EP2959028B2 - Verwendung einer aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge - Google Patents

Verwendung einer aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge Download PDF

Info

Publication number
EP2959028B2
EP2959028B2 EP14705528.9A EP14705528A EP2959028B2 EP 2959028 B2 EP2959028 B2 EP 2959028B2 EP 14705528 A EP14705528 A EP 14705528A EP 2959028 B2 EP2959028 B2 EP 2959028B2
Authority
EP
European Patent Office
Prior art keywords
aluminium alloy
weight
content
use according
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14705528.9A
Other languages
English (en)
French (fr)
Other versions
EP2959028B1 (de
EP2959028A1 (de
Inventor
Olaf Engler
Henk-Jan Brinkman
Thomas Hentschel
Réginald Dupuis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47739152&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2959028(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP14705528.9A priority Critical patent/EP2959028B2/de
Publication of EP2959028A1 publication Critical patent/EP2959028A1/de
Publication of EP2959028B1 publication Critical patent/EP2959028B1/de
Application granted granted Critical
Publication of EP2959028B2 publication Critical patent/EP2959028B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the invention relates to a use of an aluminum alloy for painted components for motor vehicles. Furthermore, the invention relates to a use of a sheet, made of an aluminum alloy strip, as a painted component in the motor vehicle.
  • Semi-finished products and components for motor vehicles must meet different requirements depending on their place of use and purpose in the motor vehicle, in particular with regard to their mechanical properties and their corrosion properties.
  • the mechanical properties are determined, for example, predominantly by the rigidity, which depends in particular on the shape of these parts.
  • the strength has a minor influence, but the materials used must not be too soft either.
  • good formability is very important since the components and semi-finished products generally undergo complex forming processes, for example, in the manufacture of interior door parts.
  • this relates to components manufactured in a one-piece sheet metal shell construction, such as e.g. a metal inner door with integrated window frame area.
  • Such components have cost advantages over a mounted profile solution for the window frame by the saving of joining operations.
  • corrosion resistance also plays a major role in motor vehicles, since automotive components such as door interior parts are exposed to spray water, condensation or condensation. It is therefore desirable that the motor vehicle components have good resistance to various corrosion attacks, in particular to intergranular corrosion and to filiform corrosion.
  • Filiform corrosion refers to a type of corrosion that occurs in coated components and shows a thread-like course. Filiform corrosion occurs at high humidity in the presence of chloride ions.
  • Curable AA 6xxx alloys have high strength and good resistance to intergranular corrosion and filiform corrosion, but are significantly less malleable than AA 8006 and therefore not very well suited for the manufacture of complex components such as door inner parts.
  • the production of semi-finished products and components from a AA 6xxx alloy is quite complex and expensive, since it requires a continuous annealing as a special process step.
  • AA 5xxx alloys with high magnesium content combine high strengths with a very good formability.
  • the formability does not match that of steel solutions, which leads to limitations in the design of the components.
  • these alloys tend to intercrystalline corrosion.
  • steel materials are very easy to form, they have a weight disadvantage and are also susceptible to corrosion for the same rigidity.
  • the present invention has the object to provide a use of an aluminum alloy is available, which is high formability, medium strength and corrosion resistant.
  • the alloy constituents of the aluminum alloy have the following percentages by weight: Fe ⁇ 0.80%, Si ⁇ 0.50%, 0.90% ⁇ Mn ⁇ 1.50%, mg ⁇ 0.25%, Cu ⁇ 0.125%, Cr ⁇ 0.05%, Ti ⁇ 0.05%, V ⁇ 0.05%, Zr ⁇ 0.05%, Balance aluminum, unavoidable accompanying elements individually ⁇ 0.05%, in total ⁇ 0.15%, and the combined proportion of Mg and Cu satisfies the following relation in% by weight: 0.15% ⁇ Mg + Cu ⁇ 0.25%.
  • the aluminum alloy is based on the alloy type AA 3xxx, in particular AA 3103 (AlMn1). Although such alloys have a very good formability, but are usually too soft for many applications such as components of motor vehicles.
  • AlMn1 alloy type AA 3xxx
  • Mg and Cu alloying elements
  • the strength of the aluminum alloy can be increased, but this also leads to a significant reduction in ductility and thus in turn to a poorer formability.
  • the combined amount of copper and magnesium in the aluminum alloy must be precisely controlled in order to achieve the desired mechanical properties, namely a yield strength Rp 0.2 of at least 45 MPa with an equi-elongation Ag of at least 23%. and an elongation at break A 80mm of at least 30%, with good corrosion resistance. It has been found in tests that with a combined proportion of Mg and Cu between 0.15 and 0.25 wt.%, A combination of strength and formability of the aluminum alloy which is advantageous for the aforementioned applications is achieved.
  • the combined proportion of magnesium and copper must be at least 0.15% by weight, preferably at least 0.16% by weight, in particular at least 0.17% by weight, so that the aluminum alloy has sufficient strength, in particular with a Yield point R p0,2 of at least 45 MPa, reached.
  • the combined amount of Mg and Cu must be limited to at most 0.25% by weight, preferably at most 0.23% by weight, in particular at most 0.20% by weight, since otherwise equal expansion Ag and breaking elongation A will be 80 mm fall very much, namely in particular under 23% for Ag and under 30% for A 80mm .
  • the combined proportion of magnesium and copper is generally understood as the sum of the two individual fractions for Mg and Cu in% by weight.
  • the aluminum alloy has a Cu content of not more than 0.125% by weight, preferably not more than 0.10% by weight, in particular not more than 0.05% by weight, and a magnesium content of not more than 0, 25 wt .-%, preferably at most 0.2 wt .-%, on.
  • the aluminum alloy preferably has an Mg content of at least 0.06% by weight, more preferably of at least 0.10% by weight, in particular of at least 0.15% by weight.
  • the aluminum alloy preferably has an Mg content in the range of 0.08% to 0.25% by weight.
  • the aluminum alloy described above has proved to be highly deformable and medium strength in tests. As a result, the aluminum alloy can be used particularly well for semi-finished products and components of motor vehicles, the production of which involves complex forming processes. Accordingly, the use of the aforementioned aluminum alloy for producing a semifinished product or component of motor vehicles is disclosed. With the aluminum alloy, it is possible in some cases, in particular, even to achieve such good formability that semifinished products and components made from the alloy can be converted to forming tools for steel components.
  • the aluminum alloy has a good corrosion resistance.
  • the aluminum alloy in laboratory tests showed a significantly better resistance to filiform corrosion than, for example, AA 8006 alloys.
  • the Mn content of the alloy of 0.9 to 1.5% by weight, preferably 1.0 to 1.4% by weight, especially 1.0 to 1.2% by weight, results in combination with the Fe and Si components in the specified amounts, in particular to relatively uniformly distributed, compact particles of the quaternary ⁇ -Al (Fe, Mn) Si phase, which increase the strength of the aluminum alloy, without other properties such as formability or corrosion behavior to influence negatively.
  • the elements titanium, chromium, vanadium and in particular zirconium can hinder the recrystallization during the final annealing and thus impair the formability of the aluminum alloy.
  • the aluminum alloy therefore has Ti, Cr, V and Zr contents of in each case not more than 0.05% by weight and preferably in particular a Zr content of not more than 0.02% by weight ,
  • the proportions of all other unavoidable accompanying elements are individually less than 0.05 wt .-% and together less than 0.15 wt .-%, so that they do not cause undesirable phase formation and / or negative effects on the material properties.
  • the Mg content of the aluminum alloy is greater than the Cu content of the aluminum alloy.
  • the corrosion behavior of the aluminum alloy in particular with respect to the Filiform corrosion, can be further improved.
  • tests on filiform corrosion on sheet metal samples of various aluminum alloys have shown that aluminum workpieces according to this first embodiment can be used to produce aluminum workpieces, in particular semi-finished products or components for motor vehicles, which show little or only slight filiform corrosion in the tests.
  • the formability of the aluminum alloy is further improved in one embodiment in that the aluminum alloy has a Cr content ⁇ 0.02% by weight, preferably ⁇ 0.01% by weight, and / or a V content ⁇ 0.02% by weight .-%, preferably ⁇ 0.01 wt .-%, and / or has a Zr content ⁇ 0.01 wt .-%.
  • Titanium may be added in the continuous casting of the aluminum alloy as a grain refining agent, for example, in the form of Ti-boride wire or rods. Therefore, in a further embodiment, the aluminum alloy has a Ti content of at least 0.01% by weight, preferably of at least 0.015% by weight, in particular of at least 0.02% by weight.
  • the material properties of the aluminum alloy can be improved in a further embodiment in that the aluminum alloy has an Fe content of ⁇ 0.7% by weight, preferably ⁇ 0.6% by weight, in particular ⁇ 0.5 wt .-%, having.
  • the susceptibility of the aluminum alloy to filiform corrosion is prevented from increasing.
  • the aluminum alloy preferably has an Si content of ⁇ 0.4% by weight, preferably ⁇ 0.3% by weight, in particular ⁇ 0.25% by weight. By further restricting the Si content, it can be prevented that the formability is reduced too much.
  • the aluminum alloy further preferably has an Fe content of at least 0.10 wt .-%, preferably of at least 0.25 wt .-%, in particular of at least 0.40 wt .-%, and / or an Si content of at least 0.06% by weight, preferably at least 0.10% by weight, in particular at least 0.15% by weight.
  • the alloy constituents of the aluminum alloy have the following percentages by weight: 0.40% ⁇ Fe ⁇ 0.70%, 0.10% ⁇ Si ⁇ 0.25%, 1.00% ⁇ Mn ⁇ 1.20%, mg ⁇ 0.25%, Cu ⁇ 0.10%, Cr ⁇ 0.02%, Ti ⁇ 0.05%, V ⁇ 0.05%, Zr ⁇ 0.05%, Balance aluminum, unavoidable accompanying elements individually ⁇ 0.05%, in total ⁇ 0.15%, whereby the combined proportion of Mg and Cu fulfills the following relation in weight%: 0.15% ⁇ Mg + Cu ⁇ 0.25%.
  • the formability of this alloy can be improved by the alloy having a V content of ⁇ 0.02% by weight and / or a Zr content of ⁇ 0.01% by weight. Furthermore, the grain refining can be improved by a Ti content of at least 0.01 wt .-%.
  • the alloy constituents of the aluminum alloy have the following percentages by weight: 0.40% ⁇ Fe ⁇ 0.70%, 0.10% ⁇ Si ⁇ 0.25%, 1.00% ⁇ Mn ⁇ 1.20%, mg ⁇ 0.20%, Cu ⁇ 0.05%, Cr ⁇ 0.02%, Ti ⁇ 0.05%, V ⁇ 0.05%, Zr ⁇ 0.05%, Balance aluminum, unavoidable accompanying elements individually ⁇ 0.05%, in total ⁇ 0.15%, whereby the combined proportion of Mg and Cu fulfills the following relation in weight%: 0.15% ⁇ Mg + Cu ⁇ 0.20%.
  • the formability of this alloy can be improved by the alloy having a V content of ⁇ 0.02% by weight and / or a Zr content of ⁇ 0.01% by weight. Furthermore, the grain refining can be improved by a Ti content of at least 0.01 wt .-%.
  • this method can produce an aluminum alloy strip which is highly deformable, medium strength and corrosion resistant, especially against intergranular corrosion and filiform corrosion. Furthermore, this process allows for economical production of the aluminum alloy strip, since the process involves standard process steps (i.e., continuous casting, homogenizing, hot rolling, cold rolling, soft annealing) and does not necessarily require special, expensive process steps such as strip continuous annealing.
  • the casting of the rolling ingot is preferably carried out in DC continuous casting.
  • a tape casting method may also be used, for example.
  • the hot rolling of the rolling ingot takes place at a temperature between 280 ° C and 500 ° C, preferably between 300 ° C and 400 ° C, in particular between 320 ° C and 380 ° C.
  • the ingot is preferably rolled down to a thickness between 3 and 12 mm. In this way it is ensured that in the subsequent cold rolling a sufficiently high degree of rolling, preferably of at least 70%, in particular of at least 80%, is achieved, by which the strength, the formability and the elongation values of the aluminum alloy strip are determined.
  • the cold rolling of the aluminum alloy strip can be done in one or more passes.
  • the aluminum alloy strip is preferably rolled to a final thickness in the range from 0.2 to 5 mm, preferably from 0.25 to 4 mm, in particular from 0.5 to 3.6 mm. In these thickness ranges, the desired material properties of the aluminum alloy strip can be achieved particularly well.
  • the final annealing of the aluminum strip allows a fine-grained, thoroughly crystallized microstructure with good strength and formability to be achieved.
  • the final annealing is therefore a recrystallizing soft annealing.
  • the final annealing can be carried out in particular in a chamber furnace at 300 ° C to 400 ° C, preferably at 320 ° C to 360 ° C or in a continuous furnace at 450 ° C to 550 ° C, preferably at 470 ° C to 530 ° C.
  • the Chamber furnace is in operation and purchase less expensive than the continuous furnace.
  • the duration of final annealing in the chamber furnace is typically 1 hour or more.
  • the corrosion properties of the produced aluminum alloy strip or an end product made of this aluminum alloy strip can be improved.
  • the milling of the upper and / or lower side of the roll ingot can be carried out, for example, after casting and before homogenizing the rolling ingot.
  • milling of the top and / or bottom of the rolling billet may be performed between the first homogenizing and the second homogenizing, more preferably after cooling the rolling bar to room temperature.
  • the degree of rolling during cold rolling is at least 70%, preferably at least 80%.
  • the degree of rolling during cold rolling is at most 90%, preferably at most 85%. This maximum degree of rolling can prevent an excessive decrease in the elongation values of the aluminum alloy strip.
  • the method can be carried out particularly economically by carrying out the cold rolling without intermediate annealing. It has been found that the desired properties of the aluminum alloy strip can also be achieved without intermediate annealing. In the production of the aluminum alloy strip, no expensive and expensive continuous strip annealing is preferably carried out.
  • the aluminum alloy strip is annealed between two cold rolling passes, in particular at a temperature of 300 ° C to 400 ° C, preferably at a temperature of 330 ° C to 370 ° C.
  • the intermediate annealing can be done for example in a chamber furnace.
  • the intermediate annealing is in particular an intermediate annealing of the strip.
  • the intermediate annealing is preferably carried out when the degree of rolling during cold rolling is more than 85%, in particular more than 90%.
  • the cold rolling and the intermediate annealing is then preferably carried out so that the degree of rolling after the intermediate annealing is less than 90%, in particular less than 85%.
  • the degree of rolling after the intermediate annealing is particularly preferably between 70% and 90%, in particular between 80% and 85%.
  • an aluminum alloy strip which is preferably produced by one of the methods described above, wherein the aluminum alloy strip consists of the alloy described above and has a yield strength R p0.2 of at least 45 MPa, a uniform elongation A g of at least 23% and an elongation at break A 80mm of at least 30%.
  • the alloy and in particular by the method an aluminum alloy strip can be produced, which has the above-mentioned material properties and also a good corrosion resistance to intergranular corrosion and filiform corrosion.
  • the aluminum alloy strip is particularly well suited for components and semi-finished products for motor vehicles, in particular for coated components such as interior door components.
  • the yield strength R p0.2 is determined according to DIN EN ISO 6892-1: 2009.
  • the uniform elongation Ag and the elongation at break A 80mm are also determined according to DIN EN ISO 6892-1: 2009 with a flat tensile specimen according to DIN EN ISO 6892-1: 2009, Annex B, Form 2.
  • the aluminum alloy strip has a thickness in the range of 0.2 to 5 mm, preferably 0.25 to 4 mm, in particular 0.5 to 3.6 mm. In these thickness ranges, the desired material properties of the aluminum alloy strip can be achieved particularly well.
  • the object described above is achieved by the use of the previously described aluminum alloy for painted components for motor vehicles. It has been found that with the aluminum alloy material properties can be achieved, which are particularly advantageous for this use.
  • the aluminum alloy can be used according to an embodiment particularly advantageous for interior door components of a motor vehicle.
  • the object described above is furthermore achieved by the use of a sheet produced from the described aluminum alloy strip as a painted component in the motor vehicle.
  • a sheet produced from the described aluminum alloy strip as a painted component in the motor vehicle.
  • the material properties of the aluminum alloy strip and thus also the Material properties of a sheet produced from this particular for use in the motor vehicle, especially as a door inner panel.
  • the aluminum alloy or a sheet produced from the aluminum alloy strip are used for painted components of a motor vehicle.
  • Fig. 1 shows a flowchart for a first embodiment of the method for producing an aluminum alloy strip.
  • a rolling bar is first cast from the described aluminum alloy.
  • the casting can be done for example in DC continuous casting or strip casting.
  • the ingot is homogenized in step 4 at a temperature in the range of 480 ° C to 600 ° C for at least 0.5 hours.
  • the ingot is then hot rolled at a temperature in the range of 280 ° C to 500 ° C to a final thickness of between 3 and 12 mm.
  • the hot strip hot rolled from the billet is then cold rolled in step 8 to a final thickness of preferably 0.2 mm to 5 mm.
  • a final annealing of the aluminum alloy strip takes place in step 10, for example in a chamber furnace at a temperature between 300 ° C. and 400 ° C. or in a continuous furnace between 450 ° C. and 550 ° C.
  • the top and / or the underside of the rolling ingot can be milled.
  • the aluminum alloy strip may optionally be annealed in a step 14, preferably in a chamber furnace at a temperature between 300 ° C and 400 ° C.
  • the intermediate annealing is particularly suitable for improving the material properties of the aluminum alloy strip when the hot strip is relatively thick and therefore the degree of rolling during cold rolling is more than 85%, in particular more than 90%.
  • the degree of rolling in cold rolling is approximately 96.7%.
  • the hot strip can first be rolled to 2 mm in a first cold-rolled pass, then intermediate-annealed, and finally rolled to 0.4 mm in a second cold-rolled pass.
  • the Abwalzgrad after the intermediate annealing is then only 80% and is thus in a preferred range.
  • FIG. 2 shows a part of a flowchart for further embodiments of the method.
  • the method sequence of these exemplary embodiments is essentially the same as the method sequence with respect to FIG. 1 match described method.
  • the homogenization of the rolling ingot takes place in the embodiments according to FIG. 2 not in step 4, but in a step 16, which is divided into several steps.
  • FIG. 2 shows possible sequences of the individual steps of step 16.
  • the ingot is cooled to the temperature of the second homogenization in the range of 450 ° C and 550 ° C, before then in the subsequent step 22 at this temperature, the second homogenization for at least 0.5 h, preferably for at least 2 h, takes place.
  • the ingot may be first cooled to room temperature in a step 24 and heated in a subsequent step 26 to the temperature for the second homogenization.
  • step 24 and step 26 optionally the top and / or bottom of the rolling billet can be milled.
  • aluminum alloys of the AA 3xxx type in particular based on AA 3103, were produced with different Mg and Cu contents.
  • the alloy compositions of these aluminum alloys are summarized in the following Table 1, wherein the individual alloy portions are each given in wt .-%. Table 1 No.
  • alloys Nos. 6 and 8 are embodiments of the alloy according to the use (E) of the present invention, while alloys Nos. 1-5, 7 and 9-13 are comparative examples (V).
  • each of these alloys 1 to 13 was cast in DC continuous casting in each case a rolling bar with a thickness of 600 mm, which was then homogenized in two stages, first for several hours at about 580 ° C and then for several hours at about 500 ° C. After homogenization, the ingots were hot rolled at about 500 ° C into aluminum alloy hot tapes having a thickness of 4 to 8 mm. These aluminum alloy hot tapes were then each on a Cold rolled final thickness of 1.2 mm and finally subjected to a recrystallizing annealing at 350 ° C for 1 h.
  • the aluminum alloy strips were examined for their mechanical properties, in particular their strength and formability.
  • Table 2 shows the corresponding material properties of an alloy of the type AA 8006, as known from the prior art.
  • Table 2 No. R p0.2 [MPa] R m [MPa] Ag [%] A 80mm [%] n-value r-value SZ 32 [mm] 1 V 42 101 25.1 41.3 0.214 0.472 16.7 2 V 42 103 24.6 35.7 0,216 0.579 16.3 3 V 43 111 24.5 36.1 0.218 0.484 16.4 4 V 48 111 25.3 35.9 0.214 0,417 16.6 5 V 45 114 24.8 36.4 0.217 0.484 16.5 6 e 46 116 24.5 35.1 0.217 0.662 16.7 7 V 49 115 25.1 34.2 0.218 0,420 16.2 8th e 50 113 24.2 35.0 0.210 0,598 16.4 9 V 53 118 23.8 32.5 0,216 0.344 15.9 10 V 51 119 21.8 29.5 0.207 0,635 15.9 11 V
  • FIG. 3 are the yield strength R p0.2 (empty squares), the elongations at break A 80mm (filled diamonds) and the depth values SZ 32 (filled triangles) of the aluminum alloy bands Nos. 1 to 13 depending on combined Cu and Mg content of the respective aluminum alloy.
  • the R p0,2 values are plotted in MPa according to the scale on the left ordinate axis.
  • the A 80mm values are plotted in percent and the SZ 32 values are plotted in mm according to the scale on the right axis of the ordinate.
  • the combined Cu and Mg content is indicated on the abscissa in wt.%.
  • the good formability is also reflected in particular by the measured depth value, which in the case of the alloy preferably has a value SZ 32 ⁇ 15.8 mm, in particular ⁇ 15.9 mm.
  • the aluminum alloys Nos. 4-9 have only a slightly poorer formability at the same strength than the comparison alloy AA 8006.
  • the aluminum alloys Nos. 4-9 have the advantage over the alloy AA 8006 that they have a significantly better Have corrosion resistance. Thus intercrystalline corrosion does not occur in alloys of type AA 3xxx.
  • FIGS. 4a-c Photographs of the sample surfaces are shown at the end of the test.
  • FIG. 4a shows the sheet sample of the comparative alloy AA8006
  • FIG. 4b shows the sheet sample of Comparative Example No. 5
  • Figure 4c shows the sample sheet according to Embodiment No. 6.
  • the scribe line introduced into the sheet sample is to be seen (dark line running from top to bottom).
  • the filiform corrosion spreads starting from the scribe line substantially transversely to the extension direction of the scribe line and is shown in the figures as a light thread-like structures.
  • the figures each show a ruler with centimeter scale placed on the sample.
  • the sheet sample of the comparative alloy AA8006 shows a strong Filiform corrosion.
  • the scribe line is in Fig. 4a almost completely surrounded by the white filiform structures of filiform corrosion.
  • the subterranean depth, ie the extent of the threadlike structures starting from the scribe line, is up to 6 mm.
  • the Sample No. 5 metal sample shows a considerably lower amount of filiform corrosion.
  • the density of thread-like structures of filiform corrosion is at the scribe line in Fig. 4b considerably less than the scribe line in Fig. 4a so that the sheet sample in Fig. 4b has a much greater resistance to filiform corrosion than the sheet sample in Fig. 4a , Nevertheless, some filiform structures of filiform corrosion, some of which have a large infiltration depth of up to approximately 6 mm, also occur in this sample of sheet metal.
  • the Mg content of the alloy composition is greater than the Cu content.
  • the sample of sheet metal for Embodiment No. 6 with an Mg content of 0.15% by weight and a Cu content of 0.031% by weight shows only minimal filiform corrosion.
  • the scribe line in Fig. 4c is only occasionally surrounded by short filiform structures of filiform corrosion up to 3 mm in length.
  • the sheet sample for Embodiment No. 6 thus has a very good resistance to filiform corrosion.
  • Table 2 show that the exemplary embodiments for the aluminum alloy according to the inventive use also achieve good values for the tensile strength R m and for the n and r values, which are in particular within the scope of conventional AA 3xxx alloys or even better are.
  • FIG. 5 shows a schematic representation of a typical component of a motor vehicle in the form of a door inner part.
  • Such door inner parts 40 are usually made of steel. However, steel components are heavy and susceptible to corrosion with equal rigidity.
  • aluminum alloy ribbons can be produced that are highly deformable, medium strength, and highly corrosion resistant, particularly to intergranular corrosion as well as to filiform corrosion.
  • the material properties of these aluminum alloy strips or the sheets produced therefrom are therefore particularly favorable for the production of motor vehicle components, such as the door inner part 40.
  • the good resistance to filiform corrosion is the use of the aluminum alloys for painted components, such as the door inner part 40, advantageous.
  • the components produced from these aluminum alloys have a better corrosion resistance than corresponding components made of steel or of an alloy of the type AA 8006. At the same time they have a significantly lower weight than components made of steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Description

  • Die Erfindung betrifft eine Verwendung einer Aluminiumlegierung für lackierte Bauteile für Kraftfahrzeuge. Weiterhin betrifft die Erfindung eine Verwendung eines Blechs, hergestellt aus einem Aluminiumlegierungsband, als lackiertes Bauteil im Kraftfahrzeug.
  • Halbzeuge und Bauteile für Kraftfahrzeuge müssen abhängig von ihrem Einsatzort und Einsatzzweck im Kraftfahrzeug unterschiedliche Anforderungen erfüllen, insbesondere in Bezug auf ihre mechanischen Eigenschaften sowie auf ihre Korrosionseigenschaften.
  • Bei Türinnenteilen werden die mechanischen Eigenschaften beispielsweise vorwiegend durch die Steifigkeit bestimmt, welche insbesondere von der Formgebung dieser Teile abhängt. Die Festigkeit hat demgegenüber einen untergeordneten Einfluss, wobei die verwendeten Werkstoffe jedoch auch nicht zu weich sein dürfen. Eine gute Umformbarkeit ist demgegenüber sehr wichtig, da die Bauteile und Halbzeuge zum Beispiel bei der Herstellung von Türinnenteilen im Allgemeinen komplexe Umformprozesse durchlaufen. Das betrifft insbesondere Bauteile, die in einer einteiligen Blechschalenbauweise hergestellt werden, wie z.B. eine Blechinnentür mit integriertem Fensterrahmenbereich. Solche Bauteile haben durch die Einsparung von Fügeoperationen Kostenvorteile gegenüber einer angebauten Profillösung für den Fensterrahmen.
  • Vorteilhaft wäre insbesondere, wenn sich ein entsprechendes Halbzeug oder Bauteil aus einer Aluminiumlegierung auf einem Werkzeug für Stahlbauteile umformen ließe, da in diesem Fall auf demselben Werkzeug je nach Bedarf Aluminium- oder Stahlbauteile hergestellt werden können und so Investitions- und Betriebskosten für ein zusätzliches Werkzeug reduziert bzw. vermieden werden können.
  • Aus den zuvor genannten Gründen besteht im Bereich der Kraftfahrzeugindustrie ein großes Interesse an hochumformbaren, mittelfesten Aluminiumlegierungen, die insbesondere eine bessere Umformbarkeit aufweisen, als beispielsweise die Standardlegierung AA (Aluminum Association) 5005 (AlMg1).
  • Neben den mechanischen Eigenschaften spielt bei Kraftfahrzeugen auch die Korrosionsbeständigkeit eine große Rolle, da Kraftfahrzeugbaüteile wie Türinnenteile Spritzwasser, Kondenswasser oder Schwitzwasser ausgesetzt sind. Es ist daher wünschenswert, dass die Kraftfahrzeugbauteile eine gute Beständigkeit gegen verschiedene Korrosionsangriffe, insbesondere gegen interkristalline Korrosion und gegen Filiform-Korrosion aufweisen.
  • Unter Filiform-Korrosion wird ein Korrosionstyp verstanden, der bei beschichteten Bauteilen auftritt und einen fadenförmigen Verlauf zeigt. Die Filiform-Korrosion tritt bei hoher Luftfeuchtigkeit in Gegenwart von Chloridionen auf.
  • In der Vergangenheit wurde versucht, Halbzeuge bzw. Bauteile für Kraftfahrzeuge aus der Legierung AA 8006 (AlFe1,5Mn0,5) herzustellen. Mit dieser Legierung können zwar Halbzeuge mit einer ausreichenden Festigkeit und einer hohen Umformbarkeit hergestellt werden, jedoch zeigten die entsprechenden Bauteile nach dem Lackieren eine hohe Anfälligkeit für Filiform-Korrosion, so dass die Legierung AA 8006 für beschichtete, insbesondere lackierte Bauteile wie Türinnenteile, nicht geeignet ist.
  • Aushärtbare AA 6xxx-Legierungen weisen hohe Festigkeiten sowie eine gute Beständigkeit gegen interkristalline Korrosion und gegen Filiform-Korrosion auf, sind jedoch deutlich schlechter umformbar als AA 8006 und daher zur Herstellung komplexer Bauteile wie zum Beispiel von Türinnenteilen nicht besonders gut geeignet. Zudem ist die Herstellung von Halbzeugen und Bauteilen aus einer AA 6xxx-Legierung recht aufwändig und teuer, da sie als besonderen Verfahrensschritt eine Durchlaufglühung erfordert.
  • AA 5xxx-Legierungen mit hohen Magnesium-Anteilen vereinigen hohe Festigkeiten mit einer recht guten Umformbarkeit. Allerdings reicht die Umformbarkeit nicht an diejenige von Stahllösungen heran, was zu Einschränkungen im Design der Bauteile führt. Zudem neigen diese Legierungen zu interkristalliner Korrosion. Stahlwerkstoffe sind zwar sehr gut umformbar, haben allerdings bei gleicher Steifigkeit einen Gewichtsnachteil und sind ebenfalls korrosionsanfällig. Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Verwendung einer Aluminiumlegierung zur Verfügung zu stellen, die hochumformbar, mittelfest und korrosionsbeständig ist. Schließlich liegt der vorliegenden Erfindung auch die Aufgabe zugrunde, eine Verwendung eines Blechs, hergestellt aus einem Aluminiumlegierungsband, zur Verfügung zu stellen.
  • In Bezug auf die Verwendung einer Aluminiumlegierung für lackierte Bauteile für Kraftfahrzeuge wird die zuvor genannte Aufgabe erfindungsgemäß dadurch gelöst, dass die Legierungsbestandteile der Aluminiumlegierung die folgenden Anteile in Gewichtsprozent aufweisen:
    Fe 0,80 %,
    Si 0,50 %,
    0,90 % ≤ Mn 1,50 %,
    Mg 0,25 %,
    Cu 0,125 %,
    Cr 0,05 %,
    Ti 0,05 %,
    V 0,05 %,
    Zr 0,05 %,
    Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %, und der kombinierte Anteil von Mg und Cu folgende Relation in Gew.-% erfüllt:
    0,15 % Mg + Cu 0,25 %.
  • Die Aluminiumlegierung basiert auf dem Legierungstyp AA 3xxx, insbesondere AA 3103 (AlMn1). Derartige Legierungen weisen zwar eine sehr gute Umformbarkeit auf, sind aber normalerweise für viele Anwendungen wie Bauteile von Kraftfahrzeugen zu weich. Durch die Zugabe bestimmter Legierungselemente, insbesondere Mg und Cu, kann die Festigkeit der Aluminiumlegierung zwar erhöht werden, jedoch führt dies auch zu einer deutlichen Senkung der Duktilität und damit wiederum zu einer schlechteren Umformbarkeit.
  • Im Rahmen der Erfindung wurde unter anderem erkannt, dass der kombinierte Anteil von Kupfer und Magnesium bei der Aluminiumlegierung genau kontrolliert werden muss, um die gewünschten mechanischen Eigenschaften, nämlich eine Dehngrenze Rp0,2 von mindestens 45 MPa bei einer Gleichmaßdehnung Ag von mindestens 23 % sowie einer Bruchdehnung A80mm von mindestens 30 %, bei guter Korrosionsbeständigkeit zu erreichen. In Versuchen wurde festgestellt, dass bei einem kombinierten Anteil von Mg und Cu zwischen 0,15 und 0,25 Gew.-% eine für die genannten Anwendungen vorteilhafte Kombination von Festigkeit und Umformbarkeit der Aluminiumlegierung erzielt wird.
  • Insbesondere muss der kombinierte Anteil von Magnesium und Kupfer mindestens 0,15 Gew.-%, vorzugsweise mindestens 0,16 Gew.-%, insbesondere mindestens 0,17 Gew.-%, betragen, damit die Aluminiumlegierung eine ausreichende Festigkeit, insbesondere mit einer Dehngrenze Rp0,2 von mindestens 45 MPa, erreicht. Andererseits muss der kombinierte Anteil von Mg und Cu auf höchstens 0,25 Gew.-%, bevorzugt höchstens 0,23 Gew.-%, insbesondere höchstens 0,20 Gew.-% begrenzt werden, da ansonsten Gleichmaßdehnung Ag und Bruchdehnung A80mm zu sehr abfallen, nämlich insbesondere unter 23 % für Ag bzw. unter 30 % für A80mm. Unter dem kombinierten Anteil von Magnesium und Kupfer wird allgemein die Summe der beiden Einzelanteile für Mg und Cu in Gew.-% verstanden.
  • Hinsichtlich der einzelnen Anteile weist die Aluminiumlegierung einen Cu-Anteil von maximal 0,125 Gew.-%, bevorzugt von maximal 0,10 Gew.-%, insbesondere von maximal 0,05 Gew.-%, und einen Magnesium-Anteil von maximal 0,25 Gew.-%, bevorzugt maximal 0,2 Gew.-%, auf. Weiterhin weist die Aluminiumlegierung vorzugsweise einen Mg-Anteil von mindestens 0,06 Gew.-%, weiter bevorzugt von mindestens 0,10 Gew.-%, insbesondere von mindestens 0,15 Gew.-% auf. Bei einer Ausführungsform weist die Aluminiumlegierung vorzugsweise einen Mg-Anteil im Bereich von 0,08 Gew.-% bis 0,25 Gew.-% auf.
  • Die zuvor beschriebene Aluminiumlegierung hat sich in Versuchen als hoch-umformbar und mittelfest erwiesen. Dadurch kann die Aluminiumlegierung besonders gut für Halbzeuge und Bauteile von Kraftfahrzeugen verwendet werden, deren Herstellung komplexe Umformprozesse umfasst. Entsprechend wird auch die Verwendung der zuvor genannten Aluminiumlegierung zur Herstellung eines Halbzeugs oder Bauteils von Kraftfahrzeugen offenbart. Mit der Aluminiumlegierung kann teilweise insbesondere sogar eine so gute Umformbarkeit erreicht werden, dass Halbzeuge und Bauteile aus der Legierung auf Umformwerkzeugen für Stahlbauteile umgeformt werden können.
  • Weiterhin hat sich in Versuchen gezeigt, dass die Aluminiumlegierung eine gute Korrosionsbeständigkeit aufweist. Insbesondere tritt bei Legierungen vom Typ AA 3xxx, zu dem die oben genannte Legierung gehört, keine interkristalline Korrosion auf. Weiterhin zeigte die Aluminiumlegierung in Laboruntersuchungen eine erheblich bessere Beständigkeit gegenüber Filiform-Korrosion als beispielsweise AA 8006-Legierungen.
  • Die Wirkung der einzelnen Legierungsbestandteile wird nun im Folgenden erläutert:
  • Der Mn-Anteil der Legierung von 0,9 bis 1,5 Gew.-%, vorzugsweise von 1,0 bis 1,4 Gew.-%, insbesondere von 1,0 bis 1,2 Gew.-%, führt in Kombination mit den Fe- und Si-Anteilen in den angegebenen Mengen insbesondere zu relativ gleichförmig verteilten, kompakten Partikeln der quaternären α-Al(Fe, Mn)Si-Phase, die die Festigkeit der Aluminiumlegierung steigern, ohne andere Eigenschaften wie die Umformbarkeit oder das Korrosionsverhalten negativ zu beeinflussen.
  • Die Elemente Titan, Chrom, Vanadium und insbesondere Zirkon können die Rekristallisation bei der Schlussglühung behindern und damit die Umformbarkeit der Aluminiumlegierung verschlechtern. Um eine bessere Umformbarkeit zu erzielen, weist die Aluminiumlegierung daher Ti-, Cr-, V- und Zr-Anteile von jeweils maximal 0,05 Gew.-% und bevorzugt insbesondere einen Zr-Anteil von maximal 0,02 Gew.-% auf.
  • Die Anteile aller anderen unvermeidlichen Begleitelemente betragen einzeln weniger als 0,05 Gew.-% und zusammen weniger als 0,15 Gew.-%, damit diese keine unerwünschte Phasenbildung und/oder negativen Einflüsse auf die Materialeigenschaften hervorrufen.
  • Erfindungsgemäß ist der Mg-Anteil der Aluminiumlegierung größer als der Cu-Anteil der Aluminiumlegierung. Auf diese Weise kann das Korrosionsverhalten der Aluminiumlegierung, insbesondere in Bezug auf die Filiform-Korrosion, weiter verbessert werden. So haben Tests zur Filiform-Korrosion an Blechproben aus verschiedenen Aluminiumlegierungen gezeigt, dass sich mit Aluminiumlegierungen gemäß dieser ersten Ausführungsform Aluminiumwerkstücke, insbesondere Halbzeuge oder Bauteile für Kraftfahrzeuge, herstellen lassen, die in den Tests kaum oder nur geringfügige Filiform-Korrosion zeigen.
  • Die Umformbarkeit der Aluminiumlegierung wird in einer Ausführungsform dadurch weiter verbessert, dass die Aluminiumlegierung einen Cr-Anteil ≤ 0,02 Gew.-%, bevorzugt ≤ 0,01 Gew.-%, und/oder einen V-Anteil ≤ 0,02 Gew.-%, bevorzugt ≤ 0,01 Gew.-%, und/oder einen Zr-Anteil ≤ 0,01 Gew.-% aufweist.
  • Titan kann beim Stranggießen der Aluminiumlegierung als Kornfeinungsmittel zum Beispiel in Form von Ti-Borid-Draht oder -Stangen hinzugegeben werden. Daher weist die Aluminiumlegierung in einer weiteren Ausführungsform einen Ti-Anhalt von mindestens 0,01 Gew.-%, bevorzugt von mindestens 0,015 Gew.-%, insbesondere von mindestens 0,02 Gew.-% auf.
  • Die Materialeigenschaften der Aluminiumlegierung lassen sich in einer weiteren Ausführungsform dadurch verbessern, dass die Aluminiumlegierung einen Fe-Anteil ≤ 0,7 Gew.-%, vorzugsweise ≤ 0,6 Gew.-%, insbesondere ≤ 0,5 Gew.-%, aufweist. Durch die weitere Beschränkung des Fe-Anteils wird verhindert, dass sich die Anfälligkeit der Aluminiumlegierung gegenüber Filiform-Korrosion erhöht.
  • Weiterhin weist die Aluminiumlegierung bevorzugt einen Si-Anteil von ≤ 0,4 Gew.-%, vorzugsweise ≤ 0,3 Gew.-%, insbesondere ≤ 0,25 Gew.-%, auf. Durch die weitere Beschränkung des Si-Anteils kann verhindert werden, dass die Umformbarkeit zu sehr reduziert wird.
  • Zur Festigkeitssteigerung weist die Aluminiumlegierung weiterhin vorzugsweise einen Fe-Anteil von mindestens 0,10 Gew.-%, bevorzugt von mindestens 0,25 Gew.-%, insbesondere von mindestens 0,40 Gew.-%, und/oder einen Si-Anteil von mindestens 0,06 Gew.-%, bevorzugt mindestens 0,10 Gew.-%, insbesondere mindestens 0,15 Gew.-% auf.
  • Eine gute Festigkeit und Umformbarkeit werden bei einer bevorzugten Ausführungsform der Verwendung der Aluminiumlegierung dadurch erreicht, dass die Legierungsbestandteile der Aluminiumlegierung die folgenden Anteile in Gewichtsprozent aufweisen:
    0,40 % ≤ Fe 0,70 %,
    0,10 % ≤ Si 0,25 %,
    1,00 % ≤ Mn 1,20 %,
    Mg 0,25 %,
    Cu 0,10 %,
    Cr 0,02 %,
    Ti 0,05 %,
    V 0,05 %,
    Zr 0,05 %,
    Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %, wobei der kombinierte Anteil von Mg und Cu folgende Relation in Gew.-% erfüllt:
    0,15 % Mg + Cu≤ 0,25 %.
  • Die Umformbarkeit dieser Legierung kann dadurch verbessert werden, dass die Legierung einen V-Anteil ≤ 0,02 Gew.-% und/oder einen Zr-Anteil ≤ 0,01 Gew.-% aufweist. Weiterhin kann die Kornfeinung durch einen Ti-Anteil von mindestens 0,01 Gew.-% verbessert werden.
  • Eine sehr gute Umformbarkeit bei ausreichender Festigkeit wird in einer bevorzugten Ausführungsform der Verwendung der Aluminiumlegierung dadurch erreicht, dass die Legierungsbestandteile der Aluminiumlegierung die folgenden Anteile in Gewichtsprozent aufweisen:
    0,40 % ≤ Fe 0,70 %,
    0,10 % ≤ Si 0,25 %,
    1,00 % ≤ Mn 1,20 %,
    Mg 0,20 %,
    Cu 0,05 %,
    Cr 0,02 %,
    Ti 0,05 %,
    V 0,05 %,
    Zr 0,05 %,
    Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %, wobei der kombinierte Anteil von Mg und Cu folgende Relation in Gew.-% erfüllt:
    0,15 % Mg + Cu≤ 0,20 %.
  • Die Umformbarkeit dieser Legierung kann dadurch verbessert werden, dass die Legierung einen V-Anteil ≤ 0,02 Gew.-% und/oder einen Zr-Anteil ≤ 0,01 Gew.-% aufweist. Weiterhin kann die Kornfeinung durch einen Ti-Anteil von mindestens 0,01 Gew.-% verbessert werden.
  • Beschrieben wird weiterhin ein Verfahren zur Herstellung eines Aluminiumlegierungsbands aus einer Aluminiumlegierung, welches folgende Verfahrensschritte umfasst:
    • Gießen eines Walzbarrens aus der beschriebenen Aluminiumlegierung,
    • Homogenisieren des Walzbarrens bei 480 °C bis 600 °C für mindestens 0,5 h,
    • Warmwalzen des Walzbarrens bei 280 °C bis 500 °C zu einem Aluminiumlegierungsband,
    • Kaltwalzen des Aluminiumlegierungsbands auf Enddicke und
    • rekristallisierendes Schlussglühen des Aluminiumlegierungsbands.
  • Die Verfahrensschritte des zuvor beschriebenen Verfahrens werden insbesondere in der angegebenen Reihenfolge durchgeführt.
  • In Versuchen wurde festgestellt, dass mit diesem Verfahren ein Aluminiumlegierungsband hergestellt werden kann, welches hoch-umformbar, mittelfest und korrosionsbeständig, insbesondere gegenüber interkristalliner Korrosion und Filiform-Korrosion, ist. Weiterhin erlaubt dieses Verfahren eine wirtschaftliche Herstellung des Aluminiumlegierungsbands, da das Verfahren Standardprozessschritte (d.h. Strangguss, Homogenisieren, Warmwalzen, Kaltwalzen, Weichglühen) umfasst und nicht notwendigerweise besondere, aufwändige Verfahrensschritte wie zum Beispiel eine Banddurchlaufglühung erfordert.
  • Das Gießen des Walzbarrens erfolgt bevorzugt im DC-Strangguss. Alternativ kann jedoch beispielsweise auch ein Bandgussverfahren verwendet werden.
  • Durch das Homogenisieren des Walzbarrens bei 480 °C bis 600 °C, bevorzugt bei 500 °C bis 600 °C, insbesondere bei 530 °C bis 580 °C, für mindestens 0,5 h wird erreicht, dass das Aluminiumlegierungsband nach dem Schlussglühen ein feinkörniges Gefüge mit guter Festigkeit und Umformbarkeit aufweist. Diese Eigenschaften lassen sich weiter dadurch verbessern, dass das Homogenisieren des Walzbarrens für mindestens 2 h erfolgt.
  • Das Warmwalzen des Walzbarrens erfolgt bei einer Temperatur zwischen 280 °C und 500 °C, bevorzugt zwischen 300 °C und 400 °C, insbesondere zwischen 320 °C und 380 °C. Beim Warmwalzen wird der Walzbarren bevorzugt auf eine Dicke zwischen 3 und 12 mm heruntergewalzt. Auf diese Weise wird sichergestellt, dass beim nachfolgenden Kaltwalzen ein ausreichend hoher Abwalzgrad, bevorzugt von mindestens 70 %, insbesondere von mindestens 80 %, erreicht wird, durch den die Festigkeit, die Umformbarkeit und die Dehnungswerte des Aluminiumlegierungsbandes mitbestimmt werden.
  • Das Kaltwalzen des Aluminiumlegierungsbands kann in einem oder in mehreren Stichen erfolgen. Bevorzugt wird das Aluminiumlegierungsband auf eine Enddicke im Bereich von 0,2 bis 5 mm, bevorzugt von 0,25 bis 4 mm, insbesondere von 0,5 - 3,6 mm gewalzt. Bei diesen Dickenbereichen können die gewünschten Materialeigenschaften des Aluminiumlegierungsbands besonders gut erreicht werden.
  • Durch das Schlussglühen des Aluminiumbands kann ein feinkörnig durchkristallisiertes Gefüge mit guter Festigkeit und Umformbarkeit erreicht werden. Beim Schlussglühen handelt es sich daher um eine rekristallisierende Weichglühung. Das Schlussglühen kann insbesondere in einem Kammerofen bei 300 °C bis 400 °C, bevorzugt bei 320 °C bis 360 °C oder in einem Durchlaufofen bei 450 °C bis 550 °C, bevorzugt bei 470 °C bis 530 °C erfolgen. Der Kammerofen ist in Betrieb und Anschaffung weniger kostenintensiv als der Durchlaufofen. Die Dauer des Schlussglühens im Kammerofen beträgt typischerweise 1 h oder mehr.
  • In einer ersten Ausführungsform des Verfahrens umfasst das Verfahren zusätzlich folgenden Verfahrensschritt:
    • Fräsen der Ober- und/oder Unterseite des Walzbarrens.
  • Durch diesen Verfahrensschritt können die Korrosionseigenschaften des hergestellten Aluminiumlegierungsbands bzw. eines aus diesem Aluminiumlegierungsband hergestellten Endprodukts verbessert werden. Das Fräsen der Ober- und/oder Unterseite des Walzbarrens kann beispielsweise nach dem Gießen und vor dem Homogenisieren des Walzbarrens erfolgen.
  • In einer weiteren Ausführungsform des Verfahrens wird das Homogenisieren mindestens zweistufig durchgeführt mit folgenden Schritten:
    • erstes Homogenisieren bei 500 °C bis 600 °C, bevorzugt bei 550 °C bis 600 °C, für mindestens 0,5 h, bevorzugt für mindestens 2 h, und
    • zweites Homogenisieren bei 450 °C bis 550 °C für mindestens 0,5 h, bevorzugt für mindestens 2 h.
    Durch das mindestens zweistufige Homogenisieren kann ein feinkörnigeres Gefüge mit guter Festigkeit und Umformbarkeit nach dem Schlussglühen erzielt werden. Es hat sich gezeigt, dass auf diese Weise nach dem Schlussglühen insbesondere Korngrößen, bestimmt nach ASTM E1382, von kleiner als 45 µm, insbesondere sogar von kleiner als 35 µm, erreicht werden können. Das zweite Homogenisieren wird bevorzugt bei der Warmwalztemperatur durchgeführt, die der Walzbarren zu Beginn des nachfolgenden Warmwalzschrittes aufweist.
  • Das mindestens zweistufige Homogenisieren umfasst bei einer weiteren Ausführungsform bevorzugt folgende Schritte:
    • erstes Homogenisieren bei 500 °C bis 600 °C, bevorzugt bei 550 °C bis 600 °C, für mindestens 0,5 h, bevorzugt für mindestens 2 h,
    • Abkühlen des Walzbarrens nach dem ersten Homogenisieren auf die Temperatur für das zweite Homogenisieren und
    • zweites Homogenisieren bei 450 °C bis 550 °C für mindestens 0,5 h, bevorzugt für mindestens 2 h.
  • In einer alternativen Ausführungsform umfasst das mindestens zweistufige Homogenisieren bevorzugt folgende Schritte:
    • erstes Homogenisieren bei 500 °C bis 600 °C, bevorzugt bei 550 °C bis 600 °C, für mindestens 0,5 h, bevorzugt für mindestens 2 h,
    • Abkühlen des Walzbarrens nach dem ersten Homogenisieren auf Raumtemperatur,
    • Anwärmen des Walzbarrens auf die Temperatur für das zweite Homogenisieren und
    • zweites Homogenisieren bei 450 °C bis 550 °C für mindestens 0,5 h, bevorzugt für mindestens 2 h.
  • In einer weiteren Ausführungsform kann ein Fräsen der Ober- und/oder Unterseite des Walzbarrens zwischen dem ersten Homogenisieren und dem zweiten Homogenisieren erfolgen, und zwar besonders bevorzugt nach dem Abkühlen des Walzbarrens auf Raumtemperatur.
  • In einer weiteren Ausführungsform des Verfahrens beträgt der Abwalzgrad während des Kaltwalzens mindestens 70 %, vorzugsweise mindestens 80 %. Durch diesen Mindestabwalzgrad kann beim Aluminiumlegierungsband nach der Schlussglühung ein feinkörniges Gefüge mit guter Festigkeit und Umformbarkeit erreicht werden.
  • In einer weiteren Ausführungsform des Verfahrens beträgt der Abwalzgrad während des Kaltwalzens maximal 90 %, bevorzugt maximal 85 %. Durch diesen maximalen Abwalzgrad kann eine übermäßige Abnahme der Dehnungswerte des Aluminiumlegierungsbandes verhindert werden.
  • Das Verfahren kann in einer weiteren Ausführungsform dadurch besonders wirtschaftlich durchgeführt werden, dass das Kaltwalzen ohne Zwischenglühung durchgeführt wird. Es hat sich herausgestellt, dass die gewünschten Eigenschaften des Aluminiumlegierungsbands auch ohne eine Zwischenglühung erreicht werden können. Bevorzugt erfolgt bei der Herstellung des Aluminiumlegierungsbands auch keine aufwändige und teure Banddurchlaufglühung.
  • In einer alternativen Ausführungsform des Verfahrens wird das Aluminiumlegierungsband zwischen zwei Kaltwalzstichen zwischengeglüht, insbesondere bei einer Temperatur von 300 °C bis 400 °C, bevorzugt bei einer Temperatur von 330 °C bis 370 °C. Das Zwischenglühen kann beispielsweise in einem Kammerofen erfolgen. Bei dem Zwischenglühen handelt es sich insbesondere um ein Zwischen-Weichglühen des Bandes.
  • Zwar wird das Herstellungsverfahren durch das Zwischenglühen aufwändiger, jedoch kann hierdurch bei einem relativ dicken Warmband das Gefüge positiv beeinflusst werden, so dass das hergestellte Aluminiumlegierungsband im Ergebnis bessere Materialeigenschaften aufweist. Das Zwischenglühen wird bevorzugt dann durchgeführt, wenn der Abwalzgrad beim Kaltwalzen insgesamt mehr als 85 %, insbesondere mehr als 90 % beträgt. Das Kaltwalzen und das Zwischenglühen erfolgt dann vorzugsweise so, dass der Abwalzgrad nach dem Zwischenglühen weniger als 90 %, insbesondere weniger als 85 % beträgt. Besonders bevorzugt beträgt der Abwalzgrad nach dem Zwischenglühen zwischen 70 % und 90 %, insbesondere zwischen 80 % und 85 %.
  • Beschrieben wird zudem ein Aluminiumlegierungsband, welches bevorzugt mit einem der zuvor beschriebenen Verfahren hergestellt wird, wobei das Aluminiumlegierungsband aus der oben beschriebenen Legierung besteht und eine Dehngrenze Rp0,2 von mindestens 45 MPa, eine Gleichmaßdehnung Ag von mindestens 23 % sowie eine Bruchdehnung A80mm von mindestens 30 % aufweist.
  • Versuche haben gezeigt, dass mit der Legierung und insbesondere auch durch das Verfahren ein Aluminiumlegierungsband herstellbar ist, welches die oben genannten Materialeigenschaften und zudem eine gute Korrosionsbeständigkeit gegenüber interkristalliner Korrosion und Filiform-Korrosion aufweist. Damit ist das Aluminiumlegierungsband besonders gut für Bauteile und Halbzeuge für Kraftfahrzeug, insbesondere für beschichtete Bauteile wie Türinnenbauteile geeignet.
  • Die Dehngrenze Rp0,2 wird nach DIN EN ISO 6892-1:2009 bestimmt. Die Gleichmaßdehnung Ag und die Bruchdehnung A80mm werden ebenfalls nach DIN EN ISO 6892-1:2009 mit einer Flachzug-Probe nach DIN EN ISO 6892-1:2009, Anhang B, Form 2 bestimmt.
  • In einer Ausführungsform weist das Aluminiumlegierungsband eine Dicke im Bereich von 0,2 bis 5 mm, bevorzugt von 0,25 bis 4 mm, insbesondere von 0,5 - 3,6 mm auf. Bei diesen Dickenbereichen können die gewünschten Materialeigenschaften des Aluminiumlegierungsbands besonders gut erreicht werden.
  • Die zuvor beschriebene Aufgabe wird gelöst durch die Verwendung der zuvor beschriebenen Aluminiumlegierung für lackierte Bauteile für Kraftfahrzeuge. Es hat sich herausgestellt, dass mit der Aluminiumlegierung Materialeigenschaften erreicht werden können, die insbesondere für diese Verwendung vorteilhaft sind. Die Aluminiumlegierung kann nach einer Ausführungsform besonders vorteilhaft für Türinnenbauteile eines Kraftfahrzeugs verwendet werden.
  • Die zuvor beschriebene Aufgabe wird weiterhin gelöst durch die Verwendung eines Blechs, hergestellt aus dem beschriebenen Aluminiumlegierungsband, als lackiertes Bauteil im Kraftfahrzeug. Wie zuvor beschrieben eignen sich die Materialeigenschaften des Aluminiumlegierungsbands und damit auch die Materialeigenschaften eines aus diesem hergestellten Blechs besonders für die Verwendung im Kraftfahrzeug, vor allem als Türinnenblech.
  • Wegen der guten Beständigkeit gegenüber Filiform-Korrosion werden die Aluminiumlegierung bzw. ein aus dem Aluminiumlegierungsband hergestelltes Blech für lackierte Bauteile eines Kraftfahrzeugs verwendet.
  • Weitere Merkmale und Vorteile der Erfindung können der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele entnommen werden, wobei auch auf die beigefügte Zeichnung Bezug genommen wird.
  • In der Zeichnung zeigen
  • Fig. 1
    ein Ablaufdiagramm für mehrere Ausführungsbeispiele des Verfahrens,
    Fig. 2
    ein Ablaufdiagramm für weitere Ausführungsbeispiele des Verfahrens,
    Fig. 3
    ein Diagramm mit Messergebnissen von Ausführungsbeispielen der Legierung bzw. des Aluminiumlegierungsbands,
    Fig. 4a-c
    fotografische Abbildungen dreier Blechproben von drei verschiedenen Aluminiumlegierungsbändern zu einem Test auf Filiform-Korrosion und
    Fig. 5
    ein Bauteil für ein Kraftfahrzeug gemäß einem weiteren Ausführungsbeispiel.
  • Fig. 1 zeigt ein Ablaufdiagramm für ein erstes Ausführungsbeispiel des Verfahrens zur Herstellung eines Aluminiumlegierungsbands.
  • In einem ersten Schritt 2 wird zunächst ein Walzbarren aus der beschriebenen Aluminiumlegierung gegossen. Das Gießen kann beispielsweise im DC-Strangguss oder im Bandguss erfolgen. Nach dem Gießen wird der Walzbarren in Schritt 4 bei einer Temperatur im Bereich von 480 °C bis 600 °C für mindestens 0,5 h homogenisiert. In Schritt 6 wird der Walzbarren anschließend bei einer Temperatur im Bereich von 280 °C bis 500 °C auf eine Enddicke zwischen 3 und 12 mm warmgewalzt. Das aus dem Walzbarren warmgewalzte Warmband wird dann im Schritt 8 auf eine Enddicke von vorzugsweise 0,2 mm bis 5 mm kaltgewalzt. Im Anschluss an das Kaltwalzen erfolgt in Schritt 10 schließlich noch ein Schlussglühen des Aluminiumlegierungsbands, beispielsweise im Kammerofen bei einer Temperatur zwischen 300 °C und 400 °C oder in einem Durchlaufofen zwischen 450 °C und 550 °C.
  • Zwischen dem Gießen des Walzbarrens in Schritt 2 und dem Homogenisieren in Schritt 4 kann optional in einem Schritt 12 die Ober- und/oder die Unterseite des Walzbarrens gefräst werden.
  • Weiterhin kann das Aluminiumlegierungsband während des Kaltwalzens in Schritt 8 optional in einem Schritt 14 zwischengeglüht werden, vorzugsweise in einem Kammerofen bei einer Temperatur zwischen 300 °C und 400 °C. Das Zwischenglühen ist besonders dazu geeignet, die Materialeigenschaften des Aluminiumlegierungsbands zu verbessern, wenn das Warmband relativ dick ist und daher der Abwalzgrad beim Kaltwalzen insgesamt mehr als 85 %, insbesondere mehr als 90 % beträgt.
  • Bei einer Warmbanddicke von 12 mm und einer Enddicke von 0,4 mm beträgt der Abwalzgrad beim Kaltwalzen beispielsweise insgesamt ca. 96,7 %. In diesem Fall kann das Warmband zum Beispiel in einem ersten Kaltwalzstich zunächst auf 2 mm gewalzt, dann zwischengeglüht und Schließlich in einem zweiten Kaltwalzstich auf 0,4 mm gewalzt werden. Der Abwalzgrad nach dem Zwischenglühen beträgt dann nur noch 80 % und liegt somit in einem bevorzugten Bereich.
  • Figur 2 zeigt einen Teil eines Ablaufdiagramms für weitere Ausführungsbeispiele des Verfahrens. Der Verfahrensablauf dieser Ausführungsbeispiele stimmt im Wesentlichen mit dem Verfahrensablauf der mit Bezug auf Figur 1 beschriebenen Verfahren überein. Das Homogenisieren des Walzbarrens erfolgt bei den Ausführungsbeispielen nach Figur 2 jedoch nicht in Schritt 4, sondern in einem Schritt 16, der in mehrere Einzelschritte aufgeteilt ist. Figur 2 zeigt mögliche Abfolgen der Einzelschritte des Schritts 16.
  • Demnach erfolgt nach dem Gießen des Walzbarrens in Schritt 2 bzw. nach dem Fräsen des Walzbarrens in Schritt 12 im ersten Teilschritt 18 des Schritts 16 zunächst ein erstes Homogenisieren bei einer Temperatur zwischen 550 und 600 °C für mindestens 0,5 h, bevorzugt für mindestens 2 h. In einem nachfolgenden Schritt 20 wird der Walzbarren auf die Temperatur des zweiten Homogenisierens im Bereich von 450 °C und 550 °C abgekühlt, bevor dann im wiederum nachfolgenden Schritt 22 bei dieser Temperatur das zweite Homogenisieren für mindestens 0,5 h, bevorzugt für mindestens 2 h, erfolgt.
  • Alternativ kann der Walzbarren nach dem ersten Homogenisieren in Schritt 18 in einem Schritt 24 auch zunächst auf Raumtemperatur abgekühlt und in einem nachfolgenden Schritt 26 auf die Temperatur für das zweite Homogenisieren angewärmt werden. Zwischen Schritt 24 und Schritt 26 können optional die Ober- und/oder die Unterseite des Walzbarrens gefräst werden.
  • Im Rahmen der Erfindung wurden Aluminiumlegierungen vom Typ AA 3xxx, insbesondere basierend auf AA 3103, mit verschiedenen Mg- und Cu-Anteilen hergestellt. Die Legierungszusammensetzungen dieser Aluminiumlegierungen sind in der nachfolgenden Tabelle 1 zusammengestellt, wobei die einzelnen Legierungsanteile jeweils in Gew.-% angegeben sind. Tabelle 1
    Nr. Si Fe Cu Mn Mg Cr Zn Ti V Zr Cu+Mg
    1 V 0,063 0,54 0,0029 1,07 0,0102 0,0005 0,0051 0,0053 0,0038 0,0005 0,013
    2 V 0,23 0,55 0,055 0,93 0,059 0,0096 0,0131 0,0151 0,0099 0,0008 0,114
    3 V 0,208 0,546 0,064 1,026 0,071 0,004 0,005 0,018 0,0081 0,0006 0,135
    4 V 0,154 0,51 0,152 1,02 0,0019 0,0005 0,0034 0,0602 0,0073 0,0005 0,154
    5 V 0,176 0,511 0,092 1,01 0,063 0,003 0,006 0,0169 0,0107 0,0008 0,155
    6 E 0,128 0,57 0,031 1,0 0,15 0,006 0,007 0,0166 0,0114 0,0008 0,181
    7 V 0,23 0,5 0,18 1,06 0,0109 0,0101 0,0055 0,0093 0,0112 0,0008 0,191
    8 E 0,142 0,62 0,0019 1,1 0,19 0,0004 0,0011 0,0066 0,0091 0,0005 0,192
    9 V 0,17 0, 54 0,19 1,03 0,053 0,0005 0,0032 0,0217 0,0064 0,0005 0,243
    10 V 0,42 0,45 0,086 1,01 0,19 0,0331 0,0058 0,028 0,0066 0,0006 0,276
    11 V 0,052 0,21 0,28 0,87 0,22 0,0006 0,0028 0,018 0,0061 0,0005 0,5
    12 V 0,162 0,59 0,0016 1,1 0,52 0,0002 0,001 0,0055 0,0072 0,0005 0,522
    13 V 0,179 0,38 0,116 1,05 0,51 0,003 0,006 0,014 0,0068 0,0006 0,626
  • In der letzten Spalte der Tabelle 1 ist der kombinierte Anteil von Kupfer und Magnesium angegeben, der sich als besonders wichtig für die gewünschten Materialeigenschaften herausgestellt hat. Bei den Legierungen Nr. 6 und 8 handelt es sich um Ausführungsbeispiele der Legierung gemäß der erfindungsgemäßen Verwendung (E), während die Legierungen Nr. 1 - 5, 7 und 9 - 13 Vergleichsbeispiele darstellen (V).
  • Aus diesen Aluminiumlegierungen Nr. 1 - 13 wurden dann mit dem zuvor beschriebenen Verfahren Aluminiumlegierungsbänder hergestellt. Im Einzelnen wurde aus jeder dieser Legierungen 1 bis 13 im DC-Strangguss jeweils ein Walzbarren mit einer Dicke von 600 mm gegossen, der dann jeweils zweistufig homogenisiert wurde, und zwar zunächst für mehrere Stunden bei ca. 580 °C und anschließend für mehrere Stunden bei ca. 500 °C. Nach dem Homogenisieren wurden die Walzbarren bei ca. 500 °C zu Aluminiumlegierungswarmbändern mit einer Dicke von 4 bis 8 mm warmgewalzt. Diese Aluminiumlegierungswarmbänder wurden dann jeweils auf eine Enddicke von 1,2 mm kaltgewalzt und schließlich für 1 h einer rekristallisierenden Schlussglühung bei 350 °C unterzogen.
  • Anschließend wurden die Aluminiumlegierungsbänder auf ihre mechanischen Eigenschaften, insbesondere auf ihre Festigkeit und Umformbarkeit untersucht.
  • Die Ergebnisse dieser Untersuchungen sind in der nachfolgenden Tabelle 2 zusammengestellt. Weiterhin zeigt Tabelle 2 in der letzten Zeile die entsprechenden Materialeigenschaften einer Legierung vom Typ AA 8006, wie sie aus dem Stand der Technik bekannt ist. Tabelle 2
    Nr. Rp0,2 [MPa] Rm [MPa] Ag [%] A80mm [%] n-Wert r-Wert SZ 32 [mm]
    1 V 42 101 25,1 41,3 0,214 0,472 16,7
    2 V 42 103 24,6 35,7 0,216 0,579 16,3
    3 V 43 111 24,5 36,1 0,218 0,484 16,4
    4 V 48 111 25,3 35,9 0,214 0,417 16,6
    5 V 45 114 24,8 36,4 0,217 0,484 16,5
    6 E 46 116 24,5 35,1 0,217 0,662 16,7
    7 V 49 115 25,1 34,2 0,218 0,420 16,2
    8 E 50 113 24,2 35,0 0,210 0,598 16,4
    9 V 53 118 23,8 32,5 0,216 0,344 15,9
    10 V 51 119 21,8 29,5 0,207 0,635 15,9
    11 V 58 134 21,2 26,9 0,220 0,556 15,4
    12 V 57 135 20,8 28,0 0,221 0,652 15,5
    13 V 66 152 19,7 21,0 0,225 0,582 14,9
    AA 8006 V 49 104 27,5 42,0 0,223 0,431 17,3
  • Tabelle 2 zeigt folgende Messwerte:
    • die Dehngrenze Rp0,2 in MPa sowie die Zugfestigkeit Rm in MPa, gemessen im Zugversuch senkrecht zur Walzrichtung des Blechs nach DIN EN ISO 6892-1:2009,
    • die Gleichmaßdehnung Ag in Prozent sowie die Bruchdehnung A80mm in in Prozent, gemessen im Zugversuch senkrecht zur Walzrichtung des Blechs mit einer Flachzug-Probe nach DIN EN ISO 6892-1:2009, Anhang B, Form 2,
    • den Verfestigungsexponenten n (n-Wert), gemessen im Zugversuch senkrecht zur Walzrichtung des Blechs nach DIN ISO 10275:2009,
    • die senkrechten Anisotropie r (r-Wert), gemessen im Zugversuch senkrecht zur Walzrichtung des Blechs nach DIN ISO 10113:2009, und
    • die beim Streckziehen erreichte Tiefung SZ 32 in Millimeter als weiteres Maß für die Umformbarkeit der Legierung. Die Tiefung SZ 32 wurde im Erichsen-Tiefungsversuch nach DIN EN ISO 20482 ermittelt, aber mit einem auf die Blechdicke abgestimmten Stempelkopfdurchmesser von 32 mm und Matrizendurchmesser von 35,4 mm und unter Zuhilfenahme einer Teflon-Ziehfolie zur Reduzierung der Reibung.
  • In Figur 3 sind die Dehngrenze Rp0,2 (leere Quadrate), die Bruchdehnungen A80mm (gefüllte Rauten) und die Tiefungswerte SZ 32 (gefüllte Dreiecke) der Aluminiumlegierungsbänder Nr. 1 bis 13 in Abhängigkeit vom kombinierten Cu- und Mg-Anteil der jeweiligen Aluminiumlegierung aufgetragen. Die Rp0,2-Werte sind in MPa entsprechend der Skala an der linken Ordinatenachse aufgetragen. Die A80mm-Werte sind in Prozent und die SZ 32-Werte in mm entsprechend der Skala an der rechten Ordinatenachse aufgetragen. Der kombinierte Cu- und Mg-Anteil ist auf der Abszisse in Gew.-% angegeben.
  • Weiterhin sind in Figur 3 zur besseren Übersicht jeweils noch Ausgleichsgeraden zu den Messwerten von Rp0,2, A80mm und SZ 32 eingezeichnet. Zwei vertikale gestrichelte Linien kennzeichnen zudem die erfindungsgemäße Unter- und Obergrenze für den kombinierten Cu- und Mg-Anteil.
  • Wie die Messwerte für die Aluminiumlegierungsbänder aus den Aluminiumlegierungen Nr. 4 - 9 zeigen, bewirkt die Einstellung des kombinierten Cu- und Mg-Anteils in einem Bereich von 0,15 Gew.-% bis 0,25 Gew.-%, dass die gewünschte Kombination von Festigkeit (Rp0,2 ≥ 45MPa) und Umformbarkeit (Ag ≥ 23% und A80mm ≥ 30 %) erreicht wird.
  • Bei kombinierten Mg- und Cu-Anteilen von weniger als 0,15 Gew.-% (Nr. 1 - 3) erweist sich die Festigkeit als zu gering (Rp0,2 < 45 MPa) und bei kombinierten Mg- und Cu-Anteilen von mehr als 0,25 Gew.-% (Nr. 10 - 13) sinken die Dehnungswerte und damit die Umformbarkeit zu sehr ab (Ag < 23 % und/oder A80mm < 30 %).
  • Die gute Umformbarkeit zeigt sich insbesondere auch durch den gemessenen Tiefungswert, der bei der Legierung vorzugsweise einen Wert SZ 32 ≥ 15,8 mm, insbesondere ≥ 15,9 mm aufweist.
  • Im Ergebnis weisen die Aluminiumlegierungen Nr. 4 - 9 damit bei gleicher Festigkeit nur eine geringfügig schlechtere Umformbarkeit auf als die Vergleichs-Legierung AA 8006. Die Aluminiumlegierungen Nr. 4 - 9 haben gegenüber der Legierung AA 8006 jedoch den Vorteil, dass sie eine erheblich bessere Korrosionsbeständigkeit aufweisen. So tritt interkristalline Korrosion bei Legierungen vom Typ AA 3xxx grundsätzlich nicht auf.
  • Weiterhin wurden an den Aluminiumlegierungsbändern aus den Aluminiumlegierungen Nr. 4 - 9 ergänzende Laborversuche zur Korrosionsbeständigkeit durchgeführt. Diese Laborversuche haben gezeigt, dass die Aluminiumlegierungen Nr. 4 - 9 eine sehr viel bessere Beständigkeit gegenüber Filiform-Korrosion zeigen als der Legierungstyp AA 8006. Damit sind Aluminiumlegierungen wie die Aluminiumlegierungen Nr. 4 - 9 bzw. aus diesen Aluminiumlegierungen hergestellte Aluminiumlegierungsbänder besonders für beschichtete Bauteile geeignet.
  • Insbesondere wurde an Blechproben der verschiedenen Aluminiumlegierungsbänder jeweils der nachfolgend beschriebene Test zur Filiform-Korrosion durchgeführt. Der Test weist folgende Schritte in der angegebenen Reihenfolge auf:
    1. 1. 30 s Beizen der gewalzten und weichgeglühten Blechproben in einem sauren Beizmedium mit einem Abtrag von 0,5 g/m2. (Dieser Materialabtrag entspricht in etwa einem typischen Materialabtrag bei der Vorbehandlung von Halbzeugen und Bauteilen für Kraftfahrzeuge, z.B. bei einem OEM-Vorbehandlungsprozess, so dass die Filiformergebnisse des hier beschriebenen Tests gut mit den Ergbnissen im Realbauteil korrelieren.)
    2. 2. Beschichten der gebeizten Blechprobe mit einem transparenten Acrylharzlack.
    3. 3. Einbrennen des aufgetragenen Lacks für 5 min. bei 160 °C.
    4. 4. Einbringen einer Ritzlinie in die Blechprobe mit Hilfe eines Ritzstichels, und zwar quer zur Walzrichtung.
    5. 5. Tröpfchen-Impfung in der Ritzlinie mit einer wässrigen, 18-prozentigen Salzsäurelösung.
    6. 6. Auslagerung der Blechprobe im Klimaschrank, und zwar
      1. a) zunächst für 24 h bei 40 °C und 80 % relativer Luftfeuchtigkeit und
      2. b) anschließend für 72 h bei 23 °C und 65 % relativer Luftfeuchtigkeit.
    7. 7. Optische Auswertung der Blechprobe, und zwar Auswertung der Unterwanderungstiefe (Ausbreitung der Korrosion unter dem Lack) ausgehend von der Ritzlinie).
  • Der zuvor genannte Test wurde insbesondere an Blechproben zu den in Tabelle 1 und 2 aufgeführten Vergleichsbeispiel Nr. 5 und Ausführungsbeispiel Nr. 6 sowie zu einer entsprechend hergestellten Blechprobe aus der Vergleichslegierung AA8006 durchgeführt. In den Figuren 4a-c sind fotografische Abbildungen der Blechproben-Oberflächen am Ende des Tests dargestellt. Figur 4a zeigt die Blechprobe aus der Vergleichslegierung AA8006, Figur 4b zeigt die Blechprobe nach Vergleichsbeispiel Nr. 5 und Figur 4c zeigt die Blechprobe nach Ausführungsbeispiel Nr. 6.
  • In den Figuren 4a-c ist jeweils die in die Blechprobe eingebrachte Ritzlinie zu sehen (dunkle von oben nach unten verlaufende Linie). Die Filiform-Korrosion breitet sich ausgehend von der Ritzlinie im Wesentlichen quer zur Erstreckungsrichtung der Ritzlinie aus und zeigt sich in den Figuren als helle fadenartige Strukturen. Für einen einfacheren Größenvergleich zeigen die Figuren jeweils ein auf die Blechprobe aufgelegtes Lineal mit Zentimeter-Skala.
  • Die Blechprobe aus der Vergleichslegierung AA8006 zeigt eine starke Filiform-Korrosion. Die Ritzlinie ist in Fig. 4a fast vollständig von den weißen fadenartigen Strukturen der Filiform-Korrosion umgeben. Die Unterwanderungstiefe, d.h. die Erstreckung der fadenartigen Strukturen ausgehend von der Ritzlinie, beträgt bis zu 6 mm.
  • Demgegenüber zeigt die Blechprobe aus der Legierung Nr. 5 ein erheblich geringeres Ausmaß an Filiform-Korrosion. Die Dichte der fadenartigen Strukturen der Filiform-Korrosion ist bei der Ritzlinie in Fig. 4b erheblich geringer als bei der Ritzlinie in Fig. 4a, so dass die Blechprobe in Fig. 4b eine erheblich größere Beständigkeit gegenüber der Filiform-Korrosion aufweist als die Blechprobe in Fig. 4a. Gleichwohl treten auch bei dieser Blechprobe noch einige fadenartige Strukturen der Filiform-Korrosion mit zum Teil großer Unterwanderungstiefe von bis zu ca. 6 mm auf.
  • Die besten Ergebnisse bei der Filiform-Korrosion wurden für die erfindungsgemäßen Ausführungsbeispiele erreicht, bei denen der Mg-Anteil der Legierungszusammensetzung größer ist als der Cu-Anteil. So zeigt die Blechprobe zu Ausführungsbeispiel Nr. 6 mit einem Mg-Anteil von 0,15 Gew.-% und einem Cu-Anteil von 0,031 Gew.-% nur minimale Filiform-Korrosion. Die Ritzlinie in Fig. 4c ist nur vereinzelt mit kurzen fadenartigen Strukturen der Filiform-Korrosion bis zu 3 mm Länge umgeben. Die Blechprobe zum Ausführungsbeispiel Nr. 6 weist damit eine sehr gute Beständigkeit gegenüber der Filiform-Korrosion auf.
  • Schließlich zeigen die Messwerte in Tabelle 2, dass die Ausführungsbeispiele für die Aluminiumlegierung gemäß der erfindungsgemäßen Verwendung auch für die Zugfestigkeit Rm sowie für den n- und r-Wert gute Werte erreichen, die insbesondere im Rahmen üblicher AA 3xxx-Legierungen liegen oder sogar besser sind.
  • Figur 5 zeigt eine schematische Darstellung eines typischen Bauteils eines Kraftfahrzeugs in Form eines Türinnenteils.
  • Derartige Türinnenteile 40 werden üblicherweise aus Stahl hergestellt. Stahlbauteile sind jedoch bei gleicher Steifigkeit schwer und korrosionsanfällig.
  • Es hat sich gezeigt, dass mit den zuvor beschriebenen Aluminiumlegierungen, wie zum Beispiel den Aluminiumlegierungen Nr. 6 und 8, Aluminiumlegierungsbänder hergestellt werden können, die hoch-umformbar, mittelfest und sehr korrosionsbeständig sind, insbesondere gegenüber interkristalliner Korrosion als auch gegenüber Filiform-Korrosion.
  • Die Materialeigenschaften dieser Aluminiumlegierungsbänder bzw. der aus diesen hergestellten Blechen sind damit besonders günstig für die Herstellung von Kraftfahrzeugbauteilen, wie zum Beispiel dem Türinnenteil 40. Die gute Beständigkeit gegenüber der Filiform-Korrosion ist beim Einsatz der Aluminiumlegierungen für lackierte Bauteile, wie das Türinnenteil 40, vorteilhaft.
  • Insbesondere weisen die aus diesen Aluminiumlegierungen hergestellten Bauteile eine bessere Korrosionsbeständigkeit auf als entsprechenden Bauteile aus Stahl oder aus einer Legierung vom Typ AA 8006. Gleichzeitig weisen sie dabei ein deutlich geringeres Gewicht auf als Bauteile aus Stahl.

Claims (14)

  1. Verwendung einer Aluminiumlegierung für lackierte Bauteile für Kraftfahrzeuge,
    dadurch gekennzeichnet, dass
    die Legierungsbestandteile der Aluminiumlegierung die folgenden Anteile in Gew.-% aufweisen: Fe 0,80 %, Si 0,50 %, 0,90 % ≤ Mn 1,50 %, Mg 0,25 %, Cu 0,125 %, Cr 0,05 %, Ti 0,05 %, V 0,05 %, Zr 0,05 %,
    Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %,
    und der kombinierte Anteil von Mg und Cu folgende Relation in Gew.-% erfüllt: 0,15 % Mg + Cu≤ 0,25 %,
    wobei der Mg-Anteil der Aluminiumlegierung größer ist als der Cu-Anteil der Aluminiumlegierung.
  2. Verwendung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung einen Cu-Anteil von maximal 0,10 Gew.-% und/oder einen Mg-Anteil im Bereich von 0,06 Gew.-% bis 0,20 Gew.-% aufweist.
  3. Verwendung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung einen Cr-Anteil ≤ 0,02 Gew.-% und/oder einen V-Anteil von ≤ 0,02 Gew.-% und/oder einen Zr-Anteil von ≤ 0,02 Gew.-%, insbesondere von ≤ 0,01 Gew.-%, aufweist.
  4. Verwendung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung einen Fe-Anteil von 0,4 bis 0,7 Gew.-% aufweist und/oder einen Si-Anteil von 0,1 bis 0,25 Gew.-% aufweist und/oder einen Mn-Anteil von 1,0 bis 1,2 Gew.-% aufweist.
  5. Verwendung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung einen Ti-Anteil von mindestens 0,01 Gew.-% auweist.
  6. Verwendung eines Blechs, hergestellt aus einem Aluminiumlegierungsband, als lackiertes Bauteil im Kraftfahrzeug,
    dadurch gekennzeichnet, dass
    das Aluminiumlegierungsband aus einer Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge besteht, wobei die Legierungsbestandteile der Aluminiumlegierung die folgenden Anteile in Gew.-% aufweisen: Fe 0,80 %, Si 0,50 %, 0,90 % ≤ Mn 1,50 %, Mg 0,25 %, Cu 0,125 %, Cr 0,05 %, Ti 0,05 %, V 0,05 %, Zr 0,05 %,
    Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %,
    der kombinierte Anteil von Mg und Cu folgende Relation in Gew.-% erfüllt: 0,15 % Mg + Cu ≤ 0,25 %
    und der Mg-Anteil der Aluminiumlegierung größer ist als der Cu-Anteil der Aluminiumlegierung,
    und wobei das Aluminiumlegierungsband eine Dehngrenze Rp0,2 von mindestens 45 MPa, eine Gleichmaßdehnung Ag von mindestens 23 % und eine Bruchdehnung A80mm von mindestens 30 % aufweist.
  7. Verwendung nach Anspruch 6,
    dadurch gekennzeichnet, dass
    das Aluminiumlegierungsband eine Dicke im Bereich von 0,2 mm bis 5 mm aufweist.
  8. Verwendung nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    das Aluminiumlegierungsband hergestellt ist mit einem Verfahren umfassend folgende Verfahrensschritte:
    - Gießen eines Walzbarrens aus einer Aluminiumlegierung, wobei die Legierungsbestandteile der Aluminiumlegierung die folgenden Anteile in Gew.-% aufweisen: Fe 0,80 %, Si 0,50 %, 0,90 % ≤ Mn 1,50 %, Mg 0,25 %, Cu 0,125 %, Cr 0,05 %, Ti 0,05 %, V 0,05 %, Zr 0,05 %,
    Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %,
    wobei der kombinierte Anteil von Mg und Cu folgende Relation in Gew.-% erfüllt: 0,15 % Mg + Cu ≤ 0,25 %
    und wobei der Mg-Anteil der Aluminiumlegierung größer ist als der Cu-Anteil der Aluminiumlegierung,
    - Homogenisieren des Walzbarrens bei 480 °C bis 600 °C für mindestens 0,5 h,
    - Warmwalzen des Walzbarrens bei 280 °C bis 500 °C zu einem Aluminiumlegierungsband,
    - Kaltwalzen des Aluminiumlegierungsbands auf Enddicke und
    - rekristallisierendes Schlussglühen des Aluminiumlegierungsbands.
  9. Verwendung nach Anspruch 8,
    dadurch gekennzeichnet, dass
    das Verfahren zusätzlich folgenden Verfahrensschritt umfasst:
    - Fräsen der Ober- und/oder Unterseite des Walzbarrens.
  10. Verwendung nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass
    das Homogenisieren mindestens zweistufig durchgeführt wird mit folgenden Schritten:
    - erstes Homogenisieren bei 500 °C bis 600 °C für mindestens 0,5 h und
    - zweites Homogenisieren bei 450 °C bis 550 °C für mindestens 0,5 h.
  11. Verwendung nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, dass
    der Abwalzgrad während des Kaltwalzens zwischen 70 % und 90 %, bevorzugt zwischen 80 % und 85 % liegt.
  12. Verwendung nach einem der Ansprüche 8 bis 11,
    dadurch gekennzeichnet, dass
    das Kaltwalzen mit oder ohne Zwischenglühung durchgeführt wird.
  13. Verwendung nach einer der Ansprüche 1 bis 7, wobei die Aluminiumlegierung für Türinnenbauteile verwendet wird.
  14. Verwendung nach einem der Ansprüche 8 bis 12, wobei das Blech als Türinnenblech verwendet wird.
EP14705528.9A 2013-02-21 2014-02-20 Verwendung einer aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge Active EP2959028B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14705528.9A EP2959028B2 (de) 2013-02-21 2014-02-20 Verwendung einer aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13156100.3A EP2770071B9 (de) 2013-02-21 2013-02-21 Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
PCT/EP2014/053323 WO2014128212A1 (de) 2013-02-21 2014-02-20 Aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge, verfahren zur herstellung eines aluminiumlegierungsbands aus dieser aluminiumlegierung sowie aluminiumlegierungsband und verwendung dafür
EP14705528.9A EP2959028B2 (de) 2013-02-21 2014-02-20 Verwendung einer aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge

Publications (3)

Publication Number Publication Date
EP2959028A1 EP2959028A1 (de) 2015-12-30
EP2959028B1 EP2959028B1 (de) 2016-07-27
EP2959028B2 true EP2959028B2 (de) 2019-07-10

Family

ID=47739152

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13156100.3A Active EP2770071B9 (de) 2013-02-21 2013-02-21 Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
EP14705528.9A Active EP2959028B2 (de) 2013-02-21 2014-02-20 Verwendung einer aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13156100.3A Active EP2770071B9 (de) 2013-02-21 2013-02-21 Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür

Country Status (10)

Country Link
US (1) US10501833B2 (de)
EP (2) EP2770071B9 (de)
JP (1) JP6143892B2 (de)
KR (1) KR101656419B1 (de)
CN (1) CN105008563B (de)
CA (1) CA2899991C (de)
ES (2) ES2621871T3 (de)
PT (2) PT2770071T (de)
RU (1) RU2637458C2 (de)
WO (1) WO2014128212A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008427B1 (fr) * 2013-07-11 2015-08-21 Constellium France Tole en alliage d'aluminium pour structure de caisse automobile
EP3178952B9 (de) 2014-03-28 2021-07-14 Hydro Aluminium Rolled Products GmbH Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen
JP6176393B2 (ja) * 2014-04-09 2017-08-09 日本軽金属株式会社 曲げ加工性と形状凍結性に優れた高強度アルミニウム合金板
CN106661678B (zh) 2014-09-12 2019-10-22 诺维尔里斯公司 用于高度塑形铝产品的合金及其制作方法
CN104264009B (zh) * 2014-09-30 2016-11-23 国网河南省电力公司周口供电公司 一种高铁铝合金导体材料及其退火工艺
HUE037672T2 (hu) 2014-11-27 2018-09-28 Hydro Aluminium Rolled Prod Hõcserélõ, alumíniumötvözet és alumíniumszalag felhasználása, valamint eljárás alumíniumszalag elõállítására
CN108138273A (zh) 2016-05-27 2018-06-08 诺维尔里斯公司 用于hvac&r***的高强度和耐腐蚀合金
US10683612B2 (en) * 2016-09-14 2020-06-16 Fpinnovations Method for producing cellulose filaments with less refining energy
CN107447133B (zh) * 2017-07-26 2019-07-12 江苏亚太轻合金科技股份有限公司 一种耐腐蚀铝合金管及其制备方法
DE102018215254A1 (de) * 2018-09-07 2020-03-12 Neuman Aluminium Austria Gmbh Aluminiumlegierung, Halbzeug, Dose, Verfahren zur Herstellung eines Butzen, Verfahren zur Herstellung einer Dose sowie Verwendung einer Aluminiumlegierung
DE102018215243A1 (de) * 2018-09-07 2020-03-12 Neumann Aluminium Austria Gmbh Aluminiumlegierung, Halbzeug, Dose, Verfahren zur Herstellung eines Butzen, Verfahren zur Herstellung einer Dose sowie Verwendung einer Aluminiumlegierung
CN109097637B (zh) * 2018-09-10 2021-01-26 招商局铝业(重庆)有限公司 一种球釜型锅胆用铝合金材料的制备方法
RU2731634C2 (ru) * 2018-11-01 2020-09-07 АО "Завод алюминиевых сплавов" Способ получения деформированных полуфабрикатов из вторичного алюминиевого сплава
CN109128728A (zh) * 2018-11-17 2019-01-04 景德镇兴航科技开发有限公司 一种消耗油箱薄壁加工工艺
EP3741875A1 (de) 2019-05-24 2020-11-25 Constellium Rolled Products Singen GmbH & Co.KG Aluminiumlegierungsblechprodukt mit verbesserter oberflächengüte
CN111471901B (zh) * 2020-05-22 2021-03-23 永杰新材料股份有限公司 铝锰合金及其生产方法
CN112267053A (zh) * 2020-09-27 2021-01-26 绵阳市优泰精工科技有限公司 一种含有稀土成份的铝合金材料
CN112195373A (zh) * 2020-11-09 2021-01-08 江苏常铝铝业集团股份有限公司 一种电池壳体用铝合金带材及其制造方法
FR3123922B1 (fr) 2021-06-11 2023-12-22 Constellium Rolled Products Singen Tôle forte en alliage d’aluminium pour boîtier de batterie parallélépipédique
CN113802033B (zh) * 2021-09-15 2022-03-08 山东宏桥新型材料有限公司 一种耐腐蚀船舶装饰用铝合金带材及其制备工艺和应用
US12031199B2 (en) 2022-03-30 2024-07-09 Relativity Space, Inc. Aluminum alloy compositions, articles therefrom, and methods of producing articles therefrom
CN115094276B (zh) * 2022-06-30 2023-04-11 广东和胜工业铝材股份有限公司 一种铝合金及其制备方法和应用
CN116590554B (zh) * 2023-05-19 2024-01-12 盐城永鑫机械有限公司 一种高性能车用转向节

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985837A (ja) 1982-11-08 1984-05-17 Mitsubishi Alum Co Ltd 耐垂下性にすぐれた熱交換器フイン材
JPS60248859A (ja) * 1984-05-25 1985-12-09 Sumitomo Light Metal Ind Ltd 超高圧用プレ−トフイン型熱交換器のフイン材
JPH03215645A (ja) * 1989-12-20 1991-09-20 Furukawa Alum Co Ltd フッ素樹脂塗装容器用アルミニウム合金およびその製造方法
JPH03222796A (ja) * 1990-01-30 1991-10-01 Nippon Light Metal Co Ltd 平版印刷版用アルミニウム支持体
US5028276A (en) 1990-02-16 1991-07-02 Aluminum Company Of America Method for making lithoplate having improved grainability
JPH0755373B2 (ja) * 1990-09-18 1995-06-14 住友軽金属工業株式会社 アルミニウム合金クラッド材および熱交換器
FR2707092B1 (fr) 1993-06-28 1995-08-25 Pechiney Rhenalu Produit métallurgique en alliage d'Al à durcissement structural présentant une variation continue des propriétés d'emploi suivant une direction donnée et un procédé et dispositif d'obtention de celui-ci.
KR0165927B1 (ko) * 1995-05-18 1999-01-15 우사미 카즈오 강도 및 성형성이 우수한 핀 형성용 알루미늄 합금 및 그 제조방법
US6129143A (en) 1996-08-08 2000-10-10 Denso Corporation Brazing sheet having an excellent corrosion resistance for use in a heat exchanger, and a heat exchanger using the same
RU2142187C1 (ru) * 1997-07-18 1999-11-27 Общество с ограниченной ответственностью "Таврида Электрик Р" Реклоузер (автоматический выключатель воздушных линий) серии tel
DE29924474U1 (de) * 1999-07-02 2003-08-28 Hydro Aluminium Deutschland GmbH, 53117 Bonn Lithoband
FR2797454B1 (fr) * 1999-08-12 2001-08-31 Pechiney Rhenalu Bande ou tube en alliage d'aluminium pour la fabrication d'echangeurs de chaleur brases
AUPQ485399A0 (en) 1999-12-23 2000-02-03 Commonwealth Scientific And Industrial Research Organisation Heat treatment of age-hardenable aluminium alloys
RU2221891C1 (ru) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия
JP4932473B2 (ja) 2003-03-17 2012-05-16 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 一体化されたモノリシックアルミニウム構造の製造方法およびその構造から機械加工されたアルミニウム製品
EP2123386A1 (de) 2003-10-20 2009-11-25 Furukawa-Sky Aluminum Corporation Ein Kunststoff beschichtes flaches Mehrkanäle-Rohr in Aluminium mit gewählter Rugosität ; Verfahren zur Herstellung eines solchen flachen Rohres
US20050217770A1 (en) 2004-03-23 2005-10-06 Philippe Lequeu Structural member for aeronautical construction with a variation of usage properties
EP1753885B2 (de) 2004-05-26 2022-08-24 Novelis Koblenz GmbH Verfahren zur herstellung eines aluminiumlegierungslötblechs und aluminiumlegierungslötblech
US7407714B2 (en) * 2004-05-26 2008-08-05 Aleris Aluminum Koblenz Gmbh Process by producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet
FR2897319B1 (fr) * 2006-02-15 2009-01-23 Pechiney Softal Soc Par Action Composants de structure de caisse automobile pour absorption d'energie de choc en alliage d'aluminium de la famille 3000
JP5054364B2 (ja) 2006-12-08 2012-10-24 株式会社神戸製鋼所 アルミニウム合金板の製造方法
WO2009043426A1 (en) 2007-10-04 2009-04-09 Aleris Aluminum Koblenz Gmbh A method for manufacturing a wrought metal plate product having a gradient in engineering properties
JP4444354B2 (ja) * 2008-08-04 2010-03-31 株式会社東芝 画像処理装置、および画像処理方法
US20100279143A1 (en) 2009-04-30 2010-11-04 Kamat Rajeev G Multi-alloy composite sheet for automotive panels
JP5750237B2 (ja) * 2010-05-25 2015-07-15 株式会社Uacj アルミニウム合金製熱交換器の製造方法
CN101956102B (zh) * 2010-10-27 2012-05-23 江苏格林威尔金属材料科技有限公司 热交换器用平行流管及其制造方法
JP5746528B2 (ja) 2011-03-15 2015-07-08 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
JP5379883B2 (ja) 2012-05-11 2013-12-25 株式会社神戸製鋼所 アルミニウム合金板およびその製造方法
US9825300B2 (en) * 2012-05-25 2017-11-21 Uacj Corporation Aluminum alloy foil for electrode current collector, method for manufacturing same, and electrode material
CN106661678B (zh) * 2014-09-12 2019-10-22 诺维尔里斯公司 用于高度塑形铝产品的合金及其制作方法

Also Published As

Publication number Publication date
PT2959028T (pt) 2016-09-19
CN105008563A (zh) 2015-10-28
KR20150119369A (ko) 2015-10-23
ES2590779T5 (es) 2020-03-11
US20150368771A1 (en) 2015-12-24
WO2014128212A1 (de) 2014-08-28
EP2770071B9 (de) 2020-08-12
US10501833B2 (en) 2019-12-10
ES2590779T3 (es) 2016-11-23
EP2770071A1 (de) 2014-08-27
RU2637458C2 (ru) 2017-12-04
EP2959028B1 (de) 2016-07-27
PT2770071T (pt) 2017-04-19
CN105008563B (zh) 2018-05-25
CA2899991C (en) 2017-05-02
EP2770071B1 (de) 2017-02-01
JP2016514206A (ja) 2016-05-19
RU2015139899A (ru) 2017-03-24
EP2959028A1 (de) 2015-12-30
EP2770071B2 (de) 2020-04-01
CA2899991A1 (en) 2014-08-28
ES2621871T3 (es) 2017-07-05
JP6143892B2 (ja) 2017-06-07
KR101656419B1 (ko) 2016-09-09
WO2014128212A9 (de) 2014-11-27

Similar Documents

Publication Publication Date Title
EP2959028B2 (de) Verwendung einer aluminiumlegierung zur herstellung von halbzeugen oder bauteilen für kraftfahrzeuge
EP3314031B1 (de) Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung
DE69204092T2 (de) Verfahren zur Herstellung von gehärteten Blechen aus Aluminiumlegierung mit sehr guter thermischer Stabilität.
DE69912850T2 (de) Herstellungsverfahren eines produktes aus aluminium-magnesium-lithium-legierung
EP2570509B1 (de) Herstellverfahren für AlMgSi-Aluminiumband
EP2570257B1 (de) Aluminiumverbundwerkstoff mit AlMgSi-Kernlegierungsschicht
DE69703420T2 (de) Produkt aus AlMgMn-Legierung für Schweissstrukturen mit verbesserter Korossionsbeständigkeit
EP2270249B1 (de) AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
EP2888382B1 (de) Gegen interkristalline korrosion beständiges aluminiumlegierungsband und verfahren zu seiner herstellung
WO2002083967A1 (de) VERFAHREN ZUR HERSTELLUNG VON AlMn-BÄNDERN ODER -BLECHEN
EP2888383B1 (de) Hochumformbares und ik-beständiges almg-band
DE69620771T2 (de) Verwendung von gewalzte aluminiumlegierungen für konstruktionsteile von fahrzeuge
EP2192202B9 (de) Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit
DE602004005529T2 (de) Schmiedealuminiumlegierung
EP1748088B1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils von Fahrwerk- oder Strukturanwendungen im Kraftfahrzeug
EP2703508A1 (de) Gegen interkristalline Korrosion beständige Aluminiumlegierung
EP3690076A1 (de) Verfahren zur herstellung eines blechs oder bands aus einer aluminiumlegierung sowie ein dadurch hergestelltes blech, band oder formteil
DE69012073T2 (de) Hochfestes kaltgewalztes Stahlblech, entweder feuerverzinkt oder nicht, mit verbesserten Streckbördeleigenschaften und Herstellungsverfahren.
EP3178952B9 (de) Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen
EP3970964A1 (de) Aluminiumverbundwerkstoff für crashanwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160205

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HENTSCHEL, THOMAS

Inventor name: ENGLER, OLAF

Inventor name: BRINKMAN, HENK-JAN

Inventor name: DUPUIS, REGINALD

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 815863

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001197

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2959028

Country of ref document: PT

Date of ref document: 20160919

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160908

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2590779

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014001197

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALERIS ALUMINUM DUFFEL BVBA

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20190325

Year of fee payment: 16

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140220

27A Patent maintained in amended form

Effective date: 20190710

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014001197

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190128

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2590779

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 815863

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190220

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200922

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014001197

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 11

Ref country code: GB

Payment date: 20240220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240227

Year of fee payment: 11

Ref country code: FR

Payment date: 20240220

Year of fee payment: 11