EP2937516A1 - Carter cintré monobloc de compresseur de turbomachine axiale et procédé de fabrication associé - Google Patents

Carter cintré monobloc de compresseur de turbomachine axiale et procédé de fabrication associé Download PDF

Info

Publication number
EP2937516A1
EP2937516A1 EP14165796.5A EP14165796A EP2937516A1 EP 2937516 A1 EP2937516 A1 EP 2937516A1 EP 14165796 A EP14165796 A EP 14165796A EP 2937516 A1 EP2937516 A1 EP 2937516A1
Authority
EP
European Patent Office
Prior art keywords
sheet
blades
annular
row
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14165796.5A
Other languages
German (de)
English (en)
Other versions
EP2937516B1 (fr
Inventor
Michel Wlasowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aero Boosters SA
Original Assignee
Techspace Aero SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techspace Aero SA filed Critical Techspace Aero SA
Priority to EP14165796.5A priority Critical patent/EP2937516B1/fr
Priority to CA2887529A priority patent/CA2887529A1/fr
Priority to US14/693,593 priority patent/US10196909B2/en
Publication of EP2937516A1 publication Critical patent/EP2937516A1/fr
Application granted granted Critical
Publication of EP2937516B1 publication Critical patent/EP2937516B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • F01D9/044Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators permanently, e.g. by welding, brazing, casting or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1205Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using translation movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2333Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer one layer being aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/239Inertia or friction welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/26Manufacture essentially without removing material by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/53Building or constructing in particular ways by integrally manufacturing a component, e.g. by milling from a billet or one piece construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49323Assembling fluid flow directing devices, e.g., stators, diaphragms, nozzles

Definitions

  • the invention relates to a method of manufacturing an axial turbomachine casing. More specifically, the invention relates to a one-piece casing comprising vanes. The invention also relates to an axial turbomachine comprising a housing made according to the invention.
  • An axial turbomachine generally comprises several structural housings for supporting different modules.
  • the casings also make it possible to guide and delimit the annular flows passing through the turbomachine.
  • the turbomachine comprises several annular rows of blades connected to the housings.
  • Stator blades arranged in an annular row can be directly welded to a wall of the turbomachine. This method of attachment makes it possible to form a robust one-piece assembly. This architecture also makes it possible to reduce the number of interfaces between the mechanical elements.
  • the document US 6,321,448 B1 discloses a method of producing an external turbomachine casing.
  • the method comprises the succession of several steps, including the cutting of a sheet so as to give it dimensions corresponding to the outer ribs of the housing, bending of the cut sheet to form a tube, laser cutting of the sheet to create openings according to the profiles of the blades, then insertion and welding blades in their openings for their final fixation.
  • This method reduces the time to position and adjust the blades in the tube forming the housing.
  • this process requires precise cutting, the presence of which weakens the housing.
  • the operation of blade welding is also laborious because it can only be done from the outside.
  • the use of a laser weld lengthens the manufacturing time, and increases the assembly time.
  • the combination of the cutting, welding, and bending process particularly deteriorates the fatigue strength of the sheet material at the junction with each blade.
  • the object of the invention is to solve at least one of the problems posed by the prior art. More specifically, the invention also aims to reduce the manufacturing time of a one-piece turbomachine casing with an annular row of blades welded. The invention also aims to preserve and / or increase the mechanical strength of a one-piece casing comprising an annular row of blades welded.
  • the subject of the invention is a method for manufacturing an axial turbomachine casing, in particular a compressor casing, the casing comprising a sheet and at least one annular row of stator vanes, the method comprising the following steps: (a) supply or manufacture of a flat metal sheet; (b) welding stator blades on one of the flat faces of the sheet, the blades being arranged to form at least one row of blades; remarkable in that it then comprises a step of (c) bending the sheet around a bending axis perpendicular to the row of blades, so as to form a housing with at least an angular portion of the tube thanks to the sheet, and with at least one angular portion of annular row of blades.
  • the blades are friction welded, possibly in a movement in the plane of the flat sheet.
  • the sheet forms a tube with at least one annular row of blades, or the sheet forms an angular fraction of a tube such as a half-tube with at least an annular half-row of blades, optionally the curved sheet has a concave surface and a convex surface, each row of blades being located on the concave surface.
  • step (b) welding of the blades at least one or each blade is welded over its entire aerodynamic profile at its junction with the sheet.
  • the blades of each row have parallel ropes, the ropes of the blades being inclined at an angle less than 30 ° preferably less than 20 ° , relative to the bending axis of the sheet of step (c) bending the sheet.
  • the step (a) supply or manufacture of a sheet comprises a step of machining a raw plate so as to form a sheet with thickness variations.
  • the machining step comprises the production of blade stubs on which the blades are welded, the overall thickness of the sheet being less than or equal to the height of the stubs, the thickness each stump being greater than the thickness of the corresponding blade.
  • the housing is formed of two axially separated half-housings along an axial separation plane.
  • the method further comprises a step of (d) welding radially extending annular flanges and / or radially extending axial flanges, optionally the axial flanges are made by folding.
  • the bending may comprise at least one, preferably several rolling steps and / or burnishing.
  • the bending is carried out with rollers bearing on the blade-side metal sheet on either side of each annular row of blades, preferably the sheet comprises several rows of blades and the rollers on the blade side are supported between each row of blades.
  • the bending is carried out using rollers arranged on either side of the sheet metal, the rollers located on one side of the sheet being at an axial distance from the rollers located on the other side of the sheet, optionally the rollers located on one side of the sheet radially overlap the rollers located on the other side of the sheet so as to form internal annular grooves between the annular rows of blades.
  • At least one annular groove has a depth greater than the general thickness E1 of the sheet.
  • the method further comprises a step (e) of applying at least one annular layer of abradable material, optionally in an annular groove.
  • the blades each have a main stacking direction, at the end of the blade welding operation the main stacking directions are parallel, and at the end of the step bending the main stacking directions are regularly inclined relative to each other, they are possibly concentric.
  • each blade row or all rows of blades is / are parallel (s) to the same edge of the flat sheet.
  • the stubs form blocks of material.
  • each row is perpendicular to the axis around which is bent the sheet.
  • the bending consists of wrapping the blades inside the sheet.
  • leading edges and the trailing edges of the vanes are generally perpendicular to the general plane of the sheet.
  • the housing is generally tubular, and during step (c) bending, the sheet is bent around the axis of the tube.
  • the sheet is bent according to the height of the blades, optionally the sheet is curved in the direction of the height of the blades and / or in the direction of the blade. stacking of the blades profiles.
  • the invention also relates to a turbomachine
  • Axial turbomachine comprising a casing with at least one annular row of stator vanes, remarkable in that the casing is made according to the method of producing a casing according to the invention.
  • the invention makes it possible to simply produce a robust casing.
  • stump allows to remove the heat affected area of the sheet.
  • the sheet is not weakened during the bending operation.
  • the invention also reduces the thickness of the sheet and thus lighten the casing while reducing the deformations in the thickness of the sheet.
  • the blades have generally axial junctions with the sheet, they thus make it possible to form rows of stiffeners. These rows complete the stiffening effect of the flanges that frame the sheet.
  • the sheet and the blades heat up and then cool down, revealing stresses.
  • the formation of the grooves can create a compressive stress in the material, which improves endurance. This effect can be achieved by the geometric deformation of the sheet and / or by burnishing. The creation of cracks can also be combated.
  • inner or inner and outer or outer refer to a positioning relative to the axis of rotation of an axial turbomachine.
  • the figure 1 represents in simplified manner an axial turbomachine. It is in this case a double-flow turbojet engine.
  • the turbojet engine 2 comprises a first compression level, called a low-pressure compressor 4, a second compression level, called a high-pressure compressor 6, a combustion chamber 8 and one or more levels of turbines 10.
  • the mechanical power the turbine 10 transmitted via the central shaft to the rotor 12 sets in motion the two compressors 4 and 6.
  • Reducing means can increase the speed of rotation transmitted to the compressors.
  • the different turbine stages can each be connected to the compressor stages via concentric shafts.
  • the latter comprise several rows of rotor blades associated with rows of stator vanes. The rotation of the rotor about its axis of rotation 14 thus makes it possible to generate an air flow and to compress it progressively until it reaches the combustion chamber 10.
  • An inlet fan commonly referred to as fan or blower 16 is coupled to the rotor 12 and generates an air flow which splits into a primary flow 18 passing through the various aforementioned levels of the turbomachine, and a secondary flow 20 passing through an annular duct (partially shown) along the machine to then join the primary flow at the turbine outlet.
  • the secondary stream can be accelerated to generate a reaction.
  • the primary 18 and secondary 20 streams are annular flows, they are channeled by the casing of the turbomachine.
  • the casing has cylindrical walls or ferrules which can be internal and external.
  • the figure 2 is a sectional view of a compressor of an axial turbomachine 2 such as that of the figure 1 .
  • the compressor may be a low-pressure compressor 4.
  • the rotor 12 comprises several rows of rotor blades 24, in the occurrence three.
  • the low pressure compressor 4 comprises several rectifiers, in this case four, each containing a row of stator vanes 26.
  • the rectifiers are associated with rows of rotor vanes 24 for straightening the air flow, so as to convert the speed of the flow under pressure.
  • the compressor may comprise a housing 28, for example an outer casing.
  • the housing may form a generally tubular wall 30 sealed, it may define the primary flow 18 of the turbomachine.
  • the casing 28 can serve as a support for the stator vanes 26, and possibly for annular layers of abradable material 32.
  • the stator vanes 26 extend essentially radially from the casing. They are regularly spaced from each other, and have the same angular orientation in the flow.
  • the blades of the same row are identical.
  • the housing may also include annular fixing flanges 34 which extend radially. These flanges 34 may allow the mounting of the spout 22, or a fixing of the housing on the intermediate casing of the turbomachine 36.
  • the figure 3 represents a diagram of the manufacturing process of the turbomachine casing according to the invention.
  • the method makes it possible to produce a compressor casing, low-pressure or high-pressure casing, a turbine casing, or a fan casing.
  • step (a) supply or manufacture 104 is optional.
  • the vanes can be directly welded to one of the faces of a sheet provided.
  • the supply of a sheet may be the supply of a sheet having stubs of blades made during a machining step 105.
  • Step (d) welding flanges 110 is optional.
  • Step (f) is optional.
  • the housing can be made without flanges. It can be fixed by any other suitable means to the turbomachine. Or, the sheet can be folded, for example to form axial flanges. It can also be shaped to form annular flanges. The bent sheet can be closed by welding.
  • the figure 4 illustrates the step of supply or manufacture 104 of a sheet for making the housing.
  • the step of providing a sheet may comprise the provision of a flat sheet, possibly rectangular. It can have two opposite main faces; and four sides, or slices, opposite two by two.
  • the sheet may be derived from rolling.
  • the sheet may be steel, titanium, aluminum. Its thickness may be less than 5 mm, preferably less than 2 mm, possibly less than 1 mm. Its thickness and its material are configured so as to produce a tube of diameter less than 1 m, preferably less than 70 cm by deforming elastically.
  • the supply or manufacturing step may optionally include the manufacture of the sheet.
  • This can be made from a raw metal plate 38 subjected to manufacturing processes, such as material removal.
  • the raw plate 38 can generally be rectangular, and have two opposite major faces. These faces are generally flat and parallel. They can define the thickness E2 of the raw plate 38, which is greater than the overall thickness of the flat sheet.
  • the figure 5 illustrates the manufacturing option of the supply or manufacture stage of a sheet from a raw metal plate.
  • the step of manufacturing a sheet may comprise the machining of the raw plate 38.
  • This machining may comprise one or more milling operations.
  • One or more strawberries 40 traverse the extent of the plate to locally remove material in several thicknesses.
  • the machining step can make it possible to produce at least one, preferably several forms of blade stubs 42 in the thickness E2 of the raw plate, and to produce smaller thickness portions between the stubs 42.
  • the stubs 42 can forming bumps on one side of the sheet.
  • This step leads to form a sheet with stubs 42 whose overall thickness E1 corresponds to the thickness of the portions of lesser thickness.
  • the cumulative thickness of the thickness E1 of the sheet added to the height of the stubs 42 may be less than the thickness E2 of the raw plate 38.
  • the blade stubs 42 may be arranged in at least one row.
  • the stubs 42 of the same row may be identical.
  • the profiles of the stubs 42 may have ropes from the edge or point of attack to the edge or vanishing point.
  • the different rows of stumps may have different ropes, whose inclinations relative to the rows vary gradually.
  • the figure 6 illustrates the step of fixing the stator vanes 26 on the sheet 44 supplied or manufactured, the attachment being made by welding.
  • the welding may comprise the welding of blades 26 reported, whole or in portions, the portions being for example paddle blades.
  • Machined stubs may include blade blade portions to separate the welds from the plate 44.
  • the welded blades 26, or the welded blades may each comprise a leading edge and a trailing edge, which each form an edge. projecting. They may each comprise a lower surface and an extrados surface, possibly predominantly parallel. They may each comprise a stack of aerodynamic profiles profiled to deflect the flow relative to the axis of the turbomachine. The profile of the blade in contact with the sheet can be integrally welded to the sheet.
  • the blades 26 may be directly welded to the sheet, for example on a flat surface forming one of the faces of the sheet. They can also be welded to stubs 42 if the sheet 44 is provided.
  • the stubs 42 form blocks of material, which may be wider in the direction of the rows, than the blades 26 which are welded thereto.
  • the heights of the stubs 42 may be greater than the general height or overall thickness of the sheet 44, the height of the stubs being measured according to the thickness of the sheet 44.
  • the stubs 42 may be blade roots, and may have connection radii to the sheet, to allow a distribution of efforts.
  • the stubs 42 may be thicker than the blades 26, the thickness being the maximum thickness. The thickness being measured transversely to the rope of the dawn.
  • the massive aspect of the stubs reinforces the sheet 44, and also to provide a thermal inertia during welding.
  • the vanes 26 may form, depending on their profile, cooling fins which guide the direction of solidification of the welds.
  • the leading edges and the trailing edges can be substantially sharpened and thin, thereby accelerating the cooling and solidification of the welds. These can make it possible to solidify leading and trailing edges of the vanes towards the center, possibly by generating a stress in the weld, for example due to a cooling rate different from that of the sheet 44.
  • the blades 26 may be friction welded. This method is beneficial because it only takes a few seconds, possibly two to five seconds of friction to weld a blade. This method is particularly suitable for sheet metal because it naturally has parallel receiving and supporting surfaces. These surfaces are advantageously flat at this stage of the process. The optional existence of the stubs limits the deformation of the sheet during and after the friction, forming cushions.
  • the figure 7 roughing the plate 44 flat with at least one straight row of blades 26, in this case the plate 44 supports and connects three rows 46 of blades 26 aligned.
  • the sheet supports at least one row 46 of blades 26, preferably several rows 46 of blades.
  • Each row 46 is straight, and possibly parallel to an edge of the perpendicular plate. Preferably, all the rows 46 are parallel to the same edge.
  • Each row 46 may be defined by its type of blades 26.
  • the blades 26 of the same row may each have the same angle of attack, and / or the same height, and / or the same average thickness.
  • the heights of the blades 26 of the different rows may vary, for example progressively from upstream to downstream.
  • the height of the blades can reduce downstream, while they can increase downstream in the case of a turbine.
  • the figure 8 illustrates the bending step of the initially flat sheet 44.
  • the sheet 44 is bent. Two of its opposite sides are brought closer to one another by curving it. It can be partially wound around an axis along a radius of curvature, over a fraction of a turn.
  • the radius of curvature may be constant along the circumference, and may vary axially.
  • the bending can be performed around a bending axis perpendicular to each row of blades.
  • the bending axis may be the axis around which the blade is wound or rotates. This bending axis may be parallel to or may coincide with the axis of rotation 14 of the turbomachine. Bending can make it possible to produce a tube forming a loop of a lathe, or a angular portion of tube such as a half-tube.
  • the blades 26 which are connected there form at least one, possibly several half-rows of annular blades, distributed axially along the sheet.
  • the method then makes it possible to produce half casings separated by an axial plane.
  • Axial plane means a plane passing through the bending axis and / or the axis of rotation 14 of the turbomachine.
  • the housing can form a half-tube with annular half rows of axially spaced vanes.
  • the sheet 44 can be bent in different ways. It can be bent by winding, pushing, rolling or stamping. It is then folded, twisted, for example by maintaining it at the slices and bowing it by pressing between the slices.
  • the sheet 44 may comprise holding portions cut after bending.
  • the housing or the housing portion may then comprise an angular portion of annular row 46 of blades, preferably several angular portions of rows 46 annular blades, only one being shown.
  • the sheet 44 may have a curved or circular axial profile. The axial profile is in a plane perpendicular to the bending axis.
  • the sheet 44 has a concave inner surface, and a convex outer surface where the blades are located.
  • the figure 9 illustrates one embodiment of the bending. This embodiment can be carried out in addition to another bending method, or allow the sheet 44 to be completely bent.
  • the sheet 44 can be bent by rolling.
  • the sheet 44 may be introduced between rollers (48; 50) to give it its curvature. This bending can be progressive.
  • Parallel rollers 48 can bear against the sheet 44 between the rows of blades 26.
  • Other rollers 50 parallel to the first can bear on the sheet 44 on the opposite side to the blades 26. These other rollers can extend over any the axial length of the sheet, while the first rollers 48 may each extend over an axial portion of the sheet.
  • the rollers 50 on the side opposite to the blades 26 may each extend over an axial portion of the sheet, measured along the axis of rotation 14, and / or a direction perpendicular to the rows of blades.
  • the axial length of these rollers 50 can be configured so that they can be interposed 48 between the rollers on the blade side.
  • the rollers (48; 50) of the two faces may overlap radially and may be axially offset, depending on the face where they are.
  • the bending may be configured to form internal annular grooves 52 between the rows of blades; and possibly external annular grooves 54, at the level of the blades 26.
  • the sheet then has a crenellated revolution profile.
  • the thickness of the sheet 44 may be less than the radial depth of the grooves, and may be less than the thickness of the housing wall.
  • Rolling can reduce the axial length of the sheet 44, possibly the rows of blades can approach axially.
  • the bending may comprise a burnishing step, possibly to improve the surface state of the sheet, and / or compress the material to limit the appearance, the propagation of cracks.
  • the figure 10 illustrates the step of welding the flanges on the sheet.
  • the housing may comprise axial flanges 56 which extend radially.
  • the axial flanges 56 may extend over the entire axial length of the sheet 44 and allow an assembly, possibly of two half-casings.
  • the annular flanges 34 can traverse the entire curve of the associated sheet.
  • the flanges (34; 56) can form reinforcements that stiffen the casing against bending and / or ovalization.
  • the flanges (34; 56) can be fixed on the bent sheet, for example by welding.
  • the flanges may be welded to a convex outer face or to a wafer of the sheet 44.
  • the flanges may be material strips, straight or curved. They may include fixing holes (not shown).
  • the flanges (34; 56) of the same housing portion may all be welded together to form a reinforcing frame.
  • the method may then comprise a step of depositing or applying a layer of abradable material.
  • This layer may be an annular layer and may be disposed between the annular rows of vanes (only one row is shown), on the inside.
  • the layer can understand an elastomer, a silicone. It is suitable for working by abrasion with the rotor. It can crumble on contact with rotor blades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention a trait à un procédé de fabrication d'un carter de compresseur de turbomachine axiale comprenant une tôle avec des rangées annulaires d'aubes statoriques soudées sur la tôle. Le procédé comprend les étapes de (a) fourniture ou fabrication (104) d'une tôle métallique plane, avec une étape d'usinage (105) pour former des moignons d'aubes ; (b) soudage (106) des aubes statoriques par friction sur l'une des faces planes la tôle, les aubes étant agencées de sorte à former des rangées droites d'aubes et parallèles ; (c) cintrage (108) de la tôle autour d'un axe de cintrage perpendiculaire à chaque rangée d'aubes, de sorte à former un demi tube avec des demi-rangées annulaire d'aubes espacées axialement, et en réalisant des gorges annulaires par roulage ; (d) soudage (110) de brides annulaires et de brides axiales ; (e) application de couches annulaires de matériau abradable.

Description

    Domaine technique
  • L'invention a trait à un procédé de fabrication d'un carter de turbomachine axiale. Plus précisément, l'invention a trait à un carter monobloc comprenant des aubes. L'invention a également trait à une turbomachine axiale comprenant un carter réalisé selon l'invention.
  • Technique antérieure
  • Une turbomachine axiale comprend généralement plusieurs carters structurels permettant de supporter différents modules. Les carters permettent par ailleurs de guider et de délimiter les flux annulaires traversant la turbomachine. Afin de dévier les flux annulaires, la turbomachine comprend plusieurs rangées annulaires d'aubes reliées aux carters.
  • Des aubes statoriques disposées en rangée annulaire peuvent être directement soudées sur une paroi de la turbomachine. Ce mode de fixation permet de constituer un ensemble monobloc robuste. Cette architecture permet en outre de diminuer le nombre d'interfaces entre les éléments mécaniques.
  • Le document US 6,321,448 B1 divulgue un procédé de réalisation d'un carter externe de turbomachine. Le procédé comprend la succession de plusieurs étapes, dont la découpe d'une tôle de sorte à lui donner des dimensions correspondant aux côtes extérieures du carter, cintrage de la tôle découpée pour former un tube, découpe laser de la tôle pour créer des ouvertures selon les profils des aubes, puis insertion et soudage des aubes dans leurs ouvertures en vue de leur fixation définitive. Ce procédé permet de réduire le temps pour positionner et ajuster les aubes dans le tube formant le carter. Cependant, ce procédé demande d'effectuer des découpes précises dont la présence fragilise le carter. L'opération de soudage des aubes est également laborieuse car elle ne peut se faire que de l'extérieur. Le recours à une soudure laser allonge le temps de fabrication, et augmente le temps d'assemblage. La combinaison du procédé de découpe, de soudure, et de cintrage détériore particulièrement la résistance en fatigue de la matière de la tôle à la jonction avec chaque aube.
  • Résumé de l'invention Problème technique
  • L'invention a pour objectif de résoudre au moins un des problèmes posés par l'art antérieur. Plus précisément, l'invention a également pour objectif de réduire le temps de fabrication d'un carter monobloc de turbomachine avec une rangée annulaire d'aubes soudées. L'invention a également pour objectif de préserver et/ou d'augmenter la résistance mécanique d'un carter monobloc comprenant une rangée annulaire d'aubes soudées.
  • Solution technique
  • L'invention a pour objet un procédé de fabrication d'un carter de turbomachine axiale, notamment de compresseur, le carter comprenant une tôle et au moins une rangée annulaire d'aubes statoriques, le procédé comprenant les étapes suivantes : (a) fourniture ou fabrication d'une tôle métallique plane ; (b) soudage d'aubes statoriques sur l'une des faces planes de la tôle, les aubes étant agencées de sorte à former au moins une rangée d'aubes ; remarquable en ce qu'il comprend ensuite une étape de (c) cintrage de la tôle autour d'un axe de cintrage perpendiculaire à la rangée d'aubes, de sorte à former un carter avec au moins une portion angulaire de tube grâce à la tôle, et avec au moins une portion angulaire de rangée annulaire d'aubes.
  • Selon un mode avantageux de l'invention, lors de l'étape (b) soudage des aubes, les aubes sont soudées par friction, éventuellement selon un mouvement dans le plan de la tôle plane.
  • Selon un mode avantageux de l'invention, à l'issue de l'étape (c) cintrage de la tôle, la tôle forme un tube avec au moins une rangée annulaire d'aubes, ou la tôle forme une fraction angulaire de tube tel un demi-tube avec au moins une demi-rangée annulaire d'aubes, éventuellement la tôle cintrée présente une surface concave et une surface convexe, chaque rangée d'aubes étant située sur la surface concave.
  • Selon un mode avantageux de l'invention, lors de l'étape (b) soudage des aubes, au moins une ou chaque aube est soudée sur tout son profil aérodynamique à sa jonction avec la tôle.
  • Selon un mode avantageux de l'invention, lors de l'étape (b) soudage des aubes, les aubes de chaque rangée présentent des cordes parallèles, les cordes des aubes étant inclinées d'un angle inférieur à 30° préférentiellement inférieur à 20°, par rapport à l'axe de cintrage de la tôle de l'étape (c) cintrage de la tôle.
  • Selon un mode avantageux de l'invention, l'étape (a) fourniture ou fabrication d'une tôle comprend une étape d'usinage d'une plaque brute de sorte à former une tôle avec des variations d'épaisseurs.
  • Selon un mode avantageux de l'invention, l'étape d'usinage comprend la réalisation de moignons d'aubes sur lesquels sont soudées les aubes, l'épaisseur générale de la tôle étant inférieure ou égale à la hauteur des moignons, l'épaisseur de chaque moignon étant supérieure à l'épaisseur de l'aube correspondante.
  • Selon un mode avantageux de l'invention, le carter est formé de deux demi-carters séparés axialement suivant un plan de séparation axial.
  • Selon un mode avantageux de l'invention, le procédé comprend en outre une étape de (d) soudage de brides annulaires s'étendant radialement et/ou de brides axiales s'étendant radialement, éventuellement les brides axiales sont réalisées par pliage.
  • Selon un mode avantageux de l'invention, lors de l'étape (c) cintrage, le cintrage peut comprendre au moins une, préférentiellement plusieurs étapes de roulage et/ou de galetage.
  • Selon un mode avantageux de l'invention, le cintrage est effectué avec des rouleaux prenant appui sur la tôle du côté des aubes de part et d'autre de chaque rangée annulaire d'aubes, préférentiellement la tôle comprend plusieurs rangées d'aubes et les rouleaux du côté des aubes prennent appui entre chaque rangée d'aubes.
  • Selon un mode avantageux de l'invention, le cintrage est effectué à l'aide de rouleaux disposés de part et d'autre de la tôle, les rouleaux situés d'un côté de la tôle étant à distance axialement par rapport aux rouleaux situés de l'autre côté de la tôle, éventuellement les rouleaux situés d'un côté de la tôle chevauchent radialement les rouleaux situés de l'autre côté de la tôle de sorte à former des gorges annulaires intérieures entre les rangées annulaires d'aubes.
  • Selon un mode avantageux de l'invention, au moins une gorge annulaire présente une profondeur supérieure à l'épaisseur générale E1 de la tôle.
  • Selon un mode avantageux de l'invention, le procédé comprend en outre une étape (e) application d'au moins une couche annulaire de matériau abradable, éventuellement dans une gorge annulaire.
  • Selon un mode avantageux de l'invention, les aubes présentent chacune une direction d'empilement principal, à l'issue de l'opération de soudage des aubes les directions d'empilement principal sont parallèles, et à l'issue de l'étape de cintrage les directions d'empilement principal sont régulièrement inclinées les unes par rapport aux autres, elles sont éventuellement concentriques.
  • Selon un mode avantageux de l'invention, chaque rangée d'aube ou toutes les rangées d'aubes est/sont parallèle(s) à un même bord de la tôle plane.
  • Selon un mode avantageux de l'invention, les moignons forment des blocs de matière.
  • Selon un mode avantageux de l'invention, lors de l'étape (b) soudage des aubes, chaque rangée est perpendiculaire à l'axe autour duquel est cintrée la tôle.
  • Selon un mode avantageux de l'invention, lors de l'étape (c) cintrage de la tôle, le cintrage consiste à envelopper les aubes à l'intérieur de la tôle.
  • Selon un mode avantageux de l'invention, les bords d'attaque et les bords de fuite des aubes sont généralement perpendiculaires au plan général de la tôle.
  • Selon un mode avantageux de l'invention, le carter est généralement tubulaire, et lors de l'étape (c) cintrage, la tôle est cintrée autour de l'axe du tube.
  • Selon un mode avantageux de l'invention, lors de l'étape (c) cintrage, la tôle est cintrée selon la hauteur des aubes, éventuellement la tôle est incurvée dans le sens de la hauteur des aubes et/ou dans la direction de l'empilement des profils des aubes.
  • L'invention a également pour objet une turbomachine,
  • Turbomachine axiale comprenant un carter avec au moins une rangée annulaire d'aubes statoriques, remarquable en ce que le carter est réalisé suivant le procédé de réalisation d'un carter selon l'invention.
  • Avantages apportés
  • L'invention permet de réaliser simplement un carter robuste.
  • L'emploi de moignon permet d'écarter la zone affectée thermiquement de la tôle. Ainsi, la tôle n'est pas fragilisée lors de l'opération de cintrage.
  • L'invention permet également de réduire l'épaisseur de la tôle et donc d'alléger le carter tout en réduisant les déformations dans l'épaisseur de la tôle. Les aubes présentent des jonctions généralement axiales avec la tôle, elles permettent donc de former des rangées de raidisseurs. Ces rangées complètent l'effet de rigidification des brides qui encadrent la tôle.
  • Lors de l'étape de soudage, la tôle et les aubes chauffent puis se refroidissent en laissant apparaître des contraintes. Lorsqu'il s'agit de contraintes de traction, la formation des gorges peut permettre de créer une contrainte de compression dans la matière, ce qui améliore l'endurance. Cet effet peut être atteint grâce à la déformation géométrique de la tôle et/ou grâce au galetage. La création de fissures peut également être combattue.
  • Brève description des dessins
    • La figure 1 esquisse une turbomachine axiale selon l'invention.
    • La figure 2 représente un compresseur de turbomachine selon l'invention.
    • La figure 3 est un diagramme du procédé de réalisation d'un carter de turbomachine axiale selon l'invention.
    • La figure 4 représente une plaque brute permettant de réaliser une tôle selon l'invention
    • La figure 5 illustre l'étape d'usinage d'une plaque brute de sorte à former une tôle avec des moignons d'aubes selon l'invention.
    • La figure 6 illustre l'étape de soudure des aubes sur la tôle selon l'invention.
    • La figure 7 représente une tôle avec des rangées d'aubes selon l'invention.
    • La figure 8 illustre l'étape de cintrage de la tôle selon l'invention.
    • La figure 9 ébauche un détail de l'étape de cintrage de la tôle selon l'invention.
    • La figure 10 illustre l'étape de soudure de brides sur la tôle selon l'invention.
    Description des modes de réalisation
  • Dans la description qui va suivre, les termes intérieur ou interne et extérieur ou externe renvoient à un positionnement par rapport à l'axe de rotation d'une turbomachine axiale.
  • La figure 1 représente de manière simplifiée une turbomachine axiale. Il s'agit dans ce cas précis d'un turboréacteur double-flux. Le turboréacteur 2 comprend un premier niveau de compression, dit compresseur basse-pression 4, un deuxième niveau de compression, dit compresseur haute-pression 6, une chambre de combustion 8 et un ou plusieurs niveaux de turbines 10. En fonctionnement, la puissance mécanique de la turbine 10 transmise via l'arbre central jusqu'au rotor 12 met en mouvement les deux compresseurs 4 et 6. Des moyens de démultiplication peuvent augmenter la vitesse de rotation transmise aux compresseurs. Ou encore, les différents étages de turbines peuvent chacun être reliés aux étages de compresseur via des arbres concentriques. Ces derniers comportent plusieurs rangées d'aubes de rotor associées à des rangées d'aubes de stators. La rotation du rotor autour de son axe de rotation 14 permet ainsi de générer un débit d'air et de comprimer progressivement ce dernier jusqu'à l'entrée de la chambre de combustion 10.
  • Un ventilateur d'entrée communément désigné fan ou soufflante 16 est couplé au rotor 12 et génère un flux d'air qui se divise en un flux primaire 18 traversant les différents niveaux sus mentionnés de la turbomachine, et un flux secondaire 20 traversant un conduit annulaire (partiellement représenté) le long de la machine pour ensuite rejoindre le flux primaire en sortie de turbine. Le flux secondaire peut être accéléré de sorte à générer une réaction. Les flux primaire 18 et secondaire 20 sont des flux annulaires, ils sont canalisés par le carter de la turbomachine. A cet effet, le carter présente des parois cylindriques ou viroles qui peuvent être internes et externes.
  • La figure 2 est une vue en coupe d'un compresseur d'une turbomachine axiale 2 telle que celle de la figure 1. Le compresseur peut être un compresseur basse-pression 4. On peut y observer une partie du fan 16 et le bec de séparation 22 du flux primaire 18 et du flux secondaire 20. Le rotor 12 comprend plusieurs rangées d'aubes rotoriques 24, en l'occurrence trois.
  • Le compresseur basse pression 4 comprend plusieurs redresseurs, en l'occurrence quatre, qui contiennent chacun une rangée d'aubes statoriques 26. Les redresseurs sont associés à des rangées d'aubes rotoriques 24 pour redresser le flux d'air, de sorte à convertir la vitesse du flux en pression.
  • Le compresseur peut comprendre un carter 28, par exemple un carter externe. Le carter peut former une paroi 30 généralement tubulaire étanche, il peut délimiter le flux primaire 18 de la turbomachine. Le carter 28 peut servir de support aux aubes statoriques 26, et éventuellement à des couches annulaires de matériau abradable 32. Les aubes statoriques 26 s'étendent essentiellement radialement depuis le carter. Elles sont régulièrement espacées les unes des autres, et présentent une même orientation angulaire dans le flux. Avantageusement, les aubes d'une même rangée sont identiques. Le carter peut également comprendre des brides annulaires de fixation 34 qui s'étendent radialement. Ces brides 34 peuvent permettre le montage du de bec séparation 22, ou une fixation du carter sur le carter intermédiaire de la turbomachine 36.
  • La figure 3 représente un diagramme du procédé de fabrication du carter de turbomachine selon l'invention. Le procédé permet de réaliser un carter de compresseur, basse-pression ou haute pression, un carter de turbine, ou un carter de soufflante.
  • Le procédé peut comprendre la succession, éventuellement dans cet ordre, des étapes suivantes:
    1. (a) fourniture et/ou fabrication 104 d'une tôle ;
    2. (b) soudage 106 d'aubes sur la tôle ;
    3. (c) cintrage 108 de la tôle, par exemple de sorte à former un demi-tube ;
    4. (d) soudage de brides axiales et annulaires sur la tôle cintrée ;
    5. (e) mise en oeuvre d'une couche d'abrabable dans la tôle cintrée ;
    6. (f) répétition des étapes (a) à (e) et fixation de brides axiales de sorte à former un carter annulaire complet lorsque le carter est réalisé par portions de carters, tel des demi-carters.
  • La partie fabrication de l'étape (a) fourniture ou fabrication 104 est optionnelle. Les aubes peuvent être directement soudées sur l'une des faces d'une tôle fournie. Suivant une variante de l'invention, la fourniture d'une tôle peut être la fourniture d'une tôle présentant des moignons d'aubes réalisés lors d'une étape d'usinage 105.
  • L'étape (d) soudage de brides 110 est optionnelle. L'étape (f) est optionnelle. Le carter peut être réalisé sans brides. Il peut être fixé par tout autre moyen adéquat à la turbomachine. Ou encore, la tôle peut être pliée, par exemple pour former des brides axiales. Elle peut également être mise en forme pour former des brides annulaires. La tôle cintrée peut être fermée par soudage.
  • La figure 4 illustre l'étape de fourniture ou fabrication 104 d'une tôle permettant de réaliser le carter.
  • L'étape de fourniture d'une tôle peut comprendre la fourniture d'une tôle plane, éventuellement rectangulaire. Elle peut présenter deux faces principales opposées ; et quatre côtés, ou tranches, opposés deux à deux. La tôle peut être issue de laminage. La tôle peut être en acier, en titane, en aluminium. Son épaisseur peut être inférieure à 5 mm, préférentiellement inférieure à 2 mm, éventuellement inférieure à 1 mm. Son épaisseur et son matériau sont configurés de sorte à réaliser un tube de diamètre inférieur à 1 m, préférentiellement inférieur à 70 cm en se déformant élastiquement.
  • L'étape fourniture ou fabrication peut comprendre, optionnellement, la fabrication de la tôle. Celle-ci peut être réalisée à partir d'une plaque brute 38 de métal soumise à des procédés de fabrication, tel des enlèvements de matière. La plaque brute 38 peut généralement être rectangulaire, et présenter deux faces opposées principales. Ces faces sont généralement planes et parallèles. Elles peuvent définir l'épaisseur E2 de la plaque brute 38, qui est supérieure à l'épaisseur générale de la tôle plane.
  • La figure 5 illustre l'option fabrication de l'étape fourniture ou fabrication d'une tôle à partir d'une plaque brute de métal.
  • L'étape de fabrication d'une tôle peut comprendre l'usinage de la plaque brute 38. Cet usinage peut comprendre une ou plusieurs opérations de fraisage. Une ou plusieurs fraises 40 parcourent l'étendue de la plaque pour enlever localement de la matière, selon plusieurs épaisseurs. L'étape d'usinage peut permettre de réaliser au moins une, préférentiellement plusieurs formes de moignons d'aubes 42 dans l'épaisseur E2 de la plaque brute, et de réaliser des portions de moindre épaisseur entre les moignons 42. Les moignons 42 peuvent former des bosses sur l'une des faces de la tôle.
  • Cette étape conduit à former une tôle à moignons 42 dont l'épaisseur générale E1 correspond à l'épaisseur des portions de moindre épaisseur. L'épaisseur cumulée de l'épaisseur E1 de la tôle additionnée à la hauteur des moignons 42 peut être inférieure à l'épaisseur E2 de la plaque brute 38. Les moignons d'aubes 42 peuvent être agencés en au moins une rangée. Les moignons 42 d'une même rangée peuvent être identiques. Les profils des moignons 42 peuvent présenter des cordes du bord ou point d'attaque au bord ou point de fuite. Les différentes rangées de moignons peuvent présenter des cordes différentes, dont les inclinaisons par rapport aux rangées varient progressivement.
  • La figure 6 illustre l'étape de fixation des aubes statoriques 26 sur la tôle 44 fournie ou fabriquée, la fixation pouvant s'effectuer par soudage.
  • Le soudage peut comprendre le soudage d'aubes 26 rapportées, entières ou par portions, les portions étant par exemple de pales d'aubes. Des moignons usinés peuvent comprendre des portions de pale d'aube, pour éloigner les soudures de la tôle 44. Les aubes 26 soudées, ou les pales soudées peuvent comprendre chacune un bord d'attaque et un bord de fuite, qui forment chacun un bord saillant. Elles peuvent comprendre chacune une surface intrados et une surface extrados, éventuellement majoritairement parallèles. Elles peuvent comprendre chacune un empilement de profils aérodynamiques, profilés pour dévier l'écoulement par rapport à l'axe de la turbomachine. Le profil de l'aube en contact de la tôle peut être intégralement soudé à la tôle.
  • Les aubes 26 peuvent être directement soudées sur la tôle, par exemple sur une surface plane formant une des faces de la tôle. Elles peuvent également être soudées sur des moignons 42 si la tôle 44 en est munie. Les moignons 42 forment des blocs de matière, qui peuvent être plus large selon le sens des rangées, que les aubes 26 qui y sont soudées. Les hauteurs des moignons 42 peuvent être supérieures à la hauteur générale ou épaisseur générale de la tôle 44, la hauteur des moignons étant mesurée selon l'épaisseur de la tôle 44. Les moignons 42 peuvent être des pieds d'aubes, et peuvent présenter des rayons de raccordement à la tôle, pour permettre une répartition d'efforts. Les moignons 42 peuvent être plus épais que les aubes 26, l'épaisseur pouvant être l'épaisseur maximale. L'épaisseur étant mesurée transversalement à la corde de l'aube. L'aspect massif des moignons permet de renforcer la tôle 44, et également d'apporter une inertie thermique lors du soudage.
  • Les aubes 26 peuvent former, en fonction de leur profil, des ailettes de refroidissement qui permettent d'orienter le sens de solidification des soudures. Les bords d'attaque et les bords de fuite peuvent être essentiellement affutés et fins, ce qui y accélère le refroidissement et la solidification des soudures. Celles-ci peuvent permettre de solidifier des bords d'attaque et de fuite des aubes vers le centre, éventuellement en générant une contrainte dans la soudure, par exemple en raison d'une vitesse de refroidissement différente de celle de la tôle 44.
  • Avantageusement, les aubes 26 peuvent être soudées par friction. Ce procédé est bénéfique car il ne nécessite que quelques secondes, éventuellement de deux à cinq secondes de friction pour souder une aube. Ce procédé est particulièrement adapté à une tôle car elle présente naturellement des surfaces de réception et d'appui parallèles. Ces surfaces restent avantageusement planes à ce stade du procédé. L'existence optionnelle des moignons limite la déformation de la tôle pendant et après la friction, en formant des coussins.
  • La figure 7 ébauche la tôle 44 plane avec au moins une rangée droite d'aubes 26, dans le cas présent la tôle 44 supporte et relie trois rangées 46 d'aubes 26 alignées.
  • La tôle supporte au moins une rangée 46 d'aubes 26, préférentiellement plusieurs rangées 46 d'aubes. Chaque rangée 46 est droite, et éventuellement parallèle à un bord de la tôle perpendiculaire. Préférentiellement, toutes les rangées 46 sont parallèles au même bord.
  • Chaque rangée 46 peut être définie par son type d'aubes 26. Les aubes 26 d'une même rangée peuvent chacune présenter un même angle d'attaque, et/ou une même hauteur, et/ou une même épaisseur moyenne. Les hauteurs des aubes 26 des différentes rangées peuvent varier, par exemple progressivement d'amont en aval. Eventuellement, dans un compresseur, la hauteur des aubes peut réduire vers l'aval, tandis qu'elles peuvent augmenter vers l'aval dans le cas d'une turbine.
  • La figure 8 illustre l'étape de cintrage de la tôle 44 initialement plane.
  • Le tôle 44 est cintrée. Deux de ses côtés opposés sont rapprochés l'un de l'autre en la courbant. Elle peut être partiellement enroulée autour d'un axe selon un rayon de courbure, sur une fraction de tour. Le rayon de courbure peut être constant suivant la circonférence, et peut varier axialement.
  • Le cintrage peut s'effectuer autour d'un axe de cintrage perpendiculaire à chaque rangée d'aubes. L'axe de cintrage peut être l'axe autour duquel l'aube est enroulée ou tourne. Cet axe de cintrage peut être parallèle à ou peut coïncider avec l'axe de rotation 14 de la turbomachine. Le cintrage peut permettre de réaliser un tube formant une boucle d'un tour, ou une portion angulaire de tube tel un demi-tube. Les aubes 26 qui y sont liées forment au moins une, éventuellement plusieurs demi-rangées annulaires d'aubes, réparties axialement le long de la tôle. Le procédé permet alors de réaliser des demi-carters, séparés par un plan axial. Par plan axial, on entend un plan passant par l'axe de cintrage et/ou l'axe de rotation 14 de la turbomachine. Le carter peut former un demi-tube avec des demi-rangées annulaires d'aubes espacées axialement.
  • La tôle 44 peut être cintrée de différentes manières. Elle peut être cintrée par enroulement, par poussée, par roulage ou par emboutissage. Elle est alors pliée, tordue, par exemple en la maintenant au niveau de tranches et en l'arquant en appuyant entre les tranches. La tôle 44 peut comprendre des portions de maintien découpées après cintrage.
  • A l'issue de cette étape, le carter ou la portion de carter peut alors comprendre une portion angulaire de rangée 46 annulaire d'aubes, préférentiellement plusieurs portions angulaires de rangées 46 annulaire d'aubes, une seule étant représentée. La tôle 44 peut présenter un profil axial courbe ou circulaire. Le profil axial est selon un plan perpendiculaire à l'axe de cintrage. La tôle 44 présente une surface interne concave, et une surface externe convexe où sont situées les aubes.
  • La figure 9 illustre un mode de réalisation du cintrage. Ce mode de réalisation peut être réalisé en complément d'un autre procédé de cintrage, ou permettre de cintrer intégralement la tôle 44.
  • La tôle 44 peut être cintrée par roulage. La tôle 44 peut être introduite entre des rouleaux (48 ; 50) pour lui donner sa courbure. Ce cintrage peut être progressif. Des rouleaux 48 parallèles peuvent prendre appui contre la tôle 44 entre les rangées d'aubes 26. D'autres rouleaux 50 parallèles aux premiers peuvent prendre appui sur la tôle 44 du côté opposé aux aubes 26. Ces autres rouleaux peuvent s'étendre sur toute la longueur axiale de la tôle, tandis que les premiers rouleaux 48 peuvent chacun s'étendre sur une portion axiale de la tôle.
  • Alternativement, les rouleaux 50 du côté opposé aux aubes 26 peuvent chacun s'étendre sur une portion axiale de la tôle, mesuré selon l'axe de rotation 14, et/ou une direction perpendiculaire aux rangées d'aubes. La longueur axiale de ces rouleaux 50 peut être configurée de sorte à ce qu'ils puissent s'intercaler 48 entre les rouleaux du côté des aubes. Les rouleaux (48 ; 50) des deux faces peuvent se chevaucher radialement et peuvent être décalés axialement, en fonction de la face où ils sont.
  • Ainsi, le cintrage peut être configuré de sorte à former des gorges annulaires internes 52, entres les rangées d'aubes ; et éventuellement des gorges annulaires externes 54, au niveau axialement des d'aubes 26. La tôle présente alors un profil de révolution en créneaux. L'épaisseur de la tôle 44 peut être inférieure à la profondeur radiale des gorges, et peut être inférieure à l'épaisseur de la paroi du carter.
  • Le roulage peut réduire la longueur axiale de la tôle 44, éventuellement les rangées d'aubes peuvent se rapprocher axialement. Le cintrage peut comprendre une étape de galetage, éventuellement pour améliorer l'état de surface de la tôle, et/ou comprimer la matière pour limiter l'apparition, la propagation de fissures.
  • La figure 10 illustre l'étape de soudage des brides sur la tôle.
  • Le carter peut comprendre des brides axiales 56 qui s'étendent radialement. Les brides axiales 56 peuvent s'étendre sur toute la longueur axiale de la tôle 44 et permettre un assemblage, éventuellement de deux demi-carters. Les brides annulaires 34 peuvent parcourir toute la courbe de la tôle associée. Les brides (34 ; 56) peuvent former des renforts rigidifiant le carter face à la flexion et/ou à l'ovalisation.
  • Les brides (34 ; 56) peuvent être fixées sur la tôle cintrée, par exemple par soudage. Les brides peuvent être soudées sur une face extérieure convexe ou sur une tranche de la tôle 44. Les brides peuvent être des bandes de matière, droites ou courbes. Elles peuvent comprendre des orifices de fixation (non représentés). Les brides (34 ; 56) d'une même portion de carter peuvent toutes être soudées les unes aux autres afin de former un cadre de renfort.
  • Le procédé peut ensuite comprendre une étape de dépôt ou application d'une couche de matériau abradable. Cette couche peut être une couche annulaire et peut être disposée entre les rangées annulaires d'aubes (une seule rangée est représentée), à l'intérieur. La couche peut comprendre un élastomère, un silicone. Elle est adaptée pour travailler par abrasion avec le rotor. Elle peut s'effriter au contact d'aubes rotoriques.

Claims (15)

  1. Procédé de fabrication d'un carter (28) de turbomachine (2) axiale, notamment de compresseur (4 ; 6), le carter (28) comprenant une tôle (44) et au moins une rangée (46) annulaire d'aubes statoriques (26), le procédé comprenant les étapes suivantes :
    (a) fourniture ou fabrication (104) d'une tôle (44) métallique plane,
    (b) soudage (106) d'aubes statoriques sur l'une des faces planes de la tôle (44), les aubes étant agencées de sorte à former au moins une rangée (46) d'aubes,
    caractérisé en ce qu'il comprend ensuite une étape de
    (c) cintrage (108) de la tôle autour d'un axe de cintrage perpendiculaire à la rangée (46) d'aubes (26), de sorte à former un carter (28) avec au moins une portion angulaire de tube grâce à la tôle, et avec au moins une portion angulaire de rangée annulaire d'aubes (26).
  2. Procédé selon la revendication 1, caractérisé en ce que lors de l'étape (b) soudage (106) des aubes, les aubes (26) sont soudées par friction, éventuellement selon un mouvement dans le plan de la tôle (44) plane.
  3. Procédé selon l'une des revendications 1 à 2, caractérisé en ce qu'à l'issue de l'étape (c) cintrage (108) de la tôle, la tôle (44) forme un tube avec au moins une rangée annulaire d'aubes, ou la tôle forme une fraction angulaire de tube tel un demi-tube avec au moins une demi-rangée annulaire d'aubes, éventuellement la tôle (44) cintrée présente une surface concave et une surface convexe, chaque rangée d'aubes (26) étant située sur la surface concave.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que lors de l'étape (b) soudage (106) des aubes, au moins une ou chaque aube (26) est soudée sur tout son profil aérodynamique à sa jonction avec la tôle (44).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que lors de l'étape (b) soudage (106) des aubes, les aubes (26) de chaque rangée (46) présentent des cordes parallèles, les cordes des aubes étant inclinées d'un angle inférieur à 30° préférentiellement inférieur à 20°, par rapport à l'axe de cintrage de la tôle de l'étape (c) cintrage (108) de la tôle.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'étape (a) fourniture ou fabrication (104) d'une tôle comprend une étape d'usinage (105) d'une plaque brute (38) de sorte à former une tôle (44) avec des variations d'épaisseurs.
  7. Procédé selon la revendication 6, caractérisé en ce que l'étape d'usinage (105) comprend la réalisation de moignons (42) d'aubes sur lesquels sont soudées les aubes (26), l'épaisseur générale E1 de la tôle (26) étant inférieure ou égale à la hauteur des moignons (42), l'épaisseur de chaque moignon étant supérieure à l'épaisseur de l'aube correspondante.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le carter (28) est formé de deux demi-carters séparés axialement suivant un plan de séparation axial.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'il comprend en outre une étape de (d) soudage (110) de brides annulaires s'étendant radialement et/ou de brides axiales s'étendant radialement, éventuellement les brides axiales sont réalisées par pliage.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que lors de l'étape (c) cintrage (108), le cintrage peut comprendre au moins une, préférentiellement plusieurs étapes de roulage (109) et/ou de galetage.
  11. Procédé selon la revendication 10, caractérisé en ce que le cintrage est effectué avec des rouleaux (48) prenant appui sur la tôle du côté des aubes de part et d'autre de chaque rangée (46) annulaire d'aubes, préférentiellement la tôle (44) comprend plusieurs rangées d'aubes et les rouleaux (48) du côté des aubes prennent appui entre chaque rangée d'aubes.
  12. Procédé selon l'une des revendications 10 à 11, caractérisé en ce que le cintrage est effectué à l'aide de rouleaux (48 ; 50) disposés de part et d'autre de la tôle (44), les rouleaux (48 ; 50) situés d'un côté de la tôle (44) étant à distance axialement par rapport aux rouleaux (48 ; 50) situés de l'autre côté de la tôle, éventuellement les rouleaux situés d'un côté de la tôle chevauchent radialement les rouleaux situés de l'autre côté de la tôle de sorte à former des gorges annulaires (52) intérieures entre les rangées annulaires d'aubes.
  13. Procédé selon la revendication 12, caractérisé en ce qu'au moins une gorge annulaire (52) présente une profondeur supérieure à l'épaisseur générale E1 de la tôle.
  14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'il comprend en outre une étape (e) application d'au moins une couche annulaire de matériau abradable (32), éventuellement dans une gorge annulaire interne (52).
  15. Turbomachine axiale (2) comprenant un carter (28) avec au moins une rangée (46) annulaire d'aubes statoriques (26), caractérisée en ce que le carter (28) est réalisé suivant le procédé de réalisation d'un carter (28) selon l'une des revendications 1 à 14.
EP14165796.5A 2014-04-24 2014-04-24 Carter cintré monobloc de compresseur de turbomachine axiale et procédé de fabrication associé Active EP2937516B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14165796.5A EP2937516B1 (fr) 2014-04-24 2014-04-24 Carter cintré monobloc de compresseur de turbomachine axiale et procédé de fabrication associé
CA2887529A CA2887529A1 (fr) 2014-04-24 2015-04-13 Logement courbe integral pour un compresseur de turbo axial
US14/693,593 US10196909B2 (en) 2014-04-24 2015-04-22 Method for producing an integral bent housing for an axial turbomachine compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14165796.5A EP2937516B1 (fr) 2014-04-24 2014-04-24 Carter cintré monobloc de compresseur de turbomachine axiale et procédé de fabrication associé

Publications (2)

Publication Number Publication Date
EP2937516A1 true EP2937516A1 (fr) 2015-10-28
EP2937516B1 EP2937516B1 (fr) 2020-04-01

Family

ID=50549026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14165796.5A Active EP2937516B1 (fr) 2014-04-24 2014-04-24 Carter cintré monobloc de compresseur de turbomachine axiale et procédé de fabrication associé

Country Status (3)

Country Link
US (1) US10196909B2 (fr)
EP (1) EP2937516B1 (fr)
CA (1) CA2887529A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2979808B1 (fr) * 2014-07-31 2019-08-28 Safran Aero Boosters SA Procédé de réalisation d'un stator de compresseur de turbomachine axiale
CN113059348A (zh) * 2021-04-07 2021-07-02 光变(广州)网络科技有限公司 一种太阳能真空管连接架的焊接设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108857288B (zh) * 2018-08-06 2020-07-24 上海电气集团上海电机厂有限公司 1e级核电应急柴油发电机定子铁心与机座配加工的方法
CN112453736B (zh) * 2020-10-27 2022-07-05 沈阳透平机械股份有限公司 一种mcl离心压缩机焊接机壳的焊接方法
CN113751907B (zh) * 2021-08-27 2022-10-14 沈阳透平机械股份有限公司 一种dmcl焊接机壳控制弯曲变形的焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321448B1 (en) 1999-07-23 2001-11-27 Kabushiki Kaisha Toshiba Method of manufacturing turbine nozzle
EP1227218A2 (fr) * 2001-01-29 2002-07-31 General Electric Company Anneau de guidage pour une turbine et sa méthode de réparation
EP1310633A1 (fr) * 2001-11-07 2003-05-14 Techspace Aero S.A. Etage redresseur d'un compresseur et turbocompresseur comprenant tel etage redresseur

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254674A (en) * 1935-05-31 1941-09-02 Packard Motor Car Co Metalworking
US2945290A (en) * 1957-09-16 1960-07-19 Gen Electric Stator vane half ring assemblies
US3072380A (en) * 1959-02-05 1963-01-08 Dresser Ind Stator blade carrier assembly mounting
US6219916B1 (en) * 1997-12-19 2001-04-24 United Technologies Corporation Method for linear friction welding and product made by such method
DE10005348B4 (de) * 2000-02-08 2004-05-06 Airbus Deutschland Gmbh Verfahren zur Fertigung von Nasenstrukturen für aerodynamische Flächen
DE10353451A1 (de) * 2003-11-15 2005-06-16 Alstom Technology Ltd Dampfturbine sowie Verfahren zum Herstellen einer solchen Dampfturbine
DE102008020473A1 (de) * 2008-04-23 2009-10-29 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von in der Dicke variierenden Blechplatinen
US20110299977A1 (en) * 2010-06-03 2011-12-08 General Electric Company Patch ring segment for a turbomachine compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6321448B1 (en) 1999-07-23 2001-11-27 Kabushiki Kaisha Toshiba Method of manufacturing turbine nozzle
EP1227218A2 (fr) * 2001-01-29 2002-07-31 General Electric Company Anneau de guidage pour une turbine et sa méthode de réparation
EP1310633A1 (fr) * 2001-11-07 2003-05-14 Techspace Aero S.A. Etage redresseur d'un compresseur et turbocompresseur comprenant tel etage redresseur

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2979808B1 (fr) * 2014-07-31 2019-08-28 Safran Aero Boosters SA Procédé de réalisation d'un stator de compresseur de turbomachine axiale
CN113059348A (zh) * 2021-04-07 2021-07-02 光变(广州)网络科技有限公司 一种太阳能真空管连接架的焊接设备
CN113059348B (zh) * 2021-04-07 2022-08-02 瀚能太阳能(山东)集团有限公司 一种太阳能真空管连接架的焊接设备

Also Published As

Publication number Publication date
CA2887529A1 (fr) 2015-10-24
EP2937516B1 (fr) 2020-04-01
US10196909B2 (en) 2019-02-05
US20150308278A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
EP2843193B1 (fr) Aube composite fabriquée par addition de matériel et procédé de fabrication correspondant
EP2937516B1 (fr) Carter cintré monobloc de compresseur de turbomachine axiale et procédé de fabrication associé
EP2801702B1 (fr) Virole interne de redresseur de turbomachine avec joint abradable
EP2735706B1 (fr) Redresseur à aubes de compresseur de turbomachine axiale et procédé de fabrication
EP3273003B1 (fr) Caisson à aubes de redresseur de compresseur de turbomachine axiale
EP2843192A1 (fr) Aube composite réalisée par fabrication additive et procédé de fabrication associé
EP2735707B1 (fr) Redresseur de turbomachine axiale avec virole interne segmentée et compresseur associé
EP2977549B1 (fr) Aubage de turbomachine axiale et turbomachine associée
EP2620635A1 (fr) Pale pour rotor d'hydrolienne, rotor d'hydrolienne comprenant une telle pâle, hydrolienne associée et procédé de fabrication d'une telle pâle
EP2811121B1 (fr) Carter composite de compresseur de turbomachine axiale avec bride de fixation métallique
EP2818635B1 (fr) Tambour de compresseur de turbomachine axiale avec fixation mixte d'aubes
EP3091201A1 (fr) Bec de séparation composite de compresseur de turbomachine axiale
EP2977548A1 (fr) Aube à ramifications de compresseur de turbomachine axiale
EP2979808B1 (fr) Procédé de réalisation d'un stator de compresseur de turbomachine axiale
EP3382242B1 (fr) Joint à brosse pour rotor de turbomachine
EP3521569B1 (fr) Carter structural pour turbomachine axiale
EP2930308B1 (fr) Carter à facettes de turbomachine axiale
FR2855440A1 (fr) Procede de fabrication d'une aube creuse pour turbomachine.
EP3803055B1 (fr) Virole a profilage évolutif pour compresseur de turbomachine
BE1030472B1 (fr) Separateur de flux dans une turbomachine triple-flux
BE1030042B1 (fr) Roue mobile a anneau intermediaire
EP3726006B1 (fr) Rotor hybride avec inserts
BE1030039B1 (fr) Separateur de flux dans une turbomachine
BE1022882B1 (fr) Tournage a choc d'extremites d'aubes de blum de compresseur de turbomachine axiale
BE1024125B1 (fr) Aube de compresseur de turbomachine axiale a treillis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160427

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AERO BOOSTERS SA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190410

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1251576

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014063052

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1251576

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014063052

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200424

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 11

Ref country code: BE

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 11