EP2953749A1 - Procédé de fusion laser avec au moins un faisceau laser de travail - Google Patents

Procédé de fusion laser avec au moins un faisceau laser de travail

Info

Publication number
EP2953749A1
EP2953749A1 EP14709233.2A EP14709233A EP2953749A1 EP 2953749 A1 EP2953749 A1 EP 2953749A1 EP 14709233 A EP14709233 A EP 14709233A EP 2953749 A1 EP2953749 A1 EP 2953749A1
Authority
EP
European Patent Office
Prior art keywords
laser beam
auxiliary laser
auxiliary
power density
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14709233.2A
Other languages
German (de)
English (en)
Inventor
Ursus KRÜGER
Olaf Rehme
Daniel Reznik
Martin Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2953749A1 publication Critical patent/EP2953749A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for laser melting, in which a component is produced in layers in a powder bed by the particles forming the powder bed are melted by at least one working laser beam. Upon solidification, the particles then form a position of the component. Subsequently, successive layers of powder particles are formed on the solidified surface of the component and in turn melted by means of the working laser beam. This creates a layered three-dimensional component.
  • the power density is too low to bring about a melting of the particles.
  • This at least one auxiliary laser beam is on a directed to the molten bath, lying on the component cooling zone.
  • the energy input by the auxiliary laser beam is therefore not sufficient to melt the particles.
  • the auxiliary laser beam can not hold the particles in the molten state. Rather, a cooling of the molten bath and also lying on the component cooling zone is recorded, however, the auxiliary laser beam reduces the cooling rate and thus the temperature gradient in the cooling component.
  • the object is to improve a method for laser melting in such a way that favorable component properties with respect to the mechanical characteristic values can be produced with this method.
  • the power density of the auxiliary laser beam or the auxiliary laser beams is controlled as a function of the volume surrounding the cooling zone of the already produced component by the power density is the more reduced, the less volume for heat dissipation available stands.
  • the conditions prevailing in the middle of the surface to be produced in the powder bed do not readily correspond to those in the vicinity of edges of this surface to be produced. For example, at the first edge to be produced or even in corners of a surface to be produced or in narrow webs to be produced, comparatively less adjacent material is available for heat conduction than in the middle of a surface to be produced.
  • the power density (hereinafter, power density is always the area power density, also referred to as the intensity of the laser) of the laser beam is defined by the power of the laser beam and its impact on the powder bed, molten bath, or finished component. This can be specified, for example, in W / cm 2 . Taking into account this definition, the power density of the auxiliary laser beam is lower than the heat output during the cooling of the molten bath until it solidifies, which can likewise be stated as the heat output per unit area in W / cm 2 .
  • the result of the microstructure which is obtained with the inventive method with a slower cooling of the molten bath and the component, advantageously satisfies a wider range of requirements.
  • coarse-grained structures can be produced which have better creep resistance and increased elongation at break compared with the rapidly cooled, fine-grained structures.
  • the slower cooling rate can positively influence the setting of certain structural states, which are set when falling below a certain cooling rate.
  • the desired phase states of the alloy or structural properties, such as grain size can thus be specifically formed, with the method according to the invention thus making possible a "structural design.” Subsequent treatments which are intended to produce such microstructural properties can be dispensed with in this way already produced.
  • the auxiliary laser beam is guided according to a matching with the working laser beam movement pattern with time delay.
  • This can be advantageous especially achieve homogeneous microstructural results.
  • the control of this method is advantageously very simple, since the programming for guiding the auxiliary laser beam from that of the main laser beam can be taken.
  • a plurality of auxiliary laser beams are used, which are guided in a matching with the working laser beam movement pattern.
  • the impact points of the auxiliary laser beams result in a crescent-shaped or horseshoe-shaped heat-affected area, which results from the fact that the thermal influence zones of the auxiliary laser beams overlap each other. Metrologically, therefore, only a common heat affected area can be detected.
  • the cooling of the molten bath by the auxiliary laser beams is slowed down in all directions except in front of the working laser beam. The heat dissipation is thus reduced in all directions starting from the molten bath, since the working laser beam itself in the direction in which the heat affected area is opened, also prevents cooling.
  • the at least one auxiliary laser beam is produced from a laser beam via a beam splitter. This covers both the case where the one laser beam is used both to form the working laser beam and to form at least one auxiliary laser beam. Another possibility is that the working laser beam, which has the highest power density, in its intensity not through
  • auxiliary laser beam or the auxiliary laser beams undergo a beam widening. This makes it possible to adjust the radiation intensity of the auxiliary laser beams in a suitable manner.
  • This adaptation can also be adaptive, wherein the laser power can advantageously be optimally utilized when lower power densities are required by the laser beam experiences a stronger beam expansion. Therefore, by means of this measure, the efficiency of the method can be optimally increased for a given system technology.
  • the auxiliary laser beam or at least a part of the auxiliary laser beams can be directed to the edge of the molten bath.
  • the solidification of the molten metal can advantageously be slowed most effectively.
  • auxiliary laser beam or at least a part of the auxiliary laser beams can be directed onto the part of the solidified layer located in the cooling zone.
  • the further cooling processes of the already solidified metal structure are advantageously positively influenced.
  • the aim here is to achieve the formation of the desired microstructural states by means of a sufficiently slow cooling rate, which makes subsequent heat treatments superfluous.
  • the action of auxiliary laser beams on the cooling zone can also be combined with the above-mentioned action of auxiliary laser beams on the edge of the molten bath, if this leads to the optimum microstructural results.
  • the respective application should be taken into account, whereby usually the cooling conditions for certain
  • Influence of the auxiliary laser beams on the cooling zone and the molten bath is particularly effective.
  • an additional laser beam can also be used to preheat the particles before they are melted by the working laser beam.
  • the power density is too low to cause a melting of the particles, otherwise this would already anticipate the function of the working laser beam.
  • the preheating of the particles has the advantage that the working laser beam has to provide a small amount of heat in order to produce the molten bath. This is particularly advantageous for refractory materials.
  • the power density can advantageously be selected in each case more than 50%, preferably more than 70%, of the power density required for melting the particles. As a result, a sufficient safety margin is advantageously achieved, so that the particles can not be melted.
  • the power density of the auxiliary laser beam, the auxiliary laser beams or the additional laser beam is high enough to ensure sufficient preheating of the particles or a sufficiently low cooling rate of the just-produced component structure.
  • Another possibility is advantageous to provide the power density of at least one auxiliary laser beam or the additional laser beam in each case more than 30%, preferably more than 50% of the power density of the working laser beam.
  • the ratio is thus determined by the performance of the working serstrahls determined whose power density is selected depending on the material to be melted.
  • the power density of the working laser beam can be set to be 150% or more than 150% of the power density that would just cause the particles to melt.
  • a further embodiment of the invention is obtained when a plurality of auxiliary laser beams are used, which are guided at different distances from the working beam.
  • the auxiliary laser beams are each operated at a lower power density with increasing distance from the working laser beam, so that a linear or at least successive cooling of the structure just produced is possible.
  • the power densities of the successive auxiliary laser can also be adjusted so that a non-linear cooling curve can be generated when z. B. a certain structural change is achieved at a certain temperature. This could be z. B. be a temperature at which form certain phase states.
  • the particles consist of a highly heat-resistant metal alloy, in particular a high-temperature steel or a highly heat-resistant nickel-based alloy.
  • a particular example of this is nickel-based alloys, which have to undergo a temperature profile suitable for gamma prime curing on cooling.
  • process of the invention is particularly advantageous to apply, because these alloys in their microstructure to produce a high temperature resistance of certain temperature profiles are dependent on the cooling, so that the required microstructural properties are achieved.
  • This temperature profile can be adjusted with the above measures. Under high temperature metal alloys are to understand those metal alloys which allow at service temperatures above 650 ° C.
  • FIG. 3 shows an exemplary embodiment of the method according to the invention, in which different auxiliary laser beams are switched on and off in different subsections of the surface to be produced.
  • FIG. 1 it can be seen how a not-shown component in a powder bed 11 is produced.
  • a working laser beam 12 is guided in the direction of the arrow 13 over the powder bed, which melts the particles. This results in the indicated melt pool 14.
  • a layer 15 of the component is formed.
  • the layer 15 can be formed as a closed position
  • the distance h s of adjacent laser tracks (also called hatch distance) is smaller than the width b of the molten bath 14. This results in an overlap of the molten bath 14 with already generated parts the layer 15, whereby a closed surface of the component to be produced arises.
  • three auxiliary laser beams 16a, 16b, 16c are also used, which follow the working laser beam 12 in temporal and spatial offset on the active laser track 17.
  • the auxiliary laser beam 16a is directed to the molten bath and thus slows its solidification.
  • the auxiliary laser beam 16b is directed to the interface between the molten pool 14 and the solidified material.
  • the auxiliary laser beam 16b thus slows down the solidification process as such.
  • the auxiliary laser beam 16c is primarily directed to a cooling zone 18 on the just-solidified material.
  • a cooling zone 18 on the just-solidified material By this is meant a zone in which the material is already solidified, but the structure is still in a cooling process, which is still relevant for the structure formation. In this cooling zone of the
  • FIG. 2 likewise shows a working laser beam 12 and the molten bath 14 produced by it. Further details, as shown in Figure 1, have been omitted in Figure 2. However, these are analogous to FIG. 1. One difference, however, results from the fact that a plurality of identical auxiliary laser beams 16d are used, which were generated by means of a beam splitter not shown in more detail. These surround the molten bath 12 horseshoe-shaped, so that they together create a heat-affected area 19. This too is horseshoe-shaped.
  • FIG. 3 shows how a component 21 is manufactured.
  • the powder bed is not shown in detail for the sake of clarity.
  • auxiliary laser beams 16e are used.
  • four auxiliary laser beams 16 are regularly arranged in a square impingement area, as shown in the middle of the component area when a laser track 17b is driven off.
  • only a single auxiliary laser beam 16e is used at the corners of the component, since the heat dissipation in two directions is prevented here.
  • two auxiliary laser beams 16e are in use.
  • the cooling rate of the material at the edge of the component 21 is substantially the same as in the interior of the manufactured component.

Abstract

L'invention concerne un procédé de fusion laser selon lequel un élément en couches (15) est produit. Un lit de poudre (11) dans lequel un bain de fusion (14) est produit par un faisceau laser de travail (12) sert à cet effet. Selon l'invention, d'autres faisceaux laser auxiliaires (16a, 16b, 16c) sont utilisés, qui sont réglés, pour ce qui est de leur densité de puissance, de manière à ralentir uniquement le refroidissement du matériau dans une zone (18) et non pas à le faire fondre de nouveau. De cette façon, la vitesse de refroidissement de la structure peut être réglée de manière que cette dernière développe une configuration structurelle avantageuse. Par exemple, les propriétés mécaniques de la pièce produite peuvent ainsi être avantageusement améliorées sans traitement thermique ultérieur.
EP14709233.2A 2013-03-21 2014-03-06 Procédé de fusion laser avec au moins un faisceau laser de travail Withdrawn EP2953749A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013205029.1A DE102013205029A1 (de) 2013-03-21 2013-03-21 Verfahren zum Laserschmelzen mit mindestens einem Arbeitslaserstrahl
PCT/EP2014/054308 WO2014146903A1 (fr) 2013-03-21 2014-03-06 Procédé de fusion laser avec au moins un faisceau laser de travail

Publications (1)

Publication Number Publication Date
EP2953749A1 true EP2953749A1 (fr) 2015-12-16

Family

ID=50241395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14709233.2A Withdrawn EP2953749A1 (fr) 2013-03-21 2014-03-06 Procédé de fusion laser avec au moins un faisceau laser de travail

Country Status (5)

Country Link
US (1) US10549385B2 (fr)
EP (1) EP2953749A1 (fr)
CN (1) CN105188994B (fr)
DE (1) DE102013205029A1 (fr)
WO (1) WO2014146903A1 (fr)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2878409B2 (fr) 2013-11-27 2022-12-21 SLM Solutions Group AG Procédé et dispositif de commande d'un système d'irradiation
US10069271B2 (en) 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
GB2546016B (en) 2014-06-20 2018-11-28 Velo3D Inc Apparatuses, systems and methods for three-dimensional printing
DE102014219656A1 (de) * 2014-09-29 2016-03-31 Siemens Aktiengesellschaft Verfahren zur Herstellung von Komponenten für Gasturbinen, sowie deren Produkte
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
CN107924023B (zh) 2015-07-08 2020-12-01 恩耐公司 具有用于增加的光束参数乘积的中心折射率受抑制的纤维
US10843266B2 (en) 2015-10-30 2020-11-24 Seurat Technologies, Inc. Chamber systems for additive manufacturing
WO2017079091A1 (fr) 2015-11-06 2017-05-11 Velo3D, Inc. Impression en trois dimensions au moyen du système adept
CN108367389B (zh) 2015-11-23 2020-07-28 恩耐公司 激光加工方法和装置
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
EP3383573B1 (fr) 2015-12-04 2023-11-08 Raytheon Company Fabrication additive à faisceau d'électrons
CN108698126A (zh) 2015-12-10 2018-10-23 维洛3D公司 精湛的三维打印
DE102016107052A1 (de) * 2015-12-17 2017-06-22 Lilas Gmbh 3D-Druck-Vorrichtung für die Herstellung eines räumlich ausgedehnten Produkts
EP3181336A1 (fr) * 2015-12-17 2017-06-21 Lilas GmbH Imprimante 3d pour la production d'un produit s'étendant spatialement
WO2017132664A1 (fr) 2016-01-28 2017-08-03 Seurat Technologies, Inc. Système et procédé de fabrication additive et de traitement thermique spatial
US10618111B2 (en) 2016-01-28 2020-04-14 Lawrence Livermore National Security, Llc Heat treatment to anneal residual stresses during additive manufacturing
US11148319B2 (en) 2016-01-29 2021-10-19 Seurat Technologies, Inc. Additive manufacturing, bond modifying system and method
WO2017143077A1 (fr) 2016-02-18 2017-08-24 Velo3D, Inc. Impression tridimensionnelle précise
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
EP3492244A1 (fr) 2016-06-29 2019-06-05 VELO3D, Inc. Système d'impression tridimensionnelle et procédé d'impression tridimensionnelle
CN106424725B (zh) * 2016-09-09 2019-07-05 赵晴堂 三段式热熔金属物料增材成型的方法
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
EP3519871A1 (fr) * 2016-09-29 2019-08-07 NLIGHT, Inc. Caractéristiques réglables de faisceau
US10668535B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Method of forming three-dimensional objects
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
DE102016121530A1 (de) 2016-11-10 2018-05-17 voestalpine Böhler Welding Fontargen GmbH Verfahren zur Herstellung eines Lotformteils sowie Lotformteil
US20180141160A1 (en) 2016-11-21 2018-05-24 General Electric Company In-line laser scanner for controlled cooling rates of direct metal laser melting
DE102016122368A1 (de) 2016-11-21 2018-05-24 Cl Schutzrechtsverwaltungs Gmbh Verfahren zur additiven Herstellung eines dreidimensionalen Objekts
US10780528B2 (en) * 2016-11-29 2020-09-22 Honeywell International Inc. Methods for residual stress reduction in additive manufacturing processes
DE102016225616A1 (de) * 2016-12-20 2018-06-21 Robert Bosch Gmbh Vorrichtung und Verfahren zur generativen Herstellung von Bauteilen
WO2019130043A1 (fr) * 2017-12-26 2019-07-04 Arcelormittal Procédé de soudage bout à bout au laser de deux feuilles métalliques avec des premier et deuxième faisceaux laser avant et un faisceau laser arrière
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
GB201700170D0 (en) * 2017-01-06 2017-02-22 Rolls Royce Plc Manufacturing method and apparatus
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
DE102017105056A1 (de) * 2017-03-09 2018-09-13 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
US20180281237A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
JP6863050B2 (ja) * 2017-04-28 2021-04-21 トヨタ自動車株式会社 レーザ溶接方法及びレーザ溶接装置
WO2018209199A1 (fr) 2017-05-11 2018-11-15 Seurat Technologies, Inc. Routage de faisceau de poste de commutation pour lumière à motifs pour fabrication additive
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10695867B2 (en) 2018-03-08 2020-06-30 General Electric Company Controlling microstructure of selected range of layers of object during additive manufacture
CN110355996B (zh) 2018-04-10 2021-11-16 东台精机股份有限公司 用于积层制造的激光装置及其操作方法
WO2019196002A1 (fr) * 2018-04-10 2019-10-17 东台精机股份有限公司 Équipement laser pour fabrication par stratification et procédé de fonctionnement associé
DE102018205820A1 (de) * 2018-04-17 2019-10-17 Eos Gmbh Electro Optical Systems Selektive Nachbelichtung
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
GB2569673B (en) * 2018-08-24 2020-01-08 Univ Cranfield Additive Manufacture
EP3898058A4 (fr) 2018-12-19 2022-08-17 Seurat Technologies, Inc. Système de fabrication additive utilisant un laser à modulation d'impulsions pour impression bidimensionnelle
GB201918601D0 (en) 2019-12-17 2020-01-29 Renishaw Plc Powder bed fusion additive manufacturing methods and apparatus
CN112518130B (zh) * 2020-07-16 2021-11-16 兰州理工大学 一种非均匀热源促熔池对流的金属表面合金化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120237745A1 (en) * 2009-08-10 2012-09-20 Frauhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Ceramic or glass-ceramic article and methods for producing such article
EP2737964A1 (fr) * 2012-11-30 2014-06-04 MBDA France Procédé de fusion de poudre avec chauffage de la zone adjacente au bain
WO2014144482A1 (fr) * 2013-03-15 2014-09-18 Matterfab Corp. Appareil et procédés de fabrication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050665A1 (de) 2005-10-20 2007-04-26 Bego Medical Gmbh Schichtweises Herstellungsverfahren mit Korngrößenbeeinflussung
EP2060343B1 (fr) * 2006-08-28 2014-11-05 Panasonic Corporation Poudre métallique pour photofabrication métallique et procédé de photofabrication métallique l'utilisant
US20090283501A1 (en) 2008-05-15 2009-11-19 General Electric Company Preheating using a laser beam
CN101607311B (zh) * 2009-07-22 2011-09-14 华中科技大学 一种三束激光复合扫描金属粉末熔化快速成形方法
EP2335848B1 (fr) * 2009-12-04 2014-08-20 SLM Solutions GmbH Unité de rayonnement optique pour une installation destinée à la fabrication de pièces à usiner par rayonnement de couches de pulvérisation avec un rayonnement laser
DE102010050531A1 (de) * 2010-09-08 2012-03-08 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung zumindest eines Bauteilbereichs
DE102010048335A1 (de) * 2010-10-13 2012-04-19 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung
US20130112672A1 (en) * 2011-11-08 2013-05-09 John J. Keremes Laser configuration for additive manufacturing
FR2998496B1 (fr) * 2012-11-27 2021-01-29 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
JP2015182252A (ja) * 2014-03-20 2015-10-22 日本電子株式会社 3次元積層造形装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120237745A1 (en) * 2009-08-10 2012-09-20 Frauhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Ceramic or glass-ceramic article and methods for producing such article
EP2737964A1 (fr) * 2012-11-30 2014-06-04 MBDA France Procédé de fusion de poudre avec chauffage de la zone adjacente au bain
WO2014144482A1 (fr) * 2013-03-15 2014-09-18 Matterfab Corp. Appareil et procédés de fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014146903A1 *

Also Published As

Publication number Publication date
US10549385B2 (en) 2020-02-04
CN105188994A (zh) 2015-12-23
DE102013205029A1 (de) 2014-09-25
WO2014146903A1 (fr) 2014-09-25
US20160250717A1 (en) 2016-09-01
CN105188994B (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2014146903A1 (fr) Procédé de fusion laser avec au moins un faisceau laser de travail
EP2915611B1 (fr) Dispositif et procédé de fabrication générative d'un composant
EP2618990B1 (fr) Procédé de frittage laser sélectif et installation de frittage laser sélectif
EP3383568B1 (fr) Procede de fabrication generative de composants a l'aide d'une plateforme de construction pouvant etre chauffee et installation pour ledit procede
EP2061078B1 (fr) Corps de refroidissement
EP2886226A2 (fr) Éclairage pour la fabrication générative
WO2016110440A1 (fr) Dispositif et procédé génératif de construction par couches permettant de produire un objet tridimensionnel au moyen d'une pluralité de rayons
DE102014108061A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
EP2655128B1 (fr) Structure de siège de véhicule comprenant des zones consolidées au laser
EP2829338A2 (fr) Dispositif d'application laser et procédé de fabrication d'un composant à l'aide d'application laser directe
WO2014135136A1 (fr) Dispositif de déviation de faisceau laser pour dispositif de production d'objets tridimensionnels
DE102014108081A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
DE102018202506A1 (de) Additives Herstellverfahren mit kontrollierter Verfestigung und zugehörige Vorrichtung
EP3345697B1 (fr) Dispositif destinés à la fabrication additive de composants
DE102016224060A1 (de) Verfahren zur additiven Herstellung eines Bauteils mit Stützstruktur und reduzierter Energiedichte
DE102014004035A1 (de) Verfahren zum Erzeugen kleiner Bohrungen in Werkstücken
EP3461571A1 (fr) Procédé de rayonnement d'une couche de poudre dans une fabrication additive présentant des paramètres de fabrication définis de manière continue
EP3248719B1 (fr) Procédé et dispositif de fabrication additive d'au moins une partie d'un composant
DE102013214485A1 (de) Laserauftragsvorrichtung mit wiederverwendbarer Stützstruktur
EP4225523A1 (fr) Stratégie d'émission en fabrication additive à émission pulsée
EP3074166B1 (fr) Procédé de fabrication d'une matière brute pour un outil d'enlèvement de copeaux et matière brute correspondante
DE102014222526A1 (de) Verfahren und Vorrichtung zum generativen Herstellen zumindest eines Bauteilbereichs eines Bauteils
EP3175941A1 (fr) Procédé et dispositif de fabrication par méthode additive d'au moins une partie d'un composant
DE102020118836B3 (de) Fertigungsverfahren für ein formgebendes Werkzeugteil eines Formwerkzeugs
EP2875891A1 (fr) Procédé de fabrication d'une matière brute pour un outil d'enlèvement de copeaux et matière brute correspondante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181010

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210622