EP2956652B1 - Method for controlling an internal combustion engine - Google Patents

Method for controlling an internal combustion engine Download PDF

Info

Publication number
EP2956652B1
EP2956652B1 EP13811388.1A EP13811388A EP2956652B1 EP 2956652 B1 EP2956652 B1 EP 2956652B1 EP 13811388 A EP13811388 A EP 13811388A EP 2956652 B1 EP2956652 B1 EP 2956652B1
Authority
EP
European Patent Office
Prior art keywords
torque
fuel mass
calculation
lda
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13811388.1A
Other languages
German (de)
French (fr)
Other versions
EP2956652A1 (en
Inventor
Armin DÖLKER
Johannes Baldauf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2956652A1 publication Critical patent/EP2956652A1/en
Application granted granted Critical
Publication of EP2956652B1 publication Critical patent/EP2956652B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2048Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit said control involving a limitation, e.g. applying current or voltage limits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit

Definitions

  • the invention relates to a method for operating an internal combustion engine, in which a setpoint torque is calculated from an input variable representing the desired output, wherein the setpoint torque is limited by a charge-pressure-dependent limit.
  • a desired torque is determined by the control and the internal combustion engine is controlled accordingly in order to set this desired torque.
  • the setpoint torque is the manipulated variable of the speed controller.
  • the fuel mass is corrected as a function of the air mass ratio.
  • a two-dimensional weighting curve with the desired torque is used as the input variable. If the weighting curve has a very steep transition, for example from the value 0 to the value 1 when the nominal torque increases, and the associated correction characteristic field contains values greater than 1, the result is a positive fuel mass in the transition region of the weighting curve as the nominal torque increases. Correction value, d. H. the target fuel mass is raised.
  • a larger fuel mass leads to the calculation of a lower efficiency.
  • a lower efficiency in turn leads to the calculation of a smaller LDA limiting torque. If the setpoint torque is limited during load switching or during startup by the LDA function, the result is a decreasing setpoint torque. Since the setpoint torque represents the input variable of the weighting curve, this reduces the correction value of the fuel mass and thus also the setpoint fuel mass.
  • a delay element can be used. This may, for example, be a filter. Dynamic decoupling is also achieved if a flat or horizontal curve is selected for the weighting curve.
  • a speed controller I component is used as the input variable of a weighting curve.
  • a correction of the fuel mass may also be dynamically decoupled from the calculation of the charge-pressure-dependent limit by dynamically decoupling a calculation of an efficiency from the calculation of the LDA-limiting torque.
  • a stabilization of the speed control loop is achieved according to the invention by dynamically decoupling the calculation of the efficiency from the calculation of the LDA limiting torque.
  • the efficiency z. B. with Help a PT 1 filter are filtered.
  • the time constant of this filter can be set by a parameter.
  • the presented method has, at least in some of the embodiments, considerable advantages. Due to the dynamic decoupling of the fuel mass correction from the calculation of the charge pressure-dependent limitation of the desired torque, the so-called LDA limitation, a stable use of the LDA limitation is made possible. Thus, instabilities are prevented.
  • FIG. 1 illustrates in a graph instability in load switching.
  • a first curve 20 shows the course of the desired injection quantity, a second curve 22 the course of the target speed, a third curve 24, the LDA limit, a fourth curve 26, the course of the actual motor speed, a fifth curve 28, the curve of the maximum torque or Target torque, a sixth curve 30, the air mass ratio dependent fuel mass correction value and a seventh curve 34 the dependent of the injection start correction fuel mass correction value.
  • FIG. 1 thus shows the unstable behavior of an internal combustion engine during load switching.
  • the instability occurs exactly when the desired torque with the boost pressure dependent Limitation, namely the LDA curve, becomes identical.
  • the desired torque with the boost pressure dependent Limitation namely the LDA curve
  • violent vibrations of the setpoint torque, the maximum setpoint torque and the LDA limit occur.
  • FIG. 1 shows that especially the air mass ratio dependent fuel mass correction value has strong vibrations.
  • FIG. 2 shows the calculation of the LDA limit. From the charge air temperature 50, the cylinder volume 52 and the charge air pressure 54, the current air mass 56 is calculated. From this air mass 56 and the actual engine speed 58, the LDA fuel mass 60 is calculated via an LDA map 62.
  • the LDA fuel mass 60 is converted into the LDA moment 66 by multiplication with the efficiency 64.
  • the efficiency 64 is calculated here as the quotient of nominal torque 68 and corrected standard fuel mass 70.
  • Figures 3 and 4 show how the corrected standard fuel mass is calculated.
  • the target torque 100 as the output variable of the speed controller or as a result of the accelerator pedal position is in this case first added to the friction torque 102.
  • the friction torque represents the multiplied by the number of cylinders output of a three-dimensional map.
  • the input variables of this map are the actual engine speed and a virtual temperature. This virtual temperature is made up of two temperatures, e.g. B. the cooling water and the oil temperature calculated.
  • the output of the map is the one Cylinder related friction torque of the engine.
  • the sum of desired torque 100 and friction torque 102 results in the corrected setpoint torque 104. From this corrected setpoint torque and the actual engine speed 106, the normalized fuel mass 110 is determined via the efficiency map 108. It can be used with activated cylinder deactivation or modified engine tuning a separate efficiency map.
  • the normalized fuel mass 110 is subsequently corrected as a function of the air mass ratio 114. Further corrections, z.
  • an injection start correction 116 the ambient air temperature 118, and the fuel temperature 120 eventually results in the corrected standard fuel mass 124 used in calculating the LDA limit to determine efficiency.
  • FIG. 5 shows how the normalized fuel mass is corrected as a function of the air mass ratio:
  • the value 1 is subtracted from the dimensionless output value 200 of a predefinable characteristic map 202 with the input variables air mass ratio 204 and actual engine speed 206.
  • the result is multiplied by the output value 208 of a predeterminable two-dimensional curve 210.
  • This weighting curve 210 has the setpoint torque 212 as an input variable.
  • the result 214 of the multiplication is then added with the value 1.
  • the resulting sum 216 ultimately represents the multiplied correction factor of the normalized fuel mass multiplied by the standard fuel mass 218.
  • FIG. 6 shows the correction of the fuel mass as a function of the air mass ratio according to an embodiment of the proposed method.
  • FIG. 7 shows the charge air pressure limitation LDA according to an embodiment of the illustrated method.
  • this dimensionless quotient is less than one. If there is an excess of air, this quotient is greater than one.
  • the weighting factor is identical to one. Whether the fuel mass is corrected depends in this case on the predefinable three-dimensional, in FIG. 11 displayed map from. If the air mass ratio is greater than 1.0, all map values are identical to 1.0, ie the fuel mass is not corrected. In all other cases, the map values are greater than 1.0, so that the fuel mass corrected, that is multiplicatively increased. If the air mass ratio, for example due to a load application, drops to 0.65 and the actual engine speed simultaneously to 1400 l / min, the fuel mass is corrected upwards by 14%.
  • the weighting factor changes from the value 0 to the value 1.
  • the air mass ratio-dependent correction of the fuel mass starts to take effect, namely, the greater the desired torque . If the actual speed of the motor drops as a result of a load connection, the speed controller increases the setpoint torque. If this is greater than 14000 Nm, the fuel mass is corrected upward because at the same time the air mass ratio decreases. A higher fuel mass causes accordingly FIG. 2 a lower efficiency and thus a reduction of the LDA moment. If the setpoint torque is limited by the LDA moment, the setpoint torque also decreases with the LDA moment. This in turn means that the air mass-dependent correction of the fuel mass is reduced. This increases the efficiency and the LDA moment is raised. Since the setpoint torque is limited by the LDA moment is, also the target torque is raised. Thus, the air mass-dependent correction of the fuel mass is increased again, whereby the efficiency is reduced again, etc.
  • the described instability can be triggered in the same way by the correction of the fuel mass in response to a start of injection correction.
  • Embodiments of the invention are in the FIGS. 6 and 7 shown.
  • the presented method is characterized in that the correction of the fuel mass is dynamically decoupled from the calculation of the LDA moment.
  • FIG. 7 shows a further embodiment of the invention.
  • a PT1 filter 75 is provided.
  • Another embodiment of the invention is characterized by the design of the weighting curve of the fuel mass correction. Does this have a constant value, z. B. the value 1, or a flat course, so also a stabilization of the LDA limit is achieved.
  • FIG. 9 shows a program flowchart for the calculation of the LDA target torque accordingly FIG. 7 .
  • step S1 the actual engine speed is calculated.
  • step S2 the target torque is calculated in step S2.
  • step S3 the corrected standard fuel mass is determined. From the charge air temperature, the charge air pressure and the cylinder volume, the air mass is calculated in step S4.
  • the LDA fuel mass can be determined from the LDA map in step S5.
  • step S6 the efficiency is calculated from the target torque and the corrected standard fuel mass.
  • step S7 the efficiency is filtered by means of a PT 1 filter. The filtered efficiency is multiplied by the LDA fuel mass in step S8.
  • step S8 is finally the desired LDA torque.
  • step S1 is continued.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, bei dem ein Sollmoment aus einer den Leistungswunsch repräsentierenden Eingangsgröße berechnet wird, wobei das Sollmoment durch eine ladedruckabhängige Begrenzung begrenzt wird.The invention relates to a method for operating an internal combustion engine, in which a setpoint torque is calculated from an input variable representing the desired output, wherein the setpoint torque is limited by a charge-pressure-dependent limit.

Bei der momentenorientierten Regelung einer Brennkraftmaschine wird von der Regelung ein Sollmoment ermittelt und die Brennkraftmaschine entsprechend angesteuert, um dieses Sollmoment einzustellen. Das Sollmoment ist dabei Stellgröße des Drehzahlreglers.In the torque-oriented control of an internal combustion engine, a desired torque is determined by the control and the internal combustion engine is controlled accordingly in order to set this desired torque. The setpoint torque is the manipulated variable of the speed controller.

Aus der Druckschrift DE 10 2004 011 599 B4 ist ein Verfahren zur momentenorientierten Steuerung einer Brennkraftmaschine bekannt. Dieses Verfahren ist auch bei einer Brennkraftmaschine mit mehreren Abgasturboladern anwendbar. Bei diesem wird ein Sollmoment aus einer den Leistungswunsch repräsentierenden Eingangsgröße berechnet und das Sollmoment durch ein luftmassenabhängiges Maximalmoment begrenzt.From the publication DE 10 2004 011 599 B4 a method for torque-oriented control of an internal combustion engine is known. This method is also applicable to an internal combustion engine having a plurality of exhaust gas turbochargers. In this case, a setpoint torque is calculated from an input variable representing the desired output, and the setpoint torque is limited by an air mass-dependent maximum torque.

Nachteil dieses Verfahrens ist, dass beim Lastschalten sowie beim Hochlauf des Motors ein instabiles Verhalten auftreten kann, und zwar immer dann, wenn das Sollmoment durch die LDA-Kurve (LDA: ladedruckabhängig), d. h. in Abhängigkeit des Ladeluftdrucks und der Ladelufttemperatur, begrenzt wird.Disadvantage of this method is that during load switching and during startup of the engine, an unstable behavior can occur, and always when the target torque by the LDA curve (LDA: boost pressure dependent), ie depending on the charge air pressure and the charge air temperature is limited.

Die Kraftstoffmasse wird in Abhängigkeit des Luftmassenverhältnisses korrigiert. Hierbei wird jeweils eine zweidimensionale Gewichtungskurve mit dem Sollmoment als Eingangsgröße verwendet. Hat die Gewichtungskurve einen sehr steilen Übergang, bspw. vom Wert 0 auf den Wert 1 bei ansteigendem Sollmoment, und umfasst das zugehörige Korrektur-Kennfeld Werte, die größer als 1 sind, so ergibt sich bei steigendem Sollmoment im Übergangsbereich der Gewichtungskurve ein positiver Kraftstoffmassen-Korrekturwert, d. h. die Soll-Kraftstoffmasse wird angehoben.The fuel mass is corrected as a function of the air mass ratio. In each case, a two-dimensional weighting curve with the desired torque is used as the input variable. If the weighting curve has a very steep transition, for example from the value 0 to the value 1 when the nominal torque increases, and the associated correction characteristic field contains values greater than 1, the result is a positive fuel mass in the transition region of the weighting curve as the nominal torque increases. Correction value, d. H. the target fuel mass is raised.

Eine größere Kraftstoffmasse führt zur Berechnung eines kleineren Wirkungsgrads. Ein kleinerer Wirkungsgrad führt wiederum zur Berechnung eines kleineren LDA-Begrenzungsmoments. Wird das Sollmoment beim Lastschalten bzw. beim Hochlauf durch die LDA-Funktion begrenzt, so ergibt sich ein kleiner werdendes Sollmoment. Da das Sollmoment die Eingangsgröße der Gewichtungskurve darstellt, sinkt dadurch der Korrekturwert der Kraftstoffmasse und damit auch die Soll-Kraftstoffmasse.A larger fuel mass leads to the calculation of a lower efficiency. A lower efficiency in turn leads to the calculation of a smaller LDA limiting torque. If the setpoint torque is limited during load switching or during startup by the LDA function, the result is a decreasing setpoint torque. Since the setpoint torque represents the input variable of the weighting curve, this reduces the correction value of the fuel mass and thus also the setpoint fuel mass.

Dies führt zur Berechnung eines größeren Wirkungsgrads, wodurch das LDA-Begrenzungsmoment angehoben wird. Wird das Sollmoment weiterhin von der LDA-Funktion begrenzt, so ergibt sich ein größeres Sollmoment. Dadurch steigt wiederum der Korrekturwert der Kraftstoffmasse und folglich die Soll-Kraftstoffmasse usw. Dies führt insgesamt zu einem oszillierenden Sollmoment und damit zu einem instabilen Drehzahlregelkreis.This leads to the calculation of a greater efficiency, which increases the LDA limiting torque. If the setpoint torque is still limited by the LDA function, the result is a larger setpoint torque. This in turn increases the correction value of the fuel mass and thus the target fuel mass, etc. This leads to an oscillating setpoint torque and thus to an unstable speed control loop.

Aus der DE 10 2008 001 128 A1 ist ebenfalls eine momentenorientierte Regelung einer Brennkraftmaschine mit Drehmomentenbegrenzung bekannt. Unterschieden wird hierbei in ein stationäres und ein dynamisches Maximalmoment, wobei das stationäre Maximalmoment immer gleich oder größer als das dynamische Maximalmoment gesetzt wird. Das stationäre Maximalmoment wiederum wird unter anderem in Abhängigkeit der Einspritzmenge berechnet.From the DE 10 2008 001 128 A1 is also a torque-oriented control of an internal combustion engine with torque limiting known. Differences are in this case a stationary and a dynamic maximum torque, wherein the stationary maximum torque is always set equal to or greater than the dynamic maximum torque. The stationary maximum torque, in turn, is calculated inter alia as a function of the injection quantity.

Vor diesem Hintergrund werden ein Verfahren nach Anspruch 1 und eine Anordnung mit den Merkmalen des Anspruchs 7 vorgestellt. Ausführungen ergeben sich aus den abhängigen Ansprüchen und der Beschreibung.Against this background, a method according to claim 1 and an arrangement with the features of claim 7 are presented. Embodiments result from the dependent claims and the description.

Bei dem Verfahren wird ein Sollmoment aus einer den Leistungswunsch repräsentierenden Eingangsgröße, z. B. einer Fahrpedalstellung oder einer Solldrehzahl, berechnet, wobei das Sollmoment durch eine ladedruckabhängige Begrenzung begrenzt wird, wobei eine Korrektur der Kraftstoffmasse von der Berechnung der ladedruckabhängigen Begrenzung dynamisch entkoppelt wird.In the method, a target torque from an input representing the power desired input, z. B. an accelerator pedal position or a target speed, calculated, wherein the target torque is limited by a boost pressure-dependent limitation, wherein a correction of the fuel mass is dynamically decoupled from the calculation of the boost pressure-dependent limitation.

Zur dynamischen Entkopplung kann ein Verzögerungsglied verwendet werden. Dies kann bspw. ein Filter sein. Eine dynamische Entkoppelung wird auch erreicht, wenn für die Gewichtungskurve ein flacher oder waagrechter Kurvenverlauf gewählt wird.For dynamic decoupling, a delay element can be used. This may, for example, be a filter. Dynamic decoupling is also achieved if a flat or horizontal curve is selected for the weighting curve.

In einer weiteren Ausführung ist vorgesehen, dass anstelle eines Sollmoments ein Drehzahlregler-I-Anteil als Eingangsgröße einer Gewichtungskurve verwendet wird.In a further embodiment, it is provided that, instead of a setpoint torque, a speed controller I component is used as the input variable of a weighting curve.

Eine Korrektur der Kraftstoffmasse kann von der Berechnung der ladedruckabhängigen Begrenzung auch dynamisch entkoppelt werden, indem eine Berechnung eines Wirkungsgrads von der Berechnung des LDA-Begrenzungsmoments dynamisch entkoppelt wird.A correction of the fuel mass may also be dynamically decoupled from the calculation of the charge-pressure-dependent limit by dynamically decoupling a calculation of an efficiency from the calculation of the LDA-limiting torque.

Es wird weiterhin eine Anordnung zur Durchführung des beschriebenen Verfahrens vorgestellt.Furthermore, an arrangement for carrying out the method described is presented.

Bei dem Verfahren ist somit vorgesehen, dass eine Korrektur der Kraftstoffmasse von der Berechnung der ladedruckabhängigen Begrenzung entkoppelt wird.In the method, it is thus provided that a correction of the fuel mass is decoupled from the calculation of the charge pressure-dependent limit.

Eine Stabilisierung des Drehzahlregelkreises wird erfindungsgemäß erreicht, indem die Berechnung des Wirkungsgrads von der Berechnung des LDA-Begrenzungsmoments dynamisch entkoppelt wird. Hierzu kann der Wirkungsgrad z. B. mit Hilfe eines PT1-Filters gefiltert werden. Die Zeitkonstante dieses Filters kann durch einen Parameter eingestellt werden.A stabilization of the speed control loop is achieved according to the invention by dynamically decoupling the calculation of the efficiency from the calculation of the LDA limiting torque. For this purpose, the efficiency z. B. with Help a PT 1 filter are filtered. The time constant of this filter can be set by a parameter.

Das vorgestellte Verfahren hat, zumindest in einigen der Ausführungen, erhebliche Vorteile. Durch die dynamische Entkopplung der Kraftstoffmassenkorrektur von der Berechnung der ladedruckabhängigen Begrenzung des Sollmoments, der sogenannten LDA-Begrenzung, wird ein stabiler Einsatz der LDA-Begrenzung ermöglicht. Somit werden Instabilitäten verhindert.The presented method has, at least in some of the embodiments, considerable advantages. Due to the dynamic decoupling of the fuel mass correction from the calculation of the charge pressure-dependent limitation of the desired torque, the so-called LDA limitation, a stable use of the LDA limitation is made possible. Thus, instabilities are prevented.

Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und den beiliegenden Zeichnungen.Further advantages and embodiments of the invention will become apparent from the description and the accompanying drawings.

Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Figur 1
zeigt in einem Graphen ein instabiles Verhalten einer Brennkraftmaschine.
Figur 2
zeigt die Berechnung der LDA-Begrenzung.
Figur 3
zeigt die Berechnung der Normkraftstoffmasse.
Figur 4
zeigt die Berechnung der korrigierten Normkraftstoffmasse.
Figur 5
zeigt eine Korrektur der Kraftstoffmasse in Abhängigkeit des Luftmassenverhältnisses.
Figur 6
zeigt eine weitere Korrektur der Kraftstoffmasse in Abhängigkeit des Luftmassenverhältnisses.
Figur 7
zeigt eine weitere Berechnung der LDA-Begrenzung.
Figur 8
zeigt die Berechnung des Luftmassenverhältnisses.
Figur 9
zeigt in einem Flussdiagramm die Berechnung des LDA-Sollmoments.
Figur 10
zeigt Werte für die zweidimensionale Gewichtungskurve.
Figur 11
zeigt Werte für das dreidimensionale Kennfeld der luftmassenabhängigen Kraftstoffmassen-Korrektur.
It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination indicated, but also in other combinations or in isolation, without departing from the scope of the present invention.
FIG. 1
shows in a graph an unstable behavior of an internal combustion engine.
FIG. 2
shows the calculation of the LDA limit.
FIG. 3
shows the calculation of the standard fuel mass.
FIG. 4
shows the calculation of the corrected standard fuel mass.
FIG. 5
shows a correction of the fuel mass as a function of the air mass ratio.
FIG. 6
shows a further correction of the fuel mass as a function of the air mass ratio.
FIG. 7
shows another calculation of the LDA limit.
FIG. 8
shows the calculation of the air mass ratio.
FIG. 9
shows in a flow chart the calculation of the LDA target torque.
FIG. 10
shows values for the two-dimensional weighting curve.
FIG. 11
shows values for the three-dimensional map of air mass-dependent fuel mass correction.

Die Erfindung ist anhand von Ausführungsformen in den Zeichnungen schematisch dargestellt und wird nachfolgend unter Bezugnahme auf die Zeichnungen ausführlich beschrieben.The invention is schematically illustrated by means of embodiments in the drawings and will be described in detail below with reference to the drawings.

Figur 1 verdeutlicht in einem Graphen Instabilitäten beim Lastschalten. Eine erste Kurve 20 zeigt den Verlauf der Einspritz-Sollmenge, eine zweite Kurve 22 den Verlauf der Solldrehzahl, eine dritte Kurve 24 die LDA-Begrenzung, eine vierte Kurve 26 den Verlauf der Motor-Istdrehzahl, eine fünfte Kurve 28 den Verlauf des Maximalmoments bzw. Sollmoments, eine sechste Kurve 30 den vom Luftmassenverhältnis abhängigen Kraftstoffmassen-Korrekturwert und eine siebte Kurve 34 den von der Spritzbeginn-Korrektur abhängigen Kraftstoffmassen-Korrekturwert. FIG. 1 illustrates in a graph instability in load switching. A first curve 20 shows the course of the desired injection quantity, a second curve 22 the course of the target speed, a third curve 24, the LDA limit, a fourth curve 26, the course of the actual motor speed, a fifth curve 28, the curve of the maximum torque or Target torque, a sixth curve 30, the air mass ratio dependent fuel mass correction value and a seventh curve 34 the dependent of the injection start correction fuel mass correction value.

Figur 1 zeigt somit das instabile Verhalten einer Brennkraftmaschine beim Lastschalten. Die Instabilität tritt hierbei genau dann auf, wenn das Sollmoment mit der ladedruckabhängigen Begrenzung, nämlich der LDA-Kurve, identisch wird. In der Folge treten heftige Schwingungen des Sollmoments, des maximalen Sollmoments und der LDA-Begrenzung auf. Diese Größen sind dabei identisch, da das Sollmoment durch die LDA-Kurve und damit das maximale Sollmoment begrenzt wird. Da das Sollmoment schwingt, kommt es zu starken Schwingungen der Einspritzsollmenge. FIG. 1 thus shows the unstable behavior of an internal combustion engine during load switching. The instability occurs exactly when the desired torque with the boost pressure dependent Limitation, namely the LDA curve, becomes identical. As a result, violent vibrations of the setpoint torque, the maximum setpoint torque and the LDA limit occur. These variables are identical, since the setpoint torque is limited by the LDA curve and thus the maximum setpoint torque. Since the target torque oscillates, strong oscillations of the nominal injection quantity occur.

Figur 1 zeigt, dass vor allem auch der vom Luftmassenverhältnis abhängige Kraftstoffmassen-Korrekturwert starke Schwingungen aufweist. FIG. 1 shows that especially the air mass ratio dependent fuel mass correction value has strong vibrations.

Figur 2 zeigt die Berechnung der LDA-Begrenzung. Aus der Ladelufttemperatur 50, dem Zylindervolumen 52 und dem Ladeluftdruck 54 wird die aktuelle Luftmasse 56 berechnet. Aus dieser Luftmasse 56 und der Motor-Istdrehzahl 58 wird die LDA-Kraftstoffmasse 60 über ein LDA-Kennfeld 62 berechnet. FIG. 2 shows the calculation of the LDA limit. From the charge air temperature 50, the cylinder volume 52 and the charge air pressure 54, the current air mass 56 is calculated. From this air mass 56 and the actual engine speed 58, the LDA fuel mass 60 is calculated via an LDA map 62.

Die LDA-Kraftstoffmasse 60 wird durch Multiplikation mit dem Wirkungsgrad 64 in das LDA-Moment 66 umgerechnet. Der Wirkungsgrad 64 wird hierbei als Quotient von Sollmoment 68 und korrigierter Norm-Kraftstoffmasse 70 berechnet.The LDA fuel mass 60 is converted into the LDA moment 66 by multiplication with the efficiency 64. The efficiency 64 is calculated here as the quotient of nominal torque 68 and corrected standard fuel mass 70.

Figuren 3 und 4 zeigen, wie die korrigierte Norm-Kraftstoffmasse berechnet wird. Figures 3 and 4 show how the corrected standard fuel mass is calculated.

Das Sollmoment 100 als Ausgangsgröße des Drehzahlreglers oder resultierend aus der Fahrpedalstellung wird hierbei zunächst mit dem Reibmoment 102 addiert. Das Reibmoment stellt die mit der Zylinderzahl multiplizierte Ausgangsgröße eines dreidimensionalen Kennfelds dar. Die Eingangsgrößen dieses Kennfelds sind die Motor-Istdrehzahl und eine virtuelle Temperatur. Diese virtuelle Temperatur wird aus zwei Temperaturen, z. B. der Kühlwasser- und der Öltemperatur berechnet. Ausgangsgröße des Kennfelds ist das auf einen Zylinder bezogene Reibmoment des Motors. Als Summe von Sollmoment 100 und Reibmoment 102 ergibt sich das korrigierte Sollmoment 104. Aus diesem korrigierten Sollmoment und der Motor-Istdrehzahl 106 wird über das Wirkungsgrad-Kennfeld 108 die normierte Kraftstoffmasse 110 bestimmt. Dabei kann bei aktivierter Zylinderabschaltung oder veränderter Motorabstimmung ein separates Wirkungsgrad-Kennfeld verwendet werden.The target torque 100 as the output variable of the speed controller or as a result of the accelerator pedal position is in this case first added to the friction torque 102. The friction torque represents the multiplied by the number of cylinders output of a three-dimensional map. The input variables of this map are the actual engine speed and a virtual temperature. This virtual temperature is made up of two temperatures, e.g. B. the cooling water and the oil temperature calculated. The output of the map is the one Cylinder related friction torque of the engine. The sum of desired torque 100 and friction torque 102 results in the corrected setpoint torque 104. From this corrected setpoint torque and the actual engine speed 106, the normalized fuel mass 110 is determined via the efficiency map 108. It can be used with activated cylinder deactivation or modified engine tuning a separate efficiency map.

Die normierte Kraftstoffmasse 110 wird anschließend in Abhängigkeit des Luftmassenverhältnisses 114 korrigiert. Weitere Korrekturen, z. B. in Abhängigkeit einer Spritzbeginn-Korrektur 116, der Umgebungsluft-Temperatur 118 und der Kraftstoff-Temperatur 120 führen schließlich zur korrigierten Norm-Kraftstoffmasse 124, die bei der Berechnung der LDA-Begrenzung zur Ermittlung des Wirkungsgrads verwendet wird.The normalized fuel mass 110 is subsequently corrected as a function of the air mass ratio 114. Further corrections, z. In response to an injection start correction 116, the ambient air temperature 118, and the fuel temperature 120 eventually results in the corrected standard fuel mass 124 used in calculating the LDA limit to determine efficiency.

Die Berechnung der korrigierten Norm-Kraftstoffmasse 124 wird in der Druckschrift US 7,203,589 B2 beschrieben.The calculation of the corrected standard fuel mass 124 is shown in the document US Pat. No. 7,203,589 B2 described.

Figur 5 zeigt, wie die normierte Kraftstoffmasse in Abhängigkeit des Luftmassenverhältnisses korrigiert wird: Vom dimensionslosen Ausgangswert 200 eines vorgebbaren Kennfeldes 202 mit den Eingangsgrößen Luftmassenverhältnis 204 und Motor-Istdrehzahl 206 wird der Wert 1 subtrahiert. Das Ergebnis wird mit dem Ausgangswert 208 einer vorgebbaren zweidimensionalen Kurve 210 multipliziert. Diese Gewichtungskurve 210 hat das Sollmoment 212 als Eingangsgröße. Das Ergebnis 214 der Multiplikation wird anschließend mit dem Wert 1 addiert. Die sich ergebende Summe 216 stellt schließlich den multiplikativen Korrekturfaktor der normierten Kraftstoffmasse dar, der mit der Norm-Kraftstoffmasse 218 multipliziert wird. FIG. 5 shows how the normalized fuel mass is corrected as a function of the air mass ratio: The value 1 is subtracted from the dimensionless output value 200 of a predefinable characteristic map 202 with the input variables air mass ratio 204 and actual engine speed 206. The result is multiplied by the output value 208 of a predeterminable two-dimensional curve 210. This weighting curve 210 has the setpoint torque 212 as an input variable. The result 214 of the multiplication is then added with the value 1. The resulting sum 216 ultimately represents the multiplied correction factor of the normalized fuel mass multiplied by the standard fuel mass 218.

Figur 6 zeigt die Korrektur der Kraftstoffmasse in Abhängigkeit des Luftmassenverhältnisses gemäß einer Ausführung des vorgestellten Verfahrens. FIG. 6 shows the correction of the fuel mass as a function of the air mass ratio according to an embodiment of the proposed method.

Figur 7 zeigt die Ladeluftdruck-Begrenzung LDA gemäß einer Ausführung des dargestellten Verfahrens. FIG. 7 shows the charge air pressure limitation LDA according to an embodiment of the illustrated method.

Figur 8 stellt die Berechnung des Luftmassenverhältnisses dar:

  • Aus der Ladelufttemperatur 400, dem Ladeluftdruck 402 und dem Zylindervolumen 404 wird die aktuelle Luftmasse 406 berechnet. Die Norm-Luftmasse 408 wird aus einem dreidimensionalen Kennfeld 410 berechnet, das von der Motor-Istdrehzahl 412, dem Sollmoment 414 und dem Laderschaltzustand 416 abhängt. Das Luftmassenverhältnis 420 wird als Quotient von aktueller Luftmasse 406 und Norm-Luftmasse 408 berechnet.
FIG. 8 represents the calculation of the air mass ratio:
  • From the charge air temperature 400, the charge air pressure 402 and the cylinder volume 404, the current air mass 406 is calculated. The standard air mass 408 is calculated from a three-dimensional map 410 that depends on the actual engine speed 412, the target torque 414, and the supercharger switching state 416. Air mass ratio 420 is calculated as the quotient of current air mass 406 and standard air mass 408.

Die Berechnung des Luftmassenverhältnisses ist in der Druckschrift US 7,536,995 B2 beschrieben.The calculation of the air mass ratio is in the document US 7,536,995 B2 described.

Im Falle eines Luftmangels ist dieser dimensionslose Quotient kleiner als eins. Liegt ein Luftüberschuss vor, so ist dieser Quotient größer als eins.In the case of a lack of air, this dimensionless quotient is less than one. If there is an excess of air, this quotient is greater than one.

Die in Figur 1 dargestellten Instabilitäten sind folgendermaßen am Beispiel der vom Luftmassenverhältnis abhängigen Korrektur der Kraftstoffmasse zu erklären:

  • In den Figuren 10 und 11 sind beispielhaft Werte für die zweidimensionale Gewichtungskurve und das dreidimensionale Kennfeld der Kraftstoffmassen-Korrektur in Abhängigkeit des Luftmassenverhältnisses dargestellt:
    • Ist das Sollmoment kleiner als 14000 Nm, so ist der Gewichtungsfaktor identisch Null, so dass die Kraftstoffmasse nicht korrigiert wird.
In the FIG. 1 The instabilities shown are explained below using the example of the air mass ratio dependent correction of the fuel mass:
  • In the Figures 10 and 11 Exemplary values for the two-dimensional weighting curve and the three-dimensional characteristic map of the fuel mass correction as a function of the air mass ratio are shown:
    • If the nominal torque is less than 14000 Nm, then the weighting factor is identical to zero, so that the fuel mass is not corrected.

Ist das Sollmoment größer als 16000 Nm, so ist der Gewichtungsfaktor identisch eins. Ob die Kraftstoffmasse korrigiert wird, hängt in diesem Fall vom vorgebbaren dreidimensionalen, in Figur 11 dargestellten Kennfeld ab. Ist das Luftmassenverhältnis größer als 1.0, sind alle Kennfeldwerte identisch 1.0, d. h. die Kraftstoffmasse wird nicht korrigiert. In allen anderen Fällen sind die Kennfeldwerte größer als 1.0, so dass die Kraftstoffmasse korrigiert, d. h. multiplikativ vergrößert wird. Sinkt das Luftmassenverhältnis, bspw. aufgrund einer Lastaufschaltung, auf den Wert 0,65 und die Motor-Istdrehzahl gleichzeitig auf 1400 l/min, so wird die Kraftstoffmasse um 14 % nach oben korrigiert.If the nominal torque is greater than 16000 Nm, then the weighting factor is identical to one. Whether the fuel mass is corrected depends in this case on the predefinable three-dimensional, in FIG. 11 displayed map from. If the air mass ratio is greater than 1.0, all map values are identical to 1.0, ie the fuel mass is not corrected. In all other cases, the map values are greater than 1.0, so that the fuel mass corrected, that is multiplicatively increased. If the air mass ratio, for example due to a load application, drops to 0.65 and the actual engine speed simultaneously to 1400 l / min, the fuel mass is corrected upwards by 14%.

Ist das Sollmoment größer als 14000 Nm und kleiner als 16000 Nm, so ändert sich der Gewichtungsfaktor vom Wert 0 auf den Wert 1. In diesem Übergangsbereich beginnt die vom Luftmassenverhältnis abhängige Korrektur der Kraftstoffmasse zu wirken, und zwar umso stärker, je größer das Sollmoment ist. Sinkt die Motor-Istdrehzahl infolge einer Lastaufschaltung, so erhöht der Drehzahlregler das Sollmoment. Wird dieses größer als 14000 Nm, so wird die Kraftstoffmasse nach oben korrigiert, da gleichzeitig das Luftmassenverhältnis sinkt. Eine höhere Kraftstoffmasse bewirkt entsprechend Figur 2 einen kleineren Wirkungsgrad und damit eine Absenkung des LDA-Moments. Wird das Sollmoment durch das LDA-Moment begrenzt, so sinkt mit dem LDA-Moment auch das Sollmoment. Dies wiederum führt dazu, dass die luftmassenabhängige Korrektur der Kraftstoffmasse verringert wird. Dadurch steigt der Wirkungsgrad und das LDA-Moment wird angehoben. Da das Sollmoment durch das LDA-Moment begrenzt wird, wird auch das Sollmoment angehoben. Damit wird die luftmassenabhängige Korrektur der Kraftstoffmasse wieder erhöht, wodurch der Wirkungsgrad wieder reduziert wird usw.If the nominal torque is greater than 14000 Nm and less than 16000 Nm, then the weighting factor changes from the value 0 to the value 1. In this transitional region, the air mass ratio-dependent correction of the fuel mass starts to take effect, namely, the greater the desired torque , If the actual speed of the motor drops as a result of a load connection, the speed controller increases the setpoint torque. If this is greater than 14000 Nm, the fuel mass is corrected upward because at the same time the air mass ratio decreases. A higher fuel mass causes accordingly FIG. 2 a lower efficiency and thus a reduction of the LDA moment. If the setpoint torque is limited by the LDA moment, the setpoint torque also decreases with the LDA moment. This in turn means that the air mass-dependent correction of the fuel mass is reduced. This increases the efficiency and the LDA moment is raised. Since the setpoint torque is limited by the LDA moment is, also the target torque is raised. Thus, the air mass-dependent correction of the fuel mass is increased again, whereby the efficiency is reduced again, etc.

Es entsteht somit ein Oszillieren des LDA-Moments, des Sollmoments, des luftmassenabhängigen Korrekturwerts und infolgedessen auch der Kraftstoffmasse. Dieser Effekt tritt umso stärker auf, je steiler der Übergang vom Wert 0 auf den Wert 1 beim Gewichtungsfaktor stattfindet, d. h. je enger die zu diesen Werten gehörigen Sollmomenten-Stützstellen der Gewichtungskurve beieinander liegen.This results in an oscillation of the LDA torque, the desired torque, the air mass-dependent correction value and consequently the fuel mass. This effect occurs the more strongly, the steeper the transition from the value 0 to the value 1 takes place in the weighting factor, d. H. the closer the nominal torque reference points of the weighting curve belonging to these values are to one another.

Die beschriebene Instabilität kann in gleicher Weise durch die Korrektur der Kraftstoffmasse in Abhängigkeit einer Spritzbeginn-Korrektur ausgelöst werden.The described instability can be triggered in the same way by the correction of the fuel mass in response to a start of injection correction.

Die Instabilität soll durch die Erfindung verhindert werden. Ausgestaltungen der Erfindung sind in den Figuren 6 und 7 dargestellt.The instability should be prevented by the invention. Embodiments of the invention are in the FIGS. 6 and 7 shown.

Das vorgestellte Verfahren zeichnet sich dadurch aus, dass die Korrektur der Kraftstoffmasse von der Berechnung des LDA-Moments dynamisch entkoppelt wird.The presented method is characterized in that the correction of the fuel mass is dynamically decoupled from the calculation of the LDA moment.

Figur 6 zeigt, wie dies bei der Korrektur der Kraftstoffmasse in Abhängigkeit des Luftmassenverhältnisses umgesetzt werden kann. Gleiche Komponenten wie in Figur 5 sind mit gleichen Bezugszeichen versehen:

  • Durch Filterung des Korrekturwerts, z. B. mit Hilfe eines PT1-Filters 230.
  • Indem an Stelle des Sollmoments 212 in Figur 5 der Drehzahlregler-I-Anteil 234 als Eingangsgröße 236 der Gewichtungskurve 210 verwendet wird.
  • Indem der Korrekturwert gefiltert wird und zusätzlich an Stelle des Sollmoments der Drehzahlregler-I-Anteil als Eingangsgröße der Gewichtungskurve verwendet wird.
FIG. 6 shows how this can be implemented in the correction of the fuel mass as a function of the air mass ratio. Same components as in FIG. 5 are provided with the same reference numerals:
  • By filtering the correction value, e.g. B. using a PT 1 filter 230th
  • By replacing the desired torque 212 in FIG FIG. 5 the speed controller I portion 234 is used as the input 236 of the weighting curve 210.
  • By filtering the correction value and in addition to the setpoint torque, the speed controller I component is used as the input value of the weighting curve.

Figur 7 zeigt eine weitere Ausgestaltung der Erfindung. Es sind Bezugszeichen wie in Figur 2 vergeben und es wird auf die Ausführungen zu Figur 2 verwiesen. Zusätzlich ist ein PT1-Filter 75 vorgesehen. Es erfolgt daher eine Filterung des Wirkungsgrads, z. B. durch ein PT1-Filter. FIG. 7 shows a further embodiment of the invention. There are reference numerals as in FIG. 2 awarded and it will be on the remarks too FIG. 2 directed. In addition, a PT1 filter 75 is provided. There is therefore a filtering of the efficiency, for. B. by a PT 1 filter.

Durch die Filterung werden die Korrekturen der Kraftstoffmasse zeitlich verzögert. Dies stellt in der Praxis kein Problem dar, da die Korrekturen vor allem statisch benötigt und auch ermittelt werden. Dies bedeutet, dass eine Korrektur der Kraftstoffmasse in Abhängigkeit des Luftmassenverhältnisses insbesondere dann erfolgen muss, wenn sich die Luftmasse z. B. durch Änderung des atmosphärischen Luftdrucks ändert.By filtering the corrections of the fuel mass are delayed in time. This is not a problem in practice, since the corrections are mainly needed statically and also determined. This means that a correction of the fuel mass in dependence of the air mass ratio must be made in particular when the air mass z. B. changes by changing the atmospheric pressure.

Eine weitere Ausgestaltung der Erfindung ist durch die Auslegung der Gewichtungskurve der Kraftstoffmassen-Korrektur charakterisiert. Hat diese einen konstanten Wert, z. B. den Wert 1, oder einen flachen Verlauf, so wird ebenfalls eine Stabilisierung der LDA-Begrenzung erreicht.Another embodiment of the invention is characterized by the design of the weighting curve of the fuel mass correction. Does this have a constant value, z. B. the value 1, or a flat course, so also a stabilization of the LDA limit is achieved.

Figur 9 zeigt einen Programmablaufplan für die Berechnung des LDA-Sollmoments entsprechend Figur 7. Zunächst wird im Schritt S1 die Motor-Istdrehzahl berechnet. Anschließend wird im Schritt S2 das Sollmoment berechnet. In Schritt S3 wird die korrigierte Norm-Kraftstoffmasse ermittelt. Aus der Ladelufttemperatur, dem Ladeluftdruck und dem Zylindervolumen wird im Schritt S4 die Luftmasse berechnet. Damit kann im Schritt S5 aus dem LDA-Kennfeld die LDA-Kraftstoffmasse ermittelt werden. FIG. 9 shows a program flowchart for the calculation of the LDA target torque accordingly FIG. 7 , First, in step S1, the actual engine speed is calculated. Subsequently, the target torque is calculated in step S2. In step S3, the corrected standard fuel mass is determined. From the charge air temperature, the charge air pressure and the cylinder volume, the air mass is calculated in step S4. Thus, the LDA fuel mass can be determined from the LDA map in step S5.

In Schritt S6 wird nun der Wirkungsgrad aus dem Sollmoment und der korrigierten Norm-Kraftstoffmasse berechnet. Im Schritt S7 wird der Wirkungsgrad mit Hilfe eines PT1-Filters gefiltert. Der gefilterte Wirkungsgrad wird in Schritt S8 mit der LDA-Kraftstoffmasse multipliziert.In step S6, the efficiency is calculated from the target torque and the corrected standard fuel mass. In step S7, the efficiency is filtered by means of a PT 1 filter. The filtered efficiency is multiplied by the LDA fuel mass in step S8.

Das Ergebnis von Schritt S8 ist schließlich das LDA-Sollmoment. Im Folgenden wird wieder mit Schritt S1 fortgefahren. The result of step S8 is finally the desired LDA torque. In the following, step S1 is continued.

Claims (8)

  1. Method for operating an internal combustion engine, in which a setpoint torque is calculated from an input variable which represents the power request, wherein the setpoint torque is limited by a charge-pressure-dependent limitation, wherein
    a correction of the fuel mass is dynamically decoupled from the calculation of the charge-pressure-dependent limitation.
  2. Method according to Claim 1, in which a delay element is used for the dynamic decoupling.
  3. Method according to Claim 1 or 2, in which a filter is used for the dynamic decoupling.
  4. Method according to one of Claims 1 to 3, in which, instead of a setpoint torque, a rotational-speed controller I component is used as the input variable of a weighting curve.
  5. Method according to one of Claims 1 to 4, in which a weighting curve is predefined with a flat or constant profile.
  6. Method according to one of Claims 1 to 5, in which, in order to stabilize a rotational-speed control loop, a calculation of an efficiency level is dynamically decoupled from the calculation of the CPD limiting torque.
  7. Arrangement for operating an internal combustion engine for carrying out a method according to one of Claims 1 to 6 which is configured to calculate a setpoint torque from an input variable which represents the power request, wherein the setpoint is limited by a charge-pressure-dependent limitation, and
    a correction of the fuel mass to be dynamically decoupled from the calculation of the charge-pressure-dependent limitation.
  8. Arrangement according to Claim 7, which comprises a filter for the dynamic decoupling.
EP13811388.1A 2012-12-20 2013-12-17 Method for controlling an internal combustion engine Active EP2956652B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012025019.3A DE102012025019B4 (en) 2012-12-20 2012-12-20 Method for operating an internal combustion engine
PCT/EP2013/003819 WO2014095046A1 (en) 2012-12-20 2013-12-17 Method for operating an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2956652A1 EP2956652A1 (en) 2015-12-23
EP2956652B1 true EP2956652B1 (en) 2017-05-03

Family

ID=49876547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13811388.1A Active EP2956652B1 (en) 2012-12-20 2013-12-17 Method for controlling an internal combustion engine

Country Status (7)

Country Link
US (1) US20150354490A1 (en)
EP (1) EP2956652B1 (en)
CN (1) CN104995389A (en)
BR (1) BR112015014000A2 (en)
DE (1) DE102012025019B4 (en)
HK (1) HK1216434A1 (en)
WO (1) WO2014095046A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014001581B4 (en) 2014-02-06 2017-04-06 Mtu Friedrichshafen Gmbh Method of execution with an internal combustion engine arranged for a cylinder deactivation operation
DE102016215856A1 (en) * 2016-08-24 2018-03-01 Robert Bosch Gmbh Method for operating an internal combustion engine with intake manifold injection
CN110943671B (en) * 2019-12-19 2023-05-26 瑞声科技(新加坡)有限公司 Motor signal control method, terminal equipment and storage medium
WO2021120100A1 (en) * 2019-12-19 2021-06-24 瑞声声学科技(深圳)有限公司 Electric motor signal control method, terminal device and storage medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612175B2 (en) * 1997-07-15 2005-01-19 株式会社日立製作所 Fuel pressure control device for in-cylinder injection engine
DE10036282A1 (en) * 2000-07-26 2002-02-07 Bosch Gmbh Robert Method and device for controlling a drive unit
US6652233B2 (en) * 2002-01-14 2003-11-25 Toyota Jidosha Kabushiki Kaisha Control system for a turbo-charged diesel aircraft engine
DE102004001913B4 (en) 2004-01-14 2005-12-29 Mtu Friedrichshafen Gmbh Method for torque-oriented control of an internal combustion engine
DE102004011599B4 (en) 2004-03-10 2006-03-02 Mtu Friedrichshafen Gmbh Method for torque-oriented control of an internal combustion engine
US7171299B1 (en) * 2005-08-23 2007-01-30 Gm Global Technology Operations, Inc. Driveline clunk management system
DE102006008356B4 (en) 2006-02-21 2007-11-29 Mtu Friedrichshafen Gmbh Method for limiting the power of an internal combustion engine
WO2008078538A1 (en) * 2006-12-27 2008-07-03 Mitsubishi Fuso Truck And Bus Corporation Fuel injection control device of internal combustion engine
US7987672B2 (en) * 2008-01-22 2011-08-02 GM Global Technology Operations LLC Turbocharger protection systems and methods
DE102008001128A1 (en) * 2008-04-11 2009-10-15 Robert Bosch Gmbh Adaptation of a stationary maximum torque of an internal combustion engine
GB2490933A (en) * 2011-05-19 2012-11-21 Gm Global Tech Operations Inc Method of operating an internal combustion engine using a torque correction feedback loop

Also Published As

Publication number Publication date
DE102012025019A1 (en) 2014-06-26
BR112015014000A2 (en) 2017-07-11
WO2014095046A1 (en) 2014-06-26
HK1216434A1 (en) 2016-11-11
CN104995389A (en) 2015-10-21
US20150354490A1 (en) 2015-12-10
EP2956652A1 (en) 2015-12-23
DE102012025019B4 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
DE19953767C2 (en) Control system for protecting an internal combustion engine against overload
EP2956652B1 (en) Method for controlling an internal combustion engine
WO2002008595A1 (en) Method and device for controlling a drive unit
EP1412630B1 (en) Method and device for operating a drive engine of a vehicle
DE19836845A1 (en) Method of controlling a drive unit for a motor vehicle, involves taking the time variation of the drive unit's engine speed into account in determining a maximum permitted value(s)
DE102007012303B4 (en) Method for operating a hybrid drive of a vehicle
EP1005609B1 (en) Method for controlling exhaust gas recirculation in an internal combustion engine
DE102005047590A1 (en) Vehicle internal combustion engine e.g. diesel engine, operating method, involves testing whether static limitation is interpolated for engine output increase by addition of dynamic limitation increase during obtaining of static limitation
EP0981686B1 (en) Actuating system for a direct injection internal combustion engine, especially in a vehicle
DE102006008356A1 (en) Internal combustion engine power limiting method, involves determining air mass difference between actual and reference air masses, determining power reduction based on difference, and reducing maximum power of engine by power reduction
WO2015086141A1 (en) Method for controlling the speed of an internal combustion engine
DE10350778A1 (en) Method for operating a drive unit
DE102004032537B4 (en) Method and apparatus for controlling fuel injection
DE102011078609A1 (en) Method for operating an internal combustion engine
WO2014053220A1 (en) Method for rail pressure regulation in an internal combustion engine
EP2941557B1 (en) Method for operating an internal combustion engine
DE102009010309A1 (en) Internal combustion engine operating method for motor vehicle, involves determining control angle and control quantity of each individual combustion and post combustion that comprises preset position after individual combustion
WO2016116196A1 (en) Pilot control of an internal combustion engine
DE102011081850A1 (en) Engine control unit
EP1437244A2 (en) Operating method of an air conditioning compressor of a cooling circuit of a motor vehicle
DE102010042844B4 (en) Method for monitoring a control device for an injection system in a motor vehicle
DE102015204595A1 (en) Method for operating an internal combustion engine
DE102007062173A1 (en) Internal-combustion engine operating method for motor vehicle, involves determining maximum and momentary moments and pre-determining reference values of idle speed in dependent of maximum and momentary moments of engine
DE102007059116A1 (en) Hydraulic pressure regulating method for high pressure accumulator of internal-combustion engine, involves forming prediction signal based on correcting variable of control unit and information about real temporal characteristic of pressure
DE4228279A1 (en) Required air intake and/or charging pressure calculation system for IC engine - corrects initial value using dynamic parameters to ensure engine efficiency

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890278

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007178

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170503

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007178

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171217

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171217

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 890278

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013007178

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 11