EP2952016B1 - Method for processing a multichannel sound in a multichannel sound system - Google Patents

Method for processing a multichannel sound in a multichannel sound system Download PDF

Info

Publication number
EP2952016B1
EP2952016B1 EP13705936.6A EP13705936A EP2952016B1 EP 2952016 B1 EP2952016 B1 EP 2952016B1 EP 13705936 A EP13705936 A EP 13705936A EP 2952016 B1 EP2952016 B1 EP 2952016B1
Authority
EP
European Patent Office
Prior art keywords
signals
signal
surround
difference
stereo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13705936.6A
Other languages
German (de)
French (fr)
Other versions
EP2952016A1 (en
Inventor
Gunnar Kron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kronoton GmbH
Original Assignee
Kronoton GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kronoton GmbH filed Critical Kronoton GmbH
Publication of EP2952016A1 publication Critical patent/EP2952016A1/en
Application granted granted Critical
Publication of EP2952016B1 publication Critical patent/EP2952016B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 
    • H04S5/02Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation  of the pseudo four-channel type, e.g. in which rear channel signals are derived from two-channel stereo signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems

Definitions

  • the invention relates to a method for multi-channel sound processing in a multi-channel sound system according to the preamble of claim 1.
  • the front signals Lo and Ro, the center signal Co and the surround signals L RO and R RO are derived from stereo signals, ie from the input signals L and R.
  • the respective other signals are subtracted from the signals L, R, L + R and LR with a weighting.
  • frequency-dependent weighting factors are derived in addition to the level ratio calculations.
  • the center signal C is varied only in the level, whereas the two surround signals L and R RO RO in two frequency bands and phase inverted derived.
  • the coefficients a 1 ... A 8 of these weighted summations are derived from level measurements.
  • two control signals from the level difference of a left and right channel D LR and level difference of a sum and difference signal Des are calculated.
  • the two front signals L out and R out are thereby from the two input signals L and R and the subtraction of a weighted sum signal (L + R) and of a weighted difference signal (LR) obtained.
  • the center signal C results from the sum (L + R) and the subtraction of the weighted input signals L and R.
  • the surround signal S is made up of the sum (LR) and the subtraction of the weighted input signals L and R.
  • the weighting coefficients g l , g r , g c and g s are obtained from a level matching of the signals L and R and L + R and LR in a recursive structure.
  • This time-variant multi-channel control ensures a spatial displacement of the signal, if then again a stereo encoding is made.
  • Much more decisive for a spatial resolution improvement of stereo signals is an extraction of directional signal components and their weighting by static or frequency-dependent weighting. Therefore, the document WO 2010/015275 A1 represents a significant advance of the method of the type mentioned, since here the decomposition of stereo signals in spatial proportions takes place in order to assess these with different level controls. Thereafter, the valued spatial signals are reassembled into a stereo signal. Due to the weighting of the spatial signal components, the stereo signal experiences an improvement of the spatial reproduction.
  • US2012 / 0263306 A1 discloses a four-channel stereophonic device. It is therefore an object of the invention to further develop a method of the type mentioned above, that on the basis of an extraction of directional signal components, a further improvement of the spatial reproduction of the input signals L and R is achieved. This object is achieved with the features of claim 1.
  • the derivation of the surround signals from the difference LR has proven to be another important step for improved stereo and spatial expansion.
  • a space signal R is formed into a center signal.
  • the space signal is formed from the difference between the signals L and R (R L ) and / or the difference between the signals R and L (R R ).
  • the inventive method a spatial and Stereo extension of a stereo signal achieved by an extension of the stereo decomposition.
  • the advantage here is a frequency-dependent weighting of the surround signals.
  • a frequency-dependent weighting of the signals S L and S R takes place .
  • the frequency-dependent weighting is preferably carried out by means of a height-helving filter.
  • the signals L and R are expediently added to the signals L P and R P.
  • the invention also provides software residing on a signal processor, i. is imported to the signal processor.
  • the software contains an algorithm which is processed by the signal processor, the algorithm detecting the method.
  • the method begins with the fact that in the context of decoding the input signals L and R, which are present as stereo signals, are divided into three signal components, wherein the signals L and R can be retained.
  • the signal components are the center signal C, the spatial signal R and the surround signals S L and S R.
  • the center signal C is single-channel, ie it contains only the channel C, whereas the space signal R and the surround signal S are two-channel, ie they contain the signals R L and R R and S L and S R.
  • the surround and space signals S L , S R and R L and R R contain the direction and spatial information of the stereo signals L and R.
  • the process section A is followed by the process section B, in which the processing of the channels C, R L , R R , S L and S R takes place.
  • these signals are provided by first level control 1, 2 with a level weighting, which manifests itself in the factor 1.5.
  • the further level controls 3, 4 provide a further variable level weighting, which weights the sound characteristics of the decoded signals to L, R.
  • the filters 5, 6 have a minimum phase shift in the frequency range of preferably 2 kHz, so that extinction effects are minimized in the taking place in process section C encoding, at the same time the actual gain effect is emphasized with a height helving frequency response of, for example, 3 dB, preferably 2KHZ.
  • the surround signals S L , S R are supplied to the level selectors 7, 8 which weight the sound characteristics of the decoded signals to S L , S R.
  • the encoded weighted signals are found L P , R P a post-processing by stereo equalizer 9, 10.
  • a special non-linear characteristic NL is used. This non-linear characteristic maps an input amplitude x to an output amplitude y.
  • the signals L P , R P undergo further post-processing in the method section D such that the level adjusters 11, 12 determine the degree of overtone mixing to the direct signal. Further processing is finally carried out by the level control 13, 14, which make the overall level of the process result adjustable.
  • the present invention is not limited in its execution to the embodiment given above. Rather, a number of variants is conceivable, which make use of the solution shown in other types.
  • ie compressors / limiters are used to further enrich the sound image.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Stereophonic System (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Mehrkanaltonbearbeitung in einem Mehrkanaltonsystem gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for multi-channel sound processing in a multi-channel sound system according to the preamble of claim 1.

Ein Verfahren der eingangs genannten Art ist dem Fachmann bekannt und geläufig und wird in der DE 24 39 863 A1 offenbart.A method of the type mentioned is known in the art and is familiar and is in the DE 24 39 863 A1 disclosed.

In dem in der Druckschrift US 5,771,295 beschriebenen Mehrkanaltonverfahren werden aus Stereo-Signalen, d.h. aus den Eingangssignalen L und R die Frontsignale Lo und Ro, das Center-Signal Co und die Surround-Signale LRO und RRO abgeleitet. Für jedes der Signale werden von den Signalen L, R, L+R und L-R die jeweils anderen Signale mit einer Gewichtung subtrahiert. Im Rahmen dieses vorbekannten Verfahrens zur Mehrkanaltonbearbeitung werden neben den Pegelverhältnisberechnungen auch frequenzabhängige Gewichtsfaktoren abgeleitet. Dabei wird das Center-Signal C nur in dem Pegel variiert, wohingegen die beiden Surround-Signale LRO und RRO in zwei Frequenzbändern und phaseninvertiert abgeleitet werden. In dem der Druckschrift US 5,046,098 offenbarten vorbekannten Verfahren werden die Frontsignale L' und R' sowie das Center-Signal C und das Surround-Signal S erzeugt, in dem durch Summen und Differenzbildung das Center-Signal C=a1*L+a2*R und das Surround-Signal S=a3*L-a4*R und die Frontsignale L'=a5*L-a6*C und R'=a7*R-a8*C aus den beiden Eingangssignalen L und R gebildet werden. Die Koeffizienten a1...a8 dieser gewichteten Summationen werden aus Pegelmessungen abgeleitet. Zur Steuerung dieser Differenzbildung werden zwei Steuersignale aus der Pegeldifferenz eines linken und rechten Kanals DLR und aus Pegeldifferenz eines Summen- und Differenzsignales Des berechnet. Diese beiden Steuersignale werden mit zeitvarianten Ansprechzeiten in dieser Dynamik verändert. Aus diesen beiden zeitvarianten neuen Steuersignalen werden dann vier einzelne Gewichtsfaktoren EC, ES, EL und ER abgeleitet, die eine zeitvariante Ausgangsmatrix zur Berechnung der Frontsignale L' und R' sowie des Center-Signales C und des Surround-Signales S ermöglichen.In the in the publication US 5,771,295 From the input signals L and R, the front signals Lo and Ro, the center signal Co and the surround signals L RO and R RO are derived from stereo signals, ie from the input signals L and R. For each of the signals, the respective other signals are subtracted from the signals L, R, L + R and LR with a weighting. In the context of this previously known method for multi-channel sound processing, frequency-dependent weighting factors are derived in addition to the level ratio calculations. In this case, the center signal C is varied only in the level, whereas the two surround signals L and R RO RO in two frequency bands and phase inverted derived. In the document US 5,046,098 previously known methods, the front signals L 'and R' as well as the center signal C and the surround signal S are generated, in which by summing and subtraction the center signal C = a 1 * L + a 2 * R and the surround signal Signal S = a 3 * La 4 * R and the front signals L '= a 5 * La 6 * C and R' = a 7 * Ra 8 * C are formed from the two input signals L and R. The coefficients a 1 ... A 8 of these weighted summations are derived from level measurements. To control this difference formation two control signals from the level difference of a left and right channel D LR and level difference of a sum and difference signal Des are calculated. These two control signals are changed with time-variant response times in this dynamic. From these two time variant new control signals then four individual Weight factors E C , E S , E L and E R derived, which allow a time-variant output matrix for calculating the front signals L 'and R' and the center signal C and the surround signal S.

Ein weiteres Verfahren der eingangs genannten Art offenbart die Druckschrift US 2004/0125960 A1 , die eine Erweiterung der Decodierung mit zeitvarianten Steuersignalen zum Inhalt hat. Die beiden Frontsignale Lout und Rout werden dabei aus den beiden Eingangssignalen L und R und der Subtraktion eines gewichteten Summensignales (L+R) und eines gewichteten Differenzsignales (L-R) gewonnen. Das Center-Signal C ergibt sich aus der Summe (L+R) und der Subtraktion der gewichteten Eingangssignale L und R. Das Surround-Signal S erfolgt aus der Summe (L-R) und der Subtraktion der gewichteten Eingangssignale L und R. Die Gewichtskoeffizienten gl, gr, gc und gs werden aus einer Pegelanpassung der Signale L und R bzw. L+R und L-R in einer rekursiven Struktur gewonnen.Another method of the type mentioned discloses the document US 2004/0125960 A1 , which has an extension of the decoding with time-variant control signals to the content. The two front signals L out and R out are thereby from the two input signals L and R and the subtraction of a weighted sum signal (L + R) and of a weighted difference signal (LR) obtained. The center signal C results from the sum (L + R) and the subtraction of the weighted input signals L and R. The surround signal S is made up of the sum (LR) and the subtraction of the weighted input signals L and R. The weighting coefficients g l , g r , g c and g s are obtained from a level matching of the signals L and R and L + R and LR in a recursive structure.

Auch dient in der Druckschrift US 6,697,491 B1 die Pegeldifferenzberechnung für L/R und (L+R)/(L-R) zur Ableitung von Steuersignalen für die gewichtete Matrixdecodierung in der Mehrkanaltonbearbeitung.Also serves in the document US 6,697,491 B1 the level difference calculation for L / R and (L + R) / (LR) for deriving control signals for the weighted matrix decoding in the multi-channel sound processing.

Die beschriebenen Verfahren zur Mehrkanalbearbeitung in einem Mehrkanaltonsystem sind hauptsächlich für die Verarbeitung von Kinoton-Signalen entwickelt worden. Hierbei ist es wichtig gewesen, dynamisch auftretende Richtungen von Signalen, zumeist in Form von Sprach- und Effektsignalen, räumlich über mehrere Lautsprecher richtungsadäquat wiederzugeben. Die dynamische Ansteuerung dieser Mehrkanalsignale unterstützt die Richtungswahrnehmung bei derartigen Signalarten. Demgegenüber ist jedoch die Richtungsinformation in musikalischen Stereo-Aufnahmen zu einem hohen Prozentsatz nicht dynamisch, sondern eher statisch und ändert sich bei speziellen Raumeffekten eher geringfügig. Akustische Untersuchungen im Rahmen des in der Druckschrift US 2004/0125960 A1 offenbarten Verfahrens zeigen ein minimales Steuern der Richtungsinformationen, da dominante Richtungen innerhalb eines Stereo-Mixes selten auftreten. Diese zeitvariante Mehrkanal-Steuerung sorgt für eine räumliche Verschiebung des Signales, wenn anschließend wieder eine Stereo-Encodierung vorgenommen wird.
Wesentlich entscheidender für eine räumliche Auflösungsverbesserung von Stereo-Signalen ist dagegen eine Extraktion von Richtungssignalanteilen und deren Gewichtung durch statische oder frequenzabhängige Gewichtung. Von daher stellt die Druckschrift WO 2010/015275 A1 einen wesentlichen Fortschritt des Verfahrens der eingangs genannten Art dar, da hier die Zerlegung von Stereo-Signalen in Raumanteile erfolgt, um diese mit unterschiedlichen Pegelstellern zu bewerten. Danach werden die bewerteten Raumsignale wieder zu einem Stereo-Signal zusammengesetzt. Aufgrund der Gewichtung der Raumsignalanteile erfährt das Stereo-Signal eine Verbesserung der räumlichen Wiedergabe.
The described methods for multi-channel processing in a multi-channel sound system have been developed mainly for the processing of Kinoton signals. In this case, it has been important to reproduce directions of signals which occur dynamically, in the form of speech and effect signals, spatially over several loudspeakers in a directionally adequate manner. The dynamic control of these multi-channel signals supports the direction perception in such types of signals. In contrast, however, the directional information in musical stereo recordings is not dynamic to a high percentage, but rather static, and tends to change slightly with special spatial effects. Acoustic examinations within the scope of the document US 2004/0125960 A1 disclosed method show a minimal control of the direction information, as dominant directions within a stereo mix rarely occur. This time-variant multi-channel control ensures a spatial displacement of the signal, if then again a stereo encoding is made.
Much more decisive for a spatial resolution improvement of stereo signals, however, is an extraction of directional signal components and their weighting by static or frequency-dependent weighting. Therefore, the document WO 2010/015275 A1 represents a significant advance of the method of the type mentioned, since here the decomposition of stereo signals in spatial proportions takes place in order to assess these with different level controls. Thereafter, the valued spatial signals are reassembled into a stereo signal. Due to the weighting of the spatial signal components, the stereo signal experiences an improvement of the spatial reproduction.

Die Veröffentlichung "QA-800, A single unit, four-channel pre/main amplifier for the creation of a living presence quadraphonic sound field" von Pioneer, 2010, offenbart verschiedene Beispiele von Vierkanalstereofoniesystemen.Pioneer's 2010 publication "QA-800, A single unit, four-channel pre / main amplifier for the creation of a quadraphonic sound field" reveals several examples of four-channel stereophonic systems.

US2012/0263306 A1 offenbart eine Vierkanalstereofonievorrichtung. Es ist deshalb Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art derart weiterzuentwickeln, dass auf Grundlage einer Extraktion von Richtungssignalanteilen eine weitere Verbesserung der räumlichen Wiedergabe der Eingangssignale L und R erzielt wird.
Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Gemäß der Erfindung werden im Rahmen einer Decodierung aus den Signalen R und L, die räumlich wiedergegeben werden, mindestens zwei Signale der Form nL-mR mit n, m = 1, 2, 3, 4 gebildet. Hierdurch wird vorteilhafterweise eine Verbesserung der räumlichen Wiedergabe und Transparenz der Eingangs-Signale L und R erzielt. Hierzu werden bei der Decodierung vorzugsweise die Signale L-R (das heißt mit n,m=l) und 2L-R (das heißt mit n=2 und m=l) gebildet. Im Rahmen von psychoakustischen Untersuchungen hat sich zudem die Ableitung der Surround-Signale aus der Differenz L-R als weiterer wichtiger Schritt für eine verbesserte Stereo- und Raumaufweitung erwiesen. Hierbei hat sich wiederum nach intensivem Hörtest das Verhältnis der Surround-Signale SL=2L-R und SR=2R-L als günstig herausgestellt. Die Erfindung sieht daher vor, dass das Surround-Signal SL=2L-R und das Surround-Signal SR aus der Differenz SR=2R-L gebildet werden.
US2012 / 0263306 A1 discloses a four-channel stereophonic device. It is therefore an object of the invention to further develop a method of the type mentioned above, that on the basis of an extraction of directional signal components, a further improvement of the spatial reproduction of the input signals L and R is achieved.
This object is achieved with the features of claim 1. Advantageous embodiments of the invention will become apparent from the dependent claims.
According to the invention, at least two signals of the form nL-mR with n, m = 1, 2, 3, 4 are formed as part of a decoding from the signals R and L, which are reproduced spatially. As a result, an improvement of the spatial reproduction and transparency of the input signals L and R is advantageously achieved. For this purpose, in the decoding preferably the signals LR (that is, with n, m = l) and 2L-R (that is, with n = 2 and m = l) are formed. In the context of psychoacoustic examinations, the derivation of the surround signals from the difference LR has proven to be another important step for improved stereo and spatial expansion. In this case, the ratio of the surround signals S L = 2L-R and S R = 2R-L turned out to be favorable again after intensive listening test. The invention therefore provides that the surround signal S L = 2L-R and the surround signal S R from the difference S R = 2R L are formed.

Vorzugsweise werden im Rahmen der Decodierung aus den Signalen L und R ein Raumsignal R und in ein Center-Signal gebildet. Das Raumsignal wird dabei aus der Differenz der Signale L und R (RL) und/oder aus der Differenz der Signale R und L (RR) gebildet.Preferably, as part of the decoding of the signals L and R, a space signal R and formed into a center signal. The space signal is formed from the difference between the signals L and R (R L ) and / or the difference between the signals R and L (R R ).

Entgegen den herkömmlichen Verfahren, die eine Zerlegung der Signale L und R in die Front-Signale Lfront und Rfront, das Center-Signal C und die Surround-Signale SL und SR vorsehen, wird durch das erfindungsgemäße Verfahren eine Raum- und Stereo-Erweiterung eines Stereo-Signales durch eine Erweiterung der Stereo-Zerlegung erreicht. Hierzu werden die Raum-Signale RL=L-R und RR=R-L zusätzlich aus den Eingangskanälen R und L gerechnet.Contrary to the conventional methods, which provide for a decomposition of the signals L and R in the front signals L front and R front , the center signal C and the surround signals S L and S R , by the inventive method a spatial and Stereo extension of a stereo signal achieved by an extension of the stereo decomposition. For this, the space signals R L = LR and RR = RL are also from the input channels R and L calculated.

Diese Eigenschaften sind bei den folgenden Systemen verifiziert:

  • MS40 Behringer-Monitor-Lautsprecher
  • Notebook Toshiba
  • IMAC27 Rechner
  • Mobiltelefon LG GM205 mit DolbyMobile
  • Philips Flatscreen-Fernseher 42PFL9703D mit BBE Surround
  • Dockingstation JBL On Stage 400p.
These properties are verified on the following systems:
  • MS40 Behringer monitor speakers
  • Notebook Toshiba
  • IMAC27 calculator
  • Mobile phone LG GM205 with DolbyMobile
  • Philips Flatscreen TV 42PFL9703D with BBE Surround
  • Docking Station JBL On Stage 400p.

Vergleiche zu DolbyMobile, Virtual Dolby Surround und anderen Stereo-Spatializern zeigen, dass das erfindungsgemäße Verfahren eine wesentlich neutralere Verbesserung des Stereo-Klangbildes erzeugt.Comparisons to Dolby Mobile, Virtual Dolby Surround and other stereo spatializers show that the inventive method produces a much more neutral enhancement of the stereo soundscape.

Von Vorteil ist dabei eine frequenzabhängige Gewichtung der Surround-Signale. Zweckmäßigerweise erfolgt daher eine frequenzabhängige Gewichtung der Signale SL und SR. Die frequenzabhängige Gewichtung erfolgt vorzugsweise mittels eines Höhenshelving-Filters.The advantage here is a frequency-dependent weighting of the surround signals. Appropriately, therefore, a frequency-dependent weighting of the signals S L and S R takes place . The frequency-dependent weighting is preferably carried out by means of a height-helving filter.

Zweckmäßigerweise werden zu den Signalen LP und RP die Signale L und R addiert.The signals L and R are expediently added to the signals L P and R P.

Im Rahmen der Erfindung ist auch eine Software vorgesehen, die sich auf einem Signalprozessor befindet, d.h. auf den Signalprozessor importiert ist. Die Software enthält dabei einen Algorithmus, der von dem Signalprozessor abgearbeitet wird, wobei der Algorithmus das Verfahren erfasst.The invention also provides software residing on a signal processor, i. is imported to the signal processor. The software contains an algorithm which is processed by the signal processor, the algorithm detecting the method.

Im Folgenden wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigt in schematischer Darstellung:

Fig. 1
ein Verfahren gemäß der Erfindung und
Fig. 2
eine weitere Ausführungsform des Verfahrens aus Fig. 1.
Figur 1 zeigt das erfindungsgemäße Verfahren im Rahmen eines Verfahrensschrittes A, dem weitere Verfahrensschritte folgen, und zwar die Verarbeitung von decodierten Signalen, eine Encodierung sowie eine Verarbeitung der encodierten Signale.
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass im Rahmen einer Decodierung aus den Signalen R und L mindestens zwei Signale der Form nL-mR mit n, m =1, 2, 3, 4 gebildet werden. Wie aus Figur 1 hervorgeht, sind dies die Signale RL=L-R und SL=2L-R.
Fig. 2 zeigt das erfindungsgemäße Verfahren, welches vier Verfahrensabschnitte A, B, C, D aufweist. Im Einzelnen handelt es sich bei den Verfahrensabschnitten um
  • die Decodierung (Verfahrensabschnitt A),
  • die Verarbeitung der decodierten Signale (Verfahrensabschnitt B),
  • die Encodierung (Verfahrensabschnitt C),
  • die Verarbeitung der encodierten Signale (Verfahrensabschnitt D).
In the following the invention will be explained in more detail with reference to the drawing. It shows in a schematic representation:
Fig. 1
a method according to the invention and
Fig. 2
a further embodiment of the method Fig. 1 ,
FIG. 1 shows the inventive method in the context of a method step A, the further process steps follow, namely the processing of decoded signals, an encoding and processing of the encoded signals.
The inventive method is characterized in that in the context of a decoding from the signals R and L at least two signals of the form nL mR with n, m = 1, 2, 3, 4 are formed. How out FIG. 1 seen, these are the signals R = LR L and S L = 2L-R.
Fig. 2 shows the inventive method, which has four process sections A, B, C, D. In detail, the procedural sections are:
  • the decoding (method section A),
  • the processing of the decoded signals (method section B),
  • the encoding (method section C),
  • the processing of the encoded signals (method section D).

Das Verfahren beginnt damit, dass im Rahmen der Decodierung die Eingangs-Signale L und R, die als Stereo-Signale vorliegen, in drei Signalanteile zerlegt werden, wobei die Signale L und R erhalten bleiben können. Bei den Signalanteilen handelt es sich um das Center-Signal C, das Raumsignal R sowie die Surround-Signale SL und SR. Das Center-Signal C ist dabei einkanalig, d.h. es enthält nur den Kanal C, wohingegen das Raum-Signal R und das Surround-Signal S zweikanalig sind, d.h. sie enthalten die Signale RL und RR bzw. SL und SR. Die Surround- und Raum-Signale SL, SR sowie RL und RR enthalten dabei die Richtung und Rauminformation der Stereo-Signale L und R.The method begins with the fact that in the context of decoding the input signals L and R, which are present as stereo signals, are divided into three signal components, wherein the signals L and R can be retained. The signal components are the center signal C, the spatial signal R and the surround signals S L and S R. The center signal C is single-channel, ie it contains only the channel C, whereas the space signal R and the surround signal S are two-channel, ie they contain the signals R L and R R and S L and S R. The surround and space signals S L , S R and R L and R R contain the direction and spatial information of the stereo signals L and R.

In Verfahrensabschnitt A werden die Signale, d.h.

  • der einkanalige Center-Signal C=L+R, auch Mono-Signal genannt,
  • der Stereo-Anteil RL=L-R und RR=R-L des zweikanaligen Raum-Signales R sowie
  • die beiden zweikanaligen Surround-Kanäle SL=2L-R und SR=2R-L,
aus den Stereo-Signalen R und L in fünf parallelen Stufen decodiert.In method section A, the signals, ie
  • the single-channel center signal C = L + R, also called mono signal,
  • the stereo part R L = LR and R R = RL of the two-channel room signal R and
  • the two two-channel surround channels S L = 2L-R and S R = 2R-L,
decoded from the stereo signals R and L in five parallel stages.

Dem Verfahrensabschnitt A schließt sich der Verfahrensabschnitt B an, in dem die Verarbeitung der Kanäle C, RL, RR, SL und SR erfolgt. Um die Lautstärke des Center-Signales C und des Raum-Signales RL=L-R und RR=R-L einzustellen, werden diese Signale durch erste Pegelsteller 1, 2 mit einer Pegelgewichtung versehen, die sich in dem Faktor 1,5 manifestiert. Nach dieser ersten Pegelgewichtung erfolgt durch die weiteren Pegelsteller 3, 4 eine weitere variable Pegelgewichtung, die die Klangcharakteristika der decodierten Signale zu L, R gewichten.The process section A is followed by the process section B, in which the processing of the channels C, R L , R R , S L and S R takes place. To adjust the volume of the center signal C and the space signal R L = LR and R R = RL, these signals are provided by first level control 1, 2 with a level weighting, which manifests itself in the factor 1.5. After this first level weighting, the further level controls 3, 4 provide a further variable level weighting, which weights the sound characteristics of the decoded signals to L, R.

Die beiden Surround-Signale SL=2L-R und SR=2R-L werden dagegen Höhenshelving-Filtern 5, 6 zugeführt, durch die der Frequenzgang der Surround-Signale SL und SR eingestellt werden. Es findet also eine frequenzabhängige Gewichtung der Signale SL und SR statt, wobei die Filter 5, 6 eine minimale Phasenverschiebung im Frequenzbereich um vorzugsweise 2 kHz aufweisen, so dass Auslöschungseffekte bei der in Verfahrensabschnitt C stattfindenden Encodierung minimiert werden, gleichzeitig der eigentliche Verstärkungseffekt jedoch betont wird und zwar mit einem Höhenshelving-Frequenzgang um beispielsweise 3 dB bei vorzugsweise 2KHZ. Danach werden die Surround-Signale SL, SR den Pegelstellern 7, 8 zugeführt, die die Klangcharakteristika der decodierten Signale zu SL, SR gewichten.The two surround signals S L = 2L-R and S R = 2R-L, on the other hand, are supplied to height-helving filters 5, 6, by means of which the frequency response of the surround signals S L and S R are set. Thus, there is a frequency-dependent weighting of the signals S L and S R , wherein the filters 5, 6 have a minimum phase shift in the frequency range of preferably 2 kHz, so that extinction effects are minimized in the taking place in process section C encoding, at the same time the actual gain effect is emphasized with a height helving frequency response of, for example, 3 dB, preferably 2KHZ. Thereafter, the surround signals S L , S R are supplied to the level selectors 7, 8 which weight the sound characteristics of the decoded signals to S L , S R.

Bei der Encodierung, d.h. in dem Verfahrensabschnitt C, ergeben sich somit nach Summation, die schon in dem Verfahrensschritt A gegeben ist, der Signale C, RL, RR, SL, SR in der Form: L P = C + R L + S L = L + R + L R + 2 L R = 4 L R

Figure imgb0001
R P = C + R R + S R = L + R + R L + 2 R L = 4 R L
Figure imgb0002
die encodierten Stereosignale LP, RP gemäß L P = V C C + V R R L + V S S L = V C L + R + V R L R + Vs 2 L R
Figure imgb0003
R P = V C C + V R R R + V S S R = V C L + R + V R R L + V S 2 R L
Figure imgb0004
bzw. nach Filterung der Surround-Signale SL, SR L P = V C C + V R R L + V S S L Filtered = V C L + R + V R L R + V S 2 L R Filtered
Figure imgb0005
R P = V C C + V R R R + V S S R Filtered = V C L + R + V R R L + V S 2 R L Filtered
Figure imgb0006
During the encoding, ie in the method section C, the signals C, R L , R R , S L , S R thus result after summation, which is already given in method step A, in the form: L P = C + R L + S L = L + R + L - R + 2 L - R = 4 L - R
Figure imgb0001
R P = C + R R + S R = L + R + R - L + 2 R - L = 4 R - L
Figure imgb0002
the encoded stereo signals L P , R P according to L P = V C C + V R R L + V S S L = V C L + R + V R L - R + vs 2 L - R
Figure imgb0003
R P = V C C + V R R R + V S S R = V C L + R + V R R - L + V S 2 R - L
Figure imgb0004
or after filtering the surround signals S L , S R L P = V C C + V R R L + V S S L Filtered = V C L + R + V R L - R + V S 2 L - R Filtered
Figure imgb0005
R P = V C C + V R R R + V S S R Filtered = V C L + R + V R R - L + V S 2 R - L Filtered
Figure imgb0006

In dem letzten Verfahrensabschnitt D erfahren die encodierten gewichteten Signale LP, RP eine Nachbearbeitung durch Stereo-Equalizer 9, 10. Zur weitere Anreicherung des Klangbildes wird eine spezielle nichtlineare Kennlinie NL verwendet. Diese nichtlineare Kennlinie bildet eine Eingangsamplitude x auf eine Ausgangsamplitude y ab. Die eingesetzte, nicht lineare Kennlinie y=f(x) lautet y = tanh 1 / 7.522 * atan 7.522 * x * sign x + 1 / 2 + x * sign x + 1 / 2 / 0.5 * 0.5

Figure imgb0007
In the last method section D, the encoded weighted signals are found L P , R P a post-processing by stereo equalizer 9, 10. For further enrichment of the sound image, a special non-linear characteristic NL is used. This non-linear characteristic maps an input amplitude x to an output amplitude y. The used, non-linear characteristic y = f (x) is y = tanh 1 / 7522 * atan 7522 * x * sign x + 1 / 2 + x * sign - x + 1 / 2 / 0.5 * 0.5
Figure imgb0007

Durch diese Kennlinie werden dem Direkt-Musiksignal harmonische Obertöne hinzugefügt. Schließlich erfahren die Signale LP, RP eine weitere Nachverarbeitung in dem Verfahrensabschnitt D derart, dass die Pegelsteller 11, 12 den Grad der Obertonzumischung zum Direktsignal bestimmen. Eine weitere Bearbeitung erfolgt schließlich durch die Pegelsteller 13, 14, die den Gesamtpegel des Verfahrensergebnisses regelbar machen.This characteristic adds harmonic overtones to the direct music signal. Finally, the signals L P , R P undergo further post-processing in the method section D such that the level adjusters 11, 12 determine the degree of overtone mixing to the direct signal. Further processing is finally carried out by the level control 13, 14, which make the overall level of the process result adjustable.

Die vorliegende Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei anders gearteten Ausführungen Gebrauch machen. Beispielsweise können im Rahmen des Verfahrensabschnittes D Maximizer, d.h. Kompressoren/Limiter Anwendung finden, um das Klangbild weiter anzureichern.The present invention is not limited in its execution to the embodiment given above. Rather, a number of variants is conceivable, which make use of the solution shown in other types. For example, in the context of the method section D Maximizer, ie compressors / limiters are used to further enrich the sound image.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

1, 21, 2
erste Pegelstellerfirst level control
3, 43, 4
weitere Pegelstellerfurther level controls
5, 65, 6
Höhenshelving-FilterHöhenshelving filter
7, 87, 8
Pegelstellerlevel control
9, 109, 10
Stereo-EqualizerStereo equalizer
11, 12,11, 12,
13, 1413, 14
weitere Komponentenother components

Claims (11)

  1. A method for processing a multichannel sound in a multichannel sound system, in which the input signals L and R are decoded, preferably as stereo signals, wherein the signals R and L are decoded at least into two signals of the form nL-mR with n, m = 1, 2, 3, 4, characterized in that the input signals L and R are spatially reproduced and a surround signal SL is formed from the difference SL = 2L-R and a surround signal SR from the difference SR = 2R-L.
  2. The method according to claim 1, wherein the signals L and R are decoded into a spatial signal R and into a center signal, wherein a spatial signal RL is formed from the difference of the signals L and R and/or a spatial signal RR from the difference of the signals R and L.
  3. The method according to claim 2, wherein an encoding to signals LP, RP takes place in the form L P = C + R L + S L = L + R + L R + 2 L R = 4 L R
    Figure imgb0013
    and R P = C + R R + S R = L + R + R L + 2 R L = 4 R L .
    Figure imgb0014
  4. The method according to claim 3, wherein the signals RL, RR, C, SL and SR contain a level weighting VC, VR, VS.
  5. The method according to claim 3, wherein an encoding to signals LP, RP takes place in the form L P = V C C + V R R L + V S S L = V C L + R + V R L R + V S 2 L R
    Figure imgb0015
    and R P = V C C + V R R R + V S + V S S R = V C L + R + V R R L + V S 2 R L .
    Figure imgb0016
  6. The method according to one of claims 3 to 5, wherein a frequency-dependent weighting of the signals SL and SR takes place.
  7. The method according to claim 6, wherein the frequency-dependent weighting takes place by means of a height-shelving filter (5, 6).
  8. The method according to one of claims 3 to 6, wherein the signals LP, RP are filtered by means of an equalizer (9, 10).
  9. The method according to one of claims 3 to 7, wherein harmonic overtones are added to the signals LP, RP.
  10. The method according to claim 9, wherein the addition of the harmonic overtones takes places by means of a compressor/limiter or a non-linear characteristic line of the form y=tanh((1/7.522*atan(7.522*x)*(sign(x)+1)/2+x*(sign(-x)+1)/2)/0.5)*0.5, wherein this non-linear characteristic line maps an input amplitude x to an output amplitude y.
  11. A software, which is imported onto a signal processor, characterized in that the software contains an algorithm, which is executed by the signal processor, wherein the algorithm includes the method according to one of claims 1 to 10.
EP13705936.6A 2013-02-04 2013-02-04 Method for processing a multichannel sound in a multichannel sound system Active EP2952016B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/052127 WO2014117867A1 (en) 2013-02-04 2013-02-04 Method for processing a multichannel sound in a multichannel sound system

Publications (2)

Publication Number Publication Date
EP2952016A1 EP2952016A1 (en) 2015-12-09
EP2952016B1 true EP2952016B1 (en) 2018-09-26

Family

ID=47749772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13705936.6A Active EP2952016B1 (en) 2013-02-04 2013-02-04 Method for processing a multichannel sound in a multichannel sound system

Country Status (7)

Country Link
US (1) US9628932B2 (en)
EP (1) EP2952016B1 (en)
JP (1) JP6438892B2 (en)
KR (1) KR102089821B1 (en)
CN (1) CN104969575B (en)
SG (1) SG11201506075UA (en)
WO (1) WO2014117867A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9380383B2 (en) 2013-09-06 2016-06-28 Gracenote, Inc. Modifying playback of content using pre-processed profile information
CN110719563B (en) * 2018-07-13 2021-04-13 海信视像科技股份有限公司 Method for adjusting stereo sound image and circuit for acquiring stereo sound image

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2439863A1 (en) * 1973-08-20 1975-03-06 Sansui Electric Co FOUR CHANNEL DECODING MATRIX
US20120263306A1 (en) * 2011-04-18 2012-10-18 Paul Blair McGowan Acoustic Spatial Projector

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046098A (en) 1985-03-07 1991-09-03 Dolby Laboratories Licensing Corporation Variable matrix decoder with three output channels
JPS62146000A (en) * 1985-12-20 1987-06-30 Sony Corp Sound field extending signal generating circuit
JPH05316600A (en) * 1992-05-12 1993-11-26 Nec Corp Surround circuit
US5771295A (en) * 1995-12-26 1998-06-23 Rocktron Corporation 5-2-5 matrix system
US6697491B1 (en) 1996-07-19 2004-02-24 Harman International Industries, Incorporated 5-2-5 matrix encoder and decoder system
US5970153A (en) * 1997-05-16 1999-10-19 Harman Motive, Inc. Stereo spatial enhancement system
JP4627880B2 (en) * 1997-09-16 2011-02-09 ドルビー ラボラトリーズ ライセンシング コーポレイション Using filter effects in stereo headphone devices to enhance the spatial spread of sound sources around the listener
US7035413B1 (en) * 2000-04-06 2006-04-25 James K. Waller, Jr. Dynamic spectral matrix surround system
EP1362499B1 (en) 2000-08-31 2012-02-15 Dolby Laboratories Licensing Corporation Method for apparatus for audio matrix decoding
JP2003333699A (en) * 2002-05-10 2003-11-21 Pioneer Electronic Corp Matrix surround decoding apparatus
JP4580210B2 (en) * 2004-10-19 2010-11-10 ソニー株式会社 Audio signal processing apparatus and audio signal processing method
JP2007311965A (en) * 2006-05-17 2007-11-29 Pioneer Electronic Corp Digital audio signal processor
DE102008036924B4 (en) 2008-08-08 2011-04-21 Gunnar Kron Method for multi-channel processing in a multi-channel sound system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2439863A1 (en) * 1973-08-20 1975-03-06 Sansui Electric Co FOUR CHANNEL DECODING MATRIX
US20120263306A1 (en) * 2011-04-18 2012-10-18 Paul Blair McGowan Acoustic Spatial Projector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UNKNOWN: "A single unit, four-channel pre/main amplifier for the creation of a living presence quadraphonic sound field.", 9 June 2010 (2010-06-09), Internet, XP055333424, Retrieved from the Internet <URL:http://www.vintageshifi.com/repertoire-pdf/pdf/telecharge.php?pdf=Pioneer-QA-800-Brochure.pdf> [retrieved on 20170109] *

Also Published As

Publication number Publication date
SG11201506075UA (en) 2015-09-29
CN104969575B (en) 2018-03-23
KR20150114508A (en) 2015-10-12
WO2014117867A1 (en) 2014-08-07
EP2952016A1 (en) 2015-12-09
CN104969575A (en) 2015-10-07
US9628932B2 (en) 2017-04-18
US20150382125A1 (en) 2015-12-31
KR102089821B1 (en) 2020-03-17
JP6438892B2 (en) 2018-12-19
JP2016509427A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
DE69827775T2 (en) TONKANALSMISCHUNG
DE602005006385T2 (en) DEVICE AND METHOD FOR CONSTRUCTING A MULTI-CHANNEL OUTPUT SIGNAL OR FOR PRODUCING A DOWNMIX SIGNAL
DE69433258T2 (en) Surround sound signal processing device
EP2206113B1 (en) Device and method for generating a multi-channel signal using voice signal processing
DE602005005186T2 (en) METHOD AND SYSTEM FOR SOUND SOUND SEPARATION
EP2036400B1 (en) Generation of decorrelated signals
DE19715498B4 (en) Stereo sound image enhancement apparatus and methods using tables
DE112012006457B4 (en) Frequency characteristic modification device
DE112011100216T5 (en) Dynamic compression-based bass enhancement with EQ
EP2939445B1 (en) Production of 3d audio signals
WO2015049334A1 (en) Method and apparatus for downmixing a multichannel signal and for upmixing a downmix signal
WO2015049332A1 (en) Derivation of multichannel signals from two or more basic signals
DE102019135690B4 (en) Method and device for audio signal processing for binaural virtualization
EP2917908A1 (en) Non-linear inverse coding of multichannel signals
DE19632734A1 (en) Method and device for generating a multi-tone signal from a mono signal
EP2952016B1 (en) Method for processing a multichannel sound in a multichannel sound system
DE19645867A1 (en) Multiple channel sound transmission method
DE10148351A1 (en) Method and device for selecting a sound algorithm
DE112019004139T5 (en) SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD AND PROGRAM
DE69025092T2 (en) Device for controlling acoustic transmission data
DE102010015630B3 (en) Method for generating a backwards compatible sound format
WO2015128376A1 (en) Autonomous residual determination and yield of low-residual additional signals
EP3275212B1 (en) Method for analysing and decomposing stereo audio signals
DE756615C (en) Stereophonic transmission of sound vibrations
DE112019004193T5 (en) AUDIO PLAYBACK DEVICE, AUDIO PLAYBACK METHOD AND AUDIO PLAYBACK PROGRAM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160909

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KRONOTON GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1047474

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011168

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011168

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190627

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1047474

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013011168

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230227

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 12

Ref country code: GB

Payment date: 20240222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 12