIG. 1 in a perspective view from above;
FIG. 7
the rib of the FIG. 6 in a different perspective in the view from below;
FIG. 8
a variant of the rib in perspective view;
FIG. 9
the rib of the FIG. 8 on average and
FIG. 10
a section of a variant of a rib in section.

Figur 1 zeigt eine Rippe 1 als Bestandteil eines Wärmetauschers. Der Wärmetauscher umfasst neben einer Vielzahl von parallel zueinander angeordneten Rippen 1 Rohre 2, welche Öffnungen 3 in den Rippen 1 durchsetzen. Die Rohre 2 sind in diesem Ausführungsbeispiel kreisrund, genau wie die Öffnungen 3. Die Rohre 2, von denen in Figur 2 nur eines exemplarisch dargestellt ist, erstrecken sich in einer Axialrichtung A. Die Rippe 1 ist profiliert, das heißt nicht eben, wie anhand der Schnittdarstellungen in den Figuren 2 und 3 zu erkennen ist. Der Pfeil P in den Figuren 1 und 2 zeigt die Strömungsrichtung an. Mehrere derartiger Rippen 1 sind in gestapelter Anordnung parallel zueinander platziert und stehen in Kontakt mit den Rohren 2, die von einem ersten Wärmetauschermedium durchströmt werden. Das zweite Strömungsmedium umströmt die Rohre 2 außenseitig. Bei dem Wärmetauscher handelt es bevorzugt um einen Kühler/Erhitzer, bei dem die Rohre 2 von einer Flüssigkeit bzw. einem Kältemittel durchströmt sind und bei welchem außen an den Rohren 2 Kühlluft vorbeigeführt wird. FIG. 1 shows a rib 1 as part of a heat exchanger. The heat exchanger comprises in addition to a plurality of mutually parallel ribs 1 tubes 2, which pass through openings 3 in the ribs 1. The tubes 2 are circular in this embodiment, just like the openings 3. The tubes 2, of which in FIG. 2 only one is shown by way of example, extend in an axial direction A. The rib 1 is profiled, that is not flat, as in the sectional views in the FIGS. 2 and 3 can be seen. The arrow P in the Figures 1 and 2 indicates the flow direction. Several such ribs 1 are in placed stacked arrangement parallel to each other and are in contact with the tubes 2, which are flowed through by a first heat exchange medium. The second flow medium flows around the tubes 2 on the outside. In the heat exchanger, it is preferably a cooler / heater, in which the tubes 2 are flowed through by a liquid or a refrigerant and in which outside of the tubes 2 cooling air is passed.

Die Rippe 1 lässt sich hinsichtlich ihrer Oberflächenstruktur in zwei Bereiche einteilen. Ein erster Bereich 5 besitzt eine erste, zick-zack-förmige Oberflächenstruktur 6. Die zick-zack-förmige Oberflächenstruktur 6 besitzt eine gerade Wellenfront, die sich in Richtung des Pfeils P ausbreitet. Die zick-zack-förmige Oberflächenstruktur 6 ist eine sich gleichmäßig wiederholende Profilierung und erstreckt sich über die gesamte Länge des Strömungsweges quer zur Strömungsrichtung. In diese zick-zack-förmige, erste Oberflächenstruktur 6 sind zweite Bereiche 7 mit einer anderen Oberflächenstruktur 8 eingebettet. Die zweiten Bereiche 7 sind kreisringförmig konfiguriert und umgeben die Öffnungen 3 für die Rohre 2. Die kreisringförmigen zweiten Bereiche 7 besitzen eine ringförmig umlaufende Erhöhung 10 und im radialen Abstand dazu eine ringförmig verlaufende Vertiefung 9 (Figur 3). Bei diesem Ausführungsbeispiel wird die in Figur 3 oben liegende Seite als Oberseite 4 bezeichnet. Die Begriffe Vertiefung 9 und Erhöhung 10 sind gleichbedeutend für wechselseitige Ausstellungen gegenüber einer Mittelebene. Bei der Betrachtung von der Oberseite her liegt die Erhöhung 10 der Öffnung 3 radial näher als die Vertiefung 9.The rib 1 can be divided into two areas with regard to their surface structure. A first region 5 has a first, zig-zag-shaped surface structure 6. The zigzag-shaped surface structure 6 has a straight wavefront which propagates in the direction of the arrow P. The zig-zag-shaped surface structure 6 is a uniformly repeating profiling and extends over the entire length of the flow path transversely to the flow direction. In this zig-zag-shaped, first surface structure 6, second regions 7 are embedded with another surface structure 8. The second regions 7 are configured annularly and surround the openings 3 for the tubes 2. The annular second regions 7 have an annular peripheral elevation 10 and at a radial distance therefrom an annular depression 9 (FIG. FIG. 3 ). In this embodiment, the in FIG. 3 top side referred to as the top 4. The terms indent 9 and elevation 10 are synonymous for reciprocal exhibitions in relation to a median plane. When viewed from the top, the elevation 10 of the opening 3 is radially closer than the recess 9.

In Figur 2 ist zu erkennen, dass der Abstand D zweier in Strömungsrichtung aufeinanderfolgenden Öffnungen 3 dem Doppelten der Wellenlänge L der zick-zack-förmig geriffelten ersten Oberflächenstruktur 6 entspricht. Die Rohre 2 bzw. die Öffnungen 3 befinden sich jeweils im Bereich eines Wellentals 11. Das heißt die mit dem eingezeichneten Axialrichtungen A identischen Längsachsen der Rohre 2 fallen mit den jeweiligen Wellentälern 11, das heißt dem jeweils tiefsten Punkten in der Oberseite 4 der zick-zack-förmigen Riffelungen der Rippe 1 zusammen. In Figur 1 ist ferner zu erkennen, dass die Öffnungen 3 in zwei aufeinanderfolgenden Wellentälern 11 quer zur Strömungsrichtung P zueinander versetzt angeordnet sind und zwar um die Teilung T/2.In FIG. 2 It can be seen that the distance D of two successive openings 3 in the flow direction corresponds to twice the wavelength L of the zig-zag-shaped corrugated first surface structure 6. The tubes 2 and the openings 3 are located in the region of a wave trough 11. That is, the longitudinal axes of the tubes 2 identical to the axial directions A coincide with the respective wave troughs 11, that is to say the respective deepest points in the top 4 of the 1 rib-shaped serrations. In FIG. 1 It can also be seen that the openings 3 are arranged offset in two successive troughs 11 to each other transversely to the flow direction P by the pitch T / 2.

Die Rohre 2 besitzen ein im Verhältnis zur Wellenlänge L fast gleich großen Durchmesser D1. Er ist nur geringfügig kleiner. Die Öffnungen 3 werden von einem schmalen, unprofilierten Ring 12 umgeben, der quer zur Axialrichtung A der Rohre 2 ausgerichtet ist. Über diesem Ring 12 stehen die Rohre 2 mit den Rippen 1 in Kontakt. In nicht näher dargestellter Weise kann der Ring 12 einem in Axialrichtung weisenden Kragen haben, der als Abstandshalter zwischen benachbarten Rippen 1 dienen kann und die Kontaktfläche mit dem Rohr 2 vergrößert. Hieran schließt sich die zweite Oberflächenstruktur mit den Vertiefungen 9 und Erhöhungen 10 an.The tubes 2 have a diameter D1 which is almost equal in relation to the wavelength L. He is only slightly smaller. The openings 3 are surrounded by a narrow, unprofiled ring 12, which is aligned transversely to the axial direction A of the tubes 2. About this ring 12 are the tubes 2 with the ribs 1 in contact. In a manner not shown, the ring 12 may have a collar pointing in the axial direction, which can serve as a spacer between adjacent ribs 1 and increases the contact area with the tube 2. This is followed by the second surface structure with the recesses 9 and elevations 10 connects.

Der Außendurchmesser D2 der kreisringförmigen zweiten Oberflächenstrukturen 8 entspricht dem zweifachen der Wellenlänge L, wie anhand der Figur 1 zu erkennen ist. Die Figuren 2 bis 7 zeigen, dass die zweite Oberflächenstruktur 8 sinuskurvenförmig bei gleichbleibender Amplitude gewellt ist. Der ringförmige zweite Bereich 7 entspricht in seiner radialen Ausdehnung exakt der Wellenlänge einer Sinusschwingung zuzüglich der radialen Erstreckung des Rings 12, so dass eine einzige ringförmig verlaufende Erhöhung 10 und eine genauso große ringförmig verlaufende Vertiefung 9 ausgebildet ist.The outer diameter D2 of the annular second surface structures 8 corresponds to twice the wavelength L, as shown in FIG FIG. 1 can be seen. The FIGS. 2 to 7 show that the second surface structure 8 is corrugated sinusoidally at a constant amplitude. The annular second region 7 corresponds in its radial extent exactly the wavelength of a sinusoid plus the radial extent of the ring 12, so that a single annular extension 10 and an equally large annular recess 9 is formed.

Die gleichmäßige Riffelung der ersten Oberflächenstruktur 6 ist wechselseitig um eine Mittelebene M1 ausgelenkt, die auch als Neutralebene bezeichnet werden kann. Die sinusförmige Profilierung der zweiten Oberflächenstruktur 8 ist wechselseitig um eine zweite Mittelebene M2 ausgelenkt, die ebenfalls als Neutralebene bezeichnet werden kann. Figur 2 zeigt, dass diese beiden Mittelebenen M1, M2 in einem axialen Abstand A1 zueinander angeordnet sind. Die Profilierung der ersten Oberflächenstruktur 6 ragt nicht über die zweite Mittelebene M2 hinaus. Umgekehrt ragen auch die Erhöhungen 10 der zweiten Oberflächenstruktur 8 nicht über die erste Mittelebene M1 hinaus. Die beiden Oberflächenstrukturen 6, 8 überlappen sich daher nur um die Höhe jeweils einer maximalen Amplitude. Die Rippe 1 besitzt in diesem Ausführungsbeispiel eine Ausdehnung in Axialrichtung der Rohre 2, die dem dreifachen der Amplituden der ersten bzw. zweiten Oberflächenstrukturen 6, 8 entspricht.The uniform corrugation of the first surface structure 6 is mutually deflected about a center plane M1, which can also be referred to as a neutral plane. The sinusoidal profiling of the second surface structure 8 is mutually deflected about a second center plane M2, which can also be referred to as a neutral plane. FIG. 2 shows that these two center planes M1, M2 are arranged at an axial distance A1 to each other. The profiling of the first surface structure 6 does not project beyond the second center plane M2. Conversely, the elevations 10 of the second surface structure 8 do not project beyond the first center plane M1. The two surface structures 6, 8 therefore overlap only by the height of a maximum amplitude. The rib 1 in this embodiment has an extension in the axial direction of the tubes 2, which corresponds to three times the amplitudes of the first and second surface structures 6, 8.

Die Beabstandungen der Mittelebenen M1, M2 führen dazu, dass die äußeren Randbereiche der zweiten Oberflächenstrukturen 8 jeweils in Strömungsrichtung gesehen vor und hinter den Rohren 2 mit einem Wellental 11 zusammenfallen. Das bedeutet, dass im Bereich jedes zweiten Wellentals 11 die in Axialrichtung gemessene Dicke der Rippen 1 auf die Blechdicke beschränkt ist. Die Strömung wird beim Anströmen eines Rohrs 2 durch eine abfallende Flanke der geriffelten ersten Oberflächenstruktur 6 ohne Hindernisse in die zweite Oberflächenstruktur 8 übergeleitet. Dort wird die Strömung entlang der ringförmigen Erhöhungen 10 und Vertiefungen 9 kontrolliert und nah an den Rohren 2 vorbeigeführt und schließlich bei Erreichen des diametral anderen Endes der zweiten Oberflächenstruktur 8 ohne Barriere wieder der ersten Oberflächenstruktur 6 zugeleitet.The spacings of the center planes M1, M2 lead to the outer edge regions of the second surface structures 8 each in the flow direction seen before and behind the tubes 2 coincide with a trough 11. This means that in the region of each second wave trough 11, the thickness of the ribs 1 measured in the axial direction is limited to the sheet thickness. The flow is transferred when flowing against a pipe 2 by a falling edge of the corrugated first surface structure 6 without obstacles in the second surface structure 8. There, the flow along the annular elevations 10 and depressions 9 is controlled and passed close to the tubes 2 and finally fed back to the first surface structure 6 when the diametrically opposite end of the second surface structure 8 is reached without a barrier.

In gleicher Weise treffen die Randbereiche der zweiten Oberflächenflächenstrukturen 8 auch mit den Wellentälern 11 quer zur Strömungsrichtung zusammen. Einzig und allein im Übergang zu den Wellenkämmen 13 sind randseitig der zweiten Oberflächenstrukturen 8 Übergangsflanken 14 ausgebildet, die aber größtenteils in Strömungsrichtung P weisen und dadurch nicht wesentlich zur Erhöhung des Strömungswiederstandes beitragen. Zudem sind die Übergangsflanken 14 eine Unterstützung der ringförmigen Erhöhungen 9 und Vertiefungen 10 mit dem Ziel, die Strömung nah an den Rohren 2 vorbeizuführen. Die dreieckigen Übergangsflanken 14 sind maximal so groß wie das Doppelte der Amplitude der zick-zack-förmigen Oberflächenstruktur 6.In the same way, the edge regions of the second surface surface structures 8 also coincide with the wave troughs 11 transversely to the flow direction. Only in the transition to the wave crests 13 are edge edges of the second surface structures 8 transition flanks 14 formed, but for the most part point in the flow direction P and thereby do not contribute significantly to increase the Strömungswiederstandes. In addition, the transition flanks 14 are a support of the annular ridges 9 and recesses 10 with the aim of passing the flow close to the tubes 2. The triangular transition flanks 14 are at most as large as twice the amplitude of the zigzag-shaped surface structure 6.

Die Figur 4 zeigt eine perspektivische Ansicht einer Rippe 1 in einer etwas größeren Ausdehnung. Die Strömungsrichtung ist durch den Pfeil P gekennzeichnet. Anhand der Höhenlinien ist deutlich die sinuskurvenförmige zweite Oberflächenstruktur 8 zu erkennen, die im Bereich der Wellentäler 11 in Strömungsrichtung P vor und hinter den jeweiligen Öffnungen 3 ohne Sprung oder Versatz in die zick-zack-förmige erste Oberflächenstruktur 6 übergeht. Darüber hinaus ist gut zu erkennen, dass die Übergangsflächen 14 zwischen der ersten Oberflächenstruktur 6 und der zweiten Oberflächenstruktur 8 vergleichsweise klein sind und sich insbesondere in Umfangsrichtung der kreisrunden zweiten Oberflächenstruktur 8 erstrecken und damit die Strömung so beeinflussen, dass sie in Richtung zu den Rohren gedrängt wird.The FIG. 4 shows a perspective view of a rib 1 in a slightly larger extension. The flow direction is indicated by the arrow P. On the basis of the contour lines, the sinusoidal second surface structure 8 can be clearly seen, which merges into the zigzag-shaped first surface structure 6 in the flow direction P in front of and behind the respective openings 3 in the region of the wave troughs 11 without jump or offset. Moreover, it can be clearly seen that the transition surfaces 14 between the first surface structure 6 and the second surface structure 8 are comparatively small and in particular extend in the circumferential direction of the circular second surface structure 8 and thus influence the flow so that it is forced towards the tubes becomes.

Figur 5 ist eine perspektivische Darstellung ähnlich der Figur 3. Der Pfeil P verdeutlicht wiederum die Strömungsrichtung. Aus dieser Perspektive werden die Profilunterschiede zwischen der Oberflächenstruktur 6 und der zweiten Oberflächenstruktur 8 noch deutlicher. Insbesondere ist zu erkennen, dass sich die sinusförmige Oberflächenstruktur 8 nicht nur in der in den Figuren 2 und 3 dargestellten Schnittebene befindet sondern auch in der Schnittebene quer zur Figur 3. Die zweiten Oberflächenstrukturen 8 sind rotationsymmetrisch mit einer kreisrunden Wellenfront. FIG. 5 is a perspective view similar to the FIG. 3 , The arrow P again illustrates the flow direction. From this perspective, the profile differences between the surface structure 6 and the second surface structure 8 become even clearer. In particular, it can be seen that the sinusoidal surface structure 8 not only in the in the FIGS. 2 and 3 Section shown is located but also in the sectional plane transverse to FIG. 3 , The second surface structures 8 are rotationally symmetric with a circular wavefront.

Die Figuren 6 und 7 zeigen nochmals perspektivische Darstellungen der Rippen 1, einmal in Blickrichtung auf die Oberseite 4 (Figur 6) und einmal in Blickrichtung auf die Unterseite 15 (Figur 7). Bei Blickrichtung auf die Unterseite 15 sind die Wellentäler 11 zum Betrachter hin ausgestellt. Auch hier ist deutlich zu erkennen, dass die zweiten Oberflächenstrukturen 8 im Bereich der Wellentäler 11 ohne Versatz in die erste Oberflächenstruktur 6 übergehen. Zur Orientierung sind bei den Figuren 6 und 7 kartesische Koordinatensysteme eingezeichnet. Wobei A die in Figur 2 dargestellte Axialrichtung der Rohre bedeutet, P die Anströmrichtung bedeutet und Q die Querrichtung, in welcher sich die Wellentäler 11 und Wellenberge 13 der ersten Oberflächenstruktur 6 erstrecken.The FIGS. 6 and 7 show again perspective views of the ribs 1, once in the direction of the top 4 ( FIG. 6 ) and once in the direction of the bottom 15 ( FIG. 7 ). When looking towards the bottom 15, the wave troughs 11 are exposed to the viewer. Here too, it can be clearly seen that the second surface structures 8 in the region of the wave troughs 11 merge into the first surface structure 6 without offset. For orientation are at the FIGS. 6 and 7 Cartesian coordinate systems. Whereby A in FIG. 2 means axial direction of the pipes, P means the direction of flow and Q the transverse direction in which the wave troughs 11 and peaks 13 of the first surface structure 6 extend.

Die Figuren 8 und 9 zeigen eine weitere Ausführungsform einer Rippe, wobei für im Wesentlichen gleiche Bestandteile, die zu den vorherigen Figuren eingeführten Bezugszeichen verwendet werden. Die Rippe 1 unterscheidet sich von derjenigen der Figuren 1 bis 7 dadurch, dass die ersten Bereiche 5 keine Oberflächenstruktur im Sinne einer Profilierung oder Ausstellung besitzen. Die ersten Bereiche 5 sind eben. Die zweiten Bereiche 7 sind in gleicher Weise mit der zweiten Oberflächenstruktur 8 versehen, wie sie bei den vorstehend beschriebenen Figuren 1 bis 7 zu erkennen ist.The FIGS. 8 and 9 show a further embodiment of a rib, wherein for substantially the same components, the reference numbers introduced to the previous figures are used. The rib 1 differs from that of the FIGS. 1 to 7 in that the first regions 5 have no surface structure in the sense of a profiling or exhibition. The first areas 5 are flat. The second regions 7 are provided in the same way with the second surface structure 8, as in the above-described FIGS. 1 to 7 can be seen.

Die Schnittdarstellung der Figur 9 zeigt die Vertiefungen 9 und Erhöhungen 10 der zweiten Oberflächenstruktur 8. In Bezug auf die Beschaffenheit der Oberflächenstruktur 8 wird auf die Erläuterung der Figuren 1 bis 7 Bezug genommen.The sectional view of the FIG. 9 shows the recesses 9 and elevations 10 of the second surface structure 8. With regard to the nature of the surface structure 8, reference is made to the explanation of FIGS. 1 to 7 Referenced.

Figur 10 zeigt einen Teilbereich einer Rippe 1 im Schnitt, wobei diese Rippe 1 einen in Axialrichtung weisenden Kragen 16 besitzt. Der Kragen 16 ist an dem unprofilierten Ring 12 ausgebildet, der die Öffnung 3 in der Rippe 1 umgibt. Radial außen schließt sich an den Ring 12 ein Zentrierabsatz 17 an. Er ist umlaufend ausgebildet und in der Bildebene nach unten ausgestellt. Er weist von dem Kragen 16 weg. Auf den Zentrierabsatz 17 folgt die zweite Oberflächenstruktur 8 mit einer ringförmig verlaufenden Erhöhung 10 und mit einer Vertiefung 9. Die erste Oberflächenstruktur 6 ist zick-zack-förmig, wie bei den vorangegangenen Ausführungsbeispielen. FIG. 10 shows a portion of a rib 1 in section, said rib 1 has an axially facing collar 16. The collar 16 is on the unprofiled ring 12 is formed, which surrounds the opening 3 in the rib 1. Radially on the outside, a centering shoulder 17 connects to the ring 12. He is trained circumferentially and issued in the picture plane down. He points away from the collar 16. The centering shoulder 17 is followed by the second surface structure 8 with a ring-shaped elevation 10 and with a recess 9. The first surface structure 6 is zig-zag-shaped, as in the preceding exemplary embodiments.

Der Kragen 16 besitzt an seinem freien Ende eine trichterförmige Aufweitung 18. Der Außendurchmesser der Aufweitung 18 ist an den Außendurchmesser des Ringes 12 angepasst, so dass die Aufweitung 18 bei gestapelter Anordnung der Rippen 1 innerhalb des Zentrierabsatzes 17 angeordnet ist. Der Zentrierabsatz 17 dient als Stapelhilfe für baugleiche Rippen 1.The collar 16 has at its free end a funnel-shaped widening 18. The outer diameter of the widening 18 is adapted to the outer diameter of the ring 12, so that the widening 18 is arranged in a stacked arrangement of the ribs 1 within the centering shoulder 17. The centering 17 serves as a stacking aid for identical ribs. 1

Bezugszeichen:Reference numerals:

11
- Rippe- rib
22
- Rohr- Pipe
33
- Öffnung- opening
44
- Oberseite- top
55
- erster Bereich- first area
66
- erste Oberflächenstruktur- first surface structure
77
- zweiter Bereich- second area
88th
- zweite Oberflächenstruktur- second surface structure
99
- Vertiefung- Deepening
1010
- Erhöhung- increase
1111
- Wellental- Wellental
1212
- Ring- Ring
1313
- Wellenkamm- wave crest
1414
- Übergangsflanke- transition edge
1515
- Unterseite- Bottom
1616
- Kragen- collar
1717
- Zentrierabsatz- Centering paragraph
1818
- Aufweitung an 16- widening to 16
AA
- Axialrichtung- axial direction
A1A1
- Abstand zwischen M1 und M2- Distance between M1 and M2
DD
- Abstand der Rohre in Strömungsrichtung- Distance of the tubes in the flow direction
D1D1
- Durchmesser von 3- Diameter of 3
D2D2
- Außendurchmesser von 8- outside diameter of 8
M1M1
- Mittelebene von 6- midplane of 6
M2M2
- Mittelebene von 8- midplane of 8
LL
- Wellenlänge- Wavelength
PP
- Strömungsrichtung- Flow direction
QQ
- Querrichtung- Transverse direction
TT
- Teilung- division

Claims (18)

Wärmtauscher umfassend Rohre (2), 1.1.die sich in eine Axialrichtung (A) erstrecken und dafür vorgesehen sind, quer zur Axialrichtung (A) von außen angeströmt zu werden, 1.2. und mit den Rohren (2) außenseitig in Kontakt stehende Rippen (1) die sich quer zur Axialrichtung (A) der Rohre (2) erstrecken, 1.3. wobei die Rippen (1) Öffnungen (3) zur Aufnahme der Rohre (2) besitzen, 1.4.wobei die Öffnungen (3) von einem unprofilierten Ring (12) der Rippen (1) umgeben sind, der quer zur Axialrichtung (A) der Rohre (2) ausgerichtet ist, 1.5.wobei die Rippen (1) erste Bereiche (5) und hinsichtlich ihrer Oberflächenstruktur (6, 8) abweichende zweite Bereiche (7) besitzen, wobei die Oberflächenstrukturen (8) der zweiten Bereiche (7) nicht eben sind, 1.6.wobei die zweiten Oberflächenstrukturen (8) wenigstens eine ringförmig verlaufende Vertiefung (9) aufweisen, welche die Öffnungen (3) zur Aufnahme der Rohre (2) umgeben,
dadurch gekennzeichnet, dass
1.7.die zweiten Oberflächenstrukturen (8) im radialen Abstand zur ringförmig verlaufenden Vertiefung (9) wenigstens eine ringförmig verlaufende Erhöhung (10) aufweisen.
Heat exchanger comprising tubes (2), 1.1.j extending in an axial direction (A) and intended to be flowed from the outside transversely to the axial direction (A), 1.2. and ribs (1) which are in contact on the outside with the tubes (1) and extend transversely to the axial direction (A) of the tubes (2), 1.3. the ribs (1) having openings (3) for receiving the tubes (2), 1.4.A wherein the openings (3) are surrounded by an unprofiled ring (12) of the ribs (1), which is oriented transversely to the axial direction (A) of the tubes (2), 1.5.wobei the ribs (1) first portions (5) and with respect to their surface structure (6, 8) deviating second regions (7) have, wherein the surface structures (8) of the second regions (7) are not flat, 1.6.Wobei the second surface structures (8) have at least one annular recess (9) which surround the openings (3) for receiving the tubes (2),
characterized in that
1.7.die second surface structures (8) at a radial distance from the annular recess (9) have at least one annularly extending elevation (10).
Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die zweiten Oberflächenstrukturen (8) in ihrer radialen Ausbreitung jeweils sinusförmig gewellt sind.Heat exchanger according to claim 1, characterized in that the second surface structures (8) are respectively sinusoidally corrugated in their radial propagation. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweiten Oberflächenstrukturen (8) jeweils genau eine einzige ringförmig verlaufende Erhöhung (10) und eine einzige ringförmig verlaufende Vertiefung (9) besitzen.Heat exchanger according to claim 1 or 2, characterized in that the second surface structures (8) each have exactly one single annular extension (10) and a single annular recess (9). Wärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Rippen (1) in den ersten Bereichen (5) eben sind.Heat exchanger according to one of claims 1 to 3, characterized in that the ribs (1) in the first regions (5) are flat. Wärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Rippen (1) in den ersten Bereichen (5) eine erste, nicht ebene Oberflächenstruktur (6) besitzen.Heat exchanger according to one of claims 1 to 3, characterized in that the ribs (1) in the first regions (5) have a first, non-planar surface structure (6). Wärmetauscher nach Anspruch 5, dadurch gekennzeichnet, dass die erste Oberflächenstruktur (6) eine sich in Anströmrichtung der Rohre (2) gleichförmig wiederholende Profilierung ist.Heat exchanger according to claim 5, characterized in that the first surface structure (6) is in the direction of flow of the tubes (2) uniformly repeating profiling. Wärmetauscher nach Anspruch 6, dadurch gekennzeichnet, dass die erste Oberflächenstruktur (6) eine Profilierung in Form einer Riffelung oder wellenartigen Ausprägung ist.Heat exchanger according to claim 6, characterized in that the first surface structure (6) is a profiling in the form of a corrugation or wave-like expression. Wärmetauscher nach Anspruch 7, dadurch gekennzeichnet, dass die zweiten Oberflächenstrukturen (8) einen radialen Außendurchmesser (D2) besitzen, welcher der doppelten Wellenlänge (L) der geriffelten ersten Oberflächenstruktur (6) entspricht.Heat exchanger according to claim 7, characterized in that the second surface structures (8) have a radial outer diameter (D2) which corresponds to twice the wavelength (L) of the corrugated first surface structure (6). Wärmetauscher nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Vertiefungen (9) und Erhöhungen (10) der zweiten Oberflächenstrukturen (8) gleich groß sind.Heat exchanger according to one of claims 1 to 8, characterized in that the recesses (9) and elevations (10) of the second surface structures (8) are the same size. Wärmtauscher nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass eine erste Mittelebene (M1), aus welcher die Vertiefungen und Erhöhungen (10) ausgestellt sind, in axialem Abstand (A1) zu einer zweiten Mittelebene (M2) der zweiten Oberflächenstruktur (8) angeordnet ist.Heat exchanger according to one of claims 5 to 9, characterized in that a first center plane (M1), from which the depressions and elevations (10) are issued, at an axial distance (A1) to a second center plane (M2) of the second surface structure (8 ) is arranged. Wärmetauscher nach Anspruch 10, dadurch gekennzeichnet, dass die Amplituden der Erhöhungen (10) der zweiten Oberflächenstruktur (8) dem Abstand (A1) der Mittelebenen (M1, M2) +/-10 % entspricht.Heat exchanger according to claim 10, characterized in that the amplitudes of the elevations (10) of the second surface structure (8) corresponds to the distance (A1) of the center planes (M1, M2) +/- 10%. Wärmetauscher nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Amplituden der geriffelten ersten Oberflächenstruktur (6) dem Abstand (A1) der Mittelebenen (M1, M2) +/- 10% entspricht.Heat exchanger according to claim 10 or 11, characterized in that the amplitudes of the corrugated first surface structure (6) corresponds to the distance (A1) of the center planes (M1, M2) +/- 10%. Wärmetauscher nach einem der Ansprüche 5 bis 12, dadurch gekennzeichnet, dass die erste Oberflächenstruktur (6) zickzackförmig ist.Heat exchanger according to one of claims 5 to 12, characterized in that the first surface structure (6) is zigzag. Wärmetauscher nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, dass die Rohre (2) die Rippen (1) in einem der doppelten Wellenlänge (L) der ersten Oberflächenstruktur (6) entsprechenden Abstand (A1) durchsetzen, so dass die Axialrichtungen (A) der Rohre (2) mit den Wellenkämmen (13) zusammenfallen.Heat exchanger according to one of claims 5 to 13, characterized in that the tubes (2) pass through the ribs (1) in a distance (A1) corresponding to twice the wavelength (L) of the first surface structure (6), so that the axial directions (A ) of the tubes (2) coincide with the wave crests (13). Wärmetauscher nach einem der Ansprüche 5 bis 14, dadurch gekennzeichnet, dass die Rohre (2) einen Durchmesser (D1) besitzen, der in einem Bereich von 80% bis 100% der Wellenlänge (L) der ersten Oberflächenstruktur (6) liegt.Heat exchanger according to one of claims 5 to 14, characterized in that the tubes (2) have a diameter (D1) which is in a range of 80% to 100% of the wavelength (L) of the first surface structure (6). Wärmetauscher nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass jede Rippe (1) zwei gegenüberliegende Seiten (4, 15) besitzt, die als Wärmetauscherflächen dienen, wobei die Seiten (4, 15) mit Ausnahme der von den Rohren (2) durchsetzten Öffnungen (3) frei sind von weiteren Öffnungen.Heat exchanger according to one of claims 1 to 15, characterized in that each rib (1) has two opposite sides (4, 15) serving as heat exchanger surfaces, the sides (4, 15), except for the tubes (2). permeated openings (3) are free of further openings. Wärmtauscher nach einem der Ansprüche 5 bis 16, dadurch gekennzeichnet, dass Rohre (2), die in einem gemeinsamen Wellental (11) der ersten Oberflächenstruktur (6) angeordnet sind, in einem Teilungsabstand (T) zueinander angeordnet sind, wobei die Rohre (2) einem nachfolgenden Wellental (11) um den halben Teilungsabstand (T) zu den Rohren (2) im ersten Wellental (11) versetzt angeordnet sind.Heat exchanger according to one of claims 5 to 16, characterized in that tubes (2) which are arranged in a common trough (11) of the first surface structure (6) are arranged at a pitch (T) to each other, wherein the tubes (2 ) a successive wave trough (11) by half the pitch (T) to the tubes (2) in the first wave trough (11) are arranged offset. Wärmetauscher nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass sich radial außen an den unprofilierten Ring (12) ein axial ausgestellter Zentrierabsatz (17) anschließt.Heat exchanger according to one of claims 1 to 17, characterized in that radially outwardly of the unprofiled ring (12) followed by an axially issued centering shoulder (17).
EP15173792.1A 2014-06-25 2015-06-25 Heat exchanger Active EP2975350B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15173792T PL2975350T3 (en) 2014-06-25 2015-06-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014108890.5A DE102014108890A1 (en) 2014-06-25 2014-06-25 heat exchangers

Publications (2)

Publication Number Publication Date
EP2975350A1 true EP2975350A1 (en) 2016-01-20
EP2975350B1 EP2975350B1 (en) 2019-04-03

Family

ID=53510627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15173792.1A Active EP2975350B1 (en) 2014-06-25 2015-06-25 Heat exchanger

Country Status (4)

Country Link
EP (1) EP2975350B1 (en)
DE (1) DE102014108890A1 (en)
PL (1) PL2975350T3 (en)
TR (1) TR201908760T4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053319A1 (en) * 2021-09-30 2023-04-06 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207270A (en) 1990-10-22 1993-05-04 Matsushita Electric Industrial Co., Ltd. Fin-tube heat exchanger
US5927393A (en) 1997-12-11 1999-07-27 Heatcraft Inc. Heat exchanger fin with enhanced corrugations
US6889759B2 (en) 2003-06-25 2005-05-10 Evapco, Inc. Fin for heat exchanger coil assembly
WO2013076990A1 (en) * 2011-11-25 2013-05-30 パナソニック株式会社 Heat transfer fin, fin-tube heat exchanger, and heat pump device
WO2013161240A1 (en) * 2012-04-23 2013-10-31 パナソニック株式会社 Finned tube heat exchanger
WO2014167827A1 (en) * 2013-04-09 2014-10-16 パナソニック株式会社 Heat transfer fin, heat exchanger, and refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207270A (en) 1990-10-22 1993-05-04 Matsushita Electric Industrial Co., Ltd. Fin-tube heat exchanger
US5927393A (en) 1997-12-11 1999-07-27 Heatcraft Inc. Heat exchanger fin with enhanced corrugations
US6889759B2 (en) 2003-06-25 2005-05-10 Evapco, Inc. Fin for heat exchanger coil assembly
WO2013076990A1 (en) * 2011-11-25 2013-05-30 パナソニック株式会社 Heat transfer fin, fin-tube heat exchanger, and heat pump device
WO2013161240A1 (en) * 2012-04-23 2013-10-31 パナソニック株式会社 Finned tube heat exchanger
WO2014167827A1 (en) * 2013-04-09 2014-10-16 パナソニック株式会社 Heat transfer fin, heat exchanger, and refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053319A1 (en) * 2021-09-30 2023-04-06 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
DE102014108890A1 (en) 2015-12-31
TR201908760T4 (en) 2019-07-22
PL2975350T3 (en) 2019-10-31
EP2975350B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
EP0697090B1 (en) Finned tube heat exchanger
DE4111451C2 (en)
DE202005009948U1 (en) Heat exchange element and thus produced heat exchanger
DE2343007B2 (en) PLATE HEAT EXCHANGER
DE1601216B2 (en) TIN PANEL FOR PLATE HEAT EXCHANGER WITH A STACK OF SUCH TIN PANELS
DE10220532A1 (en) Heat-exchange radiator has protruberances on sheets from hollow plate plane facing inwards
DE112014001374T5 (en) Heat transfer surface with protruding tongues
EP0201665B1 (en) Heat transfer element comprising parallel tubes with fins
DE1957742U (en) FIBERED HEAT EXCHANGER.
EP3523590A1 (en) Heat exchanger
EP2975350B1 (en) Heat exchanger
DE2712818B2 (en) Tubular body
EP2149770B1 (en) Use of a pipe heater and method for transferring heat between at least two food flows
EP3130876B1 (en) Heat exchanger
EP3491323B1 (en) Heat exchanger having a micro-channel structure or wing tube structure
DE102014107408B4 (en) heat exchanger
EP3583360B1 (en) Trickle structures
DE4217923C2 (en) Device for distancing heat exchanger tubes
DE3339932A1 (en) Gap-type heat exchanger having webs
DE2200826B2 (en) Circular heat exchanger - for use with radial fan esp as oil cooler using corrugated spacers
WO2017202696A1 (en) Honeycomb body for exhaust gas aftertreatment
EP3800418B1 (en) Heat exchanger, refrigerating or heating system with such a heat exchanger
EP3850293B1 (en) Heat exchanger having surface elements having convex recesses and integrated material thickenings
EP3669133B1 (en) Heat exchanger
EP1540662A2 (en) Spacer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160711

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 1/32 20060101AFI20180925BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KELVION MACHINE COOLING SYSTEMS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1116258

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008522

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 31366

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008522

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190703

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190625

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150625

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1116258

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230621

Year of fee payment: 9

Ref country code: DE

Payment date: 20230628

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230619

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230619

Year of fee payment: 9

Ref country code: SK

Payment date: 20230620

Year of fee payment: 9

Ref country code: SE

Payment date: 20230620

Year of fee payment: 9

Ref country code: PL

Payment date: 20230619

Year of fee payment: 9

Ref country code: FI

Payment date: 20230621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230619

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 9