EP2906517A1 - Method for locally treating a part made from porous composite material - Google Patents

Method for locally treating a part made from porous composite material

Info

Publication number
EP2906517A1
EP2906517A1 EP13786692.7A EP13786692A EP2906517A1 EP 2906517 A1 EP2906517 A1 EP 2906517A1 EP 13786692 A EP13786692 A EP 13786692A EP 2906517 A1 EP2906517 A1 EP 2906517A1
Authority
EP
European Patent Office
Prior art keywords
composite material
blade
composition
infiltration composition
infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13786692.7A
Other languages
German (de)
French (fr)
Inventor
Eric Conete
Eric Philippe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
Herakles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herakles SA filed Critical Herakles SA
Publication of EP2906517A1 publication Critical patent/EP2906517A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4572Partial coating or impregnation of the surface of the substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5093Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with elements other than metals or carbon
    • C04B41/5096Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Thermostructural composite materials are known for their good mechanical properties and their ability to retain these properties at high temperatures. They include carbon / carbon composite materials (C / C) formed of a carbon fiber reinforcement densified by a carbon matrix and ceramic matrix composite materials (CMC) formed of a reinforcement of refractory fibers (carbon or ceramic ) densified by an at least partially ceramic matrix.
  • CMC are the C / SiC composites (carbon fiber reinforcement and silicon carbide matrix), the C / C-SiC composites (carbon fiber reinforcement and matrix comprising a carbon phase, generally closer to the fibers , and a silicon carbide phase) and SiC / SiC composites (reinforcing fibers and silicon carbide matrix).
  • An interphase layer may be interposed between reinforcing fibers and matrix to improve the mechanical strength of the material.
  • thermostructural composite material parts The usual processes for obtaining thermostructural composite material parts are the liquid process and the gaseous process.
  • the liquid process consists in producing a fibrous preform having substantially the shape of a part to be produced, and intended to constitute the reinforcement of the composite material, and to impregnate this preform with a liquid composition containing a precursor of the matrix material.
  • the precursor is usually in the form of a polymer, such as a resin, optionally diluted in a solvent.
  • the conversion of the precursor into the refractory phase is carried out by heat treatment after removal of the optional solvent and crosslinking of the polymer. Several successive impregnation cycles can be performed to achieve the desired degree of densification.
  • liquid carbon precursors may be relatively high coke level resins, such as phenolic resins
  • liquid ceramic precursors, especially of SiC may be polycarbosilane (PCS) or polytitanocarbosilane (PTCS) or polysilazane (PSZ) type resins.
  • the gaseous process consists of chemical vapor infiltration.
  • the fibrous preform corresponding to a part to be produced is placed in an oven in which a gaseous reaction phase is admitted.
  • the pressure and the temperature prevailing in the furnace and the composition of the gas phase are chosen so as to allow the diffusion of the gas phase within the porosity of the preform to form the matrix by deposition, in contact with the fibers, of a solid material resulting from a decomposition of a constituent of the gas phase or a reaction between several constituents.
  • gaseous carbon precursors may be cracked carbon-yielding hydrocarbons, such as methane, and a gaseous precursor of ceramics, in particular SiC, may be methyltrichlorosilane (MTS) giving SiC by decomposition of the MTS (optionally in the presence of hydrogen).
  • MTS methyltrichlorosilane
  • thermostructural composite materials find applications in various fields, to produce parts to be subjected to significant thermomechanical stresses, for example in the aeronautical, space or nuclear fields.
  • thermostructural composite material parts systematically have an open internal porosity, that is to say communicating with the outside of the room. Porosity comes from the inevitably incomplete nature of densification of fibrous preforms. It results in the presence of pores of greater or lesser dimensions that communicate with each other.
  • the parts generally have a very satisfactory mechanical strength.
  • the composite material parts may be subjected locally to very high mechanical stresses as is the case for example of the foot of an aircraft engine blade where concentrating the efforts of matting and compression suffered by dawn.
  • the presence of porosity in the part of the part thus solicited can locally weaken the mechanical strength of the part. There is, therefore, a need to locally strengthen a piece of thermostructural composite material.
  • thermostructural composite material parts which constitute fixing portions or friction with other parts, in particular metal, and which therefore suffer greater mechanical forces than the rest of the room .
  • the object of the invention is to propose a solution that makes it possible to locally reinforce a porous composite material part.
  • the infiltration composition comprising at least silicon
  • the method of the invention it is possible to treat only one or more portions of a part that require reinforcement. It is thus possible locally to strengthen a part at a given portion which is subject to significant mechanical stresses relative to the rest of the room.
  • the infiltration composition infiltrates by capillary action only in the targeted portion and not beyond it, since a quantity of infiltration composition determined according to the volume of the portion to be infiltrated is used. We thus limit the increase of the material of the piece compared to a total infiltration of the material of the type of "melt infiltration” or "slurry casting” type.
  • the infiltration composition comprises silicon or one of its alloys such as SiTi, SiMo or SiNB.
  • it further comprises a step of machining the portion of the treated part.
  • the part is made of thermostructural ceramic matrix composite material.
  • the piece of composite material may in particular correspond to an aeronautical engine blade having at least one blade root and a blade, the portion to be treated corresponding to the foot of said blade.
  • the local reinforcement of the blade root makes it possible to simplify its manufacturing range and to envisage the suppression of the use of an insert in this part of the blade.
  • Other parts of the blade can be reinforced with the method of the invention such as the inter-blade contact or friction portions, the thin portions such as the trailing edges, the contact portions with the stator parts of the motor such as darts, local portions such as anti-tilt walls, etc.
  • the piece of composite material treated with the method of the invention may also correspond to a structural part comprising at least one connecting portion intended to be mechanically linked to another part, the connecting portion corresponding to a portion to be treated. This improves the rigidity of the material of the part in the connection areas and its resistance to clamping forces.
  • the method of the invention can be further used to treat a composite material part comprising at least one bearing portion intended to be in contact with a metal sealing part, the bearing part corresponding to a portion to be treated. This results in a bearing portion more resistant to friction with the metal part, which ensures a maintenance of the seal over time.
  • the composite material of the part comprises a self-healing matrix, that is to say with boron or one of its compounds, the infiltration of the scope portion avoids interactions between the boron and the metal material (s) of the sealing piece.
  • the invention also relates to a method of repairing a composite material part comprising at least one damaged portion present on the surface of the workpiece, each damaged portion being treated in accordance with the treatment method of the invention.
  • This method makes it possible in particular to resume a surface state of a piece of composite material in a damaged portion, for example after an impact with another object.
  • FIGS. 1A, 1B and 2 are schematic views showing the local infiltration of a blade root according to a treatment method of the invention
  • FIGS. 3A and 3B are microscopic photographs showing a blade root respectively before and after local infiltration according to the treatment method of the invention.
  • FIGS. 4 and 5 are schematic views showing the local infiltration of a blade root with the formation of lateral surface coatings according to a treatment method of the invention
  • FIGS. 6 to 8 are diagrammatic views showing the repair of a damaged blade portion in accordance with a repair method of the invention.
  • FIG. 9 and 10 are schematic views showing the local infiltration of connecting portions of a structural part according to a treatment method of the invention.
  • the treatment method of the present invention generally applies to composite material parts.
  • piece of composite material is meant any part comprising a fiber reinforcement densified by a matrix.
  • the fibrous reinforcement is made from a fibrous structure made by weaving, assembling, knitting, etc. fibers such as ceramic fibers, for example silicon carbide (SiC), carbon fibers or even fibers made of a refractory oxide, for example alumina (Al 2 O 3 ).
  • the fibrous structure is then densified by a matrix which may be in particular a ceramic matrix forming a ceramic matrix composite material (CMC), or a carbon matrix forming in the case of a reinforcement carbon fiber carbon / carbon composite material (C / C).
  • the matrix of the composite material is obtained in a manner known per se according to the method using a liquid route, a gaseous route or a combination of its two routes.
  • the method of the invention consists in treating (for example strengthening) or locally repairing composite material parts by melting an infiltration composition.
  • a local treatment for example of reinforcement
  • the invention proposes to locally supplement the densification of the composite material of the part by locally filling the residual porosity in the zone in question with the infiltration composition.
  • a local repair proposes to fill the damaged area with the infiltration composition.
  • the infiltration composition is placed directly in contact with the pores opening on the surface of the part.
  • no coating likely to block all or part of the pores opening on the surface of the workpiece and to prevent the penetration of the infiltration composition into the porosity of the composite material of the workpiece is previously performed on the piece before the placement and melting of the infiltration composition.
  • no ceramic coating of the type described in WO 2010/069346 is formed prior to placement and melting of the infiltration composition.
  • such a ceramic coating closes most of the pores opening on the surface of the composite material of the part and prevents good penetration of the infiltration composition into the material of the part. In such a case, he it is therefore not possible to locally supplement the densification of the composite material of the part or to allow a good attachment in the piece of the filling material obtained from the infiltration composition in the case of the repair of a damaged area.
  • FIGS. 1A and 1B illustrate a blade 100 of a low pressure turbine (LP) impeller which comprises a blade 120 and a foot 130 formed by a portion of greater thickness, for example with a bulbous section.
  • the blade 100 is intended to be mounted on a metal turbine rotor (not shown) by engagement of the foot 130 in a correspondingly shaped housing provided at the periphery of the rotor.
  • the blade is here made of thermostructural composite material comprising a reinforcement of silicon carbide (SiC) fibers obtained by three-dimensional weaving or multilayer in one piece of silicon carbide son, the reinforcement being densified by a matrix also of SiC.
  • SiC silicon carbide
  • the foot 130 is the part of the dawn where concentrates the efforts of matting and compression undergone by the dawn. This part of the blade should, therefore, have an increased mechanical strength compared to the rest of the blade.
  • the blade root is reinforced by filling the porosity present at the foot.
  • a silicon-based infiltration composition is used, that is to say a composition comprising silicon or a silicon alloy such as, for example, SiTi, SiMo or SiNB.
  • the infiltration composition is in solid form.
  • the infiltration composition is molded in the form of a bead 10 disposed on the end portion 130a of the foot 130.
  • the amount of treatment composition here the volume of the bead 10, is determined as a function of volume of porosity to fill in the foot 130.
  • the assembly is heated to a temperature greater than or equal to the melting temperature of the infiltration composition which, by melting, spreads by capillarity along the fibers in the present porosity. in the foot 130.
  • the pores being communicating and emerging for some on the surface, the infiltration composition also spreads on the surface of the foot 130. The dawn thus infiltrated at the level of its foot is then cooled.
  • a blade 100 with a foot 130 whose porosity is filled by the infiltration composition is thus obtained, which makes it possible to strengthen the blade root, in particular with respect to the compressive stresses. and matting.
  • FIG. 3A is a photograph of a blade root section made of thermostructural composite material comprising a reinforcement of SiC fibers densified by a matrix also of SiC. There is the presence of many P pores present in the material.
  • Figure 3B shows a blade root similar to that of Figure 3A but after treatment thereof with an infiltration composition under the same conditions as those described above. It is observed that most of the pores have been filled by the infiltration composition which thus gives the blade root increased mechanical strength, in particular with respect to compression and matting efforts.
  • a protective coating may be further formed on all or part of the outer surface of the portion of the part infiltrated with the treatment composition.
  • a support material capable of impregnating the infiltration composition by capillarity.
  • Such a material may be in particular a powder of refractory particles such as SiC particles or a texture made with fibers preferably of the same nature as those constituting the reinforcement of the workpiece.
  • FIG. 4 illustrates a blade 200 comprising a blade 220 and a foot 230.
  • the blade is here made of a thermostructural composite material comprising a reinforcement obtained by three-dimensional or multi-layer weaving in one piece of SiC threads, the reinforcement being densified by a matrix also of SiC.
  • a predetermined amount of silicon-based infiltration composition molded in the form of a bead 210, is placed on the end portion 230a of the foot 230 while two layers 215 and 216 of a SiC powder are respectively deposited on the side faces of the foot 230.
  • the assembly is then raised to a temperature greater than or equal to the melting temperature of the infiltration composition which is then spreads both in the porosity of the material present at the level of the blade root and in the layers 215 and 216.
  • a blade 200 with a foot 230 whose porosity is filled by the infiltration composition and which comprises on its side faces a protective coating 217 consisting of SiC grains bonded together by the infiltration composition.
  • the protective coating 217 thus obtained can be machined after its formation in order to adjust the geometry of the blade root to the required tolerances.
  • the matrix contains one or more boron-based elements that can alter the metallic material of the disk or the impeller on which the blades are mounted.
  • the protective coating thus formed on the surface of the blade root makes it possible to avoid direct contact between the borated elements of the matrix and the disk or metal wheel.
  • the blade 300 has at its blade 320 a damaged area 321 resulting from a shock and resulting in a surface defect on the light that should be filled.
  • a pellet 323 of a silicon-based infiltration composition corresponding to the necessary amount of composition to fill the damaged area .
  • the assembly is then heated to a temperature to melt the tablet 323 and to spread the infiltration composition in the damaged area. Once the assembly has cooled, a blade 300 having a regular surface level is obtained thanks to the presence of a filling material 324 consisting of the infiltration composition 323.
  • FIG. 9 represents a piece of structure 400 of revolution which comprises connecting flanges 401 and 402 mechanical.
  • the structural part 400 is made from a carbon fiber reinforcement densified by a matrix also carbon.
  • a predetermined amount of silicon-based infiltration composition 410 is placed on each portion corresponding to the mechanical link flanges 401 and 402 in order to infiltrate the areas covered by the connecting flanges.
  • the infiltration composition is in the form of a powder mixed with fugitive binder to allow its application, for example by brush, on the areas to be infiltrated.
  • the assembly is then brought to a temperature sufficient to melt the infiltration composition which diffuses into the porosity of the composite material at the zones corresponding to the connecting flanges 401 and 402.
  • the structural part 400 comprises reinforced portions 403 and 404 at its mechanical connection flanges thus ensuring better strength of the part in its connection areas vis-à-vis including clamping forces and matting, the connection working mainly in shear.
  • the method of the invention can be further used to treat a composite material part comprising at least one bearing portion intended to be in contact with a metal sealing part, the bearing part corresponding to a portion to be treated.
  • the bearing portion (s) are coated with a silicon-based infiltration composition which is then melted to infiltrate the composite material of the workpiece at or the parts of scope to strengthen.
  • the infiltration composition used in the treatment method of the invention comprises silicon or a silicon alloy such as, for example, SiTi, SiMo or SiNB.
  • the infiltration composition can in particular, to correspond to a silicon-based brazing composition used for assembling composite material parts together. Silicon-based brazing compositions are described in particular in documents EP 806 402 or US Pat. No. 5,975,407.
  • the choice of the nature of the infiltration composition is carried out in particular according to the chemical compatibility and its coefficient of thermal expansion. with those of the material of the part to be infiltrated.

Abstract

A method for locally treating a portion (130) of a part (100) made from composite material comprising a fibrous reinforcement densified by a matrix, said material having internal porosity. The method comprises the following steps: - defining a quantity of infiltration composition (10) on the basis of the volume of the portion (130) of the part to be treated (100), the infiltration composition (10) comprising at least silicon, - placing the defined quantity of infiltration composition (10) in contact with the portion (130) of the part to be treated, - heat treating at a temperature greater than or equal to the melting temperature of the infiltration composition in such a way as to impregnate said portion with the treatment composition.

Description

Procédé de traitement local d'une pièce en matériau composite poreux  Process for local treatment of a porous composite material part
Arrière-plan de l'invention Background of the invention
Les matériaux composites thermostructuraux sont connus pour leurs bonnes propriétés mécaniques et leur capacité à conserver ces propriétés à température élevée. Ils comprennent les matériaux composites carbone/carbone (C/C) formés d'un renfort en fibres de carbone densifié par une matrice en carbone et les matériaux composites à matrice céramique (CMC) formés d'un renfort en fibres réfractaires (carbone ou céramique) densifiés par une matrice au moins partiellement céramique. Des exemples de CMC sont les composites C/SiC (renfort en fibres de carbone et matrice en carbure de silicium), les composites C/C- SiC (renfort en fibres de carbone et matrice comprenant une phase carbone, généralement au plus près des fibres, et une phase carbure de silicium) et les composites SiC/SiC (fibres de renfort et matrice en carbure de silicium). Une couche d'interphase peut être interposée entre fibres de renfort et matrice pour améliorer la tenue mécanique du matériau.  Thermostructural composite materials are known for their good mechanical properties and their ability to retain these properties at high temperatures. They include carbon / carbon composite materials (C / C) formed of a carbon fiber reinforcement densified by a carbon matrix and ceramic matrix composite materials (CMC) formed of a reinforcement of refractory fibers (carbon or ceramic ) densified by an at least partially ceramic matrix. Examples of CMC are the C / SiC composites (carbon fiber reinforcement and silicon carbide matrix), the C / C-SiC composites (carbon fiber reinforcement and matrix comprising a carbon phase, generally closer to the fibers , and a silicon carbide phase) and SiC / SiC composites (reinforcing fibers and silicon carbide matrix). An interphase layer may be interposed between reinforcing fibers and matrix to improve the mechanical strength of the material.
Les procédés usuels d'obtention de pièces en matériau composite thermostructural sont le procédé par voie liquide et le procédé par voie gazeuse.  The usual processes for obtaining thermostructural composite material parts are the liquid process and the gaseous process.
Le procédé par voie liquide consiste à réaliser une préforme fibreuse ayant sensiblement la forme d'une pièce à réaliser, et destinée à constituer le renfort du matériau composite, et à imprégner cette préforme par une composition liquide contenant un précurseur du matériau de la matrice. Le précurseur se présente habituellement sous forme d'un polymère, tel qu'une résine, éventuellement dilué dans un solvant. La transformation du précurseur en phase réfractaire est réalisée par traitement thermique, après élimination du solvant éventuel et réticulation du polymère. Plusieurs cycles d'imprégnation successifs peuvent être réalisés pour parvenir au degré de densification souhaité. A titre d'exemple, des précurseurs liquides de carbone peuvent être des résines à taux de coke relativement élevé, telles que des résines phénoliques, tandis que des précurseurs liquides de céramique, notamment de SiC, peuvent être des résines de type polycarbosilane (PCS) ou polytitanocarbosilane (PTCS) ou polysilazanes (PSZ). The liquid process consists in producing a fibrous preform having substantially the shape of a part to be produced, and intended to constitute the reinforcement of the composite material, and to impregnate this preform with a liquid composition containing a precursor of the matrix material. The precursor is usually in the form of a polymer, such as a resin, optionally diluted in a solvent. The conversion of the precursor into the refractory phase is carried out by heat treatment after removal of the optional solvent and crosslinking of the polymer. Several successive impregnation cycles can be performed to achieve the desired degree of densification. By way of example, liquid carbon precursors may be relatively high coke level resins, such as phenolic resins, while liquid ceramic precursors, especially of SiC, may be polycarbosilane (PCS) or polytitanocarbosilane (PTCS) or polysilazane (PSZ) type resins.
Le procédé par voie gazeuse consiste dans l'infiltration chimique en phase vapeur. La préforme fibreuse correspondant à une pièce à réaliser est placée dans un four dans lequel est admise une phase gazeuse réactionnelle. La pression et la température régnant dans le four et la composition de la phase gazeuse sont choisies de manière à permettre la diffusion de la phase gazeuse au sein de la porosité de la préforme pour y former la matrice par dépôt, au contact des fibres, d'un matériau solide résultant d'une décomposition d'un constituant de la phase gazeuse ou d'une réaction entre plusieurs constituants. A titre d'exemple, des précurseurs gazeux du carbone peuvent être des hydrocarbures donnant le carbone par craquage, tel que le méthane, et un précurseur gazeux de céramique, notamment de SiC, peut être du méthyltrichlorosilane (MTS) donnant du SiC par décomposition du MTS (éventuellement en présence d'hydrogène).  The gaseous process consists of chemical vapor infiltration. The fibrous preform corresponding to a part to be produced is placed in an oven in which a gaseous reaction phase is admitted. The pressure and the temperature prevailing in the furnace and the composition of the gas phase are chosen so as to allow the diffusion of the gas phase within the porosity of the preform to form the matrix by deposition, in contact with the fibers, of a solid material resulting from a decomposition of a constituent of the gas phase or a reaction between several constituents. By way of example, gaseous carbon precursors may be cracked carbon-yielding hydrocarbons, such as methane, and a gaseous precursor of ceramics, in particular SiC, may be methyltrichlorosilane (MTS) giving SiC by decomposition of the MTS (optionally in the presence of hydrogen).
Il existe également des procédés mixtes comprenant à la fois des voies liquides et des voies gazeuses.  There are also mixed processes comprising both liquid and gaseous routes.
En raison de leurs propriétés, ces matériaux composites thermostructuraux trouvent des applications dans divers domaines, pour réaliser des pièces devant être soumises à des contraintes thermomécaniques importantes, par exemple dans les domaines aéronautique, spatial ou nucléaire.  Because of their properties, these thermostructural composite materials find applications in various fields, to produce parts to be subjected to significant thermomechanical stresses, for example in the aeronautical, space or nuclear fields.
Toutefois, quel que soit le procédé de densification utilisé, les pièces en matériau composite thermostructural présentent systématiquement une porosité interne ouverte, c'est-à-dire communiquant avec l'extérieur de la pièce. La porosité vient du caractère inévitablement incomplet de la densification des préformes fibreuses. Elle se traduit par la présence de pores de plus ou moins grandes dimensions qui communiquent entre eux.  However, whatever the densification process used, the thermostructural composite material parts systematically have an open internal porosity, that is to say communicating with the outside of the room. Porosity comes from the inevitably incomplete nature of densification of fibrous preforms. It results in the presence of pores of greater or lesser dimensions that communicate with each other.
Malgré la présence de cette porosité, les pièces présentent en général une résistance mécanique très satisfaisante. Cependant, dans certains cas, les pièces en matériau composite peuvent être soumises localement à des sollicitations mécaniques très importantes comme c'est le cas par exemple du pied d'une aube de moteur aéronautique où se concentrent les efforts de matage et de compression subis par l'aube. La présence de porosité dans la partie de la pièce ainsi sollicitée peut affaiblir localement la résistance mécanique de la pièce. Il existe, par conséquent, un besoin pour renforcer localement une pièce en matériau composite thermostructural. Despite the presence of this porosity, the parts generally have a very satisfactory mechanical strength. However, in some cases, the composite material parts may be subjected locally to very high mechanical stresses as is the case for example of the foot of an aircraft engine blade where concentrating the efforts of matting and compression suffered by dawn. The presence of porosity in the part of the part thus solicited can locally weaken the mechanical strength of the part. There is, therefore, a need to locally strengthen a piece of thermostructural composite material.
II en est de même pour les parties des pièces en matériau composite thermostructural qui constituent des portions de fixation ou de frottement avec d'autres pièces, en particulier métalliques, et qui subissent de ce fait des efforts mécaniques plus importants que le reste de la pièce.  It is the same for the parts of thermostructural composite material parts which constitute fixing portions or friction with other parts, in particular metal, and which therefore suffer greater mechanical forces than the rest of the room .
Obiet et résumé de l'invention Obiet and summary of the invention
L'invention a pour but de proposer une solution permettant de renforcer localement une pièce en matériau composite poreux.  The object of the invention is to propose a solution that makes it possible to locally reinforce a porous composite material part.
Ce but est atteint avec un procédé de traitement local d'une portion d'une pièce en matériau composite comprenant un renfort fibreux densifié par une matrice, ledit matériau présentant une porosité interne, le procédé comprenant les étapes suivantes :  This object is achieved with a method of local treatment of a portion of a composite material part comprising a fiber reinforcement densified by a matrix, said material having an internal porosity, the method comprising the following steps:
- détermination d'une quantité de composition d'infiltration en fonction du volume de la portion de la pièce à traiter, la composition d'infiltration comprenant au moins du silicium,  determination of a quantity of infiltration composition as a function of the volume of the portion of the part to be treated, the infiltration composition comprising at least silicon,
- placement de la quantité déterminée de composition d'infiltration en contact avec les pores débouchant en surface de la portion de la pièce à traiter,  placing the determined quantity of infiltration composition in contact with the pores opening at the surface of the portion of the part to be treated,
- traitement thermique à une température supérieure ou égale à la température de fusion de la composition d'infiltration de manière à imprégner ladite portion avec la composition de traitement et à combler la porosité présente au niveau de ladite portion.  heat treatment at a temperature greater than or equal to the melting temperature of the infiltration composition so as to impregnate said portion with the treatment composition and to fill the porosity present at said portion.
Ainsi, grâce au procédé de l'invention, il est possible de traiter seulement une ou plusieurs portions d'une pièce qui nécessitent un renforcement. On peut ainsi renforcer localement une pièce au niveau d'une portion déterminée qui est soumise à des sollicitations mécaniques importantes par rapport au reste de la pièce. La composition d'infiltration s'infiltre par capillarité uniquement dans la portion visée et pas au-delà puisqu'on utilise une quantité de composition d'infiltration déterminée en fonction du volume de la portion à infiltrer. On limite ainsi l'alourdissement du matériau de la pièce par rapport à une infiltration totale du matériau de la pièce de type « melt infiltration » ou « slurry casting ». Thus, thanks to the method of the invention, it is possible to treat only one or more portions of a part that require reinforcement. It is thus possible locally to strengthen a part at a given portion which is subject to significant mechanical stresses relative to the rest of the room. The infiltration composition infiltrates by capillary action only in the targeted portion and not beyond it, since a quantity of infiltration composition determined according to the volume of the portion to be infiltrated is used. We thus limit the increase of the material of the piece compared to a total infiltration of the material of the type of "melt infiltration" or "slurry casting" type.
Selon un premier aspect du procédé de l'invention, la composition d'infiltration comprend du silicium ou un de ses alliages comme notamment du SiTi, SiMo ou SiNB.  According to a first aspect of the process of the invention, the infiltration composition comprises silicon or one of its alloys such as SiTi, SiMo or SiNB.
Selon un deuxième aspect de l'invention, celui-ci comprend en outre une étape d'usinage de la portion de la pièce traitée.  According to a second aspect of the invention, it further comprises a step of machining the portion of the treated part.
Selon un troisième aspect de l'invention, la pièce est en matériau composite thermostructural à matrice céramique.  According to a third aspect of the invention, the part is made of thermostructural ceramic matrix composite material.
La pièce en matériau composite peut notamment correspondre à une aube de moteur aéronautique comportant au moins un pied d'aube et une pale, la portion à traiter correspondant au pied de ladite aube. Dans ce cas, le renforcement local du pied d'aube permet de simplifier sa gamme de fabrication et d'envisager la suppression de l'utilisation d'un insert dans cette partie de l'aube. D'autres parties de l'aube peuvent être renforcées avec le procédé de l'invention comme les portions de contact ou frottement inter aubes, les portions fines telles que les bords de fuite, les portions de contact avec les parties stator du moteur telles que les léchettes, des portions locales telles que des murets anti-basculement, etc.  The piece of composite material may in particular correspond to an aeronautical engine blade having at least one blade root and a blade, the portion to be treated corresponding to the foot of said blade. In this case, the local reinforcement of the blade root makes it possible to simplify its manufacturing range and to envisage the suppression of the use of an insert in this part of the blade. Other parts of the blade can be reinforced with the method of the invention such as the inter-blade contact or friction portions, the thin portions such as the trailing edges, the contact portions with the stator parts of the motor such as darts, local portions such as anti-tilt walls, etc.
La pièce en matériau composite traitée avec le procédé de l'invention peut également correspondre à une pièce de structure comprenant au moins une partie de liaison destinée à être liée mécaniquement à une autre pièce, la partie de liaison correspondant à une portion à traiter. On améliore ainsi la rigidité du matériau de la pièce dans les zones de liaisons ainsi que sa tenue vis-à-vis des efforts de serrage.  The piece of composite material treated with the method of the invention may also correspond to a structural part comprising at least one connecting portion intended to be mechanically linked to another part, the connecting portion corresponding to a portion to be treated. This improves the rigidity of the material of the part in the connection areas and its resistance to clamping forces.
Le procédé de l'invention peut être encore utilisé pour traiter une pièce en matériau composite comprenant au moins une partie de portée destinée à être en contact avec une pièce métallique d'étanchéité, la partie de portée correspondant à une portion à traiter. On obtient ainsi une partie de portée plus résistante aux frottements avec la pièce métallique, ce qui permet de garantir un maintien de l'étanchéité dans le temps. En outre, lorsque le matériau composite de la pièce comprend une matrice auto-cicatrisante, c'est-à-dire avec du bore ou un de ses composés, l'infiltration de la partie de portée permet d'éviter des interactions entre le bore et le ou les matériaux métalliques de la pièce d'étanchéité. The method of the invention can be further used to treat a composite material part comprising at least one bearing portion intended to be in contact with a metal sealing part, the bearing part corresponding to a portion to be treated. This results in a bearing portion more resistant to friction with the metal part, which ensures a maintenance of the seal over time. In addition, when the composite material of the part comprises a self-healing matrix, that is to say with boron or one of its compounds, the infiltration of the scope portion avoids interactions between the boron and the metal material (s) of the sealing piece.
L'invention a également pour objet un procédé de réparation d'une pièce en matériau composite comportant au moins une portion endommagée présente à la surface de la pièce, chaque portion endommagée étant traitée conformément au procédé de traitement de l'invention. Ce procédé permet en particulier de reprendre un état de surface d'une pièce en matériau composite dans une portion endommagée par exemple après un choc avec un autre objet.  The invention also relates to a method of repairing a composite material part comprising at least one damaged portion present on the surface of the workpiece, each damaged portion being treated in accordance with the treatment method of the invention. This method makes it possible in particular to resume a surface state of a piece of composite material in a damaged portion, for example after an impact with another object.
Brève description des dessins Brief description of the drawings
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés, sur lesquels:  Other characteristics and advantages of the invention will emerge from the following description of particular embodiments of the invention, given by way of non-limiting examples, with reference to the appended drawings, in which:
- les figures 1A, 1B et 2 sont des vues schématiques montrant l'infiltration locale d'un pied d'aube conformément à un procédé de traitement de l'invention;  - Figures 1A, 1B and 2 are schematic views showing the local infiltration of a blade root according to a treatment method of the invention;
- les figures 3A et 3B sont des photographies microscopiques montrant un pied d'aube respectivement avant et après infiltration locale selon le procédé de traitement de l'invention;  FIGS. 3A and 3B are microscopic photographs showing a blade root respectively before and after local infiltration according to the treatment method of the invention;
- les figures 4 et 5 sont des vues schématiques montrant l'infiltration locale d'un pied d'aube avec formation de revêtements de surface latéraux conformément à un procédé de traitement de l'invention;  FIGS. 4 and 5 are schematic views showing the local infiltration of a blade root with the formation of lateral surface coatings according to a treatment method of the invention;
- les figures 6 à 8 sont des vues schématique montrant la réparation d'une portion endommagée d'aube conformément à un procédé de réparation de l'invention;  FIGS. 6 to 8 are diagrammatic views showing the repair of a damaged blade portion in accordance with a repair method of the invention;
- les figures 9 et 10 sont des vues schématiques montrant l'infiltration locale de portions de liaison d'une pièce de structure conformément à un procédé de traitement de l'invention.  - Figures 9 and 10 are schematic views showing the local infiltration of connecting portions of a structural part according to a treatment method of the invention.
Description détaillée de modes de réalisation Detailed description of embodiments
Le procédé de traitement de la présente invention s'applique d'une manière générale à des pièces en matériau composite. Par pièce en matériau composite, on entend toute pièce comprenant un renfort fibreux densifié par une matrice. The treatment method of the present invention generally applies to composite material parts. By piece of composite material is meant any part comprising a fiber reinforcement densified by a matrix.
Le renfort fibreux est réalisé à partir d'une structure fibreuse réalisée par tissage, assemblage, tricotage, etc. de fibres tels que des fibres en céramique, par exemple en carbure de silicium (SiC), des fibres en carbone ou même encore des fibres en un oxyde réfractaire, par exemple en alumine (Al203). Après éventuellement une mise en forme et une consolidation, la structure fibreuse est alors densifiée par une matrice qui peut être notamment une matrice céramique formant un matériau composite à matrice céramique (CMC), ou encore une matrice carbone formant dans le cas d'un renfort en fibres de carbone un matériau composite carbone/carbone (C/C). La matrice du matériau composite est obtenue de façon connue en soi suivant le procédé par voie liquide, voie gazeuse ou une combinaison de ses deux voies. The fibrous reinforcement is made from a fibrous structure made by weaving, assembling, knitting, etc. fibers such as ceramic fibers, for example silicon carbide (SiC), carbon fibers or even fibers made of a refractory oxide, for example alumina (Al 2 O 3 ). After possibly forming and consolidation, the fibrous structure is then densified by a matrix which may be in particular a ceramic matrix forming a ceramic matrix composite material (CMC), or a carbon matrix forming in the case of a reinforcement carbon fiber carbon / carbon composite material (C / C). The matrix of the composite material is obtained in a manner known per se according to the method using a liquid route, a gaseous route or a combination of its two routes.
Le procédé de l'invention consiste à traiter (par exemple renforcer) ou à réparer localement des pièces en matériau composite par fusion d'une composition d'infiltration. Dans le cas d'un traitement local, par exemple de renforcement, l'invention propose de compléter localement la densification du matériau composite de la pièce en comblant localement la porosité résiduelle dans la zone considérée avec la composition d'infiltration. Dans le cas d'une réparation locale, l'invention propose de combler la zone endommagée avec la composition d'infiltration. A cet effet, qu'il s'agisse d'un traitement local ou d'une réparation, la composition d'infiltration est placée directement en contact avec les pores débouchant en surface de la pièce.  The method of the invention consists in treating (for example strengthening) or locally repairing composite material parts by melting an infiltration composition. In the case of a local treatment, for example of reinforcement, the invention proposes to locally supplement the densification of the composite material of the part by locally filling the residual porosity in the zone in question with the infiltration composition. In the case of a local repair, the invention proposes to fill the damaged area with the infiltration composition. For this purpose, whether it is a local treatment or a repair, the infiltration composition is placed directly in contact with the pores opening on the surface of the part.
Par conséquent, conformément à l'invention, aucun revêtement de nature à boucher tout ou partie des pores débouchant en surface de la pièce et à empêcher la pénétration de la composition d'infiltration dans la porosité du matériau composite de la pièce n'est préalablement réalisé sur la pièce avant le placement et la fusion de la composition d'infiltration. Par exemple, dans la présente invention, aucun revêtement céramique du type de celui décrit dans le document WO 2010/069346 n'est formé avant le placement et la fusion de la composition d'infiltration. En effet, un tel revêtement céramique bouche la plupart des pores débouchant en surface du matériau composite de la pièce et empêche une bonne pénétration de la composition d'infiltration dans le matériau de la pièce. Dans un tel cas, il n'est, par conséquent, pas possible de compléter localement la densification du matériau composite de la pièce ou de permettre un bon accrochage dans la pièce du matériau de comblement obtenu à partir de la composition d'infiltration dans le cas de la réparation d'une zone endommagée. Therefore, according to the invention, no coating likely to block all or part of the pores opening on the surface of the workpiece and to prevent the penetration of the infiltration composition into the porosity of the composite material of the workpiece is previously performed on the piece before the placement and melting of the infiltration composition. For example, in the present invention, no ceramic coating of the type described in WO 2010/069346 is formed prior to placement and melting of the infiltration composition. Indeed, such a ceramic coating closes most of the pores opening on the surface of the composite material of the part and prevents good penetration of the infiltration composition into the material of the part. In such a case, he it is therefore not possible to locally supplement the densification of the composite material of the part or to allow a good attachment in the piece of the filling material obtained from the infiltration composition in the case of the repair of a damaged area.
En référence aux figures 1A, 1B et 2, on décrit un mode de mise en œuvre d'un procédé conforme à l'invention, pour le traitement d'une aube de moteur aéronautique. Les figures 1A et 1B illustrent une aube 100 de roue mobile de turbine basse pression (BP) qui comprend une pale 120 et un pied 130 formé par une partie de plus forte épaisseur, par exemple à section en forme de bulbe. L'aube 100 est destinée à être montée sur un rotor de turbine métallique (non illustré) par engagement du pied 130 dans un logement de forme correspondante aménagé à la périphérie du rotor. L'aube est ici réalisée en matériau composite thermostructural comprenant un renfort en fibres de carbure de silicium (SiC) obtenu par tissage tridimensionnel ou multicouche en une seule pièce de fils de carbure de silicium, le renfort étant densifié par une matrice également de SiC.  Referring to Figures 1A, 1B and 2, there is described a mode of implementation of a method according to the invention, for the treatment of an aircraft engine blade. FIGS. 1A and 1B illustrate a blade 100 of a low pressure turbine (LP) impeller which comprises a blade 120 and a foot 130 formed by a portion of greater thickness, for example with a bulbous section. The blade 100 is intended to be mounted on a metal turbine rotor (not shown) by engagement of the foot 130 in a correspondingly shaped housing provided at the periphery of the rotor. The blade is here made of thermostructural composite material comprising a reinforcement of silicon carbide (SiC) fibers obtained by three-dimensional weaving or multilayer in one piece of silicon carbide son, the reinforcement being densified by a matrix also of SiC.
Le pied 130 est la partie de l'aube où se concentrent les efforts de matage et de compression subis par l'aube. Cette partie de l'aube doit, par conséquent, présenter une résistance mécanique accrue par rapport au reste de l'aube. Conformément à l'invention, le pied d'aube est renforcé par comblement de la porosité présente au niveau du pied. A cet effet, on utilise une composition d'infiltration à base de silicium, c'est-à-dire une composition comprenant du silicium ou un alliage de silicium tel que, par exemple, du SiTï, SiMo ou SiNB.  The foot 130 is the part of the dawn where concentrates the efforts of matting and compression undergone by the dawn. This part of the blade should, therefore, have an increased mechanical strength compared to the rest of the blade. According to the invention, the blade root is reinforced by filling the porosity present at the foot. For this purpose, a silicon-based infiltration composition is used, that is to say a composition comprising silicon or a silicon alloy such as, for example, SiTi, SiMo or SiNB.
La composition d'infiltration se présente sous forme solide. Dans l'exemple ici décrit, la composition d'infiltration est moulée sous forme d'un cordon 10 disposé sur la partie terminal 130a du pied 130. La quantité de composition de traitement, ici le volume du cordon 10, est déterminé en fonction du volume de porosité à combler dans le pied 130.  The infiltration composition is in solid form. In the example described here, the infiltration composition is molded in the form of a bead 10 disposed on the end portion 130a of the foot 130. The amount of treatment composition, here the volume of the bead 10, is determined as a function of volume of porosity to fill in the foot 130.
Une fois le cordon 10 positionné sur le pied d'aube, l'ensemble est chauffé à une température supérieure ou égale à la température de fusion de la composition d'infiltration qui en fondant se répand par capillarité le long des fibres dans la porosité présente dans le pied 130. Les pores étant communicants et débouchants pour certains en surface, la composition d'infiltration se répand également à la surface du pied 130. L'aube ainsi infiltrée au niveau de son pied est ensuite refroidie. Once the cord 10 is positioned on the blade root, the assembly is heated to a temperature greater than or equal to the melting temperature of the infiltration composition which, by melting, spreads by capillarity along the fibers in the present porosity. in the foot 130. The pores being communicating and emerging for some on the surface, the infiltration composition also spreads on the surface of the foot 130. The dawn thus infiltrated at the level of its foot is then cooled.
On obtient alors comme représentée sur la figure 2, une aube 100 avec un pied 130 dont la porosité est comblée par la composition d'infiltration, ce qui permet de renforcer le pied d'aube en particulier vis-à- vis des sollicitations de compression et de matage.  As is shown in FIG. 2, a blade 100 with a foot 130 whose porosity is filled by the infiltration composition is thus obtained, which makes it possible to strengthen the blade root, in particular with respect to the compressive stresses. and matting.
La figure 3A est une photographie d'une coupe de pied d'aube réalisé en matériau composite thermostructural comprenant un renfort en fibres de SiC densifié par une matrice également de SiC. On constate la présence de nombreux pores P présents dans le matériau. La figure 3B montre un pied d'aube similaire à celui de la figure 3A mais après traitement de celui-ci avec une composition d'infiltration dans les mêmes conditions que celles décrites ci-dessus. On observe que la plupart des pores a été comblée par la composition d'infiltration qui confère ainsi au pied d'aube une tenue mécanique accrue, en particulier vis-à-vis d'efforts de compression et de matage.  FIG. 3A is a photograph of a blade root section made of thermostructural composite material comprising a reinforcement of SiC fibers densified by a matrix also of SiC. There is the presence of many P pores present in the material. Figure 3B shows a blade root similar to that of Figure 3A but after treatment thereof with an infiltration composition under the same conditions as those described above. It is observed that most of the pores have been filled by the infiltration composition which thus gives the blade root increased mechanical strength, in particular with respect to compression and matting efforts.
Selon une variante de mise en œuvre du procédé de traitement de l'invention, un revêtement de protection peut être en outre formé sur tout ou partie de la surface externe de la portion de la pièce infiltrée avec la composition de traitement. A cet effet, on dispose sur les parties de la surface externe de la pièce où l'on souhaite former un revêtement de protection un matériau de support apte à s'imprégner de la composition d'infiltration par capillarité. Un tel matériau peut être notamment une poudre de particules réfractaires telles que des particules de SiC ou une texture réalisée avec des fibres de préférence de même nature que celles constitutives du renfort de la pièce à traiter.  According to an alternative embodiment of the treatment method of the invention, a protective coating may be further formed on all or part of the outer surface of the portion of the part infiltrated with the treatment composition. For this purpose, there is provided on the parts of the outer surface of the part where it is desired to form a protective coating a support material capable of impregnating the infiltration composition by capillarity. Such a material may be in particular a powder of refractory particles such as SiC particles or a texture made with fibers preferably of the same nature as those constituting the reinforcement of the workpiece.
La figure 4 illustre une aube 200 comprenant une pale 220 et un pied 230. L'aube est ici réalisée en matériau composite thermostructural comprenant un renfort obtenu par tissage tridimensionnel ou multicouche en une seule pièce de fils de SiC, le renfort étant densifié par une matrice également de SiC. Une quantité déterminée de composition d'infiltration à base de silicium, moulée sous la forme d'un cordon 210, est placée sur la partie terminale 230a du pied 230 tandis que deux couches 215 et 216 d'une poudre de SiC sont respectivement déposées sur les faces latérales du pied 230. L'ensemble est alors porté à une température supérieure ou égale à la température de fusion de la composition d'infiltration qui se répand alors à la fois dans la porosité du matériau présente au niveau du pied d'aube et dans les couches 215 et 216. Une fois l'ensemble refroidi, on obtient, comme illustrée sur la figure 5, une aube 200 avec un pied 230 dont la porosité est comblée par la composition d'infiltration et qui comporte sur ses faces latérales un revêtement de protection 217 constitué de grains de SiC liés entre eux par la composition d'infiltration. Le revêtement de protection 217 ainsi obtenu peut être usiné après sa formation afin d'ajuster la géométrie du pied d'aube aux tolérances exigées. En outre, dans le cas où l'aube 200 a été densifiée avec une matrice auto-cicatrisante, la matrice contient un ou plusieurs éléments à base de bore qui peuvent altérer le matériau métallique du disque ou de la roue mobile sur lequel les aubes sont montées. Le revêtement de protection ainsi formé à la surface du pied d'aube permet d'éviter un contact direct entre les éléments borés de la matrice et le disque ou roue métallique. FIG. 4 illustrates a blade 200 comprising a blade 220 and a foot 230. The blade is here made of a thermostructural composite material comprising a reinforcement obtained by three-dimensional or multi-layer weaving in one piece of SiC threads, the reinforcement being densified by a matrix also of SiC. A predetermined amount of silicon-based infiltration composition, molded in the form of a bead 210, is placed on the end portion 230a of the foot 230 while two layers 215 and 216 of a SiC powder are respectively deposited on the side faces of the foot 230. The assembly is then raised to a temperature greater than or equal to the melting temperature of the infiltration composition which is then spreads both in the porosity of the material present at the level of the blade root and in the layers 215 and 216. Once the assembly has cooled, there is obtained, as illustrated in FIG. 5, a blade 200 with a foot 230 whose porosity is filled by the infiltration composition and which comprises on its side faces a protective coating 217 consisting of SiC grains bonded together by the infiltration composition. The protective coating 217 thus obtained can be machined after its formation in order to adjust the geometry of the blade root to the required tolerances. In addition, in the case where the blade 200 has been densified with a self-healing matrix, the matrix contains one or more boron-based elements that can alter the metallic material of the disk or the impeller on which the blades are mounted. The protective coating thus formed on the surface of the blade root makes it possible to avoid direct contact between the borated elements of the matrix and the disk or metal wheel.
En référence aux figures 6 à 8, on décrit un mode de mise en uvre d'un procédé conforme à l'invention, pour la réparation d'une aube 300 de moteur aéronautique réalisée en matériau composite thermostructural comprenant un renfort obtenu par tissage tridimensionnel ou multicouche en une seule pièce de fils de SiC et densifié par une matrice également de SiC. L'aube 300 présente au niveau de sa pale 320 une zone endommagée 321 résultant d'un choc et entraînant un défaut de surface sur la pâle qu'il convient de combler. A cet effet et conformément à une mise en œuvre du procédé de l'invention, on dispose sur la zone endommagée 321 une pastille 323 d'une composition d'infiltration à base de silicium correspondant à la quantité nécessaire de composition pour combler la zone endommagée. L'ensemble est ensuite chauffé à une température permettant de faire fondre la pastille 323 et de répandre la composition d'infiltration dans la zone endommagée. Une fois l'ensemble refroidi, on obtient une aube 300 présentant un niveau de surface régulier grâce à la présence d'un matériau de comblement 324 constitué de la composition d'infiltration 323.  Referring to FIGS. 6 to 8, an embodiment of a method according to the invention for the repair of a blade 300 of an aeronautical engine made of a thermostructural composite material comprising a reinforcement obtained by three-dimensional weaving or multilayer in one piece of SiC son and densified by a matrix also of SiC. The blade 300 has at its blade 320 a damaged area 321 resulting from a shock and resulting in a surface defect on the light that should be filled. For this purpose and in accordance with an implementation of the method of the invention, is disposed on the damaged area 321 a pellet 323 of a silicon-based infiltration composition corresponding to the necessary amount of composition to fill the damaged area . The assembly is then heated to a temperature to melt the tablet 323 and to spread the infiltration composition in the damaged area. Once the assembly has cooled, a blade 300 having a regular surface level is obtained thanks to the presence of a filling material 324 consisting of the infiltration composition 323.
On décrit maintenant un mode de mise en œuvre du procédé de l'invention pour le renforcement local de portions de liaisons mécaniques d'une pièce en matériau composite. La figure 9 représente une pièce de structure 400 de révolution qui comporte des brides de liaisons mécaniques 401 et 402. Dans l'exemple décrit ici, la pièce de structure 400 est réalisée à partir d'un renfort en fibres de carbone densifié par une matrice également carbone. An embodiment of the method of the invention for the local reinforcement of mechanical connection portions of a composite material part is now described. FIG. 9 represents a piece of structure 400 of revolution which comprises connecting flanges 401 and 402 mechanical. In the example described here, the structural part 400 is made from a carbon fiber reinforcement densified by a matrix also carbon.
Conformément au procédé de l'invention, on place sur chaque portion correspondant aux brides de liaisons mécaniques 401 et 402 une quantité déterminée de composition d'infiltration à base de silicium 410 afin d'infiltrer les zones couvertes par les brides de liaison. Dans l'exemple décrit ici, la composition d'infiltration se présente sous forme d'une poudre mélangée avec liant fugitif afin de permettre son application, par exemple au pinceau, sur les zones à infiltrer. L'ensemble est alors porté à une température suffisante pour faire fondre la composition d'infiltration qui se diffuse dans la porosité du matériau composite au niveau des zones correspondant aux brides de liaison 401 et 402. Après refroidissement et comme représentée sur la figure 10, la pièce de structure 400 comporte des portions renforcées 403 et 404 au niveau de ses brides de liaison mécaniques assurant ainsi une meilleure résistance de la pièce dans ses zones de liaison vis-à-vis notamment des efforts de serrage et de matage, la liaison travaillant principalement en cisaillement.  In accordance with the method of the invention, a predetermined amount of silicon-based infiltration composition 410 is placed on each portion corresponding to the mechanical link flanges 401 and 402 in order to infiltrate the areas covered by the connecting flanges. In the example described here, the infiltration composition is in the form of a powder mixed with fugitive binder to allow its application, for example by brush, on the areas to be infiltrated. The assembly is then brought to a temperature sufficient to melt the infiltration composition which diffuses into the porosity of the composite material at the zones corresponding to the connecting flanges 401 and 402. After cooling and as shown in FIG. the structural part 400 comprises reinforced portions 403 and 404 at its mechanical connection flanges thus ensuring better strength of the part in its connection areas vis-à-vis including clamping forces and matting, the connection working mainly in shear.
Le procédé de l'invention peut être encore utilisé pour traiter une pièce en matériau composite comprenant au moins une partie de portée destinée à être en contact avec une pièce métallique d'étanchéité, la partie de portée correspondant à une portion à traiter. Comme décrit ci- avant pour le renforcement local de portions de liaisons mécaniques, la ou les parties de portée sont recouvertes avec une composition d'infiltration à base de silicium qui est ensuite fondue pour infiltrer le matériau composite de la pièce au niveau de la ou les parties de portée à renforcer.  The method of the invention can be further used to treat a composite material part comprising at least one bearing portion intended to be in contact with a metal sealing part, the bearing part corresponding to a portion to be treated. As described above for the local reinforcement of mechanical bond portions, the bearing portion (s) are coated with a silicon-based infiltration composition which is then melted to infiltrate the composite material of the workpiece at or the parts of scope to strengthen.
On obtient ainsi une pièce comportant une ou plusieurs parties de portée plus résistantes aux frottements avec une pièce métallique, ce qui permet de garantir un maintien de l'étanchéité dans le temps. En outre, lorsque le matériau composite de la pièce comprend une matrice auto-cicatrisante, c'est-à-dire avec du bore ou un de ses composés, l'infiltration des parties de portée permet d'éviter des interactions entre le bore et le ou les matériaux métallique de la pièce d'étanchéité.  This gives a piece with one or more bearing parts more resistant to friction with a metal part, which ensures a maintenance of the seal over time. In addition, when the composite material of the part comprises a self-healing matrix, that is to say with boron or one of its compounds, the infiltration of the bearing parts makes it possible to avoid interactions between the boron and the metal material or materials of the sealing piece.
La composition d'infiltration utilisée dans le procédé de traitement de l'invention comprend du silicium ou un alliage de silicium tel que, par exemple, du SiTi, SiMo ou SiNB. La composition d'infiltration peut notamment correspondre à une composition de brasure à base de silicium utilisée pour assembler entre elles des pièces en matériau composite. Des compositions de brasure à base de silicium sont notamment décrites dans les documents EP 806 402 ou US 5 975 407. Le choix de la nature de la composition d'infiltration est effectué notamment en fonction de la compatibilité chimique et de son coefficient de dilatation thermique avec ceux du matériau de la pièce à infiltrer. The infiltration composition used in the treatment method of the invention comprises silicon or a silicon alloy such as, for example, SiTi, SiMo or SiNB. The infiltration composition can in particular, to correspond to a silicon-based brazing composition used for assembling composite material parts together. Silicon-based brazing compositions are described in particular in documents EP 806 402 or US Pat. No. 5,975,407. The choice of the nature of the infiltration composition is carried out in particular according to the chemical compatibility and its coefficient of thermal expansion. with those of the material of the part to be infiltrated.

Claims

REVENDICATIONS
1. Procédé de traitement local d'une portion (130) d'une pièce (100) en matériau composite comprenant un renfort fibreux densifié par une matrice, ledit matériau présentant une porosité interne, le procédé comprenant les étapes suivantes : A method of locally treating a portion (130) of a composite material part (100) comprising a matrix-densified fiber reinforcement, said material having internal porosity, the method comprising the steps of:
- détermination d'une quantité de composition d'infiltration (10) en fonction du volume de la portion (130) de la pièce à traiter (100), la composition d'infiltration (10) comprenant au moins du silicium,  determining a quantity of infiltration composition (10) as a function of the volume of the portion (130) of the workpiece (100), the infiltration composition (10) comprising at least silicon,
- placement de la quantité déterminée de composition d'infiltration (10) en contact avec les pores débouchant en surface de la portion (130) de la pièce à traiter,  placing the determined quantity of infiltration composition (10) in contact with the pores opening on the surface of the portion (130) of the workpiece,
- traitement thermique à une température supérieure ou égale à la température de fusion de la composition d'infiltration de manière à imprégner ladite portion avec la composition de traitement et combler la porosité présente au niveau de ladite portion.  heat treatment at a temperature greater than or equal to the melting temperature of the infiltration composition so as to impregnate said portion with the treatment composition and fill the porosity present at said portion.
2. Procédé selon la revendication 1, caractérisé en ce que la composition d'infiltration comprend du silicium ou un alliage de silicium. 2. Method according to claim 1, characterized in that the infiltration composition comprises silicon or a silicon alloy.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il comprend en outre une étape d'usinage de la portion (130) de la pièce traitée (100). 3. Method according to claim 1 or 2, characterized in that it further comprises a step of machining the portion (130) of the treated part (100).
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la pièce (100) est en matériau composite thermostructural à matrice céramique. 4. Method according to any one of claims 1 to 3, characterized in that the part (100) is made of ceramic thermostructural composite material.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la pièce (100) en matériau composite correspond à une aube de moteur aéronautique comportant au moins un pied d'aube et une pale et en ce que la portion (130) à traiter correspond au pied de ladite aube. 5. Method according to any one of claims 1 to 4, characterized in that the part (100) made of composite material corresponds to an aeronautical engine blade having at least one blade root and a blade and in that the portion (130) to be treated corresponds to the foot of said blade.
6. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la pièce en matériau composite correspond à une pièce de structure (400) comprenant au moins une partie de liaison (401 ; 402) destinée à être liée mécaniquement à une autre pièce et en ce que chaque partie de liaison correspond à une portion à traiter. 6. Method according to any one of claims 1 to 4, characterized in that the piece of composite material corresponds to a structural part (400) comprising at least one connecting part (401; 402) intended to be mechanically linked to another part and in that each connecting part corresponds to a portion to be treated.
7. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la pièce en matériau composite correspond à une pièce de structure comprenant au moins une partie de portée destinée à être en contact avec une pièce métallique d'étanchéité et en ce que chaque partie de portée correspond à une portion à traiter. 7. Method according to any one of claims 1 to 4, characterized in that the composite material part corresponds to a structural part comprising at least a bearing portion intended to be in contact with a metal sealing part and in what each part of scope corresponds to a portion to be treated.
8. Procédé de réparation d'une pièce en matériau composite (300) comportant au moins une portion endommagée (321) présente à la surface de la pièce, caractérisé en ce que chaque portion endommagée (321) est traitée conformément au procédé de traitement selon l'une quelconque des revendications 1 à 4. 8. A method of repairing a composite material part (300) having at least one damaged portion (321) present on the surface of the part, characterized in that each damaged portion (321) is treated according to the treatment method according to any of claims 1 to 4.
EP13786692.7A 2012-10-09 2013-10-08 Method for locally treating a part made from porous composite material Withdrawn EP2906517A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1259600A FR2996550B1 (en) 2012-10-09 2012-10-09 PROCESS FOR LOCALLY PROCESSING A PIECE OF POROUS COMPOSITE MATERIAL
PCT/FR2013/052388 WO2014057205A1 (en) 2012-10-09 2013-10-08 Method for locally treating a part made from porous composite material

Publications (1)

Publication Number Publication Date
EP2906517A1 true EP2906517A1 (en) 2015-08-19

Family

ID=47754637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13786692.7A Withdrawn EP2906517A1 (en) 2012-10-09 2013-10-08 Method for locally treating a part made from porous composite material

Country Status (9)

Country Link
US (1) US20150275671A1 (en)
EP (1) EP2906517A1 (en)
JP (1) JP2016500630A (en)
CN (1) CN104955789A (en)
BR (1) BR112015007891A2 (en)
CA (1) CA2887464A1 (en)
FR (1) FR2996550B1 (en)
RU (1) RU2015116900A (en)
WO (1) WO2014057205A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11143040B2 (en) * 2019-10-02 2021-10-12 Raytheon Technologies Corporation Ceramic matrix composite rotor blade attachment and method of manufacture therefor
US20220041519A1 (en) * 2020-08-05 2022-02-10 General Electric Company Method for repairing composite components using filler material
CN112984555B (en) * 2021-04-14 2021-08-03 中国航发上海商用航空发动机制造有限责任公司 Workpiece protection method, machining method and workpiece
US20230381887A1 (en) * 2022-05-27 2023-11-30 Raytheon Technologies Corporation Laser treatment of machined ceramic surface for sealing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559499A1 (en) * 2004-01-27 2005-08-03 Siemens Aktiengesellschaft Method of repairing a turbine component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748471B1 (en) 1996-05-07 1998-06-12 Commissariat Energie Atomique BRAZING ASSEMBLY OF CERAMIC MATERIALS CONTAINING SILICON CARBIDE
FR2749787B1 (en) 1996-06-12 1998-07-24 Commissariat Energie Atomique METHOD OF ASSEMBLY USING A THICK JOINT OF PARTS OF SIC-BASED MATERIALS BY REFRACTORY BRAZING AND REFRACTORY JOINT AND THICK OBTAINED
US6820334B2 (en) * 2002-04-19 2004-11-23 General Electric Company Method for repairing articles of ceramic composites
FR2869609B1 (en) * 2004-05-03 2006-07-28 Snecma Propulsion Solide Sa PROCESS FOR MANUFACTURING A THERMOSTRUCTURAL COMPOSITE MATERIAL PART
FR2939430B1 (en) * 2008-12-04 2011-01-07 Snecma Propulsion Solide METHOD FOR SMOOTHING THE SURFACE OF A PIECE OF CMC MATERIAL
WO2010069346A1 (en) 2008-12-18 2010-06-24 Deutsche Post Ag Method for transport and delivery of postal items
DE102010031795B4 (en) * 2010-07-20 2015-05-28 Lufthansa Technik Ag Method for repairing gas turbine components made of ceramic composite materials and apparatus for carrying out the method
US9533919B2 (en) * 2011-10-12 2017-01-03 United Technologies Corporation Method for fabricating a ceramic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559499A1 (en) * 2004-01-27 2005-08-03 Siemens Aktiengesellschaft Method of repairing a turbine component

Also Published As

Publication number Publication date
WO2014057205A1 (en) 2014-04-17
CA2887464A1 (en) 2014-04-17
BR112015007891A2 (en) 2017-07-04
RU2015116900A (en) 2016-12-10
FR2996550A1 (en) 2014-04-11
FR2996550B1 (en) 2016-01-29
CN104955789A (en) 2015-09-30
JP2016500630A (en) 2016-01-14
US20150275671A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
EP2414305B1 (en) Process for smoothing the surface of a part made of cmc material.
EP2785665B1 (en) Cmc material part manufacture method
EP2356085B1 (en) Method for smoothing the surface of a part made from a cmc material
EP1594816B1 (en) Method of siliconising thermostructural composite materials and parts thus produced
EP2002031B1 (en) Composite material component with silicon-containing ceramic matrix, protected against corrosion
WO2016001026A1 (en) Part coated with a surface coating and associated methods
EP3830056B1 (en) Method for manufacturing a part made from cmc
FR2869609A1 (en) PROCESS FOR MANUFACTURING A THERMOSTRUCTURAL COMPOSITE MATERIAL PART
EP3024801B1 (en) Process for fabricating composite parts by low melting point impregnation
CA2792518A1 (en) Method for manufacturing a thermal-barrier protection and multi-layer coating suitable for forming a thermal barrier
EP2753595B1 (en) Method for forming a smooth glaze-like coating on a substrate made of a ceramic matrix composite material containing sic, and part made of a ceramic matrix composite material provided with such a coating
FR2979341A1 (en) STRAINABLE ULTRA-REFRACTORY MATERIAL IN WET ENVIRONMENT AND METHOD FOR MANUFACTURING THE SAME
WO2014053751A1 (en) Method for producing an aerodynamic part by overmoulding a ceramic shell onto a composite preform
EP2234944B1 (en) Method for making a refractory carbide layer on a part made of c/c composite material
FR3023212B1 (en) METHOD FOR MANUFACTURING A COATED PART BY A SURFACE COATING COMPRISING AN ALLOY
EP2906517A1 (en) Method for locally treating a part made from porous composite material
WO2022090664A1 (en) Method for fabricating a turbomachine blade made from a composite material
EP4263214A1 (en) Method for manufacturing a ceramic matrix composite part
EP4264016A1 (en) Blade made of composite material with at least partially ceramic matrix

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160923

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN CERAMICS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170404