EP2957837B1 - Heizungsanlage sowie verfahren zum betreiben einer heizungsanlage - Google Patents

Heizungsanlage sowie verfahren zum betreiben einer heizungsanlage Download PDF

Info

Publication number
EP2957837B1
EP2957837B1 EP15167325.8A EP15167325A EP2957837B1 EP 2957837 B1 EP2957837 B1 EP 2957837B1 EP 15167325 A EP15167325 A EP 15167325A EP 2957837 B1 EP2957837 B1 EP 2957837B1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure
water
pressure sensor
heat consumer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15167325.8A
Other languages
English (en)
French (fr)
Other versions
EP2957837A1 (de
Inventor
Mark Paske Te
Jan Elsen Ten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2957837A1 publication Critical patent/EP2957837A1/de
Application granted granted Critical
Publication of EP2957837B1 publication Critical patent/EP2957837B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1024Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves a multiple way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1036Having differential pressure measurement facilities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0242Multiple way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/046Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks

Definitions

  • the invention relates to a heating system comprising at least one heating circuit, a fluid circulating in the heating circuit, at least one heat generator, a first valve and a second valve.
  • the invention also relates to a method for operating the heating system.
  • Heating devices are used, which are used both for heating heating water and for drinking water. These are often referred to as combi heaters. A valve allows you to switch between the provision of service water and heating water.
  • a heating system having a combination heater also includes an expansion tank that ensures a constant pressure in the heating system. In order to be able to create a pressure balance to the expansion tank at any time, a bypass circuit between the flow and return of the heater is often necessary.
  • Such a bypass circuit has the disadvantage that the heating system loses heat output.
  • the heating system according to the invention comprises at least one heating circuit and a fluid circulating in it.
  • the heating system also includes at least one heat generator, a heat consumer, a water storage tank and/or a fresh water station, a first and a second valve and a pressure sensor, the pressure sensor being located between the first valve and the second valve.
  • the first valve and/or the pressure sensor are connected to a control unit.
  • the pressure sensor, the first valve and the second valve are located in a flow of the heat consumer;
  • the second valve is a thermostatic valve of the heat consumer, and the heat consumer emits heat to the environment;
  • the first valve is a three-way valve, which is located in the flow of the heat consumer, before the water tank and/or the fresh water station and the heat consumer, so that it is possible to switch between heating water and service water requirements as required.
  • the three-way valve opens in the direction of the heat consumer and closes in the direction of the water tank and/or the fresh water station when hot heating water is required, and the three-way valve opens in the direction of the water tank and/or the fresh water station and closes in the direction of the heat consumer when hot domestic water is required .
  • the pressure sensor detects pressure variations to which the heating system can react or be adjusted.
  • a fluid is a medium that can absorb and release heat. These can be, among other things, gaseous, liquid or solid substances.
  • the first and second valves located in the heating circuit have at least one closing and opening function. If a valve closes, the fluid cannot pass through it. If a valve is open, the fluid can flow through the valve pass through.
  • the valve can also be partially open or partially closed.
  • the pressure sensor determines an initial pressure and an instantaneous pressure.
  • An initial pressure is the pressure that is measured by the pressure sensor at a predeterminable initial time.
  • An instantaneous pressure is the pressure that is measured after this initial point in time at a later, specifiable point in time.
  • a pressure difference can be determined from the measurement results, which is defined as the magnitude of the difference between the instantaneous pressure and the initial pressure.
  • the first valve and/or the second valve can be closed or open when measuring the initial or instantaneous pressure.
  • the first valve opens when the pressure difference reaches or exceeds a predefinable maximum pressure difference.
  • the amount of the pressure difference is considered.
  • a maximum pressure difference is the amount of a pressure difference up to which safe operation of the heating system is guaranteed. If the maximum pressure difference is reached or exceeded, the first or second valve blocks.
  • a minimal pressure is to be understood analogously. If the maximum pressure difference is reached or exceeded, or if the minimum pressure is reached or fallen below, appropriate steps must be taken to equalize the pressure.
  • the instantaneous pressure can be compared with the minimum pressure that can be specified. If the instantaneous pressure falls below the specifiable minimum pressure, the valve opens. This ensures safe operation of the heating system under optimized conditions.
  • the first valve or the pressure sensor is connected to a control unit. Both components, the first valve and the pressure sensor, can also be connected to the control unit. This can be a direct or indirect connection.
  • the pressure sensor can send a signal to the control unit, which then processes this signal.
  • the pressure sensor sends the instantaneous pressure to the control unit.
  • the control unit can evaluate the signal and open the first valve when the pressure difference reaches or exceeds the predefinable maximum pressure difference. Analogously, the control unit can open the first valve when the instantaneous pressure reaches or falls below the predefinable minimum pressure.
  • Parameters and/or values are specified for operating the heating system.
  • control unit can control the first valve according to such predeterminable parameters and/or values when the pressure difference does not reach the predeterminable maximum pressure difference and/or the momentary pressure does not reach the predeterminable minimum pressure.
  • the pressure sensor and the first valve can form a unit. This can represent a cost-effective variant, which can also facilitate installation within the heating circuit.
  • the invention also relates to a method for operating a heating system according to claim 4.
  • the method is characterized in that the first valve is at least partially opened when the pressure difference determined by the pressure sensor reaches or exceeds a definable maximum pressure difference and/or when the instantaneous pressure reaches or falls below a definable minimum pressure.
  • the first valve is controlled and/or regulated according to specifiable parameters and/or values if the pressure difference does not reach the specifiable maximum pressure difference and/or the measured pressure does not reach the specifiable minimum pressure.
  • a warning message can be issued, in particular flashing and/or a sound and/or text. This offers the advantage that possible errors can be reacted to quickly and adequately.
  • the only figure shows an embodiment of a heating system according to the invention.
  • the figure shows an embodiment of a heating system 10 according to the invention.
  • the heating system 10 has a heating circuit 12 in which water circulates.
  • a pump 20 is located in the heating circuit 12 to circulate the water.
  • An expansion tank 28 absorbs the pressure differences caused by temperature differences in the circulating water and thus ensures a balanced pressure within the heating system.
  • a heat generator 16 which heats the water circulating in the heating circuit 12 .
  • a heat consumer 24 with a thermostatic valve 26, heat is released to the environment.
  • a water reservoir 18 or a fresh water station stores heated water, which can be used to heat service water depending on requirements.
  • a heat exchanger (not shown) is located in the water reservoir 18 for this purpose.
  • a three-way valve 30 is located in the flow of the heat generator 24 in front of the water tank 18 and the heat consumer 24, so that you can switch between heating water and hot water requirement as needed.
  • the three-way valve 30 opens in the direction of the water storage tank 18, whereas it is closed in the direction of the heat consumer 24.
  • the three-way valve 30 opens in the direction of the heat consumer 24 and in the direction of the water storage tank 18 it closes.
  • the thermostatic valve 26 closes or opens depending on the requirement: if a predefinable setpoint temperature is reached, it closes, otherwise it is partially or fully open.
  • a pressure sensor 36 is located between the three-way valve 30 and the thermostatic valve 26 of the heat consumer 24.
  • the pressure sensor 36 is connected to a control unit 38 so that communication is possible.
  • This connection can be a wired or wireless connection, for example.
  • the control unit 38 represents a separate unit. Alternatives are of course conceivable.
  • the control unit 38 can also be located in the heat generator 16 .
  • control unit 38 There are also connections from the control unit 38 to other components of the heating system 10, such as the pump 20 to which Water tank 18, to the heat consumer 24, to the three-way valve 30 and the thermostatic valve 26.
  • the pressure sensor 36 measures the pressure at regular time intervals, including the initial pressure, ie the pressure at a predeterminable initial time. It then measures the instantaneous pressure present at the three-way valve 30 at a later point in time that can be predetermined.
  • the first valve 30 and/or the second valve 26 can be closed or open, in particular partially open.
  • the pressure sensor 36 forwards the measured pressure values to the control unit 38, which evaluates them.
  • the control unit 38 calculates, among other things, the pressure difference, which is the amount of the difference between the initial pressure and the current pressure, a pressure gradient, the minimum pressure and/or the maximum pressure difference, unless these are specified.
  • the control and/or regulating unit 38 thus monitors changes in the pressure at a specific time interval via the pressure sensor 36 .
  • the control unit 38 generates corresponding commands or signals which are sent to the pressure sensor 36 and/or to the three-way valve 30 for execution.
  • the pressure sensor 36 can also be a direct connection between the pressure sensor 36 and the three-way valve 30 .
  • the pressure sensor 36 and the three-way valve 30 communicate directly with each other.
  • the pressure sensor 36 itself evaluates the measured pressure values and sends commands, for example in the form of signals, to the three-way valve 30.
  • the three-way valve 30 and the thermostatic valve 26 are closed at the same time, there may be water in the line between the three-way valve 30 and the thermostatic valve 26, which is referred to as trapped water. If the water is warm, it will cool down over time. The pressure of the trapped water drops. For safety reasons, the pressure of the trapped cold water must not fall below a minimum allowable pressure. Alternatively or at the same time, the pressure difference at the three-way valve 30 must not exceed a maximum permissible pressure difference exceed, otherwise the force of the pressure difference could exceed the force of the three-way valve 30, so that the three-way valve 30 is blocked.
  • the minimum pressure or the maximum pressure difference are parameters that can be specified or calculated and are dependent on the existing heating system.
  • the control unit 38 checks whether the currently measured pressure reaches or falls below a minimum pressure or whether the pressure difference reaches or exceeds a maximum pressure difference. Instantaneous pressure and pressure difference can also be taken into account at the same time.
  • the pressure sensor 36 checks whether the minimum pressure and/or the maximum pressure difference has been reached, provided that the pressure sensor 36 has the necessary means.
  • the control unit 38 or the pressure sensor 36 now determines that the minimum pressure is reached or fallen below or that the maximum pressure difference is reached or exceeded, the control unit 38 sends a signal to open the three-way valve 30. If between the pressure sensor 36 and there is a direct connection to the three-way valve 30, the pressure sensor 36 can also send the signal to open directly to the three-way valve 30. By opening the three-way valve 30, the pressure conditions are normalized. After the pressure sensor 36 detects a normalized pressure, the pressure sensor 36 sends a closing signal to the control unit 38 or alternatively to the three-way valve 30, so that the three-way valve 30 closes again in the direction of the heat consumer 24 or assumes the position required for heating control.
  • connection to the three-way valve 30 and the pressure sensor 36 exists or not is faulty. This can be done, for example, by the control unit 38 , for example by sending a request signal to the pressure sensor 36 at regular intervals and waiting for a response signal to be received from the pressure sensor 36 .
  • similar or other procedures for checking the connection can also be carried out by the pressure sensor 36 itself or by the heat generator 16 or by other components of the heating system 10 .
  • the corresponding component such as the control unit 38, issues a warning, for example a flashing and/or a single or repeated tone and/or a text message, which appears on a display.
  • the control unit 38 can send a corresponding warning signal to an external unit (not shown), which outputs the warning.
  • This external unit can be located in a living room, for example, so that the warning is immediately noticed by people present.
  • control unit 38 can initiate appropriate steps to ensure the safety of the heating system 10, such as opening the three-way valve 30 or, in particular if the pressure does not normalize, stopping the operation of the heating system 10.
  • the pressure sensor 36 can check whether there is a connection to the heat generator 16 and/or to the three-way valve 30 or whether it is faulty. If the pressure sensor 36 has the necessary means, it issues a warning, for example a flashing light and/or a tone, if it detects problems with the connection. If necessary, he initiates appropriate steps to ensure the safety of the heating system 10 . For example, he can cause the three-way valve 30 to open and, if the pressure does not normalize, send a warning signal to the control unit 38, which then stops the operation of the heating system 10, for example.
  • a warning for example a flashing light and/or a tone
  • the control unit 38 records the measured pressure values and calculated pressure differences. Furthermore, it saves the cases in which the minimal pressure and/or the maximum pressure difference has been reached. The data can be read out and/or retrieved from the control unit 38 for diagnostic and prognostic purposes as required.
  • the pressure sensor 36 can alternatively or simultaneously record and/or store the measured pressure values and calculated pressure differences, which can then be called up as required.
  • a pressure measurement is carried out at the pressure sensor 36 .
  • the three-way valve 30 is partially or fully opened in a step of the method, if it was previously closed. This achieves a normalization of the pressure without influencing the heating of the drinking water.
  • the opened three-way valve 30 is closed again, unless there is another requirement, for example a heating water requirement, so that the three-way valve 30 and the thermostatic valve 26 have to be opened.
  • the three-way valve 30 and the thermostatic valve 26 are regulated and controlled according to specifiable values or parameters, for example according to a specifiable setpoint temperature or an upcoming hot water tapping.
  • a request signal is sent to the pressure sensor 36 at regular intervals and a response signal is received from the pressure sensor 36 .
  • An error analysis is either carried out automatically at regular intervals or started externally.
  • a warning is issued, such as a blink, a tone, and/or text on a display.
  • the heating system 10 may need to be shut down to prevent damage from increasing pressure imbalance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

  • Die Erfindung betrifft eine Heizungsanlage, umfassend mindestens einen Heizkreis, ein im Heizkreis zirkulierendes Fluid, mindestens einen Wärmeerzeuger, ein erstes Ventil und ein zweites Ventil. Weiter betrifft die Erfindung ein Verfahren zum Betreiben der Heizungsanlage.
  • Stand der Technik
  • Es werden Heizgeräte eingesetzt, welche sowohl zum Erwärmen von Heizwasser als auch von Trinkwasser verwendet werden. Diese werden oft als Kombi-Heizgeräte bezeichnet. Hierbei ermöglicht ein Ventil den Wechsel zwischen Brauchwasser- und Heizwasserbereitstellung.
  • Eine ein Kombi-Heizgerät aufweisende Heizungsanlage umfasst auch ein Ausdehnungsgefäß, das für einen konstanten Druck in der Heizungsanlage sorgt. Um zu jeder Zeit einen Druckausgleich zum Ausdehnungsgefäß herstellen zu können, ist oftmals eine Bypassschaltung zwischen Vorlauf und Rücklauf des Heizgerätes notwendig.
  • Eine solche Bypassschaltung hat den Nachteil, dass die Heizungsanlage an Heizleistung verliert.
  • Mit der EP 1619453 A1 ist eine Wärmeheizanlage mit einer hydraulischen Schutzschaltung bekannt geworden. Dort ist beschrieben, einen Drucksensor einzusetzen, um möglicherweise auftretende Leckagen zu erkennen. Auf eine Bypassschaltung wurde zwar verzichtet, ein Druckausgleich zu jeder Zeit zum Ausdehnungsgefäß ist jedoch nicht garantiert.
  • Dokument EP2613097 A1 offenbart eine Heizungsanlage mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Offenbarung der Erfindung
  • Dieser Nachteil des Stands der Technik wird durch die erfindungsgemäße Heizungsanlage gemäß dem Hauptanspruch 1 behoben. Die erfindungsgemäße Heizungsanlage umfasst mindestens einen Heizkreis und ein in diesem zirkulierendes Fluid. Weiter umfasst die Heizungsanlage mindestens einen Wärmeerzeuger, einen Wärmeverbraucher, einen Wasserspeicher und/oder eine Frischwasserstation, ein erstes und ein zweites Ventil sowie einen Drucksensor, wobei sich der Drucksensor zwischen dem ersten Ventil und dem zweiten Ventil befindet. Das erste Ventil und/oder der Drucksensor sind mit einer Steuereinheit verbunden.
  • In der erfindungsgemäßen Heizungsanlage befinden sich der Drucksensor, das erste Ventil und das zweite Ventil in einem Vorlauf des Wärmeverbrauchers; das zweite Ventil ein Thermostatventil des Wärmeverbrauchers ist, und der Wärmeverbraucher Wärme an die Umgebung abgibt; das erste Ventil ein Dreiwegeventil ist, das sich im Vorlauf des Wärmeverbrauchers, vor dem Wasserspeicher und/oder der Frischwasserstation und dem Wärmeverbraucher, befindet, so dass zwischen Heizwasser- und Brauchwasseranforderung je nach Bedarf gewechselt werden kann. Das Dreiwegeventil öffnet in Richtung des Wärmeverbrauchers und schließt in Richtung des Wasserspeichers und/oder der Frischwasserstation, wenn warmes Heizwasser benötigt wird, und das Dreiwegeventil öffnet in Richtung des Wasserspeichers und/oder der Frischwasserstation und schließt in Richtung des Wärmeverbrauchers, wenn warmes Brauchwasser angefordert wird.
  • Der Drucksensor stellt Druckvariationen fest, auf die die Heizungsanlage reagieren oder eingestellt werden kann.
  • Unter einem Fluid ist ein Medium zu verstehen, welches Wärme aufnehmen und abgeben kann. Dies können unter anderem gasförmige, flüssige oder auch feste Stoffe sein.
  • Die sich im Heizkreis befindlichen ersten und zweiten Ventile verfügen mindestens über eine Schließ- und Öffnungsfunktion. Schließt ein Ventil, so kann das Fluid dieses nicht passieren. Ist ein Ventil geöffnet, so kann das Fluid durch das Ventil hindurchtreten. Das Ventil kann auch teilweise geöffnet oder geschlossen sein.
  • Der Drucksensor bestimmt einen Anfangsdruck und einen momentanen Druck. Ein Anfangsdruck ist der Druck, der zu einem vorgebbaren Anfangszeitpunkt vom Drucksensor gemessen wird. Ein momentaner Druck ist der Druck, der nach diesem Anfangszeitpunkt zu einem vorgebbaren späteren Zeitpunkt gemessen wird. Aus den Messergebnissen kann eine Druckdifferenz bestimmt werden, welche definiert ist als der Betrag der Differenz zwischen dem momentanen Druck und dem Anfangsdruck. Das erste Ventil und/oder das zweite Ventil kann bei der Messung des Anfangs- oder momentanen Druckes geschlossen oder geöffnet sein.
  • Es ist vorteilhaft, wenn das erste Ventil öffnet, wenn die Druckdifferenz eine vorgebbare maximale Druckdifferenz erreicht oder überschreitet. Hierbei wird der Betrag der Druckdifferenz betrachtet.
  • Eine maximale Druckdifferenz ist der Betrag einer Druckdifferenz, bis zu welcher der sichere Betrieb der Heizungsanlage gewährleistet ist. Wird die maximale Druckdifferenz erreicht oder überschritten, so blockiert das erste oder zweite Ventil.
  • Analog ist ein minimaler Druck zu verstehen. Wird die maximale Druckdifferenz erreicht oder überschritten bzw. der minimale Druck erreicht oder unterschritten, so müssen entsprechende Schritte zum Druckausgleich eingeleitet werden.
  • Analog zur Druckdifferenz kann also der momentane Druck mit dem vorgebbaren minimalen Druck verglichen werden. Sofern der momentane Druck den vorgebbaren minimalen Druck unterschreitet, öffnet das Ventil. So wird der sichere Betrieb der Heizungsanlage unter optimierten Bedingungen gewährleistet.
  • Um einen optimierten Betrieb zu ermöglichen, ist das erste Ventil oder der Drucksensor mit einer Steuereinheit verbunden sind. Auch beide Komponenten, das erste Ventil und der Drucksensor, können mit der Steuereinheit verbunden sein. Hierbei kann es sich um eine direkte oder indirekte Verbindung handeln. Beispielsweise kann der Drucksensor ein Signal an die Steuereinheit senden, welche dieses Signal dann bearbeitet.
  • Hierbei ist es weiter vorteilhaft, wenn der Drucksensor den momentanen Druck an die Steuereinheit sendet. Die Steuereinheit kann das Signal auswerten und das erste Ventil öffnen, wenn die Druckdifferenz die vorgebbare maximale Druckdifferenz erreicht oder übersteigt. Analog kann die Steuereinheit das erste Ventil öffnen, wenn der momentane Druck den vorgebbaren minimalen Druck erreicht oder unterschreitet.
  • Zum Betrieb der Heizungsanlage werden Parameter und/oder Werte vorgegeben.
  • Hierfür ist es von Vorteil, wenn die Steuereinheit das erste Ventil gemäß solcher vorgebbaren Parameter und/oder Werte steuern kann, wenn die Druckdifferenz die vorgebbare maximale Druckdifferenz und/oder der momentane Druck den vorgebbaren minimalen Druck nicht erreicht.
  • Der Drucksensor und das erste Ventil können eine Einheit bilden. Dies kann eine kostengünstige Variante darstellen, welche zugleich die Installation innerhalb des Heizkreises erleichtern kann.
  • Die Erfindung betrifft auch ein Verfahren zum Betreiben einer Heizungsanlage gemäß Anspruch 4.
  • Das Verfahren zeichnet sich dadurch aus, dass das erste Ventil mindestens teilweise geöffnet wird, wenn die von dem Drucksensor bestimmte Druckdifferenz eine vorgebbare maximale Druckdifferenz erreicht oder übersteigt und/oder wenn der momentane Druck einen vorgebbaren minimalen Druck erreicht oder unterschreitet.
  • Es ist von Vorteil, wenn das erste Ventil gemäß vorgebbaren Parametern und/oder Werten gesteuert und/oder geregelt wird, sofern die Druckdifferenz die vorgebbare maximale Druckdifferenz und/oder der gemessene Druck den vorgebbaren minimalen Druck nicht erreicht.
  • Um einen sicheren Betrieb der Heizungsanlage zu gewährleisten, ist es vorteilhaft, wenn entsprechende Schritte eingeleitet werden, sofern die Verbindung zwischen der Steuereinheit und dem Drucksensor nicht besteht oder fehlerhaft ist. In diesem Fall kann eine Warnmeldung ausgegeben werden, insbesondere ein Blinken und/oder ein Ton und/oder ein Text. Dies bietet den Vorteil, dass auf mögliche Fehler schnell und adäquat reagiert werden kann.
  • Zeichnung
  • Die einzige Figur zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Heizungsanlage.
  • Beschreibung der Zeichnungen
  • Die Figur zeigt ein Ausführungsbeispiel einer erfindungsgemäßen Heizungsanlage 10. Die Heizungsanlage 10 weist einen Heizkreis 12 auf, in welchem Wasser zirkuliert. Zur Zirkulation des Wassers befindet sich im Heizkreis 12 eine Pumpe 20. Weiter weist der Heizkreis 12 ein Absperrventil 22 auf. Ein Ausdehnungsgefäß 28 fängt die durch Temperaturdifferenzen des zirkulierenden Wassers entstehenden Druckunterschiede auf und sorgt so für einen ausgeglichenen Druck innerhalb des Heizsystems.
  • Im Heizkreis 12 befindet sich ein Wärmeerzeuger 16, welcher das im Heizkreis 12 zirkulierende Wasser erwärmt. Über einen Wärmeverbraucher 24 mit einem Thermostatventil 26 wird Wärme an die Umgebung abgegeben. Ein Wasserspeicher 18 bzw. eine Frischwasserstation speichert erwärmtes Wasser, welches je nach Anforderung zur Erwärmung von Brauchwasser verwendet werden kann. Hierfür befindet sich in dem Wasserspeicher 18 ein Wärmetauscher (nicht dargestellt).
  • Ein Dreiwegeventil 30 befindet sich im Vorlauf des Wärmeerzeugers 24 vor dem Wasserspeicher 18 und dem Wärmeverbraucher 24, so dass zwischen Heizwasser- und Brauchwasseranforderung je nach Bedarf gewechselt werden kann.
  • Wird warmes Brauchwasser angefordert, so öffnet das Dreiwegeventil 30 in Richtung des Wasserspeichers 18, wohingegen in Richtung des Wärmeverbrauchers 24 geschlossen wird.
  • Wird warmes Heizwasser benötigt, so öffnet das Dreiwegeventil 30 in Richtung des Wärmeverbrauchers 24, und in Richtung des Wasserspeichers 18 schließt es. Das Thermostatventil 26 schließt oder öffnet je nach Anforderung: Ist eine vorgebbare Sollwerttemperatur erreicht, so schließt es, ansonsten ist es teilweise oder ganz geöffnet.
  • Zwischen dem Dreiwegeventil 30 und dem Thermostatventil 26 des Wärmeverbrauchers 24 befindet sich ein Drucksensor 36. Der Drucksensor 36 ist mit einer Steuereinheit 38 verbunden, so dass eine Kommunikation möglich ist. Bei dieser Verbindung kann es sich beispielsweise um eine kabelgebundene oder kabellose Verbindung handeln. Im Ausführungsbeispiel stellt die Steuereinheit 38 eine eigene Einheit dar. Alternativen sind selbstverständlich denkbar. So kann sich die Steuereinheit 38 ebenso im Wärmeerzeuger 16 befinden.
  • Es bestehen auch Verbindungen von der Steuereinheit 38 zu weiteren Komponenten der Heizungsanlage 10, wie zu der Pumpe 20, zu dem Wasserspeicher 18, zu dem Wärmeverbraucher 24, zum Dreiwegeventil 30 und dem Thermostatventil 26.
  • Der Drucksensor 36 misst in regelmäßigen Zeitabständen den Druck, unter anderem den Anfangsdruck, das heißt, den Druck zu einem vorgebbaren Anfangszeitpunkt. Danach misst er den am Dreiwegeventil 30 vorhandenen momentanen Druck zu einem vorgebbaren späteren Zeitpunkt. Dabei können das erste Ventil 30 und/oder das zweite Ventil 26 geschlossen oder geöffnet, insbesondere teilweise geöffnet, sein.
  • Der Drucksensor 36 leitet die gemessenen Druckwerte an die Steuereinheit 38 weiter, welche diese auswertet. Die Steuereinheit 38 berechnet unter anderem die Druckdifferenz, welche der Betrag der Differenz zwischen Anfangsdruck und momentanem Druck ist, einen Druckgradienten, den minimalen Druck und/oder die maximale Druckdifferenz, sofern diese nicht vorgegeben sind. So überwacht die Steuer- und/oder Regeleinheit 38 über den Drucksensor 36 Änderungen im Druck in einem bestimmten Zeitintervall. Die Steuereinheit 38 generiert schließlich entsprechende Befehle oder Signale, die an den Drucksensor 36 und/oder an das Dreiwegeventil 30 zur Ausführung gesendet werden.
  • Alternativ kann auch eine direkte Verbindung zwischen dem Drucksensor 36 und dem Dreiwegeventil 30 bestehen. In diesem Fall kommunizieren der Drucksensor 36 und das Dreiwegeventil 30 direkt miteinander. In diesem Fall wertet der Drucksensor 36 selbst die gemessenen Druckwerte aus und sendet Befehle, beispielsweise in Form von Signalen, an das Dreiwegeventil 30.
  • Sind das Dreiwegeventil 30 und das Thermostatventil 26 gleichzeitig geschlossen, so kann sich in der Leitung zwischen dem Dreiwegeventil 30 und dem Thermostatventil 26 Wasser befinden, welches als gefangenes Wasser bezeichnet wird. Handelt es sich hierbei um warmes Wasser, so kühlt dieses mit der Zeit aus. Der Druck des gefangenen Wassers fällt ab. Aus Sicherheitsgründen darf der Druck des gefangenen, kalten Wassers nicht unter einen minimal erlaubten Druck fallen. Alternativ oder zugleich darf die Druckdifferenz am Dreiwegeventil 30 eine maximal erlaubte Druckdifferenz nicht überschreiten, da sonst die Kraft der Druckdifferenz die Kraft des Dreiwegeventils 30 überschreiten könnte, so dass das Dreiwegeventil 30 blockiert.
  • Der minimale Druck bzw. die maximale Druckdifferenz sind vorgebbare oder berechenbare Größen, die abhängig vom vorhandenen Heizsystem sind.
  • Die Steuereinheit 38 überprüft, ob der momentan gemessene Druck einen minimalen Druck erreicht oder unterschreitet oder ob die Druckdifferenz eine maximale Druckdifferenz erreicht oder überschreitet. Es können auch momentaner Druck und Druckdifferenz gleichzeitig berücksichtigt werden.
  • Alternativ überprüft der Drucksensor 36, ob der minimale Druck und/oder die maximale Druckdifferenz erreicht wurden, sofern der Drucksensor 36 über die nötigen Mittel verfügt.
  • Wird der minimale Druck oder die maximale Druckdifferenz erreicht, so müssen Maßnahmen zum Druckausgleich eingeleitet werden.
  • Stellt die Steuereinheit 38 bzw. der Drucksensor 36 nun fest, dass der minimale Druck erreicht oder unterschritten wird oder dass die maximale Druckdifferenz erreicht oder überschritten wird, so sendet die Steuereinheit 38 ein Signal zum Öffnen an das Dreiwegeventil 30. Sofern zwischen dem Drucksensor 36 und dem Dreiwegeventil 30 eine direkte Verbindung besteht, kann der Drucksensor 36 das Signal zum Öffnen auch direkt an das Dreiwegeventil 30 senden. Durch das Öffnen des Dreiwegeventils 30 normalisieren sich die Druckverhältnisse. Nachdem der Drucksensor 36 einen normalisierten Druck feststellt, sendet der Drucksensor 36 ein Signal zum Schließen an die Steuereinheit 38 oder alternativ an das Dreiwegeventil 30, so dass das Dreiwegeventil 30 in Richtung des Wärmeverbrauchers 24 wieder schließt oder die dann für die Heizungsregelung notwendige Stellung einnimmt.
  • Aus Sicherheitsgründen wird in regelmäßigen Abständen überprüft, ob die Verbindung zu dem Dreiwegeventil 30 und dem Drucksensor 36 besteht oder fehlerhaft ist. Dies kann beispielsweise durch die Steuereinheit 38 erfolgen, indem sie beispielsweise in regelmäßigen Abständen ein Anfragesignal an den Drucksensor 36 sendet und auf den Empfang eines Antwortsignals vom Drucksensor 36 wartet. Ähnliche oder andere Vorgehensweisen zur Überprüfung der Verbindung können aber auch durch Drucksensor 36 selbst oder den Wärmeerzeuger 16 oder durch andere Komponenten der Heizungsanlage 10 durchgeführt werden.
  • Wird eine fehlerhafte oder nicht vorhandene Verbindung festgestellt, so gibt die entsprechende Komponente, wie die Steuereinheit 38, einen Warnhinweis aus, beispielsweise ein Blinken und/oder einen einmaligen oder mehrmaligen Ton und/oder eine Textmeldung, die auf einer Anzeige erscheint. Alternativ kann die Steuereinheit 38 ein entsprechendes Warnsignal an eine externe Einheit (nicht dargestellt) senden, welche den Warnhinweis ausgibt. Diese externe Einheit kann sich beispielsweise in einem Wohnraum befinden, so dass der Warnhinweis von anwesenden Personen sofort wahrgenommen wird.
  • Weiter kann die Steuereinheit 38 entsprechende Schritte zur Gewährleistung der Sicherheit der Heizungsanlage 10 einleiten, wie beispielsweise das Öffnen des Dreiwegeventils 30 oder, insbesondere wenn der Druck sich nicht normalisiert, das Einstellen des Betriebes der Heizungsanlage 10.
  • Alternativ oder zugleich kann der Drucksensor 36 überprüfen, ob eine Verbindung zum Wärmeerzeuger 16 und/oder zum Dreiwegeventil 30 besteht oder fehlerhaft ist. Verfügt der Drucksensor 36 über die nötigen Mittel, so gibt er einen Warnhinweis aus, beispielsweise ein Blinken und/oder einen Ton, sofern er Probleme mit der Verbindung feststellt. Er leitet, sofern nötig, entsprechende Schritte zur Gewährleistung der Sicherheit der Heizungsanlage 10 ein. Beispielsweise kann er das Öffnen des Dreiwegeventils 30 veranlassen und, falls der Druck sich nicht normalisiert, ein Warnsignal an die Steuereinheit 38 senden, welche dann beispielsweise den Betrieb der Heizungsanlage 10 einstellt.
  • Die Steuereinheit 38 zeichnet die gemessenen Druckwerte und berechneten Druckdifferenzen auf. Desweiteren speichert sie die Fälle, in denen der minimale Druck und/oder die maximale Druckdifferenz erreicht wurden. Die Daten können bei Bedarf aus der Steuereinheit 38 zu Diagnose- und Prognosezwecken ausgelesen und/oder abgerufen werden.
  • Verfügt der Drucksensor 36 über entsprechende Mittel, so kann dieser alternativ oder zugleich die gemessenen Druckwerte und berechneten Druckdifferenzen aufzeichnen und/oder speichern, die dann bei Bedarf abgerufen werden.
  • Aus diesem Ausführungsbeispiel geht hervor, dass das Prinzip auf viele verschiedene Heizungsanlagen anwendbar ist, bei denen es aufgrund von gefangenem, abkühlendem Wasser zu einem Druckungleichgewicht im Heizsystem kommen kann.
  • Es ist auch denkbar, dass zum Druckausgleich ein gesonderter Weg im Dreiwegeventil 30 geöffnet werden kann und nicht das gesamte Ventil angesteuert werden muss.
  • Im Folgenden wird unter Zuhilfenahme des Ausführungsbeispiels die prinzipielle Funktionsweise des Verfahrens beschrieben.
  • Am Drucksensor 36 wird eine Druckmessung durchgeführt.
  • Wird ein minimal erlaubter Druck und/oder eine maximal erlaubter Druckdifferenz festgestellt, so wird das Dreiwegeventil 30 in einem Schritt des Verfahrens teilweise oder ganz geöffnet, sofern es zuvor geschlossen war. Hierdurch wird eine Normalisierung des Druckes erreicht, ohne die Erwärmung des Trinkwassers zu beeinflussen.
  • Sobald der Druck normalisiert ist, wird das geöffnete Dreiwegeventil 30 wieder geschlossen, es sei denn, es besteht eine anderweitige Anforderung, beispielsweise eine Heizwasseranforderung, so dass das Dreiwegeventil 30 und das Thermostatventil 26 geöffnet werden müssen.
  • Solange der gemessene Druck über dem minimalen Druck und/oder die Druckdifferenz unter der maximalen Druckdifferenz bleibt, werden das Dreiwegeventil 30 und das Thermostatventil 26 gemäß vorgebbaren Werten oder Parametern geregelt und gesteuert, beispielsweise gemäß einer vorgebbaren Sollwerttemperatur oder einer anstehenden Warmwasserzapfung.
  • In einem weiteren Schritt des Verfahrens wird überprüft, ob zumindest die Verbindung zwischen Steuereinheit 38, Drucksensor 36 und Dreiwegeventil 30 besteht oder fehlerhaft ist. Hierfür wird beispielsweise in regelmäßigen Abständen ein Anfragesignal an den Drucksensor 36 gesendet und auf den Empfang eines Antwortsignals vom Drucksensor 36 gewartet. Eine Fehleranalyse wird entweder automatisch in regelmäßigen Abständen durchgeführt oder von außen gestartet.
  • Wird eine nicht bestehende oder fehlerhafte Verbindung festgestellt, so werden Schritte zur Gewährleistung der Sicherheit der Heizungsanlage eingeleitet. Beispielsweise wird in einem Schritt des Verfahrens ein Warnhinweis ausgegeben, wie ein Blinken, ein Ton und/oder ein Text auf einer Anzeige. In einem anderen Schritt kann es notwendig sein, dass die Heizungsanlage 10 heruntergefahren wird, um Schäden durch ein steigendes Druckungleichgewicht zu vermeiden.

Claims (6)

  1. Heizungsanlage, umfassend mindestens einen Heizkreis (12), ein im Heizkreis (12) zirkulierendes Fluid, mindestens einen Wärmeerzeuger (16), einen Wärmeverbraucher (24), einen Wasserspeicher (18) und/oder eine Frischwasserstation, einen Drucksensor (36), ein erstes Ventil (30) und ein zweites Ventil (26) im Heizkreis (12), wobei das erste Ventil (30) und/oder der Drucksensor (36) mit einer Steuereinheit (38) verbunden sind, wobei sich der Drucksensor (36), das erste Ventil (30) und das zweite Ventil (26) in einem Vorlauf des Wärmeverbauchers (24) befinden; das zweite Ventil (26) ein Thermostatventil des Wärmeverbrauchers (24) ist, und der Wärmeverbraucher (24) Wärme an die Umgebung abgibt; das erste Ventil (30) ein Dreiwegeventil ist, das sich im Vorlauf des Wärmeverbrauchers (24), vor dem Wasserspeicher (18) und/oder der Frischwasserstation und dem Wärmeverbraucher (24), befindet, so dass zwischen Heizwasser- und Brauchwasseranforderung je nach Bedarf gewechselt werden kann; das Dreiwegeventil (30) in Richtung des Wärmeverbrauchers (24) öffnet und in Richtung des Wasserspeichers (18) und/oder der Frischwasserstation schließt, wenn warmes Heizwasser benötigt wird, und das Dreiwegeventil (30) in Richtung des Wasserspeichers (18) und/oder der Frischwasserstation öffnet und in Richtung des Wärmeverbrauchers (24) schließt, wenn warmes Brauchwasser angefordert wird,
    dadurch gekennzeichnet, dass sich der Drucksensor (36) zwischen dem ersten Ventil (30) und dem zweiten Ventil (26) befindet.
  2. Heizungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit (38) das erste Ventil (30) gemäß vorgebbaren Parametern und/oder Werten steuert, wenn die vom Drucksensor (36) bestimmte momentane Druckdifferenz eine vorgebbare maximale Druckdifferenz und/oder der momentane Druck einen vorgebbaren minimalen Druck nicht erreicht.
  3. Heizungsanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Drucksensor (36) und das erste Ventil (30) eine Einheit bilden.
  4. Verfahren zum Betreiben einer Heizungsanlage (10) nach einem der Ansprüche 1 bis 3, wobei der Drucksensor (36) den momentanen Druck im Vorlauf des Wärmeverbrauchers (24) an die Steuereinheit (38) sendet, welche das erste Ventil (30) mindestens teilweise öffnet, wenn eine von dem Drucksensor (36) bestimmte momentane Druckdifferenz eine vorgebbare maximale Druckdifferenz im Vorlauf des Wärmeverbrauchers (24) erreicht oder übersteigt und/oder wenn der gemessene Druck im Vorlauf des Wärmeverbrauchers (24) einen vorgebbaren minimalen Druck erreicht oder unterschreitet.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das erste Ventil (30) gemäß vorgebbaren Parametern und/oder Werten gesteuert und/oder geregelt wird, sofern die Druckdifferenz die vorgebbare maximale Druckdifferenz und/oder der momentane Druck den vorgebbaren minimalen Druck nicht erreicht.
  6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass Schritte zur Gewährleistung der Sicherheit der Heizungsanlage (10) eingeleitet werden, sofern die Verbindung zwischen der Steuereinheit (38) und dem Drucksensor (36) nicht besteht oder fehlerhaft ist, und/oder dass eine entsprechende Warnmeldung ausgegeben wird, insbesondere ein Blinken und/oder ein Ton und/oder ein Text.
EP15167325.8A 2014-06-05 2015-05-12 Heizungsanlage sowie verfahren zum betreiben einer heizungsanlage Active EP2957837B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014210745.8A DE102014210745A1 (de) 2014-06-05 2014-06-05 Heizungsanlage sowie Verfahren zum Betreiben einer Heizungsanlage

Publications (2)

Publication Number Publication Date
EP2957837A1 EP2957837A1 (de) 2015-12-23
EP2957837B1 true EP2957837B1 (de) 2022-08-17

Family

ID=53188881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15167325.8A Active EP2957837B1 (de) 2014-06-05 2015-05-12 Heizungsanlage sowie verfahren zum betreiben einer heizungsanlage

Country Status (2)

Country Link
EP (1) EP2957837B1 (de)
DE (1) DE102014210745A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR202100030A2 (tr) 2021-01-04 2021-07-26 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Bi̇r isitici ci̇hazin çaliştirilmasi i̇çi̇n yöntem ve bi̇r odanin ve/veya i̇çme suyu akiminin isitilmasi i̇çi̇n bi̇r isitici ci̇haz

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923296A1 (de) * 1999-05-21 2000-12-07 Baelz Gmbh Helmut Anlage mit Prüfeinrichtung
AT500673B8 (de) * 2003-07-24 2007-02-15 Schwarz Alois Mehrwegventil
DE102004035298B4 (de) * 2004-07-21 2006-08-17 Robert Bosch Gmbh Warmwasserheizanlage mit einer hydraulischen Schutzschaltung und Verfahren zum Betreiben derselben
EP2613097B2 (de) * 2012-01-09 2020-11-18 Grundfos Holding A/S Heizgerät

Also Published As

Publication number Publication date
EP2957837A1 (de) 2015-12-23
DE102014210745A1 (de) 2015-12-17

Similar Documents

Publication Publication Date Title
EP2476963B1 (de) Verfahren zum Füllen und Nachfüllen von Wasser in einen Wasserkreislauf
DE102006023498B4 (de) Zapfluftzufuhrsystem eines Flugzeuges mit einer Schaltanordnung zum Schutz des Zapfluftzufuhrsystems vor Überhitzung
EP2613097B2 (de) Heizgerät
DE102006045035B4 (de) Konstanttemperatur-Flüssigkeitszirkulationsvorrichtung
EP3179173B1 (de) Verfahren und system zum automatischen hydraulischen abgleich von verbrauchern in einer heizungs- und/oder kühlanlage
EP1837611B1 (de) Wärmepumpe
DE102016010396B4 (de) Solaranlage
EP2659199B1 (de) Durchlauferhitzer
EP2957837B1 (de) Heizungsanlage sowie verfahren zum betreiben einer heizungsanlage
DE102011001223A1 (de) Heizungsanlage sowie Betriebsverfahren und Steuereinrichtung für eine Heizungsanlage
DE102014202738B4 (de) Verfahren zum automatisierten hydraulischen Abgleich einer Heizungsanlage
DE102007058575A1 (de) Kraftfahrzeug mit Druckluft gestütztem Kühlsystem
EP2924286A2 (de) Prüfvorrichtung für pumpen
DE102008038733A1 (de) Verfahren zur Vermeidung von Überhitzungsschäden an einer thermischen Solaranlage
EP3101352A1 (de) Verfahren zum betreiben einer heizungsanlage und regler mit differenzdrucksensor
DE19512025C2 (de) Gasheizgerät
EP4141334A1 (de) Verfahren zum betreiben eines heizgerätes, computerprogramm, speichermedium, regel- und steuergerät, heizgerät und verwendung eines signals
DE102014221106A1 (de) Verfahren zur Steuerung oder Regelung eines Fahrzeugklimaanlagen-Kältemittelkreislaufs
DE102015113340A1 (de) Heizungsanlage und Verfahren zum Betreiben einer Heizungsanlage
DE102016115089B3 (de) Sensorvorrichtung für eine Brennkraftmaschine
DE112019004631T5 (de) Entlüftungsanordnung für ein Fahrzeug mit Flüssigerdgastanks
EP3802972A1 (de) Sicherheitsventil und verfahren zur steuerung eines sichereitsventils
DE202018001101U1 (de) Perfektionierte Satellitengruppe der Wasserversorgung
DE10333657B4 (de) Wärmeversorgungseinrichtung
EP3870904B1 (de) Heizgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160623

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170331

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016012

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1512417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015016012

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

26N No opposition filed

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 9

Ref country code: FR

Payment date: 20230517

Year of fee payment: 9

Ref country code: CH

Payment date: 20230605

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230516

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230512

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531