EP2938443B1 - Method for detecting and classifying electromagnetically detectable objects in a bulk stream - Google Patents

Method for detecting and classifying electromagnetically detectable objects in a bulk stream Download PDF

Info

Publication number
EP2938443B1
EP2938443B1 EP13827001.2A EP13827001A EP2938443B1 EP 2938443 B1 EP2938443 B1 EP 2938443B1 EP 13827001 A EP13827001 A EP 13827001A EP 2938443 B1 EP2938443 B1 EP 2938443B1
Authority
EP
European Patent Office
Prior art keywords
signal
bulk material
sensor
sinusoidal curves
sensor assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13827001.2A
Other languages
German (de)
French (fr)
Other versions
EP2938443A1 (en
Inventor
Steven SCHOLZ
Alexander Braun
Oliver Gurok
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Devolute Forschungs- und Entwicklungsgesellschaft
Original Assignee
Devolute Forschungs- und Entwicklungsgesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Devolute Forschungs- und Entwicklungsgesellschaft filed Critical Devolute Forschungs- und Entwicklungsgesellschaft
Publication of EP2938443A1 publication Critical patent/EP2938443A1/en
Application granted granted Critical
Publication of EP2938443B1 publication Critical patent/EP2938443B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/344Sorting according to other particular properties according to electric or electromagnetic properties

Definitions

  • the invention relates to a method for detecting and classifying electromagnetically detectable parts, in particular of items to be conveyed in a bulk material, with the steps: approximation of the sensor arrangement to the electromagnetically detectable part by carrying out a relative movement between the sensor arrangement and the electromagnetically detectable part, until this is in Sensor region of the sensor arrangement is located, wherein the sensor arrangement comprises at least one electromagnetic sensor, which has at least one excitation coil for emitting an electromagnetic excitation field and at least one detector coil; Impinging the excitation coil with a time-dependent excitation current; Measuring a time-dependent signal induced in the detector coil; Evaluate the signal to determine the electromagnetic properties of the electromagnetically detectable part.
  • the excitation current is generated by a superimposition of several sinusoidal waveforms of different frequencies.
  • the following steps are carried out: provision of a bulk material stream; Conveying the stream of bulk material along a sensor arrangement and through the sensor region of the sensor arrangement, the sensor arrangement having at least one electromagnetic sensor which has at least one exciter coil for emitting an electromagnetic exciter field and at least one detector coil; Impinging the excitation coil with a time-dependent excitation current; Measuring a time-varying signal current induced in the detector coil; Evaluating the signal current to determine the electromagnetic properties of a portion of the stream of bulk material located in the sensor region of the sensor assembly.
  • the excitation coil of a special sensor arrangement the In addition to the excitation coil has two mutually offset and oppositely wound coil wound detection coils, subjected to an alternating current and thus generates an electromagnetic excitation field.
  • the electrical signal induced by the exciter field in the detector coils is measured and evaluated.
  • Such a sensor arrangement can generally detect and classify electromagnetically detectable parts, e.g. be brought to the sensor arrangement, or to which the sensor arrangement is introduced.
  • the sensor arrangement is therefore not limited to use in a sorting device.
  • a generic sensor arrangement is in the US 5,654,638 disclosed in the form of a portable metal detector for locating metallic objects in the ground.
  • the object of the invention is to provide a method with which electromagnetically detectable parts, in particular items to be conveyed in a flow of bulk material, can be classified particularly easily and accurately.
  • classifying is understood to mean the determination of characteristic electromagnetic properties of, for example, a material to be conveyed in a bulk material flow, by means of which the product to be conveyed is subsequently assigned to a specific substance class.
  • metallic substances can be separated from non-metallic substances, or noble metals from base metals.
  • certain types of stainless steel can be separated from each other on the basis of the electromagnetic properties.
  • this classification leads to a decision that a conveyed material is to be discharged from the bulk material flow or not.
  • the method can detect a characteristic electromagnetic property of a material.
  • the excitation current is generated by a superposition of a plurality of sinusoidal waveforms of different frequencies, wherein the frequencies of the plurality of sinusoidal waveforms are respectively integer multiples of a common fundamental frequency.
  • the temporal course of the exciter current is thereby a superimposition of several sinusoidal courses of different frequencies. Accordingly, the exciting field generated and emitted by the at least one excitation coil also represents a superimposition of the multiple sinusoidal courses of different frequencies.
  • the invention is based on the recognition that the classification of e.g. contained in a bulk flow, responsive to the excitation field counselguter can be particularly easily done when the electromagnetic response is determined not only at a frequency but at several different frequencies. While this can be done by different exciter field shapes, such as e.g. by a Dirac pulse, a white noise, or a continuous tuning of the excitation frequency as a sweep or chirp signal, it has been found that an excitation field designed according to the invention can be handled particularly well both in the generation and in the evaluation.
  • the invention will be discussed below with reference to an application for the classification of conveyed goods and explained to allow the sorting of the conveyed goods by means of the classification.
  • the method is more generally usable, e.g. also in measuring instruments, e.g. Portable measuring devices that only serve to obtain measurement results without being integrated into a sorting system.
  • the excitation field (or the underlying exciting current) is preferably generated by the so-called direct digital synthesis (DDS).
  • DDS direct digital synthesis
  • values stored in a memory are read out in a fixed time sequence and converted by means of a digital-to-analog converter into an analog voltage signal, which is then fed to the exciter coils as an excitation current via an amplifier arrangement.
  • the value sequence is read again from the beginning.
  • the efficiency of the amplifier arrangement ie the ratio of the useful power to the power loss, not only depends on the quality of the amplifier arrangement, but also substantially on the waveform of the excitation current. The efficiency is higher, the lower the crest factor of the signal is (or the excitation current), wherein the crest factor is defined as the ratio of the peak value to the effective value of the waveform. This is essentially due to the fact that only the real parts of the complex signal curves contribute to the net output, while the power losses also contribute to the imaginary parts, which cancel each other out on a temporal average.
  • the crest factor of the overall signal can be reduced for the same power in the individual frequency components, thereby increasing the efficiency of the amplifier arrangement and reducing the thermal load on the sensor array.
  • the phase shift ⁇ of the individual sinusoidal profiles with respect to the course of the fundamental frequency corresponds to either 0 ° or 180 °.
  • This limitation of the possible phase shifts simplifies the optimization of the signal to achieve the lowest possible crest factor. At the same time this ensures that the start value of the total signal at startup is always zero, so that disturbing signal peaks when "switching on" can be avoided.
  • the phase shifts ⁇ of the individual sinusoidal curves are selected so that the resulting total signal has a crest factor of less than 3, preferably less than 2.5. At these crest factors, the efficiency of the amplifier arrangement is sufficiently high to avoid an undesirably high heat load on the sensor arrangement.
  • the product (90 ° x (S (n-1)) gives either + 90 ° or -90 °, since the Rudin-Shapiro series is composed only of the numbers 1 and -1.
  • the number of superimposed frequencies ie the individual sinusoidal curves of different frequencies, which are summed up to form the excitation signal, can in principle be chosen freely. If according to a further preferred embodiment of the invention, the number of superimposed frequencies is an integer power of 2, the result is a maximum crest factor of 2, which allows a very favorable efficiency of the amplifier arrangement.
  • the common fundamental frequency of the frequency components between 100 Hz and 10 kHz, preferably at 1 kHz. This frequency range, with reasonable switching and computational effort, provides good results in the detection and classification of the conveyed material parts of the bulk material that respond to electromagnetic fields
  • the number of superposed frequencies is 64.
  • the individual frequency components are separated from one another in a frequency analysis, and the amplitude and / or phase position are determined for these frequency components.
  • the evaluation of the induced signal comprises a fast Fourier transformation (FFT).
  • FFT fast Fourier transformation
  • the sampling rate of the analog-to-digital converter is an integer multiple of the output rate of the digital-to-analog converter and the number of output values is selected to a total power of 2, the computational resolution of the fast Fourier Transformation are particularly well exploited
  • FIG. 1 is a plant 10 for sorting of bulk material 15, 15 ', 15 “, 16, 16', 16” shown, which is transported in the form of a bulk material flow 13 on a first conveyor belt 12 in a conveying direction.
  • the first conveyor belt 12 is deflected around a roller 27.
  • the bulk material falls 15, 15 ', 15 “, 16, 16', 16” from the first conveyor belt 12 and falls under the influence of its inertia on a second conveyor belt 42, which the bulk material 16, 16 ', 16 " ab responsiblet.
  • the bulk material consists of different materials 15, 15 ', 15 "and 16, 16', 16", which are to be sorted out in the sorting plant.
  • a tuyere 24 is arranged, which is supplied controlled by a valve 26 from a compressed air source 34, and upon opening of the valve 26 a falling bulk material part 15 'deflects so that it over a separating vertex 36 away on a third conveyor belt 40 is deflected, which dissipates the bulk material 15 "separately.
  • the bulk material stream 13 is preferably supplied as an isolated, single-layer stream. This can be done by conventional means such as joggers, slides, cascades or the like, which are not shown. In the case of fibrous bulk material, additional separating agents such as combed rollers or the like may be used. to be required.
  • the control of the valve 26 is effected by a controller 20, which receives signals from a sensor assembly 14 which is arranged in the region of the first conveyor belt 12, below the conveyor belt and in the conveying direction in front of the guide roller 27.
  • a speedometer 29 is additionally provided on the roller 27, for example a protractor.
  • a drive signal for the valve 26 is generated when the sensor assembly 14 detects the presence of a
  • This signal takes into account a certain delay time to take into account the transit time of the bulk material part 15 'from the sensor area via the deflection roller 27 to before the tuyere 24.
  • the duration of the delay depends on the speed of the conveyor belt 12 and possibly also on the nature of the bulk material 15' , So, for example, for light bulk goods 15 'wait a higher delay than heavy bulk goods.
  • the sensor arrangement 14 is used to detect and distinguish the different materials that make up the bulk material and is in FIG. 2 shown schematically.
  • an excitation coil 102 is arranged, which generates an electromagnetic alternating field when exposed to a time-dependent excitation current via terminals 112.
  • a detector coil 104 is arranged, which is surrounded by the excitation coil 102.
  • the alternating electromagnetic field generated by the exciting coil 102 induces in the Detector coil 104, an electrical signal that can be tapped via terminals 114, for example as a signal voltage or as a signal stream.
  • the generation of the excitation current for the application of the exciter coil 102 and the evaluation of the signal of the detector coil 104 is effected by a circuit arrangement 106, which communicates the result of the evaluation to the controller 20.
  • a suitable sensor arrangement is for example in the EP 1 940 546 B1 to which and the contents of which are hereby incorporated by reference.
  • a plurality of transverse to the conveying direction of the bulk material arranged side by side sensor arrangements may be provided.
  • a value memory 201 successive values of a waveform of the excitation current are stored and are sequentially read by a processor 202 and passed to a digital-to-analog converter 203, which outputs a voltage proportional to the respective value.
  • This voltage is converted by an amplifier arrangement 204 into a current which is supplied via the terminals 112 as exciting current of the exciter coil 102.
  • This method of signal generation is also referred to as Direct Digital Synthesis (DDS).
  • DDS Direct Digital Synthesis
  • the electrical signal induced in the detector coil 104 is in turn fed via the terminals 114 to a measuring amplifier 205, which converts the signal into a voltage and is supplied to an analog-to-digital converter 206. This converts the voltage into a digital signal, which is evaluated by the processor 202.
  • the arrangement of the coils 102,104 acts as a transformer, so that the time course of the excitation current and the induced signal are the same. Only when the field generated by the exciter coil 102 is influenced by a bulk material part 15, 15 ', 15 ", 16, 16', 16", a significant deviation of the temporal courses of exciter current and induced signal results, both in a phase shift and can exist in an amplitude change. These are evaluated by the processor 202 for the detection and classification of the bulk material parts of the bulk material.
  • the values of the signal curve may preferably be stored in an FPGA and this directly drive the analog-to-digital converter.
  • a processor in the strict sense is then not needed.
  • the preprocessing and first evaluation of the digital signal from the analog-to-digital converter ie the FFT and other calculations
  • a detector coil 104 (or a detector coil pair)
  • two or more detector coils or detector coil pairs may be provided in order to increase the resolution capability.
  • a corresponding sensor arrangement is in the EP1 940 546B1 to which and their content in this regard is expressly referred.
  • the temporal course of the excitation current corresponds to a superimposition of sinusoidal curves of different frequencies, wherein the frequencies respectively correspond to integer multiples of a common fundamental frequency.
  • electromagnetic fields of these frequencies are simultaneously generated, the influence of which can be evaluated by the bulk material separated from each other and so.
  • Statements about conductivity, size, humidity etc. of the bulk material allow.
  • FFT fast Fourier transform
  • FIG. 4 An exemplary course of the exciter current according to an embodiment of the invention is shown in FIG FIG. 4 shown.
  • the time is plotted on the abscissa and the output voltage of the digital-to-analog converter 203 in volts is plotted on the ordinate.
  • the number of frequency components should also correspond to an entire power of 2, in the present example 64 sinusoidal signals of different frequency were superimposed. This results in a fundamental frequency of 1 kHz frequency components of 1 kHz, 2 kHz, 3 kHz ... to 64 kHz, which can be easily processed with simple electronics.
  • the sampling of the induced signal can, for example, be carried out at an easily manageable sampling frequency of approximately 1 MHz. This corresponds to a 16-fold oversampling of the highest frequency component, so that disturbing aliasing effects are almost impossible.
  • phase position for all superimposed frequency components relative to one another is selected to be either 0 ° or 180 °.
  • This phase position brings another advantage in the FFT analysis. As a rule, this works with a cosine function and as a result delivers phases of approximately + 90 ° or -90 °, depending on the respective phase shift of the induced signal relative to the exciting current. In these phases, unavoidable rounding errors of the FFT analysis may, on average, cancel out, while e.g.
  • the calculated phases may be e.g. subsequently be offset back to the original phases 0 ° or 180 ° by an offset.
  • the temporal course of the excitation current has a low crest factor (crest factor).
  • crest factor crest factor
  • reactive currents are reduced, which contribute only to the power loss, but not to the signal power.
  • a large signal energy can be transported at a relatively low maximum value of the signal. It has been found that the crest factor should be below 3, preferably below 2.5.
  • amplitudes and phase angles of the individual frequency components can be varied.
  • a surprisingly good crest factor of 2 is achieved in the illustrated example by determining the phases of the frequency components based on the Rudin-Shapiro series and the number of frequency components is a power of 2.
  • the Rudin-Shapiro series is a series of the numbers +1 and -1, where the nth value S (n) of the series is determined by how many times the bit sequence 11 occurs in the binary representation of the number n.
  • the first values of the Rudin Shapiro series are: n binary representation S (n) 0 0 +1 1 1 +1 2 10 +1 3 11 -1 4 100 +1 5 101 +1 6 110 -1 7 111 +1 8th 1000 +1 9 1001 +1
  • the resulting amplitude and phase spectrum of the excitation current is in the two diagrams of Fig. 5 shown.
  • the frequencies of the sinusoidal oscillations that build up the excitation signal are given in kHz, while along the ordinate of the lower diagram, the respective phase position is shown in degrees [°] (+ 90 ° or -90 °).
  • the diagram already shows the phase angles that result when using a cosine-based FFT analysis, ie either -90 ° or + 90 °.
  • the amplitudes of the individual frequency components are plotted in mV. The amplitudes are chosen in the illustrated example so that all 64 sine signals of the 64 different frequencies occur in the excitation signal with the same signal amplitude.

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Erkennen und Klassifizieren von elektromagnetisch detektierbaren Teilen, insbesondere von Fördergutteilen in einem Schüttgut, mit den Schritten: Annäherung der Sensoranordnung an das elektromagnetisch detektierbare Teil durch Ausführen einer Relativbewegung zwischen der Sensoranordnung und dem elektromagnetisch detektierbaren Teil, bis dieses sich im Sensorbereich der Sensoranordnung befindet, wobei die Sensoranordnung wenigstens einen elektromagnetischen Sensor aufweist, welcher wenigstens eine Erregerspule zur Aussendung eines elektromagnetischen Erregerfeldes und wenigstens eine Detektorspule aufweist; Beaufschlagen der Erregerspule mit einem zeitabhängigen Erregerstrom; Messen eines in der Detektorspule induzierten zeitabhängigen Signales; Auswerten des Signales, um die elektromagnetischen Eigenschaften des elektromagnetisch detektierbaren Teiles zu ermitteln. Dabei wird der Erregerstrom durch eine Überlagerung mehrerer sinusförmiger Verläufe verschiedener Frequenzen erzeugt.The invention relates to a method for detecting and classifying electromagnetically detectable parts, in particular of items to be conveyed in a bulk material, with the steps: approximation of the sensor arrangement to the electromagnetically detectable part by carrying out a relative movement between the sensor arrangement and the electromagnetically detectable part, until this is in Sensor region of the sensor arrangement is located, wherein the sensor arrangement comprises at least one electromagnetic sensor, which has at least one excitation coil for emitting an electromagnetic excitation field and at least one detector coil; Impinging the excitation coil with a time-dependent excitation current; Measuring a time-dependent signal induced in the detector coil; Evaluate the signal to determine the electromagnetic properties of the electromagnetically detectable part. In this case, the excitation current is generated by a superimposition of several sinusoidal waveforms of different frequencies.

Bezogen auf das Erkennen und Klassifizieren von Fördergutteilen in einem Schüttgut werden folgende Schritte ausgeführt: Bereitstellen eines Schüttgutstromes; Fördern des Stromes von Schüttgut an einer Sensoranordnung entlang und durch den Sensorbereich der Sensoranordnung hindurch, wobei die Sensoranordnung wenigstens einen elektromagnetischen Sensor aufweist, welcher wenigstens eine Erregerspule zur Aussendung eines elektromagnetischen Erregerfeldes und wenigstens eine Detektorspule aufweist; Beaufschlagen der Erregerspule mit einem zeitabhängigen Erregerstrom; Messen eines in der Detektorspule induzierten zeitabhängigen Signalstroms; Auswerten des Signalstroms, um die elektromagnetischen Eigenschaften eines Abschnitts des Stroms von Schüttgut zu ermitteln, der sich im Sensorbereich der Sensoranordnung befindet.With respect to the recognition and classification of conveyed items in a bulk material, the following steps are carried out: provision of a bulk material stream; Conveying the stream of bulk material along a sensor arrangement and through the sensor region of the sensor arrangement, the sensor arrangement having at least one electromagnetic sensor which has at least one exciter coil for emitting an electromagnetic exciter field and at least one detector coil; Impinging the excitation coil with a time-dependent excitation current; Measuring a time-varying signal current induced in the detector coil; Evaluating the signal current to determine the electromagnetic properties of a portion of the stream of bulk material located in the sensor region of the sensor assembly.

Ein solches Verfahren ist zum Beispiel aus der EP 1 940 564 B1 bekannt. In dem dort beschriebenen Verfahren wird die Erregerspule einer speziellen Sensoranordnung, die zusätzlich zu der Erregerspule zwei zueinander versetzt angeordnete und gegensinnig gewundene Detektorspulen aufweist, mit einem Wechselstrom beaufschlagt und erzeugt somit ein elektromagnetisches Erregerfeld. Das durch das Erregerfeld in den Detektorspulen induzierte elektrische Signal wird gemessen und ausgewertet. Durch die gegensinnig gewundenen Detektorspulen und durch geeignete Differenzsignalbildung ergibt sich nur dann ein von Null signifikant abweichendes Gesamtsignal, wenn das Feld der Erregerspule durch einen Teil des Stroms von Schüttgut verzerrt wird, nämlich dann, wenn elektromagnetisch detektierbare Fördergutteile den Sensorbereich des Sensors passieren, also unter anderem solche mit para-, dia-, ferro-, ferri- oder antiferromagnetischen Eigenschaften.Such a method is for example from EP 1 940 564 B1 known. In the method described there, the excitation coil of a special sensor arrangement, the In addition to the excitation coil has two mutually offset and oppositely wound coil wound detection coils, subjected to an alternating current and thus generates an electromagnetic excitation field. The electrical signal induced by the exciter field in the detector coils is measured and evaluated. Due to the oppositely wound detector coils and by suitable difference signal formation only results from a significantly deviating zero total signal when the field of the exciter coil is distorted by a portion of the flow of bulk material, namely, when electromagnetically detectable Fördergutteile pass the sensor area of the sensor, ie other such with para-, dia-, ferro-, ferri- or antiferromagnetic properties.

Durch das bekannte Verfahren ist es möglich, die Anwesenheit und den Ort eines das elektromagnetische Erregerfeld beeinflussenden Fördergutteils im Schüttgut zu ermitteln, wenn das Fördergutteil mit dem Schüttgutstrom am Sensor entlang und durch dessen Sensorbereich hindurch gefördert wird. Es ist auch möglich, aus dem Sensorsignal Materialeigenschaften zu extrahieren. Es ist dazu aber ein hoher mathematischer und rechnerischer Aufwand erforderlich. Es wäre daher wünschenswert, den genannten Sensor dahingehend weiterzuentwickeln, dass die Erkennung und Klassifizierung elektromagnetisch detektierbarer Fördergutteile vereinfacht wird.By the known method, it is possible to determine the presence and the location of an electromagnetic exciter field influencing Fördergutteils in the bulk material when the conveyed material is conveyed along with the bulk material flow along the sensor and through the sensor area. It is also possible to extract material properties from the sensor signal. But it requires a high mathematical and computational effort. It would therefore be desirable to develop the said sensor to the effect that the detection and classification of electromagnetically detectable items to be conveyed is simplified.

Es ist auch möglich, mit einer solchen Sensoranordnung generell ein Erkennen und eine Klassifizierung von elektromagnetisch detektierbaren Teilen vorzunehmen, die z.B. an die Sensoranordnung herangeführt werden, oder an die die Sensoranordnung herangeführt wird. Die Sensoranordnung ist also nicht auf die Verwendung in einer Sortiereinrichtung beschränkt.It is also possible with such a sensor arrangement to generally detect and classify electromagnetically detectable parts, e.g. be brought to the sensor arrangement, or to which the sensor arrangement is introduced. The sensor arrangement is therefore not limited to use in a sorting device.

Eine gattungsgemäße Sensoranordnung ist in der US 5,654,638 offenbart in Form eines portablen Metalldetektors zum Auffinden von metallischen Objekten im Erdboden.A generic sensor arrangement is in the US 5,654,638 disclosed in the form of a portable metal detector for locating metallic objects in the ground.

Demgemäß besteht die Aufgabe der Erfindung darin, ein Verfahren bereit zu stellen, mit dem elektromagnetisch detektierbare Teile, insbesondere Fördergutteile in einem Schüttgutstrom, besonders leicht und genau klassifiziert werden können. Unter dem Begriff Klassifizieren wird im Sinne der Erfindung die Bestimmung von charakteristischen elektromagnetischen Eigenschaften z.B. eines Fördergutteiles in einem Schüttgutstrom verstanden, anhand derer das Fördergutteil anschließend einer bestimmten Stoffklasse zugeordnet wird. So können z.B. in einer Abfall- oder Shreddermaterialsortieranlage metallische Stoffe von nichtmetallischen Stoffen getrennt werden, oder edle Metalle von unedlen Metallen. Ebenso können anhand der elektromagnetischen Eigenschaften bestimmte Edelstahlsorten voneinander getrennt werden. In einer einfachen Ausgestaltung führt diese Klassifizierung zu einer Entscheidung, dass ein Fördergutteil aus dem Schüttgutstrom auszuschleusen ist oder nicht. Generalisiert und unabhängig von einer Anwendung in der Sortiertechnik kann mit dem Verfahren eine charakteristische elektromagnetische Eigenschaft eines Materials erfasst werden.Accordingly, the object of the invention is to provide a method with which electromagnetically detectable parts, in particular items to be conveyed in a flow of bulk material, can be classified particularly easily and accurately. For the purposes of the invention, the term classifying is understood to mean the determination of characteristic electromagnetic properties of, for example, a material to be conveyed in a bulk material flow, by means of which the product to be conveyed is subsequently assigned to a specific substance class. For example, in a waste or shredder sorting plant, metallic substances can be separated from non-metallic substances, or noble metals from base metals. Likewise, certain types of stainless steel can be separated from each other on the basis of the electromagnetic properties. In a simple embodiment, this classification leads to a decision that a conveyed material is to be discharged from the bulk material flow or not. Generalized and independent of an application in the sorting technique, the method can detect a characteristic electromagnetic property of a material.

Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruch 1. Der Erregerstrom wird durch eine Überlagerung mehrerer sinusförmiger Verläufe verschiedener Frequenzen erzeugt, wobei die Frequenzen der mehreren sinusförmigen Verläufe jeweils insbesondere ganzzahlige Vielfache einer gemeinsamen Grundfrequenz sind. Der zeitliche Verlauf des Erregerstroms ist dadurch eine Überlagerung mehrerer sinusförmiger Verläufe verschiedener Frequenzen. Entsprechend stellt das von der wenigstens einen Erregerspule erzeugte und emittierte Erregerfeld ebenfalls eine Überlagerung der mehreren sinusförmigen Verläufe verschiedener Frequenzen dar.This object is achieved by a method having the features of claim 1. The excitation current is generated by a superposition of a plurality of sinusoidal waveforms of different frequencies, wherein the frequencies of the plurality of sinusoidal waveforms are respectively integer multiples of a common fundamental frequency. The temporal course of the exciter current is thereby a superimposition of several sinusoidal courses of different frequencies. Accordingly, the exciting field generated and emitted by the at least one excitation coil also represents a superimposition of the multiple sinusoidal courses of different frequencies.

Die Erfindung beruht auf der Erkenntnis, dass die Klassifizierung der z.B. in einem Schüttgutstrom enthaltenen, auf das Erregerfeld ansprechenden Fördergutteile besonders einfach erfolgen kann, wenn das elektromagnetische Ansprechverhalten nicht nur bei einer Frequenz, sondern bei mehreren verschiedenen Frequenzen ermittelt wird. Während dies durch unterschiedliche Erregerfeldformen erfolgen kann, wie z.B. durch einen Dirac-Impuls, ein weißes Rauschen, oder ein kontinuierliches Durchstimmen der Anregungsfrequenz als Sweep- oder Chirp-Signal, hat sich herausgestellt, dass ein erfindungsgemäß ausgestaltetes Erregerfeld sowohl in der Erzeugung als auch in der Auswertung besonders gut handhabbar ist.The invention is based on the recognition that the classification of e.g. contained in a bulk flow, responsive to the excitation field Fördergutteile can be particularly easily done when the electromagnetic response is determined not only at a frequency but at several different frequencies. While this can be done by different exciter field shapes, such as e.g. by a Dirac pulse, a white noise, or a continuous tuning of the excitation frequency as a sweep or chirp signal, it has been found that an excitation field designed according to the invention can be handled particularly well both in the generation and in the evaluation.

Die Erfindung wird nachfolgend schwerpunktmäßig in Bezug auf eine Anwendung für die Klassifizierung von Fördergutteilen diskutiert und erläutert, um mittels der Klassifizierung eine Sortierung der Fördergutteile zu ermöglichen. Das Verfahren ist aber genereller einsetzbar, z.B. auch in Messgeräten, z.B. portablen Messgeräten, die lediglich der Gewinnung von Messergebnissen dienen, ohne in eine Sortieranlage integriert zu sein.The invention will be discussed below with reference to an application for the classification of conveyed goods and explained to allow the sorting of the conveyed goods by means of the classification. However, the method is more generally usable, e.g. also in measuring instruments, e.g. Portable measuring devices that only serve to obtain measurement results without being integrated into a sorting system.

Das Erregerfeld (bzw. der zugrundeliegende Erregerstrom) wird bevorzugt durch die sogenannte direkte digitale Synthese (DDS) erzeugt. Dafür werden z.B. in einem Speicher abgelegte Werte in fester zeitlicher Abfolge ausgelesen und über einen Digital-Analog-Wandler in ein analoges Spannungssignal gewandelt, welches anschließend über eine Verstärkeranordnung als Anregungsstrom den Erregerspulen zugeführt wird. Nach Auslesen einer definierten Anzahl von Werten, wird die Wertefolge erneut von Vorne ausgelesen.The excitation field (or the underlying exciting current) is preferably generated by the so-called direct digital synthesis (DDS). For this purpose, for example, values stored in a memory are read out in a fixed time sequence and converted by means of a digital-to-analog converter into an analog voltage signal, which is then fed to the exciter coils as an excitation current via an amplifier arrangement. To Reading out a defined number of values, the value sequence is read again from the beginning.

Dabei entstehen in der Verstärkeranordnung unvermeidbare Leistungsverluste, welche als Abwärme die gesamte Sensoranordnung belasten. Der Wirkungsgrad der Verstärkeranordnung, also das Verhältnis der Nutzleistung zur Verlustleistung, hängt nicht nur von der Qualität der Verstärkeranordnung, sondern auch wesentlich von der Signalform des Erregerstroms ab. Der Wirkungsgrad ist dabei um so höher, je niedriger der Scheitelfaktor (Crest-Faktor) des Signals ist (bzw. des Erregerstroms), wobei der Scheitelfaktor als das Verhältnis des Scheitelwerts zum Effektivwert des Signalverlaufs definiert ist. Dies liegt im wesentlichen darin begründet, dass zu der Nutzleistung nur die realen Anteile der komplexen Signalverläufe beitragen, während zur Verlustleistung auch die imaginären Anteile, die sich im zeitlichen Mittel gegenseitig aufheben, einen Beitrag leisten.In this case, unavoidable power losses occur in the amplifier arrangement, which pollute the entire sensor arrangement as waste heat. The efficiency of the amplifier arrangement, ie the ratio of the useful power to the power loss, not only depends on the quality of the amplifier arrangement, but also substantially on the waveform of the excitation current. The efficiency is higher, the lower the crest factor of the signal is (or the excitation current), wherein the crest factor is defined as the ratio of the peak value to the effective value of the waveform. This is essentially due to the fact that only the real parts of the complex signal curves contribute to the net output, while the power losses also contribute to the imaginary parts, which cancel each other out on a temporal average.

Wenn gemäß der Erfindung die sinusförmigen Verläufe zu den einzelnen Frequenzen gegeneinander phasenverschoben sind, lässt sich der Scheitelfaktor des Gesamtsignals bei gleicher Leistung in den einzelnen Frequenzanteilen vermindern, wodurch der Wirkungsgrad der Verstärkeranordnung erhöht und die Wärmebelastung der Sensoranordnung reduziert wird.According to the invention, when the sinusoidal waveforms are out of phase with each other at the individual frequencies, the crest factor of the overall signal can be reduced for the same power in the individual frequency components, thereby increasing the efficiency of the amplifier arrangement and reducing the thermal load on the sensor array.

Erfindungsgemäß entspricht dabei die Phasenverschiebung ϕ der einzelnen sinusförmigen Verläufe gegenüber dem Verlauf der Grundfrequenz entweder 0° oder 180°. Durch diese Einschränkung der möglichen Phasenverschiebungen wird die Optimierung des Signals zum Erreichen eines möglichst kleinen Scheitelfaktors vereinfacht. Gleichzeitig ist dadurch sichergestellt, dass der Startwert des Gesamtsignals bei Inbetriebnahme immer Null ist, wodurch störende Signalspitzen beim "Einschalten" vermieden werden können.In accordance with the invention, the phase shift φ of the individual sinusoidal profiles with respect to the course of the fundamental frequency corresponds to either 0 ° or 180 °. This limitation of the possible phase shifts simplifies the optimization of the signal to achieve the lowest possible crest factor. At the same time this ensures that the start value of the total signal at startup is always zero, so that disturbing signal peaks when "switching on" can be avoided.

In einer bevorzugten Ausführungsform der Erfindung werden die Phasenverschiebungen ϕ der einzelnen sinusförmigen Verläufe so gewählt, dass das resultierende Gesamtsignal einen Scheitelfaktor von weniger als 3, bevorzugt weniger als 2,5 aufweist. Bei diesen Scheitelfaktoren ist der Wirkungsgrad der Verstärkeranordnung ausreichend hoch, um eine unerwünscht hohe Wärmebelastung der Sensoranordnung zu vermeiden.In a preferred embodiment of the invention, the phase shifts φ of the individual sinusoidal curves are selected so that the resulting total signal has a crest factor of less than 3, preferably less than 2.5. At these crest factors, the efficiency of the amplifier arrangement is sufficiently high to avoid an undesirably high heat load on the sensor arrangement.

Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung sind die Phasenverschiebungen ϕ der einzelnen sinusförmigen Verläufe nach der Formel ϕn = 90° + (90° x S(n-1)) bestimmt, wobei n der Quotient der jeweiligen Frequenz und der Grundfrequenz ist, und S(n) der n-te Wert der Rudin-Shapiro-Reihe ist. Das Produkt (90° x (S(n-1)) ergibt entweder +90° oder -90°, da die Rudin-Shapiro-Reihe nur aus den Zahlenwerten 1 und -1 aufgebaut ist.According to a particularly preferred embodiment of the invention, the phase shifts φ of the individual sinusoidal curves according to the formula φ n = 90 ° + (90 ° x S (n-1)), where n is the quotient of the respective frequency and the fundamental frequency, and S (n) is the nth value of the Rudin-Shapiro series. The product (90 ° x (S (n-1)) gives either + 90 ° or -90 °, since the Rudin-Shapiro series is composed only of the numbers 1 and -1.

Es hat sich überraschenderweise herausgestellt, dass diese leicht zu berechnende Formel ein Gesamtsignal mit dem Scheitelfaktor kleiner 3 ergibt.It has surprisingly been found that this easily calculated formula gives a total signal with the crest factor less than 3.

Die Anzahl der überlagerten Frequenzen, also der einzelnen sinusförmigen Verläufe unterschiedlicher Frequenz, die zur Bildung des Erregersignals aufsummiert werden, kann im Prinzip frei gewählt werden. Wenn gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung die Anzahl der überlagerten Frequenzen eine ganzzahlige Potenz von 2 ist, so ergibt sich ein maximaler Scheitelfaktor von 2, welcher einen sehr günstigen Wirkungsgrad der Verstärkeranordnung ermöglicht.The number of superimposed frequencies, ie the individual sinusoidal curves of different frequencies, which are summed up to form the excitation signal, can in principle be chosen freely. If according to a further preferred embodiment of the invention, the number of superimposed frequencies is an integer power of 2, the result is a maximum crest factor of 2, which allows a very favorable efficiency of the amplifier arrangement.

In einer besonders gut handhabbaren Ausgestaltung der Erfindung liegt die gemeinsame Grundfrequenz der Frequenzanteile zwischen 100 Hz und 10 kHz, bevorzugt bei 1 kHz. Dieser Frequenzbereich bietet bei vertretbarem Schaltungs- und Rechenaufwand gute Ergebnisse bei der Erfassung und Klassifizierung der auf elektromagnetische Felder ansprechenden Fördergutteile des SchüttgutesIn a particularly easy to handle embodiment of the invention, the common fundamental frequency of the frequency components between 100 Hz and 10 kHz, preferably at 1 kHz. This frequency range, with reasonable switching and computational effort, provides good results in the detection and classification of the conveyed material parts of the bulk material that respond to electromagnetic fields

Gemäß einer weiter bevorzugten Ausgestaltung der Erfindung ist die Anzahl der überlagerten Frequenzen 64.According to a further preferred embodiment of the invention, the number of superposed frequencies is 64.

Zur Auswertung des vom Erregerfeld induzierten elektrischen Signals, also des in der oder in den Detektorspulen induzierten Stroms und/oder der darin induzierten Spannung, werden in einer Frequenzanalyse dessen einzelne Frequenzanteile voneinander separiert, und zu diesen Frequenzanteilen die Amplitude und/oder Phasenlage bestimmt. Gemäß einer besonders bevorzugten Weiterbildung der Erfindung umfasst dazu die Auswertung des induzierten Signals eine schnelle Fourier-Transformation (FFT). Durch Anwendung dieser mathematischen Standardmethode können die genannten Werte besonders einfach ermittelt werden. Denkbar ist auch die Anwendung von Weiterentwicklungen der normalen FFT, wie die sog. "pruned FFT" oder "sparse FFT". Vereinfacht gesagt, werden dort die Fourier-Transformierten interessierender Frequenzanteile berechnet. Das spart Rechenleistung und bringt somit Kosten- und Energieeinsparung.In order to evaluate the electrical signal induced by the exciting field, that is to say the current induced in or in the detector coils and / or the voltage induced therein, the individual frequency components are separated from one another in a frequency analysis, and the amplitude and / or phase position are determined for these frequency components. According to a particularly preferred development of the invention, the evaluation of the induced signal comprises a fast Fourier transformation (FFT). By applying this mathematical standard method, the stated values can be determined particularly easily. Also conceivable is the application of further developments of the normal FFT, such as the so-called "pruned FFT" or "sparse FFT". In simple terms, the Fourier transforms of interest frequency components are calculated there. This saves computing power and thus brings cost and energy savings.

Wenn gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung die Abtastrate des Analog-Digital-Wandlers ein ganzzahliges Vielfaches der Ausgaberate des Digital-Analog-Wandlers ist und die Anzahl der Ausgabewerte zu einer ganzen Potenz von 2 gewählt wird, kann die rechnerische Auflösung der schnellen Fourier-Transformation besonders gut ausgenutzt werdenIf according to a further preferred embodiment of the invention, the sampling rate of the analog-to-digital converter is an integer multiple of the output rate of the digital-to-analog converter and the number of output values is selected to a total power of 2, the computational resolution of the fast Fourier Transformation are particularly well exploited

Die Erfindung wird nachfolgend anhand einiger Zeichnungen und anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1:
eine schematische Darstellung einer Anlage zur Sortierung von Schüttgut;
Fig. 2:
ein Ausführungsbeispiel für eine Sensoranordnung zur Anwendung in einem erfindungsgemäßen Verfahren;
Fig. 3:
eine beispielhafte Schaltungsanordnung zur Anwendung in einem erfindungsgemäßen Verfahren;
Fig. 4:
den zeitlichen Verlauf des Erregerstroms in einem Ausführungsbeispiel der Erfindung;
Fig. 5:
das Phasen- und Amplitudenspektrum des Erregerstroms in einem Ausführungsbeispiel der Erfindung;
The invention will be explained in more detail with reference to some drawings and exemplary embodiments. Show it:
Fig. 1:
a schematic representation of a plant for the sorting of bulk material;
Fig. 2:
an embodiment of a sensor arrangement for use in a method according to the invention;
3:
an exemplary circuit arrangement for use in a method according to the invention;
4:
the time course of the excitation current in an embodiment of the invention;
Fig. 5:
the phase and amplitude spectrum of the exciting current in an embodiment of the invention;

Ohne Beschränkung der allgemeinen Anwendbarkeit des erfindungsgemäßen Verfahrens erfolgt nachfolgend eine detaillierte Beschreibung eines Anwendungsbeispiels, nämlich der Einsatz des Verfahrens bei der Klassifizierung von Fördergutteilen in einem Fördergutstrom zum Zwecke der gezielten Erfassung und Ausschleusung gewünschter Fraktionen aus dem Fördergutstrom anhand der mit dem Verfahren möglichen Klassifizierung.Without limiting the general applicability of the method according to the invention is a detailed description of an application example, namely the use of the method in the classification of Fördergutteilen in a Fördergutstrom for the purpose of targeted detection and discharge of desired fractions from the Fördergutstrom based on the possible classification with the method.

In Figur 1 ist eine Anlage 10 zur Sortierung von Schüttgut 15, 15', 15", 16, 16', 16" dargestellt, welches in Form eines Schüttgutstromes 13 auf einem ersten Förderband 12 in eine Förderrichtung transportiert wird. Das erste Förderband 12 wird um eine Rolle 27 umgelenkt. An der Rolle 27 fällt das Schüttgut 15, 15', 15", 16, 16', 16" von dem ersten Förderband 12 herunter und fällt unter Einfluss seiner Trägheit auf ein zweites Förderband 42, welches das Schüttgut 16, 16', 16" abfördert.In FIG. 1 is a plant 10 for sorting of bulk material 15, 15 ', 15 ", 16, 16', 16" shown, which is transported in the form of a bulk material flow 13 on a first conveyor belt 12 in a conveying direction. The first conveyor belt 12 is deflected around a roller 27. On the roller 27, the bulk material falls 15, 15 ', 15 ", 16, 16', 16" from the first conveyor belt 12 and falls under the influence of its inertia on a second conveyor belt 42, which the bulk material 16, 16 ', 16 " abfördert.

Wie durch unterschiedliche Schraffuren schematisch dargestellt ist, besteht das Schüttgut aus unterschiedlichen Materialien 15,15',15" und 16,16',16", welche in der Sortieranlage auseinandersortiert werden sollen. Dazu ist in der Fallstrecke des Schüttguts eine Blasdüse 24 angeordnet, welche von einem Ventil 26 beherrscht aus einer Druckluftquelle 34 versorgt wird, und bei Öffnen des Ventils 26 ein herunterfallendes Schüttgutteil 15' so ablenkt, dass es über einen Trennscheitel 36 hinweg auf ein drittes Förderband 40 abgelenkt wird, welches das Schüttgutteil 15" separat abfördert.As shown schematically by different hatching, the bulk material consists of different materials 15, 15 ', 15 "and 16, 16', 16", which are to be sorted out in the sorting plant. For this purpose, in the fall section of the bulk material, a tuyere 24 is arranged, which is supplied controlled by a valve 26 from a compressed air source 34, and upon opening of the valve 26 a falling bulk material part 15 'deflects so that it over a separating vertex 36 away on a third conveyor belt 40 is deflected, which dissipates the bulk material 15 "separately.

Um eine saubere Trennung der unterschiedlichen Schüttgutteile 15,15',15",16,16',16" zu gewährleisten wir der Schüttgutstrom 13 bevorzugt als vereinzelter, einlagiger Strom zugeführt. Dies kann über übliche Mittel wie Rüttler, Rutschen, Bänderkaskaden oder dergleichen erfolgen, die nicht dargestellt sind. Bei faserigem Schüttgut können zusätzliche Vereinzelungsmittel wie Kammwalzen o.ä. erforderlich sein.In order to ensure a clean separation of the different bulk material parts 15, 15 ', 15 ", 16, 16', 16", the bulk material stream 13 is preferably supplied as an isolated, single-layer stream. This can be done by conventional means such as joggers, slides, cascades or the like, which are not shown. In the case of fibrous bulk material, additional separating agents such as combed rollers or the like may be used. to be required.

Die Ansteuerung des Ventils 26 erfolgt durch eine Steuerung 20, welche Signale von einer Sensoranordnung 14 erhält, die im Bereich des ersten Förderbands 12 angeordnet ist, und zwar unterhalb des Förderbandes und in Förderrichtung vor der Umlenkrolle 27. Um die Ansteuerung des Ventils 26 mit der Fördergeschwindigkeit der Schüttgutteile 15,15', 15", 16,16', 16" zu synchronisieren, ist zusätzlich ein Geschwindigkeitsmesser 29 an der Rolle 27 vorgesehen, z.B. ein Winkelmesser. In der Steuerung 20 wird ein Ansteuersignal für das Ventil 26 erzeugt, wenn die Sensoranordnung 14 die Anwesenheit eines auszusondernden Schüttgutteils 15' feststellt. Dieses Signal berücksichtigt eine gewisse Verzögerungszeit zur Berücksichtigung der Laufzeit des Schüttgutteils 15' vom Sensorbereich über die Umlenkrolle 27 bis vor die Blasdüse 24. Die Dauer der Verzögerung hängt dabei von der Geschwindigkeit des Förderbandes 12 und unter Umständen auch von der Art des Schüttgutteils 15' ab. So muss z.B. bei leichten Schüttgutteilen 15' eine höhere Verzögerung abgewartet werden als bei schweren Schüttgutteilen.The control of the valve 26 is effected by a controller 20, which receives signals from a sensor assembly 14 which is arranged in the region of the first conveyor belt 12, below the conveyor belt and in the conveying direction in front of the guide roller 27. To control the valve 26 with the Conveying speed of the bulk material parts 15,15 ', 15 ", 16,16', 16" to synchronize, a speedometer 29 is additionally provided on the roller 27, for example a protractor. In the controller 20, a drive signal for the valve 26 is generated when the sensor assembly 14 detects the presence of a herauszusondernden bulk material part 15 '. This signal takes into account a certain delay time to take into account the transit time of the bulk material part 15 'from the sensor area via the deflection roller 27 to before the tuyere 24. The duration of the delay depends on the speed of the conveyor belt 12 and possibly also on the nature of the bulk material 15' , So, for example, for light bulk goods 15 'wait a higher delay than heavy bulk goods.

Die Sensoranordnung 14 dient der Erkennung und Unterscheidung der unterschiedlichen Materialien, aus denen das Schüttgut besteht und ist in Figur 2 schematisch dargestellt. Parallel zur Förderebene des Förderbandes 12 ist eine Erregerspule 102 angeordnet, welche bei Beaufschlagung mit einem zeitabhängigen Erregerstrom über Anschlüsse 112 ein elektromagnetisches Wechselfeld erzeugt. In der gleichen Ebene ist eine Detektorspule 104 angeordnet, die sich von der Erregerspule 102 umgeben ist. Das von der Erregerspule 102 erzeugte elektromagnetische Wechselfeld induziert in der Detektorspule 104 ein elektrisches Signal, das über Anschlüsse 114 abgegriffen werden kann, z.B. als Signalspannung oder als Signalstrom. Die Erzeugung des Erregerstroms für die Beaufschlagung der Erregerspule 102 sowie die Auswertung des Signals der Detektorspule 104 erfolgt durch eine Schaltungsanordnung 106, welche das Ergebnis der Auswertung an die Steuerung 20 kommuniziert. Eine geeignete Sensoranordnung ist beispielsweise in der EP 1 940 546 B1 beschrieben, auf die und deren Inhalt hiermit Bezug genommen wird.The sensor arrangement 14 is used to detect and distinguish the different materials that make up the bulk material and is in FIG. 2 shown schematically. Parallel to the conveying plane of the conveyor belt 12, an excitation coil 102 is arranged, which generates an electromagnetic alternating field when exposed to a time-dependent excitation current via terminals 112. In the same plane, a detector coil 104 is arranged, which is surrounded by the excitation coil 102. The alternating electromagnetic field generated by the exciting coil 102 induces in the Detector coil 104, an electrical signal that can be tapped via terminals 114, for example as a signal voltage or as a signal stream. The generation of the excitation current for the application of the exciter coil 102 and the evaluation of the signal of the detector coil 104 is effected by a circuit arrangement 106, which communicates the result of the evaluation to the controller 20. A suitable sensor arrangement is for example in the EP 1 940 546 B1 to which and the contents of which are hereby incorporated by reference.

Um einen breiten Schüttgutstrom zu sortieren können mehrere quer zur Förderrichtung des Schüttguts nebeneinander angeordnete Sensoranordnungen vorgesehen sein.In order to sort a wide flow of bulk material, a plurality of transverse to the conveying direction of the bulk material arranged side by side sensor arrangements may be provided.

In Figur 3 ist die Schaltungsanordnung 106 genauer dargestellt. In einem Wertespeicher 201 sind aufeinanderfolgende Werte eines Signalverlaufs des Erregerstroms abgespeichert und werden nacheinander von einem Prozessor 202 ausgelesen und an einen Digital-Analog-Wandler 203 geleitet, welcher eine zu dem jeweiligen Wert proportionale elektrische Spannung ausgibt. Diese Spannung wird durch eine Verstärkeranordnung 204 in einen Strom umgewandelt, welcher über die Anschlüsse 112 als Erregerstrom der Erregerspule 102 zugeführt wird. Dieses Verfahren der Signalerzeugung wird auch als Direkte Digitale Synthese (DDS) bezeichnet.In FIG. 3 the circuit 106 is shown in more detail. In a value memory 201 successive values of a waveform of the excitation current are stored and are sequentially read by a processor 202 and passed to a digital-to-analog converter 203, which outputs a voltage proportional to the respective value. This voltage is converted by an amplifier arrangement 204 into a current which is supplied via the terminals 112 as exciting current of the exciter coil 102. This method of signal generation is also referred to as Direct Digital Synthesis (DDS).

Das in der Detektorspule 104 induzierte elektrische Signal wird wiederum über die Anschlüsse 114 einem Messverstärker 205 zugeführt, welcher das Signal in eine Spannung umsetzt und einem Analog-Digital-Wandler 206 zugeführt. Dieser wandelt die Spannung in ein digitales Signal um, welches durch den Prozessor 202 ausgewertet wird.The electrical signal induced in the detector coil 104 is in turn fed via the terminals 114 to a measuring amplifier 205, which converts the signal into a voltage and is supplied to an analog-to-digital converter 206. This converts the voltage into a digital signal, which is evaluated by the processor 202.

Die Anordnung der Spulen 102,104 wirkt wie ein Transformator, so dass sich der zeitliche Verlauf des Erregerstroms und des induzierten Signals gleichen. Erst wenn das von der Erregerspule 102 erzeugte Feld durch ein Schüttgutteil 15, 15', 15", 16, 16', 16" beeinflusst wird ergibt sich eine signifikante Abweichung der zeitlichen Verläufe von Erregerstrom und induziertem Signal, welche sowohl in einer Phasenverschiebung als auch in einer Amplitudenänderung bestehen kann. Diese werden durch den Prozessor 202 zur Erkennung und Klassifizierung der Schüttgutteile des Schüttguts ausgewertet.The arrangement of the coils 102,104 acts as a transformer, so that the time course of the excitation current and the induced signal are the same. Only when the field generated by the exciter coil 102 is influenced by a bulk material part 15, 15 ', 15 ", 16, 16', 16", a significant deviation of the temporal courses of exciter current and induced signal results, both in a phase shift and can exist in an amplitude change. These are evaluated by the processor 202 for the detection and classification of the bulk material parts of the bulk material.

Die Werte des Signalverlaufes können bevorzugt in einem FPGA gespeichert sein und dieser direkt den Analog-Digital-Wandler ansteuern. Ein Prozessor im engeren Sinne wird dann nicht benötigt. Auch die Vorverarbeitung und erste Auswertung des digitalen Signals vom Analog-Digital-Wandler (also die FFT und andere Berechnungen) können im FPGA ausgeführt werden, um den Prozessor rechentechnisch zu entlasten.The values of the signal curve may preferably be stored in an FPGA and this directly drive the analog-to-digital converter. A processor in the strict sense is then not needed. The preprocessing and first evaluation of the digital signal from the analog-to-digital converter (ie the FFT and other calculations) can also be done in the FPGA executed to relieve the processor computationally.

In einer nicht dargestellten Variante der Sensoranordnung 14 können an Stelle einer Detektorspule 104 (oder eines Detektorspulenpaares) zwei oder mehr Detektorspulen oder Detektorspulenpaare vorgesehen sein, um das Auflösungsvermögen zu erhöhen. Eine entsprechende Sensoranordnung ist in der EP1 940 546B1 beschrieben, auf die und deren Inhalt diesbezüglich ausdrücklich verwiesen wird.In a variant of the sensor arrangement 14, not shown, instead of a detector coil 104 (or a detector coil pair), two or more detector coils or detector coil pairs may be provided in order to increase the resolution capability. A corresponding sensor arrangement is in the EP1 940 546B1 to which and their content in this regard is expressly referred.

Um das Schüttgut 15, 15', 15", 16, 16', 16" einfacher klassifizieren zu können entspricht der zeitliche Verlauf des Erregerstroms einer Überlagerung sinusförmiger Verläufe verschiedener Frequenzen, wobei die Frequenzen jeweils ganzzahligen Vielfachen einer gemeinsamen Grundfrequenz entsprechen. Dadurch werden gleichzeitig elektromagnetische Felder dieser Frequenzen erzeugt, deren Beeinflussung durch das Schüttgut getrennt voneinander ausgewertet werden kann und so z.B. Aussagen über Leitfähigkeit, Größe, Feuchte etc. des Schüttguts erlauben. Um die Frequenzanteile im induzierten Signal voneinander zu trennen wird dieses einer schnellen Fourier-Transformation (FFT) unterzogen, aus welcher sich für jede einzelne Frequenz die Amplitude und Phasenlage des frequenzaufgeteilten Signals bzw. deren Differenz ermitteln läßt.In order to be able to classify the bulk material 15, 15 ', 15 ", 16, 16', 16" more simply, the temporal course of the excitation current corresponds to a superimposition of sinusoidal curves of different frequencies, wherein the frequencies respectively correspond to integer multiples of a common fundamental frequency. As a result, electromagnetic fields of these frequencies are simultaneously generated, the influence of which can be evaluated by the bulk material separated from each other and so. Statements about conductivity, size, humidity etc. of the bulk material allow. To separate the frequency components in the induced signal from each other, this is subjected to a fast Fourier transform (FFT) from which the amplitude and phase of the frequency-divided signal or their difference can be determined for each individual frequency.

Ein exemplarischer Verlauf des Erregerstroms gemäß einem Ausführungsbeispiel der Erfindung ist in Figur 4 dargestellt. Dabei ist auf der Abszisse die Zeit und auf der Ordinate die Ausgangsspannung des Digital-Analog-Wandlers 203 in Volt aufgetragen. Um die Auflösung der FFT-Analyse optimal zu nutzen, sollte der Signalverlauf eine Anzahl von Werten umfassen, die einer ganzen Potenz von 2 entspricht, der dargestellte Verlauf umfasst 1024 (=210) Werte. Ebenso sollte auch die Anzahl der Frequenzanteile einer ganzen Potenz von 2 entsprechen, im vorliegenden Beispiel wurden 64 Sinussignale unterschiedlicher Frequenz überlagert. Es ergeben sich so bei einer Grundfrequenz von 1 kHz Frequenzanteile von 1 kHz, 2 kHz, 3 kHz ... bis 64 kHz, die sich mit einfacher Elektronik problemlos verarbeiten lassen.An exemplary course of the exciter current according to an embodiment of the invention is shown in FIG FIG. 4 shown. In this case, the time is plotted on the abscissa and the output voltage of the digital-to-analog converter 203 in volts is plotted on the ordinate. To make best use of the resolution of the FFT analysis, the waveform should include a number of values equal to an integer power of 2, the graph shown includes 1024 (= 2 10 ) values. Likewise, the number of frequency components should also correspond to an entire power of 2, in the present example 64 sinusoidal signals of different frequency were superimposed. This results in a fundamental frequency of 1 kHz frequency components of 1 kHz, 2 kHz, 3 kHz ... to 64 kHz, which can be easily processed with simple electronics.

Praktisch können z.B. 1024 abgespeicherte Werte für den DAC verwendet und diese - der Einfachheit halber - mit 1 MHz ausgegeben werden Es ergibt sich dann eine Grundfrequenz von 1000000/1024 = 976,5625Hz - also ca. 1 kHz.Practically, e.g. 1024 stored values are used for the DAC and these - for simplicity - are output at 1 MHz. This results in a fundamental frequency of 1000000/1024 = 976.5625Hz - ie about 1 kHz.

Die Abtastung des induzierten Signals kann z.B. bei einer problemlos handhabbaren Tastfrequenz von ca. 1 MHz erfolgen. Das entspricht einem 16-fachen Überabtasten des höchsten Frequenzanteils, so dass störende Aliasing-Effekte nahezu ausgeschlossen sind.The sampling of the induced signal can, for example, be carried out at an easily manageable sampling frequency of approximately 1 MHz. This corresponds to a 16-fold oversampling of the highest frequency component, so that disturbing aliasing effects are almost impossible.

Es ist leicht zu erkennen, dass der Signalverlauf mit Null beginnt und endet. Dies ist für die elektronischen Komponenten vorteilhaft, da Signalsprünge und somit Stromspitzen vermieden werden. Um dies zu erreichen ist die Phasenlage für alle überlagerten Frequenzanteile relativ zueinander entweder zu 0° oder zu 180° gewählt. Diese Phasenlage bringt einen weiteren Vorteil bei der FFT-Analyse. Da diese in der Regel mit einer Kosinus-Funktion arbeitet, liefert sie als Ergebnis jeweils Phasen von etwa +90° oder -90°, abhängig von der jeweiligen Phasenverschiebung des induzierten Signals gegenüber dem Erregerstrom. Bei diesen Phasen können sich unvermeidliche Rundungsfehler der FFT-Analyse im Mittel auslöschen, während z.B. bei einer Phase von 0° ein Rundungsfehler von 0,1° entweder zu 0,1° oder zu 359,9° führt, so dass sich im Mittel ein falscher Phasenwert von 180° ergäbe. Diese Gefahr besteht bei der beschriebenen Wahl der Phasenlagen also gerade nicht. Die errechneten Phasen können z.B. nachfolgend durch einen Offset wieder zu den ursprünglichen Phasen 0° bzw. 180° verschoben werden.It is easy to see that the waveform starts and ends with zero. This is advantageous for the electronic components, since signal jumps and thus current peaks are avoided. In order to achieve this, the phase position for all superimposed frequency components relative to one another is selected to be either 0 ° or 180 °. This phase position brings another advantage in the FFT analysis. As a rule, this works with a cosine function and as a result delivers phases of approximately + 90 ° or -90 °, depending on the respective phase shift of the induced signal relative to the exciting current. In these phases, unavoidable rounding errors of the FFT analysis may, on average, cancel out, while e.g. at a phase of 0 °, a rounding error of 0.1 ° leads either to 0.1 ° or to 359.9 °, so that on average an incorrect phase value of 180 ° results. This danger does not exist at the described choice of phase angles. The calculated phases may be e.g. subsequently be offset back to the original phases 0 ° or 180 ° by an offset.

Um eine störende Erwärmung der Schaltungsanordnung zu vermeiden ist es hilfreich, wenn der zeitliche Verlauf des Erregerstroms einen niedrigen Scheitelfaktor (Crest-Faktor) hat. Dadurch werden Blindströme reduziert, welche nur zur Verlustleistung, nicht jedoch zur Signalleistung beitragen. Gleichzeitig kann bei relativ niedrigem Maximalwert des Signals eine große Signalenergie transportiert werden. Es hat sich herausgestellt, dass der Crest-Faktor unter 3 liegen sollte, bevorzugt unter 2,5.In order to avoid disturbing heating of the circuit arrangement, it is helpful if the temporal course of the excitation current has a low crest factor (crest factor). As a result, reactive currents are reduced, which contribute only to the power loss, but not to the signal power. At the same time a large signal energy can be transported at a relatively low maximum value of the signal. It has been found that the crest factor should be below 3, preferably below 2.5.

Um den Crest-Faktor des Erregerstroms zu optimieren, können Amplituden und Phasenlagen der einzelnen Frequenzanteile variiert werden. Um bei allen Frequenzen die gleiche Empfindlichkeit der Sensoranordnung 14 zu erreichen ist es jedoch vorteilhaft, alle Frequenzanteile mit der gleichen Amplitude zu versehen, so dass zur Optimierung nur noch die Phasenlagen variiert werden. Ein überraschend guter Crest-Faktor von 2 wird im dargestellten Beispiel dadurch erreicht, dass die Phasen der Frequenzanteile auf Basis der Rudin-Shapiro-Reihe bestimmt werden und die Anzahl der Frequenzanteile eine Potenz von 2 ist. Die Rudin-Shapiro-Reihe ist eine Reihe aus den Zahlen +1 und -1, wobei sich der n-te Wert S(n) der Reihe danach bestimmt, wie oft die Bit-Folge 11 in der Binärdarstellung der Zahl n auftritt. Ist diese Anzahl gerade, so ist der Wert der Reihe +1; ist die Anzahl ungerade, so ist der Wert -1. So ergibt sich z.B. für das 14. Element der Reihe eine +1, da in der Binärdarstellung der Zahl 14 (1110) zweimal die Bit-Folge 11 vorkommt. Die ersten Werte der Rudin-Shapiro-Reihe lauten: n Binärdarstellung S(n) 0 0 +1 1 1 +1 2 10 +1 3 11 -1 4 100 +1 5 101 +1 6 110 -1 7 111 +1 8 1000 +1 9 1001 +1 In order to optimize the crest factor of the exciter current, amplitudes and phase angles of the individual frequency components can be varied. However, in order to achieve the same sensitivity of the sensor arrangement 14 at all frequencies, it is advantageous to provide all frequency components with the same amplitude, so that only the phase angles are varied for optimization. A surprisingly good crest factor of 2 is achieved in the illustrated example by determining the phases of the frequency components based on the Rudin-Shapiro series and the number of frequency components is a power of 2. The Rudin-Shapiro series is a series of the numbers +1 and -1, where the nth value S (n) of the series is determined by how many times the bit sequence 11 occurs in the binary representation of the number n. If this number is even, the value of the row is +1; if the number is odd, the value is -1. For example, for the 14th element of the series, there is a +1, since in the binary representation of the number 14 (1110), the bit sequence 11 is twice occurs. The first values of the Rudin Shapiro series are: n binary representation S (n) 0 0 +1 1 1 +1 2 10 +1 3 11 -1 4 100 +1 5 101 +1 6 110 -1 7 111 +1 8th 1000 +1 9 1001 +1

Die Phasenverschiebungen ϕ der einzelnen sinusförmigen Verläufe werden nach der Formel ϕn = 90° + (90° x S(n-1)) bestimmt. Das resultierende Amplituden- und Phasenspektrum des Erregerstroms ist in den beiden Diagrammen der Fig. 5 dargestellt. In der Darstellung sind entlang der Abszisse die Frequenzen der das Erregersignal aufbauenden Sinusschwingungen in kHz angegeben, während entlang der Ordinate des unteren Diagramms die jeweilige Phasenlage in Grad [°] dargestellt ist (+90° oder -90°). Das Diagramm zeigt bereits die Phasenlagen, die sich bei Anwendung einer auf der Kosinus-Funktion beruhenden FFT-Analyse ergeben, also entweder -90° oder +90°. Entlang der Ordinate des oberen Diagramms in Figur 5 sind die Amplituden der einzelnen Frequenzanteile in mV aufgetragen. Die Amplituden sind in dem dargestellten Beispiel so gewählt, dass alle 64 Sinussignale der 64 verschiedenen Frequenzen in dem Erregersignal mit gleicher Signalamplitude auftreten.The phase shifts φ of the individual sinusoidal curves are determined according to the formula φ n = 90 ° + (90 ° x S (n-1)). The resulting amplitude and phase spectrum of the excitation current is in the two diagrams of Fig. 5 shown. In the illustration, along the abscissa, the frequencies of the sinusoidal oscillations that build up the excitation signal are given in kHz, while along the ordinate of the lower diagram, the respective phase position is shown in degrees [°] (+ 90 ° or -90 °). The diagram already shows the phase angles that result when using a cosine-based FFT analysis, ie either -90 ° or + 90 °. Along the ordinate of the upper diagram in FIG. 5 the amplitudes of the individual frequency components are plotted in mV. The amplitudes are chosen in the illustrated example so that all 64 sine signals of the 64 different frequencies occur in the excitation signal with the same signal amplitude.

Claims (9)

  1. A method for identifying and classifying electromagnetically detectable parts by means of a sensor assembly (14) comprising the steps: moving the sensor assembly (14) closer towards the electromagnetically detectable part, until the latter is located in the sensor range of the sensor assembly, wherein the sensor assembly (14) has at least one electromagnetic sensor, which has at least one field coil (102) for emitting an electromagnetic excitation field and at least one detector coil (104);
    supplying the field coil (102) with a time-dependent excitation current;
    measuring a time-dependent signal induced in the detector coil (104);
    evaluating the signal in order to determine the electromagnetic characteristics of the electromagnetically detectable part, wherein the excitation current is generated by a superposition of multiple sinusoidal curves of different frequencies, characterised in that the sinusoidal curves of the individual frequencies are phase-shifted relative to one another, wherein the phase shift ϕ of the individual sinusoidal curves as compared to the sinusoidal curve of the fundamental frequency corresponds to either 0° or 180°.
  2. The method according to claim 1 for identifying and classifying electromagnetically detectable conveyed material parts in a bulk material, wherein a stream (13) of bulk material (15, 15', 15", 16, 16', 16") is provided, and wherein the stream (13) of bulk material is guided along the sensor assembly (14),
    and wherein the signal is evaluated in order to determine the electromagnetic characteristics of a section of the stream (13) of bulk material, which is located in the sensor range of the sensor assembly (14).
  3. The method according to claim 1 or 2, characterised in that the phase shifts ϕ of the individual sinusoidal curves are chosen in such a way that the resulting total signal has a crest factor of less than 3, preferably of less than 2.5.
  4. The method according to any one of claims 1 to 3, characterised in that the phase shifts ϕ of the individual sinusoidal curves are determined according to the formula ϕn = 90°+ (90° x S(n-1)), wherein n is the quotient from the respective frequency and the fundamental frequency, and S(n) is the nth value of a Rudin-Shapiro sequence.
  5. The method according to any one of the preceding claims, characterised in that the evaluation of the signal current comprises a fast Fourier transformation (FFT) or a "pruned FFT" alternative.
  6. The method according to any one of the preceding claims, characterised in that the number of the superimposed sinusoidal curves is an integral power of 2.
  7. The method according to claim 6, characterised in that the number of the superimposed sinusoidal curves is 64.
  8. The method according to any one of the preceding claims, characterised in that the common fundamental frequency of the superimposed sinusoidal curves is between 100 Hz and 10 kHz preferably 1 kHz.
  9. The method according to any one of the preceding claims, characterised in that the frequencies of the plurality of sunusoidal curves are in each case integral multiples of a common fundamental frequency.
EP13827001.2A 2012-12-28 2013-12-27 Method for detecting and classifying electromagnetically detectable objects in a bulk stream Not-in-force EP2938443B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012025209 2012-12-28
PCT/EP2013/003920 WO2014102011A1 (en) 2012-12-28 2013-12-27 Method for identifying and classifying electromagnetically detectable parts, in particular conveyed material parts contained in bulk material

Publications (2)

Publication Number Publication Date
EP2938443A1 EP2938443A1 (en) 2015-11-04
EP2938443B1 true EP2938443B1 (en) 2017-11-15

Family

ID=50068954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13827001.2A Not-in-force EP2938443B1 (en) 2012-12-28 2013-12-27 Method for detecting and classifying electromagnetically detectable objects in a bulk stream

Country Status (2)

Country Link
EP (1) EP2938443B1 (en)
WO (1) WO2014102011A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654638A (en) * 1995-12-21 1997-08-05 White's Electronics, Inc. Plural Frequency method and system for identifying metal objects in a background environment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443043B2 (en) * 1998-12-08 2003-09-02 三菱重工業株式会社 Battery sorting method and device
US7674994B1 (en) * 2004-10-21 2010-03-09 Valerio Thomas A Method and apparatus for sorting metal
DE102005048757A1 (en) * 2005-10-10 2007-04-19 Oliver Gurok Sensor device for detecting electromagnetically detectable items to be conveyed and sorting device with such a sensor device
AT504527B1 (en) * 2007-02-23 2008-06-15 Evk Di Kerschhaggl Gmbh Objects e.g. conductive and/or ferromagnetic objects, differentiating method for sorting system, involves calculating peak values from increase of sinusoidal current path and constant frequency of sinusoidal voltage of coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654638A (en) * 1995-12-21 1997-08-05 White's Electronics, Inc. Plural Frequency method and system for identifying metal objects in a background environment

Also Published As

Publication number Publication date
EP2938443A1 (en) 2015-11-04
WO2014102011A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
EP2121203B1 (en) Method and device for differentiating objects influencing an electromagnetic alternating field, particularly metal objects
EP1794582B1 (en) Method and device for the non-destructive and contactless detection of flaws in a test piece moved relative to a probe
EP0091034B1 (en) Arrangement for the detection of metallic objects in a flow of material
EP1940564B1 (en) Sensor apparatus for detecting electromagnetically detectable conveyed goods and sorting apparatus having such a sensor apparatus
EP1828524B1 (en) Sensor using the capacitive measuring principle
WO2011082728A1 (en) Detection device for a belt conveyor and method for detecting electrically conductive foreign bodies in the material being transported on a belt conveyor
EP0060392B1 (en) Coin testing apparatus
EP1309949A2 (en) Verification of thickness modulations in or on sheet-type products
EP3002583B1 (en) Method and device for eddy current testing with impulse magnetization
EP2938443B1 (en) Method for detecting and classifying electromagnetically detectable objects in a bulk stream
DE69635353T2 (en) METHOD AND DEVICE FOR INDICATIVELY MEASURING PHYSICAL PARAMETERS OF AN ARTICLE IN METAL AND USE THEREOF
DE10105082A1 (en) Device for receiving banknotes
EP1347311B1 (en) Method for detecting objects, particularly metal objects
WO2009080186A1 (en) Method and apparatus for checking the presence of magnetic features on a document of value
WO2007107353A1 (en) Sensor for measuring distance using the phase shift of the magnetic field in an rc delay chain
EP1256909A2 (en) Apparatus and Method for the Examination of Objects
DE102018108601A1 (en) Device for detecting foreign bodies in a substrate stream
WO2002056051A1 (en) Method for processing output or base signals from a device for determining a distance of an object
EP3134878B1 (en) Method of checking a value document
DE102023101173A1 (en) Device for separating foreign substances from products
DE2507398B2 (en) Circuit arrangement for testing metallic objects
WO2024041878A1 (en) Metal detector and method for detecting metals in objects to be conveyed
AT505032B1 (en) METHOD AND DEVICE FOR DETERMINING THE CONVEYOR PARAMETERS OF A PARTICULAR LEADING FLUID BY FLOWING A LINE
WO2023174625A1 (en) Apparatus and method for weighing objects
DE10233352A1 (en) Detecting objects, especially metal objects, using individual pulse-induction probes to detect induction signals from objects and evaluating variations in induction signals emitted by object

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUROK, OLIVER

Inventor name: SCHOLZ, STEVEN

Inventor name: BRAUN, ALEXANDER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160825

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170613

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 945750

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008848

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180629

Year of fee payment: 5

Ref country code: DE

Payment date: 20180626

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008848

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

26N No opposition filed

Effective date: 20180817

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180115

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013008848

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 945750

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315