EP2904335B1 - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
EP2904335B1
EP2904335B1 EP13756467.0A EP13756467A EP2904335B1 EP 2904335 B1 EP2904335 B1 EP 2904335B1 EP 13756467 A EP13756467 A EP 13756467A EP 2904335 B1 EP2904335 B1 EP 2904335B1
Authority
EP
European Patent Office
Prior art keywords
flow channel
condenser
region
flow
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13756467.0A
Other languages
German (de)
French (fr)
Other versions
EP2904335A1 (en
Inventor
Herbert Hofmann
Stefan Schmidgall
Sascha UNGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2904335A1 publication Critical patent/EP2904335A1/en
Application granted granted Critical
Publication of EP2904335B1 publication Critical patent/EP2904335B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0075Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements the plates having openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • the invention relates to a capacitor in stacked disk design, a heat exchanger block being formed from a plurality of disk elements which, stacked on top of one another, form adjacent channels between the disk elements, a first number of the channels being assigned to a first flow channel and a second number of the channels being assigned to a second flow channel and a refrigerant can flow through the first flow channel and a coolant can flow through the second flow channel, the first flow channel having a first area for desuperheating and condensation of the vaporous refrigerant and a second area for subcooling the condensed refrigerant.
  • DE 10 2010 026507 discloses a capacitor having features according to the preamble of claim 1.
  • condensers In refrigerant circuits of air conditioning systems for motor vehicles, condensers are used to cool the refrigerant to the condensation temperature and then to condense the refrigerant.
  • Capacitors regularly have a collector in which a volume of refrigerant is held in order to compensate for volume fluctuations in the refrigerant circuit.
  • the provision of the refrigerant in the receiver stable subcooling of the refrigerant is achieved.
  • the collector is usually arranged on the condenser. It is flowed through by the refrigerant which has already flowed through a section of the condenser. After flowing through the collector, the refrigerant is returned to the condenser and subcooled below the condensation temperature in a subcooling section.
  • the refrigerant for this purpose is led out of the condenser from one of the header pipes arranged on the side of a pipe-fin block and introduced into the collector.
  • the US 2009/0071189 A1 a capacitor in stacked disk design, in which a first stack of disk elements represents a first cooling and condensation area and a second stack of disk elements represents a subcooling area.
  • the first stack is separated from the second stack by a housing which contains a collector and dryer.
  • a disadvantage of the devices of the prior art is that the integration of capacitors in stacked plate construction, collectors and subcoolers has been solved in a very complex manner.
  • the capacitors stand out from the prior art by an increased manufacturing effort. This results in additional costs with regard to the use of the capacitors, which make their use unattractive.
  • the object of the present invention is achieved by a capacitor in a stacked disk design with the features of claim 1.
  • One embodiment of the invention relates to a capacitor in stacked disk design, a heat exchanger block being formed from a plurality of disk elements which, stacked on top of one another, form adjacent channels between the disk elements, a first number of the channels being assigned to a first flow channel and a second number of the channels being assigned to a second Flow channel is assigned, and a refrigerant can flow through the first flow channel and a coolant can flow through the second flow channel, the first flow channel having a first area for de-heating and condensation of the vaporous refrigerant and a second area for subcooling the condensed refrigerant, wherein at least one section of the first flow channel is in thermal contact with at least one section of the second flow channel, and the first region has a first fluid supply line and a first fluid discharge line st and the second area has a second fluid supply line and a second fluid discharge line, wherein the condenser has a collector for storing the refrigerant, and a refrigerant transfer from the first area
  • a capacitor with a stacked plate design is particularly compact and can therefore also be accommodated in a small installation space.
  • Good thermal contact between the first flow channel and the second flow channel is particularly advantageous, so that the heat transfer between the fluids is as efficient as possible.
  • the arrangement of the collector as close as possible to the condenser, or to the heat exchanger block of the condenser, has the advantage that only short distances have to be overcome by means of fluid lines.
  • the thermally disadvantageous properties such as the heating of the coolant or the refrigerant by surrounding heat sources, as well as the negative effects on the pressure loss inside the condenser, can therefore be minimized.
  • coolant in the second flow channel and the refrigerant in the first flow channel can flow in cocurrent to one another and / or in countercurrent to one another.
  • the first fluid discharge line and the second fluid supply line are arranged outside the heat exchanger block.
  • first fluid discharge line and / or the second fluid supply line are formed by a pipeline.
  • a pipeline offers the advantage of great freedom of design for the course and arrangement of the line.
  • Complex pipeline routes can also be implemented using pipelines.
  • first fluid feed line and the second fluid feed line are arranged at the same end region of the condenser, the first fluid discharge line and the second fluid discharge line being arranged at the opposite end region of the condenser.
  • the fluid flows can be guided in countercurrent within the condenser in a particularly simple manner.
  • the inner volume fraction of the second region of the first flow channel is a maximum of approx. 40%, preferably approx. 20%, preferably between approx. 5% and approx. 15% of the total internal volume of the first flow channel.
  • the subcooling section which corresponds to the second region of the first flow channel, takes up the largest possible volume proportion of the total volume of the first flow channel, since this allows the fluid temperature at the condenser outlet to be kept particularly low. This can improve system performance.
  • the coolant supply line and the coolant discharge line of the second flow channel are arranged at opposite end regions of the condenser.
  • the arrangement of the coolant supply line and the coolant discharge line at opposite end regions of the condenser is particularly advantageous if the coolant is to flow through the condenser without significant deflection.
  • the first area and / or the second area of the first flow channel within the condenser is deflected one or more times in its main flow direction.
  • a single or multiple deflection of the flow direction can ensure that the refrigerant and the coolant flow either in cocurrent or in countercurrent to one another. This can influence the heat transfer between coolant and refrigerant.
  • the second flow channel within the condenser is deflected at least once in its main flow direction by approximately 180 °.
  • a deflection of the second flow channel can be advantageous in order to bring the flowing coolant with the coolant in cocurrent or countercurrent.
  • the heat transfer between refrigerant and coolant can be influenced by deflecting the second flow channel.
  • Another preferred embodiment is characterized in that the second flow channel is deflected once by approximately 180 ° in its main flow direction, which creates an inflow area and a backflow area, the inner volume of the inflow area of the second flow channel and the inner volume of the backflow area of the second flow channel being approximately are equal and / or unequal.
  • the flow area of the second flow channel and the return flow area can advantageously be approximately the same size with regard to their volume. This is particularly advantageous with regard to the resulting pressure losses for the coolant.
  • the coolant flows through the second flow channel in such a way that it first comes into thermal contact with the second area of the first flow channel along the main flow direction of the second flow channel or it first comes into thermal contact with the second area and at least a section of the first area of the first flow channel comes into thermal contact and, after the deflection, comes into essentially thermal contact with the first region of the first flow channel.
  • the outlet temperature of the coolant from the condenser can be effectively reduced.
  • the coolant freshly flowing into the condenser has its lowest temperature directly at the fluid inlet. This means that the heat transfer is particularly high.
  • the coolant can in addition to the thermal contact with the second area also with a section of the first area of the first flow channel in thermal Be brought into contact. In this way, the flow path and the return flow path of the coolant are designed in such a way that an approximately equal internal volume is present, as a result of which the internal pressure loss is reduced.
  • the thermal separation as a thermally insulating disk, as an air gap, as an air-conducting channel, as part of the second flow channel with a multiple coolant path and / or as part of the second flow channel with a larger flow cross-sectional area is designed as the rest of the second flow channel.
  • the thermal separation can advantageously be implemented by one of the disk elements of the condenser, whereby the structural effort is kept to a minimum.
  • Specially manufactured pane elements on the other hand, can lead to a stronger thermal separation.
  • the Figure 1 shows a perspective view of a capacitor 1 in stacked disk design.
  • the condenser 1 consists of a plurality of individual disk elements which, stacked on top of one another, form the heat exchanger block 7.
  • the heat exchanger block 7 is designed in its interior so that between the individual disc elements result in a plurality of channels. A number of these channels are assigned to a first flow channel through which a refrigerant can flow. A further number of the channels are assigned to a second flow channel through which a coolant can flow.
  • the first flow channel is at least partially in thermal contact in the interior of the heat exchanger block 7 with the second flow channel, so that a heat transfer can take place between the first flow channel and the second flow channel.
  • a collector 2 is arranged on an outer surface of the heat exchanger block 7. This collector serves to store the refrigerant which flows along the first flow channel. A volume fluctuation of the refrigerant within the condenser and the rest of the refrigerant circuit can be compensated for via the collector 2.
  • the collector 2 can have means for drying and filtering the refrigerant.
  • the in Figure 1 The collector 2 shown has a cylindrical housing and is arranged on the outside of the heat exchanger block 7. In alternative embodiments, the collector 2 can also have other designs.
  • the representation of the collector 2 is exemplary.
  • the collector 2 is connected to the first flow channel within the condenser 1 via collector connections 8 and is in fluid communication therewith.
  • the condenser 1 also has a refrigerant inlet 3 at its upper left end region.
  • the condenser 1 has a coolant outlet 6 at the upper right end area. At the lower right end area, the condenser 1 has a coolant inlet 5.
  • a refrigerant can thus flow into the first flow channel of the heat exchanger block 7 via the refrigerant inlet 3 and distribute itself through the channels which are assigned to the first flow channel.
  • the refrigerant then flows from the first flow channel 1 via the collector connections 8 into the collector 2.
  • From the collector 2 the refrigerant flows back into the heat exchanger block 7 and is further distributed through the first flow channel of the heat exchanger block 7.
  • the refrigerant flows through the refrigerant outlet 4, which is arranged on the rear side of the condenser 1 facing away from the viewer, from the heat exchanger block 7 of the condenser 1.
  • the coolant flows through the coolant inlet 5 into the second flow channel of the heat exchanger block 7 and is distributed along this flow channel in the heat exchanger block and ultimately flows out of the condenser through the coolant outlet 6.
  • the first flow channel is divided into a first area and a second area.
  • the first area extends from the refrigerant inlet 3 to the transition into the collector 2.
  • the second area of the first flow channel extends from the outlet of the collector 2 to the refrigerant outlet 4 of the condenser 1.
  • the coolant which flows through the second flow channel is with the first area as well as with the second area of the first flow channel in thermal contact, whereby a heat transfer occurs.
  • FIG. 11 shows a rear view of the capacitor 1 of FIG Figure 1 .
  • the pipeline 10 represents the fluid line which runs from the outlet of the collector 2 to the heat exchanger block 7 returns and guides the refrigerant back between the disk elements.
  • FIG. 11 shows a schematic view of a capacitor 20.
  • One possible embodiment of the capacitor from FIG Figures 3 to 5 is in the Figures 1 and 2 shown.
  • the routes of the outer pipelines and the arrangement of the collector can be determined by the in Figures 1 and 2 examples shown differ. The same applies to the number of disc elements used and the arrangement of the individual fluid inlets and fluid outlets on the heat exchanger block.
  • the in Figure 3 The capacitor 20 shown has a collector 21 arranged on the outside.
  • the coolant feed line to the condenser 20 is shown with the reference numeral 27.
  • the coolant discharge of the condenser 20 is shown with the reference numeral 28.
  • the coolant flows along the flow paths 31, 32 along the previously mentioned second flow channel through the condenser 20.
  • the coolant flows without deflection both through the first region of the first flow channel, which represents a condensation region 34, and through the second region of the first flow channel, which represents a subcooling region 35.
  • the condensation area 34 is dimensioned larger in relation to the subcooling area 35 and proportionally assumes a larger proportion of the total volume of the first flow channel 1.
  • the ratio between the condensation area and the subcooling area is in a certain maximum ratio to one another. It is therefore advisable that the internal volume of the first flow channel, which is assigned to the subcooling area, in relation to the internal volume of the first flow channel, which is assigned to the condensation surface, is not greater than 40%. of the total internal volume of the first flow channel.
  • the aim should be that the internal volume of the first flow channel, which is assigned to the subcooling area, is not even greater than 20%; optimally, the total internal volume of the first flow channel is divided into approx. 5% to 15% of the volume for the subcooling section and 85 % to 95% of the internal volume for the condensation area.
  • the capacitor 20 of Figure 3 a refrigerant is fed into the condensation region 34 via the first fluid feed line 23. There it flows downwards in a distributed manner via the individual channels of the condensation region 34 and enters the collector 21 via the first fluid discharge line 24.
  • the now completely condensed refrigerant is introduced from the collector 21 along the fluid line 33 via the second fluid supply line 25 into the subcooling area 35.
  • the discharge of the refrigerant from the condensation area 34 and the supply line to the subcooling area 35 take place at the lower end area of the condenser 20.
  • the refrigerant then flows upward in the subcooling region 35 and flows out of the condenser 20 via the second fluid discharge line 26.
  • the flow path of the refrigerant inside the condenser is shown by the arrows with the reference symbols 29 and 30.
  • the arrows with the reference numerals 31 and 32 represent the flow path of the coolant within the condenser 20. It can be seen that the coolant flows in countercurrent to the refrigerant in the condensation area 34 and in cocurrent in the subcooling area 35. By reversing the direction of flow of the coolant a reversal of these relationships can also be achieved.
  • the Figure 4 shows an alternative embodiment of a condenser 40.
  • the condenser 40 has a heat exchanger block 42, which as in FIG Figures 1 and 2 described, consists of a plurality of disc elements.
  • a collector 41 is arranged on the exterior of the condenser 40 and is in fluid communication with the condenser 42.
  • the coolant flows through the condenser 40 essentially without deflection along its main flow direction.
  • the coolant supply line 47 is arranged in the lower region of the condenser 40.
  • the coolant discharge line 48 is arranged in the upper region of the condenser 40.
  • the fluid can, for example, be conducted directly into the first channel, which results between the first and the second disk element.
  • the fluid can also be introduced, for example, by closing off individual disk elements or by inserting a dip tube into any other channel between the disk elements.
  • the options for dividing the individual channels into the first flow channel or the second flow channel within the condenser essentially correspond to those that are already known in the prior art.
  • the refrigerant flows via the first fluid supply line 43 in the upper area of the condenser 40 into the condensation area 54. It flows down along the flow path 49 in the condensation area and flows via the first fluid discharge line 44 in the collector 41 over.
  • the completely condensed refrigerant is conducted from the collector 41 via the fluid line 53 to the second fluid supply line 45.
  • which in contrast to the Figure 3 is now arranged in the upper region of the condenser 40 on the side of the subcooling section 55.
  • the refrigerant then flows downward along the flow path 50 in the subcooling area 55 of the condenser 40 and ultimately flows out of the condenser 40 via the second fluid discharge line 46.
  • the coolant Due to the undirected flow of the coolant from bottom to top through the condenser 40 and the supply of the coolant in the upper area of the condenser 40, the coolant is in countercurrent with the refrigerant in both the condensation area 54 and the subcooling area 55.
  • the Figure 5 shows a further embodiment of a condenser 60.
  • the condenser 60 has a heat exchanger block 62 which, as already described above, is formed from the individual disk elements. Furthermore, the condenser 60 has a condensation area 81 and a subcooling area 82.
  • the condensation region 81 is now divided into several flow paths 79, 80.
  • the condensation region 81 is shown in FIG Figure 5 formed from the flow path 79 and the flow path 80.
  • the sub-cooling region 82 is formed from the flow path 77.
  • the refrigerant is deflected by approximately 180 ° between the flow path 80 and the flow path 79.
  • Each of the flow paths 77, 79 and 80 of the condensation region 81 and the subcooling region 82 can consist of a single number or a plurality of channels of the first flow channel.
  • a collector 61 is arranged through which the refrigerant flows.
  • the coolant is different from the Figures 3 and 4 now not passed through the condenser without a deflection, but instead experiences a deflection by 180 ° within the condenser 60, as a result of which a flow path and a return flow path are created in the condenser.
  • the coolant is introduced into the upper region of the condenser 60 via the coolant supply line 67 and deflected in the lower region of the condenser 60 in order to then flow further upwards and out of the condenser 60 via the coolant discharge line 68.
  • the channels in the interior of the heat exchanger block 62 which are assigned to the second flow channel, are assigned to one another via the structural design of the respective disk elements so that the coolant in a section of the second flow channel moves from the upper area to the lower area of the capacitor 60 can flow. There it flows in the remainder of the second flow channel over and back along the channels of the second flow channel into the upper region of the condenser.
  • the inflow path of the coolant extends to the channels of the second flow channel, which are in direct thermal exchange with the subcooling area 82 of the first flow channel, and to a number of channels of the second flow channel, which are in thermal contact with the condensation area 81 of the first flow channel .
  • the return path of the coolant is limited to the channels of the second flow channel, which are in direct thermal exchange with the condensation area 81 of the first flow channel. A different division is also possible.
  • the channels that together form the second flow channel are assigned approximately equal parts to the outward flow path and the return flow path of the coolant.
  • the division of the second flow channel into the inflow section and the return section therefore does not have to be congruent with the division of the first flow channel into the condensation area 81 and the subcooling area 82.
  • the refrigerant is supplied to the condenser 60 via a first fluid supply line 63 in the upper region.
  • the refrigerant then flows along the first flow path 80 along the flow path 69 into the lower region of the condenser 60. There it is deflected by a corresponding connection of the inner disk elements and then flows back through the flow path 79 along the flow path 71 into the upper region of the Refrigerant. Both the flow path 80 and the flow path 79 are assigned to the condensation region 81. From the upper region of the flow path 79, the refrigerant flows into the upper region of the collector 61 via a first fluid discharge line 64.
  • the completely condensed refrigerant flows via a second fluid supply line 65 into the lower region of the condenser 60, which is assigned to the subcooling region 82.
  • the refrigerant then flows in the flow path 77 along the flow path 72 back into the upper region of the condenser, where it is finally discharged from the condenser 60 via the second fluid discharge line 66.
  • the in Figure 5 The condenser 60 shown has two flow paths 79, 80 in the condensation region 81 of the first flow channel.
  • the subcooling area 82 has only one flow path. In different designs, different numbers of flow paths can also be provided. To use the same flow principle as in Figure 5 To obtain, it is advantageous if the number of flow paths in the condensation area is even and the number of flow paths in the subcooling area is odd.
  • the individual connecting lines between the heat exchanger block and the collector can either be soldered directly to the heat exchanger block or implemented later using internal or external pipes. It is also possible to provide for the supply or discharge between the heat exchanger block and the collector by means of a corresponding design of the two outer disk elements. For example, it is possible to provide for channels to be integrated into the two outer pane elements or also into only one of the outer pane elements, which can be used as a supply line or a discharge line.
  • the Figure 6 shows a schematic sectional view of the capacitor.
  • the individual disk elements can be seen, between which the channels are formed which belong to the first flow channel or the second flow channel.
  • a refrigerant flows through the first flow channel.
  • the channels that belong to the first flow channel are hatched and marked with the reference number 93.
  • the channels belonging to the second flow channel have a coolant flowing through them and are marked with the reference number 94.
  • thermal separation layer 92 is shown, which is arranged between the condensation area 90 and the subcooling area 91 of the condenser.
  • the thermal separation layer 92 prevents unwanted heat transfer between the fluids in the subcooling area 91 and the condensation area 90.
  • the thermal separation layer can be formed, for example, by an air-filled channel between two pane elements, by an air gap between two adjacent pane elements or by an arrangement of several coolant channels next to one another.
  • the possibilities mentioned for the formation of a thermal separation layer are exemplary and are not of a limiting nature.
  • the transfer of heat to the refrigerant that is to say a heating of the refrigerant, is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

Technisches GebietTechnical area

Die Erfindung betrifft einen Kondensator in Stapelscheibenbauweise, wobei ein Wärmeübertragerblock aus einer Mehrzahl von Scheibenelementen gebildet ist, die aufeinandergestapelt zueinander benachbarte Kanäle zwischen den Scheibenelementen ausbilden, wobei eine erste Anzahl der Kanäle einem ersten Strömungskanal zugeordnet ist und eine zweite Anzahl der Kanäle einem zweiten Strömungskanal zugeordnet ist, und durch den ersten Strömungskanal ein Kältemittel strömbar ist und durch den zweiten Strömungskanal ein Kühlmittel strömbar ist, wobei der erste Strömungskanal einen ersten Bereich zur Enthitzung und Kondensation des dampfförmigen Kältemittels aufweist und einen zweiten Bereich zur Unterkühlung des kondensierten Kältemittels aufweist. DE 10 2010 026507 offenbart einen Kondensator mit Merkmalen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a capacitor in stacked disk design, a heat exchanger block being formed from a plurality of disk elements which, stacked on top of one another, form adjacent channels between the disk elements, a first number of the channels being assigned to a first flow channel and a second number of the channels being assigned to a second flow channel and a refrigerant can flow through the first flow channel and a coolant can flow through the second flow channel, the first flow channel having a first area for desuperheating and condensation of the vaporous refrigerant and a second area for subcooling the condensed refrigerant. DE 10 2010 026507 discloses a capacitor having features according to the preamble of claim 1.

Stand der TechnikState of the art

In Kältemittelkreisläufen von Klimaanlagen für Kraftfahrzeuge werden Kondensatoren eingesetzt, um das Kältemittel auf die Kondensationstemperatur abzukühlen und anschließend das Kältemittel zu kondensieren. Regelmäßig weisen Kondensatoren einen Sammler auf, in welchem ein Kältemittelvolumen vorgehalten ist, um Volumenschwankungen im Kältemittelkreislauf auszugleichen. Außerdem wird durch die Vorhaltung des Kältemittels im Sammler eine stabile Unterkühlung des Kältemittels erreicht.In refrigerant circuits of air conditioning systems for motor vehicles, condensers are used to cool the refrigerant to the condensation temperature and then to condense the refrigerant. Capacitors regularly have a collector in which a volume of refrigerant is held in order to compensate for volume fluctuations in the refrigerant circuit. In addition, the provision of the refrigerant in the receiver, stable subcooling of the refrigerant is achieved.

Oftmals sind in dem Sammler zusätzliche Mittel zur Trocknung und/oder Filterung des Kältemittels vorgesehen. Der Sammler ist im Regelfall am Kondensator angeordnet. Er wird von dem Kältemittel durchströmt, welches bereits einen Abschnitt des Kondensators durchströmt hat. Nach dem Durchströmen des Sammlers wird das Kältemittel in den Kondensator zurückgeleitet und in einer Unterkühlungsstrecke unter die Kondensationstemperatur unterkühlt.Additional means for drying and / or filtering the refrigerant are often provided in the collector. The collector is usually arranged on the condenser. It is flowed through by the refrigerant which has already flowed through a section of the condenser. After flowing through the collector, the refrigerant is returned to the condenser and subcooled below the condensation temperature in a subcooling section.

Bei konventionellen Kondensatoren in Rippe-Rohr-Bauweise wird das Kältemittel hierfür aus einem der seitlich eines Rohr-Rippenblocks angeordneten Sammelrohre aus dem Kondensator hinausgeleitet und in den Sammler eingeleitet.In the case of conventional condensers with a fin-tube design, the refrigerant for this purpose is led out of the condenser from one of the header pipes arranged on the side of a pipe-fin block and introduced into the collector.

Bei Kondensatoren, welche in Stapelscheibenbauweise gebaut sind, sind Möglichkeiten im Stand der Technik bekannt, den Sammler als eine zusätzliche Lage von Scheibenelementen an den Kondensator anzufügen.In the case of capacitors which are built in a stacked disk design, there are known possibilities in the prior art for adding the collector as an additional layer of disk elements to the capacitor.

Außerdem ist es bekannt, das Kältemittel über eine spezielle Verteilerplatte aus dem in Stapelscheibenbauweise gebauten Kondensator hinauszuleiten und einem externen Sammler zuzuführen und das Kältemittel nach dem Sammler wieder in den Kondensator zurückzuführen,It is also known to lead the refrigerant out of the stacked-plate condenser via a special distributor plate and to feed it to an external collector and to return the refrigerant to the condenser after the collector,

Weiterhin offenbart die US 2009/0071189 A1 einen Kondensator in Stapelscheibenbauweise, bei dem ein erster Stapel an Scheibenelementen einen ersten Abkühlungs- und Kondensationsbereich darstellt und ein zweiter Stapel an Scheibenelementen einen Unterkühlungsbereich darstellt. Der erste Stapel ist von dem zweiten Stapel durch ein Gehäuse getrennt, welches einen Sammler und Trockner beinhaltet.Furthermore, the US 2009/0071189 A1 a capacitor in stacked disk design, in which a first stack of disk elements represents a first cooling and condensation area and a second stack of disk elements represents a subcooling area. The first stack is separated from the second stack by a housing which contains a collector and dryer.

Nachteilig an den Vorrichtungen des Standes der Technik ist, dass die Integration von Kondensatoren in Stapelscheibenbauweise, Sammlern und Unterkühlern bisher recht aufwändig gelöst ist. Neben einem komplexen Aufbau, zeichnen sich die Kondensatoren aus dem Stand der Technik durch einen erhöhten Fertigungsaufwand aus. Dadurch ergeben sich hinsichtlich der Verwendung der Kondensatoren Mehrkosten, die ihren Einsatz unattraktiv machen.A disadvantage of the devices of the prior art is that the integration of capacitors in stacked plate construction, collectors and subcoolers has been solved in a very complex manner. In addition to a complex structure, the capacitors stand out from the prior art by an increased manufacturing effort. This results in additional costs with regard to the use of the capacitors, which make their use unattractive.

Darstellung der Erfindung, Aufgabe, Lösung, VorteilePresentation of the invention, task, solution, advantages

Daher ist es die Aufgabe der vorliegenden Erfindung einen Kondensator bereitzustellen, der geeignet ist ein Kältemittel zu kondensieren, es zu bevorraten und weiterhin zu unterkühlen, wobei der Kondensator durch einen einfachen Aufbau und eine kompakte Bauweise gekennzeichnet ist und kostengünstig herzustellen ist.It is therefore the object of the present invention to provide a condenser which is suitable for condensing a refrigerant, storing it and further subcooling it, the condenser being characterized by a simple structure and a compact design and being inexpensive to manufacture.

Die Aufgabe der vorliegenden Erfindung wird durch einen Kondensator in Stapelscheibenbauweise mit den Merkmalen des Anspruchs 1 gelöst.The object of the present invention is achieved by a capacitor in a stacked disk design with the features of claim 1.

Ein Ausführungsbeispiel der Erfindung betrifft einen Kondensator in Stapelscheibenbauweise, wobei ein Wärmeübertragerblock aus einer Mehrzahl von Scheibenelementen gebildet ist, die aufeinandergestapelt zueinander benachbarte Kanäle zwischen den Scheibenelementen ausbilden, wobei eine erste Anzahl der Kanäle einem ersten Strömungskanal zugeordnet ist und eine zweite Anzahl der Kanäle einem zweiten Strömungskanal zugeordnet ist, und durch den ersten Strömungskanal ein Kältemittel strömbar ist und durch den zweiten Strömungskanal ein Kühlmittel strömbar ist, wobei der erste Strömungskanal einen ersten Bereich zur Enthitzung und Kondensation des dampfförmigen Kältemittels aufweist und einen zweiten Bereich zur Unterkühlung des kondensierten Kältemittels aufweist, wobei zumindest ein Abschnitt des ersten Strömungskanals mit zumindest einem Abschnitt des zweiten Strömungskanals in thermischen Kontakt steht, und der erste Bereich eine erste Fluidzuleitung und eine erste Fluidableitung aufweist und der zweite Bereich eine zweite Fluidzuleitung und eine zweite Fluidableitung aufweist, wobei der Kondensator einen Sammler zur Bevorratung des Kältemittels aufweist, und ein Kältemittelübertritt aus dem ersten Bereich in den zweiten Bereich durch den Sammler führt, wobei der Sammler über die erste Fluidableitung, welche auch den Fluideinlass des Sammlers bildet, mit dem ersten Bereich in Fluidkommunikation steht, und über die zweite Fluidzuleitung, welche auch den Fluidauslass des Sammlers bildet, mit dem zweiten Bereich in Fluidkommunikation steht, wobei der Sammler an einer Außenfläche des Kondensators angeordnet ist.One embodiment of the invention relates to a capacitor in stacked disk design, a heat exchanger block being formed from a plurality of disk elements which, stacked on top of one another, form adjacent channels between the disk elements, a first number of the channels being assigned to a first flow channel and a second number of the channels being assigned to a second Flow channel is assigned, and a refrigerant can flow through the first flow channel and a coolant can flow through the second flow channel, the first flow channel having a first area for de-heating and condensation of the vaporous refrigerant and a second area for subcooling the condensed refrigerant, wherein at least one section of the first flow channel is in thermal contact with at least one section of the second flow channel, and the first region has a first fluid supply line and a first fluid discharge line st and the second area has a second fluid supply line and a second fluid discharge line, wherein the condenser has a collector for storing the refrigerant, and a refrigerant transfer from the first area into the second area leads through the collector, the collector via the first fluid discharge line, which also the fluid inlet of the collector forms, is in fluid communication with the first region, and is in fluid communication with the second region via the second fluid supply line, which also forms the fluid outlet of the collector, the collector being arranged on an outer surface of the condenser.

Ein Kondensator in Stapelscheibenbauweise ist besonders kompakt und kann daher auch auf kleinem Bauraum untergebracht werden. Besonders vorteilhaft ist ein guter thermischer Kontakt zwischen dem ersten Strömungskanal und dem zweiten Strömungskanal, damit der Wärmeübergang zwischen den Fluiden möglichst effizient ist. Die Anordnung des Sammlers möglichst nah am Kondensator, beziehungsweise an dem Wärmeübertragerblock des Kondensators, hat den Vorteil, dass nur kurze Distanzen mittels Fluidleitungen überwunden werden müssen. Die thermischen nachteiligen Eigenschaften, wie etwa die Aufheizung des Kühlmittels oder des Kältemittels durch umliegende Wärmequellen, sowie die negativen Effekte auf den Druckverlust im Inneren des Kondensators, können daher minimiert werden.A capacitor with a stacked plate design is particularly compact and can therefore also be accommodated in a small installation space. Good thermal contact between the first flow channel and the second flow channel is particularly advantageous, so that the heat transfer between the fluids is as efficient as possible. The arrangement of the collector as close as possible to the condenser, or to the heat exchanger block of the condenser, has the advantage that only short distances have to be overcome by means of fluid lines. The thermally disadvantageous properties, such as the heating of the coolant or the refrigerant by surrounding heat sources, as well as the negative effects on the pressure loss inside the condenser, can therefore be minimized.

Darüber hinaus kann es vorteilhaft sein, wenn das Kühlmittel im zweiten Strömungskanal und das Kältemittel im ersten Strömungskanal im Gleichstrom zueinander und/oder im Gegenstrom zueinander strömbar sind.In addition, it can be advantageous if the coolant in the second flow channel and the refrigerant in the first flow channel can flow in cocurrent to one another and / or in countercurrent to one another.

Durch ein strömen des Kühlmittels und des Kältemittels im Gegenstrom kann die maximal übertragbare Wärmemenge erhöht werden, was zu einer Effizienzsteigerung des Kondensators beiträgt. Ein strömen im Gleichstrom kann dagegen besonders einfach realisiert werden.By flowing the coolant and the refrigerant in countercurrent, the maximum amount of heat that can be transferred can be increased, which contributes to an increase in the efficiency of the condenser. In contrast, direct current flow can be implemented particularly easily.

Erfindungsgemäß sind die erste Fluidableitung und die zweite Fluidzuleitung außerhalb des Wärmeübertragerblocks angeordnet.According to the invention, the first fluid discharge line and the second fluid supply line are arranged outside the heat exchanger block.

Die Führung der Leitungen außerhalb des Kondensators ist einfacher zu realisieren, da der Bauraum weniger stark eingeschränkt ist und die Formgebungsgrenzen der einzelnen Scheibenelemente nicht berücksichtigt werden müssen.The routing of the lines outside the capacitor is easier to implement, since the installation space is less restricted and the shaping limits of the individual pane elements do not have to be taken into account.

Weiterhin kann es besonders vorteilhaft sein, wenn die erste Fluidableitung und/oder die zweite Fluidzuleitung durch eine Rohrleitung gebildet sind.Furthermore, it can be particularly advantageous if the first fluid discharge line and / or the second fluid supply line are formed by a pipeline.

Eine Rohrleitung bietet den Vorteil der sehr großen Gestaltungsfreiheit für den Verlauf und die Anordnung der Leitung. Durch Rohrleitungen können auch komplexe Leitungsverläufe realisiert werden.A pipeline offers the advantage of great freedom of design for the course and arrangement of the line. Complex pipeline routes can also be implemented using pipelines.

Auch ist es zu bevorzugen, wenn die erste Fluidzuleitung und die zweite Fluidzuleitung, betrachtet entlang der Hauptdurchströmungsrichtung eines Kanals zwischen den Scheibenelementen, am gleichen Endbereich des Kondensators angeordnet sind, wobei die erste Fluidableitung und die zweite Fluidableitung am gegenüberliegenden Endbereich des Kondensators angeordnet sind.It is also preferable if the first fluid feed line and the second fluid feed line, viewed along the main flow direction of a channel between the disk elements, are arranged at the same end region of the condenser, the first fluid discharge line and the second fluid discharge line being arranged at the opposite end region of the condenser.

Durch eine Anordnung der ersten und der zweiten Fluidzuleitung an einem gemeinsamen Endbereich des Kondensators und der ersten und zweiten Fluidableitung am gegenüberliegenden Endbereich des Kondensators, kann in besonders einfacher Weise eine Führung der Fluidströme im Gegenstrom innerhalb des Kondensators realisiert werden.By arranging the first and second fluid supply lines at a common end area of the condenser and the first and second fluid discharge line at the opposite end area of the condenser, the fluid flows can be guided in countercurrent within the condenser in a particularly simple manner.

In einer alternativen Ausgestaltung der Erfindung, kann es vorgesehen sein, dass der innere Volumenanteil des zweiten Bereichs des ersten Strömungskanals maximal ca. 40%, dabei vorzugsweise ca. 20%, dabei vorzugsweise zwischen ca. 5% und ca. 15% des inneren Gesamtvolumens des ersten Strömungskanals ausmacht.In an alternative embodiment of the invention, it can be provided that the inner volume fraction of the second region of the first flow channel is a maximum of approx. 40%, preferably approx. 20%, preferably between approx. 5% and approx. 15% of the total internal volume of the first flow channel.

Thermisch vorteilhaft ist es, wenn die Unterkühlstrecke, die dem zweiten Bereich des ersten Strömungskanals entspricht, einen möglichst großen Volumenanteil am Gesamtvolumen des ersten Strömungskanals einnimmt, da dadurch die Fluidtemperatur am Kondensatoraustritt besonders tief gehalten werden kann. Dies kann zu einer Verbesserung der Systemleistung führen.It is thermally advantageous if the subcooling section, which corresponds to the second region of the first flow channel, takes up the largest possible volume proportion of the total volume of the first flow channel, since this allows the fluid temperature at the condenser outlet to be kept particularly low. This can improve system performance.

Es wird jedoch, durch die Verringerung der Wärmeübertragungsfläche im Kondensationsbereich, welcher dem ersten Bereich des ersten Strömungskanals entspricht, die Wärmeübertragung verschlechtert. Dies wirkt sich negativ auf den Druck auf der Hochdruckseite des Kältemittelkreislaufes aus, was insgesamt zu einer schlechteren Systemleistung führt.However, the reduction in the heat transfer area in the condensation area, which corresponds to the first area of the first flow channel, worsens the heat transfer. This has a negative effect on the pressure on the high pressure side of the refrigerant circuit, which overall leads to poorer system performance.

Daher ist eine Begrenzung der Unterkühlstrecke auf die oben angegebenen Volumenanteile vorteilhaft im Sinne der Effizienz des Kondensators.Therefore, limiting the subcooling section to the volume proportions specified above is advantageous in terms of the efficiency of the condenser.

Weiterhin ist es zu bevorzugen, wenn die Kühlmittelzuleitung und die Kühlmittelableitung des zweiten Strömungskanals, entlang der Durchströmungsrichtung eines Kanals zwischen den Scheibenelementen betrachtet, an gegenüberliegenden Endbereichen des Kondensators angeordnet sind.Furthermore, it is preferable if the coolant supply line and the coolant discharge line of the second flow channel, viewed along the flow direction of a channel between the disk elements, are arranged at opposite end regions of the condenser.

Die Anordnung der Kühlmittelzuleitung und der Kühlmittelableitung an gegenüberliegenden Endbereichen des Kondensators ist besonders vorteilhaft, wenn das Kühlmittel den Kondensator ohne wesentliche Umlenkung durchströmen soll.The arrangement of the coolant supply line and the coolant discharge line at opposite end regions of the condenser is particularly advantageous if the coolant is to flow through the condenser without significant deflection.

Gemäß einer besonders bevorzugten Weiterbildung der Erfindung kann es vorgesehen sein, dass der erste Bereich und/oder der zweite Bereich des ersten Strömungskanals innerhalb des Kondensators ein oder mehrmals in seiner Hauptdurchströmungsrichtung umgelenkt wird.According to a particularly preferred development of the invention, it can be provided that the first area and / or the second area of the first flow channel within the condenser is deflected one or more times in its main flow direction.

Durch eine einfache oder mehrfache Umlenkung der Strömungsrichtung kann erreicht werden, dass das Kältemittel und das Kühlmittel entweder im Gleichstrom oder im Gegenstrom zueinander strömen. Dadurch kann der Wärmeübertrag zwischen Kühlmittel und Kältemittel beeinflusst werden.A single or multiple deflection of the flow direction can ensure that the refrigerant and the coolant flow either in cocurrent or in countercurrent to one another. This can influence the heat transfer between coolant and refrigerant.

Darüber hinaus kann es vorteilhaft sein, wenn der zweite Strömungskanal innerhalb des Kondensators zumindest einmal in seiner Hauptdurchströmungsrichtung um etwa 180° umgelenkt wird.In addition, it can be advantageous if the second flow channel within the condenser is deflected at least once in its main flow direction by approximately 180 °.

Eine Umlenkung des zweiten Strömungskanals kann vorteilhaft sein, um das strömende Kühlmittel mit dem Kältemittel in Gleichstrom oder Gegenstrom zu bringen. Der Wärmeübertrag zwischen Kältemittel und Kühlmittel kann durch eine Umlenkung des zweiten Strömungskanals beeinflusst werden.A deflection of the second flow channel can be advantageous in order to bring the flowing coolant with the coolant in cocurrent or countercurrent. The heat transfer between refrigerant and coolant can be influenced by deflecting the second flow channel.

Ein weiteres bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass der zweite Strömungskanal in seiner Hauptdurchströmungsrichtung einmal um etwa 180° umgelenkt wird, wodurch ein Hinströmbereich und ein Rückströmbereich entsteht, wobei das innere Volumen des Hinströmbereichs des zweiten Strömungskanals und das innere Volumen des Rückströmbereichs des zweiten Strömungskanals ungefähr gleich groß und/oder ungleich groß sind.Another preferred embodiment is characterized in that the second flow channel is deflected once by approximately 180 ° in its main flow direction, which creates an inflow area and a backflow area, the inner volume of the inflow area of the second flow channel and the inner volume of the backflow area of the second flow channel being approximately are equal and / or unequal.

Der Hinströmbereich des zweiten Strömungskanals und der Rückströmbereich können vorteilhafterweise hinsichtlich ihres Volumens ungefähr gleich groß sein. Dies ist insbesondere hinsichtlich der entstehenden Druckverluste für das Kühlmittel besonders vorteilhaft.The flow area of the second flow channel and the return flow area can advantageously be approximately the same size with regard to their volume. This is particularly advantageous with regard to the resulting pressure losses for the coolant.

Für den Fall, dass sich die Trennung in Hinströmbereich und Rückströmbereich an der Aufteilung in Kondensationsbereich und Unterkühlbereich orientiert, kann jedoch auch eine ungleiche Verteilung vorteilhaft sein.In the event that the separation into the outward flow area and the return flow area is based on the division into the condensation area and subcooling area, an unequal distribution can, however, also be advantageous.

Vorteilhaft ist es weiterhin, wenn das Kühlmittel derart durch den zweiten Strömungskanal strömt, dass es entlang der Hauptdurchströmungsrichtung des zweiten Strömungskanals zuerst in thermischen Kontakt mit dem zweiten Bereich des ersten Strömungskanals tritt oder es zuerst mit dem zweiten Bereich und wenigstens einem Abschnitt des ersten Bereichs des ersten Strömungskanals in thermischen Kontakt tritt und jeweils nach der Umlenkung im Wesentlichen in thermischen Kontakt mit dem ersten Bereich des ersten Strömungskanals tritt.It is also advantageous if the coolant flows through the second flow channel in such a way that it first comes into thermal contact with the second area of the first flow channel along the main flow direction of the second flow channel or it first comes into thermal contact with the second area and at least a section of the first area of the first flow channel comes into thermal contact and, after the deflection, comes into essentially thermal contact with the first region of the first flow channel.

Durch ein Einströmen des Kühlmittels derart, dass im Wesentlichen zuerst ein thermischer Kontakt zwischen dem zweiten Bereich des zweiten Strömungskanals und dem Kühlmittel stattfindet, kann die Ausgangstemperatur des Kältemittels aus dem Kondensator wirksam reduziert werden. Das frisch in den Kondensator einströmende Kühlmittel weist seine niedrigste Temperatur direkt am Fluideinlass auf. Dadurch ist der Wärmeübergang besonders hoch. Um einen unnötig hohen Druckverlust infolge der ungleichen Volumenanteile zwischen dem ersten Bereich und dem zweiten Bereich des ersten Strömungskanals für das Kühlmittel zu vermeiden, kann das Kühlmittel zusätzlich zu dem thermischen Kontakt mit dem zweiten Bereich auch mit einem Abschnitt des ersten Bereichs des ersten Strömungskanals in thermischen Kontakt gebracht werden. Auf diese Weise werden die Hinströmstrecke und die Rückströmstrecke des Kühlmittels derart gestaltet, dass ein annähernd gleiches inneres Volumen vorhanden ist, wodurch der innere Druckverlust reduziert wird.By flowing in the coolant in such a way that there is essentially first thermal contact between the second region of the second flow channel and the coolant, the outlet temperature of the coolant from the condenser can be effectively reduced. The coolant freshly flowing into the condenser has its lowest temperature directly at the fluid inlet. This means that the heat transfer is particularly high. In order to avoid an unnecessarily high pressure loss due to the unequal volume proportions between the first area and the second area of the first flow channel for the coolant, the coolant can in addition to the thermal contact with the second area also with a section of the first area of the first flow channel in thermal Be brought into contact. In this way, the flow path and the return flow path of the coolant are designed in such a way that an approximately equal internal volume is present, as a result of which the internal pressure loss is reduced.

Weiterhin ist es zweckmäßig, wenn zwischen dem ersten Bereich zur Enthitzung und Kondensation des dampfförmigen Kältemittels und dem zweiten Bereich zur Unterkühlung des kondensierten Kältemittels eine thermische Trennung vorhanden ist.Furthermore, it is useful if there is a thermal separation between the first area for de-heating and condensation of the vaporous refrigerant and the second area for subcooling the condensed refrigerant.

Durch eine thermische Trennung zwischen dem Kondensationsbereich und dem Unterkühlbereich des Kondensators, kann eine thermische Wechselwirkung zwischen den Fluiden im Unterkühlbereich und im Kondensationsbereich erreicht werden. Insbesondere kann eine erneute Erwärmung des Kältemittels vermieden werden, was zu einer Steigerung der System leistung des Kondensators führen kann.By means of a thermal separation between the condensation area and the subcooling area of the condenser, a thermal interaction between the fluids in the subcooling area and in the condensation area can be achieved. In particular, renewed heating of the refrigerant can be avoided, which can lead to an increase in the system performance of the condenser.

In einer alternativen Ausführungsform der Erfindung kann es vorgesehen sein, dass die thermische Trennung als thermisch isolierende Scheibe, als Luftspalt, als Luft führender Kanal, als Teil des zweiten Strömungskanals mit einem mehrfach ausgeführten Kühlmittelpfad und/oder als Teil des zweiten Strömungskanals mit einer größeren Strömungsquerschnittsfläche als der übrige zweite Strömungskanal ausgebildet ist.In an alternative embodiment of the invention, it can be provided that the thermal separation as a thermally insulating disk, as an air gap, as an air-conducting channel, as part of the second flow channel with a multiple coolant path and / or as part of the second flow channel with a larger flow cross-sectional area is designed as the rest of the second flow channel.

Vorteilhafterweise kann die thermische Trennung durch eines der Scheibenelemente des Kondensators realisiert werden, wodurch der konstruktive Aufwand minimal gehalten wird. Speziell angefertigte Scheibenelemente können dagegen zu einer stärkeren thermischen Trennung führen.The thermal separation can advantageously be implemented by one of the disk elements of the condenser, whereby the structural effort is kept to a minimum. Specially manufactured pane elements, on the other hand, can lead to a stronger thermal separation.

Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und der nachfolgenden Figurenbeschreibung beschrieben.Advantageous developments of the present invention are described in the subclaims and the following description of the figures.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:

Fig.1
eine perspektivische Ansicht eines Kondensators in Stapelscheibenbauweise, mit einem außen am Gehäuse angeordneten Sammler,
Fig. 2
eine weitere Ansicht des Kondensators der Figur 1, wobei besonders die Leitung vom Sammler zur Rückseite des Kondensators und die Ableitung des Kältemittels aus dem Kondensator zu erkennen ist,
Fig. 3
eine schematische Darstellung eines Kondensators in Stapelscheibenbauweise mit einem außen angeordneten Sammler, wobei das Kühlmittel und das Kältemittel im Kondensationsbereich im Gegenstrom zueinander strömen und im Unterkühlbereich im Gleichstrom zueinander strömen,
Fig. 4
eine weitere schematische Ansicht eines Kondensators, wobei das Kühlmittel und das Kältemittel sowohl im Kondensationsbereich als auch im Unterkühlbereich im Gegenstrom zueinander strömen, und
Fig.5
eine weitere schematische Ansicht eines Kondensators, wobei das Kühlmittel innerhalb des Kondensators umgelenkt wird und dadurch Bereiche innerhalb des Kondensators entstehen, in denen das Kühlmittel und das Kältemittel sowohl im Gleichstrom als auch im Gegenstrom zueinander strömen, wobei das Kältemittel durch den Unterkühlbereich aus dem Kondensationsbereich in den Sammler überführt wird.
Fig.6
eine weitere schematische Ansicht eines Kondensators, wobei zwischen dem Kondensationsbereich und dem Unterkühlbereich eine thermische Trennung durch einen doppelt ausgeführten Kühlmittelpfad eingebracht ist.
In the following, the invention is explained in detail using exemplary embodiments with reference to the drawings. In the drawings show:
Fig.1
a perspective view of a capacitor in stacked plate design, with a collector arranged on the outside of the housing,
Fig. 2
another view of the capacitor of the Figure 1 The line from the collector to the rear of the condenser and the discharge of the refrigerant from the condenser can be seen in particular,
Fig. 3
a schematic representation of a condenser in stacked plate design with an externally arranged collector, wherein the coolant and the refrigerant flow in countercurrent to each other in the condensation area and flow in cocurrent to each other in the subcooling area,
Fig. 4
a further schematic view of a condenser, wherein the coolant and the refrigerant flow in countercurrent to one another both in the condensation area and in the subcooling area, and
Fig. 5
Another schematic view of a condenser, with the coolant being deflected within the condenser, creating areas within the condenser in which the coolant and the refrigerant flow both in cocurrent and in countercurrent to one another, the refrigerant being removed from the condensation area through the subcooling area in the collector is convicted.
Fig. 6
a further schematic view of a condenser, a thermal separation being introduced between the condensation area and the subcooling area by means of a double coolant path.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Die Figur 1 zeigt eine perspektivische Ansicht eines Kondensators 1 in Stapelscheibenbauweise. Der Kondensator 1 besteht dabei aus einer Mehrzahl einzelner Scheibenelemente, welche aufeinandergestapelt den Wärmeübertragerblock 7 bilden. Der Wärmeübertragerblock 7 ist in seinem Inneren so gestaltet, dass sich zwischen den einzelnen Scheibenelementen eine Mehrzahl von Kanälen ergeben. Eine Anzahl dieser Kanäle ist einem ersten Strömungskanal zugeordnet, welcher von einem Kältemittel durchströmt werden kann. Eine weitere Anzahl der Kanäle ist einem zweiten Strömungskanal zugeordnet, welcher von einem Kühlmittel durchströmt werden kann. Der erste Strömungskanal ist im Inneren des Wärmeübertragerblocks 7 mit dem zweiten Strömungskanal zumindest teilweise in thermischen Kontakt, sodass ein Wärmeübertrag zwischen dem ersten Strömungskanal und dem zweiten Strömungskanal stattfinden kann.The Figure 1 shows a perspective view of a capacitor 1 in stacked disk design. The condenser 1 consists of a plurality of individual disk elements which, stacked on top of one another, form the heat exchanger block 7. The heat exchanger block 7 is designed in its interior so that between the individual disc elements result in a plurality of channels. A number of these channels are assigned to a first flow channel through which a refrigerant can flow. A further number of the channels are assigned to a second flow channel through which a coolant can flow. The first flow channel is at least partially in thermal contact in the interior of the heat exchanger block 7 with the second flow channel, so that a heat transfer can take place between the first flow channel and the second flow channel.

Über verschiedenartige Ausgestaltungen der Scheibenelemente kann erreicht werden, dass im Inneren des Wärmeübertragerblocks 7 mehrere Strömungspfade für den ersten beziehungsweise den zweiten Strömungskanal entstehen. Das durch den ersten Strömungskanal beziehungsweise den zweiten Strömungskanal strömende Fluid kann durch die verschiedenen Strömungspfade innerhalb des Wärmeübertragerblocks 7 umgelenkt werden und so insgesamt einen längeren Strömungsweg innerhalb des Kondensators 1 zurücklegen.By means of various designs of the disk elements it can be achieved that a plurality of flow paths for the first and the second flow channel are created inside the heat exchanger block 7. The fluid flowing through the first flow channel or the second flow channel can be deflected by the various flow paths within the heat exchanger block 7 and thus cover a longer flow path overall within the condenser 1.

An einer Außenfläche des Wärmeübertragerblocks 7 ist ein Sammler 2 angeordnet. Dieser Sammler dient zur Bevorratung des Kältemittels, welches entlang des ersten Strömungskanals fließt. Über den Sammler 2 kann eine Volumenschwankung des Kältemittels innerhalb des Kondensators und des übrigen Kältemittelkreislaufs ausgeglichen werden. In vorteilhaften Ausführungen kann der Sammler 2 Mittel zur Trocknung und Filterung des Kältemittels aufweisen.A collector 2 is arranged on an outer surface of the heat exchanger block 7. This collector serves to store the refrigerant which flows along the first flow channel. A volume fluctuation of the refrigerant within the condenser and the rest of the refrigerant circuit can be compensated for via the collector 2. In advantageous embodiments, the collector 2 can have means for drying and filtering the refrigerant.

Der in Figur 1 gezeigte Sammler 2 weist ein zylindrisches Gehäuse auf und ist an der Außenseite des Wärmeübertragerblocks 7 angeordnet. In alternativen Ausführungsformen kann der Sammler 2 auch andere Bauformen aufweisen. Die Darstellung des Sammlers 2 ist beispielhaft.The in Figure 1 The collector 2 shown has a cylindrical housing and is arranged on the outside of the heat exchanger block 7. In alternative embodiments, the collector 2 can also have other designs. The representation of the collector 2 is exemplary.

Der Sammler 2 ist über Sammleranschlüsse 8 mit dem ersten Strömungskanal innerhalb des Kondensators 1 verbunden und steht mit diesem in Fluidkommunikation. Der Kondensator 1 weist darüber hinaus einen Kältemitteleinlass 3 an seinem oberen linken Endbereich auf. Am oberen rechten Endbereich weist der Kondensator 1 einen Kühlmittelauslass 6 auf. Am unteren rechten Endbereich weist der Kondensator 1 einen Kühlmitteleinlass 5 auf.The collector 2 is connected to the first flow channel within the condenser 1 via collector connections 8 and is in fluid communication therewith. The condenser 1 also has a refrigerant inlet 3 at its upper left end region. The condenser 1 has a coolant outlet 6 at the upper right end area. At the lower right end area, the condenser 1 has a coolant inlet 5.

Ein Kältemittel kann so über den Kältemitteleinlass 3 in den ersten Strömungskanal des Wärmeübertragerblocks 7 einströmen und sich durch die Kanäle, welche dem ersten Strömungskanal zugeordnet sind verteilen. Aus dem ersten Strömungskanal 1 strömt das Kältemittel sodann über die Sammleranschlüsse 8 in den Sammler 2. Vom Sammler 2 strömt das Kältemittel zurück in den Wärmeübertragerblock 7 und verteilt sich weiter durch den ersten Strömungskanal des Wärmeübertragerblocks 7. Schließlich strömt das Kältemittel über den Kältemittelauslass 4, welcher auf der dem Betrachter abgewandten Rückseite des Kondensators 1 angeordnet ist, aus dem Wärmeübertragerblock 7 des Kondensators 1 aus.A refrigerant can thus flow into the first flow channel of the heat exchanger block 7 via the refrigerant inlet 3 and distribute itself through the channels which are assigned to the first flow channel. The refrigerant then flows from the first flow channel 1 via the collector connections 8 into the collector 2. From the collector 2 the refrigerant flows back into the heat exchanger block 7 and is further distributed through the first flow channel of the heat exchanger block 7. Finally, the refrigerant flows through the refrigerant outlet 4, which is arranged on the rear side of the condenser 1 facing away from the viewer, from the heat exchanger block 7 of the condenser 1.

Das Kühlmittel strömt durch den Kühlmitteleinlass 5 in den zweiten Strömungskanal des Wärmeübertragerblocks 7 und verteilt sich entlang dieses Strömungskanals im Wärmeübertragerblock und strömt letztlich durch den Kühlmittelauslass 6 aus dem Kondensator aus.The coolant flows through the coolant inlet 5 into the second flow channel of the heat exchanger block 7 and is distributed along this flow channel in the heat exchanger block and ultimately flows out of the condenser through the coolant outlet 6.

Der erste Strömungskanal ist in einen ersten Bereich und einen zweiten Bereich eingeteilt. Der erste Bereich erstreckt sich vom Kältemitteleinlass 3 bis zum Übergang in den Sammler 2. Der zweite Bereich des ersten Strömungskanals erstreckt sich vom Auslass des Sammlers 2 bis zum Kältemittelauslass 4 des Kondensators 1. Das Kühlmittel, welches durch den zweiten Strömungskanal strömt, ist sowohl mit dem ersten Bereich als auch mit dem zweiten Bereich des ersten Strömungskanals in thermischem Kontakt, wodurch ein Wärmeübergang entsteht.The first flow channel is divided into a first area and a second area. The first area extends from the refrigerant inlet 3 to the transition into the collector 2. The second area of the first flow channel extends from the outlet of the collector 2 to the refrigerant outlet 4 of the condenser 1. The coolant which flows through the second flow channel is with the first area as well as with the second area of the first flow channel in thermal contact, whereby a heat transfer occurs.

Die Figur 2 zeigt eine Rückansicht des Kondensators 1 der Figur 1. Es sind insbesondere die Rohrleitung 10 und der Fluidauslass 4 zu erkennen. Die Rohrleitung 10 stellt dabei die Fluidleitung dar, welche vom Auslass des Sammlers 2 zum Wärmeübertragerblock 7 zurückführt und das Kältemittel wieder zwischen die Scheibenelemente leitet.The Figure 2 FIG. 11 shows a rear view of the capacitor 1 of FIG Figure 1 . In particular, the pipeline 10 and the fluid outlet 4 can be seen. The pipeline 10 represents the fluid line which runs from the outlet of the collector 2 to the heat exchanger block 7 returns and guides the refrigerant back between the disk elements.

Die Figur 3 zeigt eine schematische Ansicht eines Kondensators 20. Eine mögliche Ausgestaltung des Kondensators der Figuren 3 bis 5 ist in den Figuren 1 und 2 gezeigt. Die Verläufe der äußeren Rohrleitungen sowie die Anordnung des Sammlers können dabei von den in Figur 1 und 2 gezeigten Beispielen abweichen. Ebenso die Anzahl der verwendeten Scheibenelemente sowie die Anordnung der einzelnen Fluideinlässe und Fluidauslässe am Wärmeübertragerblock.The Figure 3 FIG. 11 shows a schematic view of a capacitor 20. One possible embodiment of the capacitor from FIG Figures 3 to 5 is in the Figures 1 and 2 shown. The routes of the outer pipelines and the arrangement of the collector can be determined by the in Figures 1 and 2 examples shown differ. The same applies to the number of disc elements used and the arrangement of the individual fluid inlets and fluid outlets on the heat exchanger block.

Der in Figur 3 gezeigte Kondensator 20 weist einen außen angeordneten Sammler 21 auf.The in Figure 3 The capacitor 20 shown has a collector 21 arranged on the outside.

Mit dem Bezugszeichen 27 ist die Kühlmittelzuleitung zum Kondensator 20 dargestellt. Mit dem Bezugszeichen 28 ist die Kühlmittelableitung des Kondensators 20 dargestellt. Das Kühlmittel strömt entlang der Strömungswege 31, 32 entlang des bereits vorher angesprochenen zweiten Strömungskanals durch den Kondensator 20. In Figur 3 strömt das Kühlmittel ohne Umlenkung sowohl durch den ersten Bereich des ersten Strömungskanals, weicher einen Kondensationsbereich 34 darstellt, als auch durch den zweiten Bereich des ersten Strömungskanals, welcher einen Unterkühlbereich 35 darstellt.The coolant feed line to the condenser 20 is shown with the reference numeral 27. The coolant discharge of the condenser 20 is shown with the reference numeral 28. The coolant flows along the flow paths 31, 32 along the previously mentioned second flow channel through the condenser 20. In Figure 3 the coolant flows without deflection both through the first region of the first flow channel, which represents a condensation region 34, and through the second region of the first flow channel, which represents a subcooling region 35.

Der Kondensationsbereich 34 ist im Verhältnis zum Unterkühlbereich 35 größer dimensioniert und nimmt anteilig am Gesamtvolumen des ersten Strömungskanals 1 einen größeren Anteil an.The condensation area 34 is dimensioned larger in relation to the subcooling area 35 and proportionally assumes a larger proportion of the total volume of the first flow channel 1.

Um allgemein eine optimale Funktion eines Kondensators zu gewährleisten, ist es anzustreben, dass das Verhältnis zwischen dem Kondensationsbereich und dem Unterkühlbereich in einem gewissen maximalen Verhältnis zueinander steht. Es ist daher ratsam, dass das Innenvolumen des ersten Strömungskanals, welches dem Unterkühlbereich zugeordnet ist, im Verhältnis zum Innenvolumen des ersten Strömungskanals, welches der Kondensationsfläche zugeordnet ist, nicht größer als 40% des Gesamtinnenvolumens des ersten Strömungskanals ist. Vorteilhafterweise ist es anzustreben, dass das Innenvolumen des ersten Strömungskanals, welches dem Unterkühlbereich zugeordnet ist, sogar nicht größer als 20% wird, optimal ist eine Aufteilung des Gesamtinnenvolumens des ersten Strömungskanals in ca. 5% bis 15% des Volumens für die Unterkühlstrecke und 85% bis 95% des Innenvolumens für den Kondensationsbereich.In order to generally ensure optimal functioning of a condenser, it is desirable that the ratio between the condensation area and the subcooling area is in a certain maximum ratio to one another. It is therefore advisable that the internal volume of the first flow channel, which is assigned to the subcooling area, in relation to the internal volume of the first flow channel, which is assigned to the condensation surface, is not greater than 40%. of the total internal volume of the first flow channel. Advantageously, the aim should be that the internal volume of the first flow channel, which is assigned to the subcooling area, is not even greater than 20%; optimally, the total internal volume of the first flow channel is divided into approx. 5% to 15% of the volume for the subcooling section and 85 % to 95% of the internal volume for the condensation area.

Dem Kondensator 20 der Figur 3 wird über die erste Fluidzuleitung 23 ein Kältemittel in den Kondensationsbereich 34 zugeführt. Dort strömt es verteilt über die einzelnen Kanäle des Kondensationsbereichs 34 nach unten und tritt über die erste Fluidableitung 24 in den Sammler 21 ein. Vom Sammler 21 wird das nun vollständig kondensierte Kältemittel entlang der Fluidleitung 33 über die zweite Fluidzuleitung 25 in den Unterkühlbereich 35 eingeleitet. Die Ableitung des Kältemittels aus dem Kondensationsbereich 34 sowie die Zuleitung in den Unterkühlbereich 35 finden dabei am unteren Endbereich des Kondensators 20 statt. Das Kältemittel strömt sodann im Unterkühlbereich 35 nach oben und strömt über die zweite Fluidableitung 26 aus dem Kondensator 20 aus.The capacitor 20 of Figure 3 a refrigerant is fed into the condensation region 34 via the first fluid feed line 23. There it flows downwards in a distributed manner via the individual channels of the condensation region 34 and enters the collector 21 via the first fluid discharge line 24. The now completely condensed refrigerant is introduced from the collector 21 along the fluid line 33 via the second fluid supply line 25 into the subcooling area 35. The discharge of the refrigerant from the condensation area 34 and the supply line to the subcooling area 35 take place at the lower end area of the condenser 20. The refrigerant then flows upward in the subcooling region 35 and flows out of the condenser 20 via the second fluid discharge line 26.

Über die Pfeile mit den Bezugszeichen 29 und 30 ist der Strömungsweg des Kältemittels im Inneren des Kondensators dargestellt. Die Pfeile mit dem Bezugszeichen 31 und 32 stellen den Strömungsweg des Kühlmittels innerhalb des Kondensators 20 dar. Es ist zu erkennen, dass das Kühlmittel im Gegenstrom zum Kältemittel im Kondensationsbereich 34 strömt und im Gleichstrom im Unterkühlbereich 35. Durch eine Umkehrung der Durchströmungsrichtung des Kühlmittels ist auch eine Umkehrung dieser Verhältnisse erreichbar.The flow path of the refrigerant inside the condenser is shown by the arrows with the reference symbols 29 and 30. The arrows with the reference numerals 31 and 32 represent the flow path of the coolant within the condenser 20. It can be seen that the coolant flows in countercurrent to the refrigerant in the condensation area 34 and in cocurrent in the subcooling area 35. By reversing the direction of flow of the coolant a reversal of these relationships can also be achieved.

In Figur 3 ist ein Kondensator 20 dargestellt, in dem sowohl innerhalb des Kondensationsbereichs 34 als auch des Unterkühlbereichs 35 keine gesonderte Umlenkung des Kühlmittels oder des Kältemittels stattfindet.In Figure 3 a condenser 20 is shown, in which no separate deflection of the coolant or the refrigerant takes place either within the condensation region 34 or the subcooling region 35.

Die Figur 4 zeigt eine alternative Ausgestaltung eines Kondensators 40. Der Kondensator 40 weist einen Wärmeübertragerblock 42 auf, welcher wie in den Figuren 1 und 2 beschrieben, aus einer Mehrzahl von Scheibenelementen besteht. Am Äußeren des Kondensators 40 ist ein Sammler 41 angeordnet, welcher mit dem Kondensator 42 in Fluidkommunikation steht. Wie auch in der Figur 3 wird das Kühlmittel im Wesentlichen ohne Umlenkung entlang seiner Hauptdurchströmungsrichtung durch den Kondensator 40 geströmt. Die Kühlmittelzuleitung 47 ist am unteren Bereich des Kondensators 40 angeordnet. Die Kühlmittelableitung 48 ist am oberen Bereich des Kondensators 40 angeordnet.The Figure 4 shows an alternative embodiment of a condenser 40. The condenser 40 has a heat exchanger block 42, which as in FIG Figures 1 and 2 described, consists of a plurality of disc elements. A collector 41 is arranged on the exterior of the condenser 40 and is in fluid communication with the condenser 42. As in the Figure 3 the coolant flows through the condenser 40 essentially without deflection along its main flow direction. The coolant supply line 47 is arranged in the lower region of the condenser 40. The coolant discharge line 48 is arranged in the upper region of the condenser 40.

In allen Figuren 3 bis 5 ist die Positionierung sowohl der Fluidzuleitung als auch der Fluidableitung sowohl für das Kühlmittel als auch für das Kältemittel lediglich angedeutet. Die schematische Darstellung vermag nicht die genaue Positionierung der Zuleitungen beziehungsweise Ableitungen an den Außenflächen der Kondensatoren darzustellen. Die Zuleitungen beziehungsweise Ableitungen können vornehmlich an den Stirnflächen des Kondensators angeordnet sein, welche sich durch das jeweils oberste beziehungsweise unterste Scheibenelement des Wärmeübertragerblocks ergeben. Eine Zuführung an den Seitenflächen der Scheibenelemente ist konstruktiv sehr aufwendig und nur bedingt möglich. Die Zuführung der Fluide in die einzelnen Kanäle innerhalb des Kondensators kann durch die bauliche Gestaltung der einzelnen Scheibenelemente auf unterschiedlichste Art erfolgen.In all Figures 3 to 5 the positioning of both the fluid supply line and the fluid discharge line for both the coolant and the refrigerant is only indicated. The schematic representation is not able to show the exact positioning of the supply lines or discharges on the outer surfaces of the capacitors. The supply lines or discharge lines can primarily be arranged on the end faces of the condenser, which result from the respective uppermost or lowermost disk element of the heat exchanger block. A feed on the side surfaces of the disk elements is structurally very complex and only possible to a limited extent. The supply of the fluids into the individual channels within the condenser can take place in the most varied of ways due to the structural design of the individual disk elements.

Das Fluid kann beispielsweise direkt in den ersten Kanal, welcher sich zwischen dem ersten und dem zweiten Scheibenelement ergibt, geleitet werden. Alternativ kann das Fluid beispielsweise auch durch eine Verschließung einzelner Scheibenelemente beziehungsweise durch das Einführen eines Tauchrohres in jeden anderen Kanal zwischen den Scheibenelementen eingeleitet werden. Die Möglichkeiten der Aufteilung der einzelnen Kanäle in den ersten Strömungskanal beziehungsweise den zweiten Strömungskanal innerhalb des Kondensators entsprechen im Wesentlichen denen, die bereits im Stand der Technik bekannt sind.The fluid can, for example, be conducted directly into the first channel, which results between the first and the second disk element. Alternatively, the fluid can also be introduced, for example, by closing off individual disk elements or by inserting a dip tube into any other channel between the disk elements. The options for dividing the individual channels into the first flow channel or the second flow channel within the condenser essentially correspond to those that are already known in the prior art.

In Figur 4 strömt das Kältemittel über die erste Fluidzuleitung 43 im oberen Bereich des Kondensators 40 in den Kondensationsbereich 54. Es strömt entlang des Strömungsweges 49 im Kondensationsbereich nach unten und strömt über die erste Fluidableitung 44 in den Sammler 41 über. Vom Sammler 41 wird das vollständig kondensierte Kältemittel über die Fluidleitung 53 zur zweiten Fluidzuleitung 45 geleitet. Welche im Gegensatz zur Figur 3 nun im oberen Bereich des Kondensators 40 auf der Seite der Unterkühlstrecke 55 angeordnet ist. Das Kältemittel strömt sodann entlang des Strömungsweges 50 im Unterkühlbereich 55 des Kondensators 40 nach unten und strömt letztlich über die zweite Fluidableitung 46 aus dem Kondensator 40 aus.In Figure 4 the refrigerant flows via the first fluid supply line 43 in the upper area of the condenser 40 into the condensation area 54. It flows down along the flow path 49 in the condensation area and flows via the first fluid discharge line 44 in the collector 41 over. The completely condensed refrigerant is conducted from the collector 41 via the fluid line 53 to the second fluid supply line 45. Which in contrast to the Figure 3 is now arranged in the upper region of the condenser 40 on the side of the subcooling section 55. The refrigerant then flows downward along the flow path 50 in the subcooling area 55 of the condenser 40 and ultimately flows out of the condenser 40 via the second fluid discharge line 46.

Durch die nicht umgelenkte Strömung des Kühlmittels von unten nach oben durch den Kondensator 40 und die Zuführung des Kältemittels im oberen Bereich des Kondensators 40 ist das Kühlmittel mit dem Kältemittel sowohl im Kondensationsbereich 54 als auch im Unterkühlbereich 55 im Gegenstrom.Due to the undirected flow of the coolant from bottom to top through the condenser 40 and the supply of the coolant in the upper area of the condenser 40, the coolant is in countercurrent with the refrigerant in both the condensation area 54 and the subcooling area 55.

Durch eine Umkehrung der Durchströmungsrichtung des Kühlmittels kann erreicht werden, dass sowohl im Kondensationsbereich 54 als auch im Unterkühlbereich 55 das Kältemittel mit dem Kühlmittel im Gleichstrom strömt. Um einen höheren Wärmeübergang zwischen dem Kältemittel und dem Kühlmittel zu erzeugen, ist jedoch eine Auslegung gemäß der Figur 4 zu bevorzugen.By reversing the direction of flow of the coolant, it can be achieved that both in the condensation region 54 and in the subcooling region 55 the coolant flows in cocurrent with the coolant. In order to generate a higher heat transfer between the refrigerant and the coolant, however, a design according to FIG Figure 4 to prefer.

Die Figur 5 zeigt eine weitere Ausführung eines Kondensators 60. Der Kondensator 60 weist einen Wärmeübertragerblock 62 auf, der, wie bereits zuvor beschrieben, aus den einzelnen Scheibenelementen gebildet ist. Weiterhin weist der Kondensator 60 einen Kondensationsbereich 81 sowie einen Unterkühlbereich 82 auf. Im Gegensatz zu den vorausgegangenen Figuren 3 und 4 ist nun der Kondensationsbereich 81 in mehrere Strömungspfade 79, 80 aufgeteilt. Der Kondensationsbereich 81 wird in der Darstellung der Figur 5 aus dem Strömungspfad 79 und dem Strömungspfad 80 gebildet. Der Unterkühlbereich 82 ist aus dem Strömungspfad 77 gebildet. Zwischen dem Strömungspfad 80 und dem Strömungspfad 79 erfährt das Kältemittel eine Umlenkung um etwa 180°. Jeder der Strömungspfade 77, 79 und 80 des Kondensationsbereichs 81 und des Unterkühlbereichs 82 kann aus einer Einzahl oder einer Mehrzahl von Kanälen des ersten Strömungskanals bestehen.The Figure 5 shows a further embodiment of a condenser 60. The condenser 60 has a heat exchanger block 62 which, as already described above, is formed from the individual disk elements. Furthermore, the condenser 60 has a condensation area 81 and a subcooling area 82. In contrast to the previous ones Figures 3 and 4 the condensation region 81 is now divided into several flow paths 79, 80. The condensation region 81 is shown in FIG Figure 5 formed from the flow path 79 and the flow path 80. The sub-cooling region 82 is formed from the flow path 77. The refrigerant is deflected by approximately 180 ° between the flow path 80 and the flow path 79. Each of the flow paths 77, 79 and 80 of the condensation region 81 and the subcooling region 82 can consist of a single number or a plurality of channels of the first flow channel.

In alternativen Ausgestaltungen ist auch eine Unterteilung sowohl des Kondensationsbereichs als auch des Unterkühlbereichs in eine abweichende Anzahl von Strömungspfaden denkbar. Die Unterteilung des Kondensationsbereichs 81 in zwei Strömungspfade 79, 80 dient hier der besseren Darstellung, Um ein Durchströmungsprinzip analog der Figur 5 zu erhalten, ist es jedoch vorteilhaft, wenn die Anzahl der Strömungspfade im Kondensationsbereich 81 gerade und im Unterkühlbereich 82 ungerade ist.In alternative configurations, a subdivision of both the condensation area and the subcooling area into a different number of flow paths is also conceivable. The subdivision of the condensation area 81 into two flow paths 79, 80 is used here for better illustration, in order to establish a flow principle analogous to FIG Figure 5 However, it is advantageous if the number of flow paths in the condensation region 81 is even and in the subcooling region 82 is odd.

Außerhalb des Kondensators 60 ist ein Sammler 61 angeordnet durch welchen das Kältemittel strömt. Das Kühlmittel wird abweichend zu den Figuren 3 und 4 nun nicht ohne Umlenkung durch den Kondensator geleitet sondern erfährt innerhalb des Kondensators 60 eine Umlenkung um 180°, wodurch im Kondensator eine Hinströmstrecke und eine Rückströmstrecke entsteht.Outside the condenser 60, a collector 61 is arranged through which the refrigerant flows. The coolant is different from the Figures 3 and 4 now not passed through the condenser without a deflection, but instead experiences a deflection by 180 ° within the condenser 60, as a result of which a flow path and a return flow path are created in the condenser.

Das Kühlmittel wird über die Kühlmittelzuleitung 67 in den oberen Bereich des Kondensators 60 eingeleitet und im unteren Bereich des Kondensators 60 umgelenkt, um anschließend nach oben weiterzuströmen und über die Kühlmittelableitung 68 aus dem Kondensator 60 auszuströmen. Um diese Umlenkung zu realisieren, sind die Kanäle im Inneren des Wärmeübertragerblocks 62, welche dem zweiten Strömungskanal zugeordnet sind, über die bauliche Gestaltung der jeweiligen Scheibenelemente einander so zugeordnet, dass das Kühlmittel in einem Abschnitt des zweiten Strömungskanals aus dem oberen Bereich in den unteren Bereich des Kondensators 60 strömen kann. Dort strömt es in dem Rest des zweiten Strömungskanals über und entlang der Kanäle des zweiten Strömungskanals in den oberen Bereich des Kondensators zurück.The coolant is introduced into the upper region of the condenser 60 via the coolant supply line 67 and deflected in the lower region of the condenser 60 in order to then flow further upwards and out of the condenser 60 via the coolant discharge line 68. In order to realize this deflection, the channels in the interior of the heat exchanger block 62, which are assigned to the second flow channel, are assigned to one another via the structural design of the respective disk elements so that the coolant in a section of the second flow channel moves from the upper area to the lower area of the capacitor 60 can flow. There it flows in the remainder of the second flow channel over and back along the channels of the second flow channel into the upper region of the condenser.

In der in Figur 5 gezeigten Darstellung erstreckt sich die Hinströmstrecke des Kühlmittels auf die Kanäle des zweiten Strömungskanals, welche in direktem thermischen Austausch mit dem Unterkühlbereich 82 des ersten Strömungskanals stehen und auf eine Anzahl von Kanälen des zweiten Strömungskanals, die in thermischen Kontakt mit dem Kondensationsbereich 81 des ersten Strömungskanals stehen. Die Rückströmstrecke des Kühlmittels ist auf die Kanäle des zweiten Strömungskanals begrenzt, welche in direktem thermischen Austausch mit dem Kondensationsbereich 81 des ersten Strömungskanals stehen. Eine abweichende Aufteilung ist ebenso vorsehbar.In the in Figure 5 In the illustration shown, the inflow path of the coolant extends to the channels of the second flow channel, which are in direct thermal exchange with the subcooling area 82 of the first flow channel, and to a number of channels of the second flow channel, which are in thermal contact with the condensation area 81 of the first flow channel . The return path of the coolant is limited to the channels of the second flow channel, which are in direct thermal exchange with the condensation area 81 of the first flow channel. A different division is also possible.

Um einen möglichst gleichmäßigen Druckverlust sowohl in der Hinströmstrecke als auch in der Rückströmstrecke des Kühlmittels zu erreichen ist es vorteilhaft, wenn die Kanäle, welche den zweiten Strömungskanal in Summe bilden, ungefähr zu gleichen Teilen der Hinströmstrecke und der Rückströmstrecke des Kühlmittels zugeordnet sind.In order to achieve as uniform a pressure loss as possible both in the outward flow path and in the return flow path of the coolant, it is advantageous if the channels that together form the second flow channel are assigned approximately equal parts to the outward flow path and the return flow path of the coolant.

Die Aufteilung des zweiten Strömungskanals in Hinströmstrecke und Rückströmstrecke muss damit nicht mit der Aufteilung des ersten Strömungskanals in den Kondensationsbereich 81 und den Unterkühlbereich 82 deckungsgleich sein.The division of the second flow channel into the inflow section and the return section therefore does not have to be congruent with the division of the first flow channel into the condensation area 81 and the subcooling area 82.

Das Kältemittel wird dem Kondensator 60 über eine erste Fluidzuleitung 63 im oberen Bereich zugeführt. Das Kältemittel strömt dann entlang des ersten Strömungspfades 80 entlang des Strömungsweges 69 in den unteren Bereich des Kondensators 60. Dort erfährt es durch eine entsprechende Verbindung der inneren Scheibenelemente eine Umlenkung und strömt sodann durch den Strömungspfad 79 entlang des Strömungsweges 71 zurück in den oberen Bereich des Kältemittels. Sowohl der Strömungspfad 80 als auch der Strömungspfad 79 sind dem Kondensationsbereich 81 zugeordnet. Vom oberen Bereich des Strömungspfads 79 strömt das Kältemittel über eine erste Fluidableitung 64 in den oberen Bereich des Sammlers 61 ein.The refrigerant is supplied to the condenser 60 via a first fluid supply line 63 in the upper region. The refrigerant then flows along the first flow path 80 along the flow path 69 into the lower region of the condenser 60. There it is deflected by a corresponding connection of the inner disk elements and then flows back through the flow path 79 along the flow path 71 into the upper region of the Refrigerant. Both the flow path 80 and the flow path 79 are assigned to the condensation region 81. From the upper region of the flow path 79, the refrigerant flows into the upper region of the collector 61 via a first fluid discharge line 64.

Nach dem Durchströmen des Sammlers 61 strömt das vollständig kondensierte Kältemittel über eine zweite Fluidzuleitung 65 in den unteren Bereich des Kondensators 60, welcher dem Unterkühlbereich 82 zugeordnet ist. Das Kältemittel strömt dann im Strömungspfad 77 entlang des Strömungswegs 72 zurück in den oberen Bereich des Kondensators, wo es schließlich über die zweite Fluidableitung 66 aus dem Kondensator 60 abgeleitet wird.After flowing through the collector 61, the completely condensed refrigerant flows via a second fluid supply line 65 into the lower region of the condenser 60, which is assigned to the subcooling region 82. The refrigerant then flows in the flow path 77 along the flow path 72 back into the upper region of the condenser, where it is finally discharged from the condenser 60 via the second fluid discharge line 66.

Über die beschriebene Führung des Kühlmittels und die beschriebene Führung des Kältemittels ergibt sich, dass das Kühlmittel und das Kältemittel im gesamten Kondensator 60 im Gegenstrom strömen.The described routing of the coolant and the described routing of the refrigerant result in the coolant and the refrigerant flowing in countercurrent throughout the condenser 60.

Die Überleitung des Kältemittels aus dem Kondensationsbereich 81 zum Sammler 61 erfolgt durch den Unterkühlbereich 82 des Kondensators 60. Dies ist durch eine entsprechende Auslegung der einzelnen Scheibenelemente realisiert.The transfer of the refrigerant from the condensation area 81 to the collector 61 takes place through the subcooling area 82 of the condenser 60. This is realized by a corresponding design of the individual disk elements.

Der in Figur 5 gezeigte Kondensator 60 weist zwei Strömungspfade 79, 80 im Kondensationsbereich 81 des ersten Strömungskanals auf. Der Unterkühlbereich 82 weist nur einen Strömungspfad auf. In abweichenden Ausführungen können auch abweichende Anzahlen der Strömungspfade vorgesehen sein. Um das gleiche Durchströmungsprinzip wie in Figur 5 zu erhalten, ist es vorteilhaft, wenn die Anzahl an Strömungspfaden im Kondensationsbereich gerade ist und die Anzahl an Strömungspfaden im Unterkühlbereich ungerade ist.The in Figure 5 The condenser 60 shown has two flow paths 79, 80 in the condensation region 81 of the first flow channel. The subcooling area 82 has only one flow path. In different designs, different numbers of flow paths can also be provided. To use the same flow principle as in Figure 5 To obtain, it is advantageous if the number of flow paths in the condensation area is even and the number of flow paths in the subcooling area is odd.

Die einzelnen Verbindungsleitungen zwischen Wärmeübertragerblock und Sammler können entweder direkt mit dem Wärmeübertragerblock mitgelötet werden oder nachträglich durch innenliegende beziehungsweise außenliegende Rohre realisiert werden. Ebenso ist es vorsehbar die Zuleitung beziehungsweise Ableitung zwischen Wärmeübertragerblock und Sammler über eine entsprechende Gestaltung der beiden äußeren Scheibenelemente vorzunehmen. Beispielsweise ist es vorsehbar, dass Kanäle in die beiden äußeren oder auch in nur einer der äußeren Scheibenelemente integriert werden, welche als Zuleitung beziehungsweise Ableitung genutzt werden können.The individual connecting lines between the heat exchanger block and the collector can either be soldered directly to the heat exchanger block or implemented later using internal or external pipes. It is also possible to provide for the supply or discharge between the heat exchanger block and the collector by means of a corresponding design of the two outer disk elements. For example, it is possible to provide for channels to be integrated into the two outer pane elements or also into only one of the outer pane elements, which can be used as a supply line or a discharge line.

Die Figur 6 zeigt eine schematische Schnittansicht des Kondensators. Insbesondere sind die einzelnen Scheibenelemente zu erkennen, zwischen welchen die Kanäle ausgebildet sind, die zum ersten Strömungskanal oder zum zweiten Strömungskanal gehören.The Figure 6 shows a schematic sectional view of the capacitor. In particular, the individual disk elements can be seen, between which the channels are formed which belong to the first flow channel or the second flow channel.

Der erste Strömungskanal ist von einem Kältemittel durchflossen. Die Kanäle, die zum ersten Strömungskanal gehören sind schraffiert und mit dem Bezugszeichen 93 markiert. Die zum zweiten Strömungskanal gehörigen Kanäle sind von einem Kühlmittel durchströmt und mit dem Bezugszeichen 94 markiert.A refrigerant flows through the first flow channel. The channels that belong to the first flow channel are hatched and marked with the reference number 93. The channels belonging to the second flow channel have a coolant flowing through them and are marked with the reference number 94.

Weiterhin ist in Figur 6 die thermische Trennschicht 92 dargestellt, weiche zwischen dem Kondensationsbereich 90 und dem Unterkühlbereich 91 des Kondensators angeordnet ist. Durch die thermische Trennschicht 92 wird ein ungewollter Wärmeübertrag zwischen den Fluiden im Unterkühlbereich 91 und dem Kondensationsbereich 90 verhindert.Furthermore, in Figure 6 the thermal separation layer 92 is shown, which is arranged between the condensation area 90 and the subcooling area 91 of the condenser. The thermal separation layer 92 prevents unwanted heat transfer between the fluids in the subcooling area 91 and the condensation area 90.

Die thermische Trennschicht kann dabei beispielsweise durch einen luftgefüllten Kanal zwischen zwei Scheibeneiementen gebildet sein, durch einen Luftspalt zwischen zwei benachbarten Scheibenelementen oder eine Anordnung mehrerer Kühlmittelkanäle nebeneinander. Die genannten Möglichkeiten zur Ausbildung einer thermischen Trennschicht sind beispielhaft und besitzen keinen beschränkenden Charakter. In besonders vorteilhaften Ausführungen, wird insbesondere der Wärmeübergang auf das Kältemittel, also eine Erwärmung des Kältemittels vermieden.The thermal separation layer can be formed, for example, by an air-filled channel between two pane elements, by an air gap between two adjacent pane elements or by an arrangement of several coolant channels next to one another. The possibilities mentioned for the formation of a thermal separation layer are exemplary and are not of a limiting nature. In particularly advantageous embodiments, in particular the transfer of heat to the refrigerant, that is to say a heating of the refrigerant, is avoided.

Claims (12)

  1. A condenser (1, 20, 40, 60) in stacked-plate construction, wherein a heat exchanger block (7, 22, 42, 62) is formed of a plurality of plate elements, which, stacked one on top of another, form mutually adjacent channels between the plate elements, wherein a first number of the channels is assigned to a first flow channel and a second number of the channels is assigned to a second flow channel, and a refrigerant is flowable through the first flow channel and a coolant is flowable through the second flow channel, wherein the first flow channel has a first region for the desuperheating and condensation (34, 54, 81) of the vaporous refrigerant and a second region for the supercooling (35, 55, 82) of the condensed refrigerant, wherein at least a portion of the first flow channel is in thermal contact with at least a portion of the second flow channel, and the first region has a first fluid supply line (23, 43, 63) and a first fluid discharge line (24, 44, 64) and the second region has a second fluid supply line (25, 45, 65) and a second fluid discharge line (26, 46, 66), wherein the condenser (1, 20, 40, 60) has a receiver (2, 21, 41, 61) for storing the refrigerant, and a refrigerant crossover from the first region into the second region leads through the receiver (2, 21, 41, 61), wherein the receiver (2, 21, 41, 61) is in fluid communication with the first region via the first fluid discharge line (24, 44, 64), which also forms the fluid inlet of the receiver (2, 21, 41, 61), and is in fluid communication with the second region via the second fluid supply line (25, 45, 65), which also forms the fluid outlet of the receiver (2, 21, 41, 61), wherein the receiver (2, 21, 41, 61) is disposed on an outer surface of the heat exchanger block (7), characterised in that the first fluid discharge line (24, 44, 64) is disposed outside the heat exchanger block (7, 22, 42, 62) and the second fluid supply line (25, 45, 65) is disposed outside the heat exchanger block (7, 22, 42, 62).
  2. The condenser (1, 20, 40, 60) as claimed in claim 1, characterised in that the coolant in the second flow channel and the refrigerant in the first flow channel are flowable in co-current flow to each other and/or in counter-current flow to each other.
  3. The condenser (1, 20, 40, 60) as claimed in one of the preceding claims, characterised in that the first fluid discharge line (24, 44, 64) and/or the second fluid supply line (25, 45, 65) are formed by a pipeline (10).
  4. The condenser (1, 40) as claimed in one of the preceding claims, characterised in that the first fluid supply line (43) and the second fluid supply line (45), viewed along the principal direction of flow through a channel between the plate elements, are disposed at the same end region of the condenser (1, 40), wherein the first fluid discharge line (44) and the second fluid discharge line (46) are disposed at the opposite end region of the condenser (1, 40).
  5. The condenser (1, 20, 40, 60) as claimed in one of the preceding claims, characterised in that the internal volume share of the second region of the first flow channel represents maximally about 40%, here preferably about 20%, here preferably between about 5% and about 15% of the internal total volume of the first flow channel.
  6. The condenser (1, 20, 40) as claimed in one of the preceding claims, characterised in that the coolant supply line (5, 27, 47) and the coolant discharge line (6, 28, 48) of the second flow channel, viewed along the direction of flow through a channel between the plate elements, are disposed at opposite end regions of the condenser (1, 20, 40).
  7. The condenser (1, 60) as claimed in one of the preceding claims, characterised in that the first region and/or the second region of the first flow channel inside the condenser (1, 60) are/is diverted one or more times in their/its principal direction of flow.
  8. The condenser (1, 60) as claimed in one of the preceding claims, characterised in that the second flow channel inside the condenser (1, 60) is diverted at least once in its principal direction of flow through around 180°.
  9. The condenser (1, 60) as claimed in one of the preceding claims, characterised in that the second flow channel is diverted once in its principal direction of flow through around 180°, whereby a forward flow region and a return flow region are formed, wherein the internal volume of the forward flow region of the second flow channel and the internal volume of the return flow region of the second flow channel are approximately equal in size and/or unequal in size.
  10. The condenser (1, 60) as claimed in claim 9, characterised in that the coolant flows through the second flow channel in such a way that, along the principal direction of flow through the second flow channel, it first enters into thermal contact with the second region of the first flow channel or it first enters into thermal contact with the second region and at least a portion of the first region of the first flow channel and, respectively after the diversion, enters substantially into thermal contact with the first region of the first flow channel.
  11. The condenser (1, 60) as claimed in one of the preceding claims, characterised in that a thermal separation is present between the first region for the desuperheating and condensation of the vaporous refrigerant and the second region for the supercooling of the condensed refrigerant.
  12. The condenser (1, 60) as claimed in claim 11, characterised in that the thermal separation is configured as a thermally insulating plate, as an air gap, as an air-conducting channel, as a part of the second flow channel having a multiple coolant path and/or as a part of the second flow channel having a larger flow cross-sectional area than the rest of the second flow channel.
EP13756467.0A 2012-09-21 2013-09-02 Condenser Active EP2904335B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202012010732 2012-09-21
DE102012220594.2A DE102012220594A1 (en) 2012-09-21 2012-11-12 capacitor
PCT/EP2013/068118 WO2014044522A1 (en) 2012-09-21 2013-09-02 Condenser

Publications (2)

Publication Number Publication Date
EP2904335A1 EP2904335A1 (en) 2015-08-12
EP2904335B1 true EP2904335B1 (en) 2020-11-11

Family

ID=50235315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13756467.0A Active EP2904335B1 (en) 2012-09-21 2013-09-02 Condenser

Country Status (6)

Country Link
US (1) US20150226469A1 (en)
EP (1) EP2904335B1 (en)
KR (1) KR20150060780A (en)
CN (1) CN104620064B (en)
DE (1) DE102012220594A1 (en)
WO (1) WO2014044522A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012023125B3 (en) * 2012-11-27 2013-11-28 Modine Manufacturing Co. Manufacturing method for soldered plate heat exchanger, involves adding two piece tube to connect plate stack to collecting container, where two pipe ends are pushed into each other, after single soldering operation is carried out
PL2927631T3 (en) * 2014-03-31 2019-04-30 Valeo Autosystemy Sp Z O O Heat exchanger, especially a condenser
US10317112B2 (en) * 2014-04-04 2019-06-11 Johnson Controls Technology Company Heat pump system with multiple operating modes
FR3023907B1 (en) * 2014-07-16 2016-08-19 Valeo Systemes Thermiques CONDENSER BOTTLE SUITABLE FOR USE IN AN AIR CONDITIONING CIRCUIT, ESPECIALLY THE AIR CONDITIONING CIRCUIT OF A MOTOR VEHICLE
FR3023906B1 (en) * 2014-07-16 2016-08-12 Valeo Systemes Thermiques CONDENSER BOTTLE SUITABLE FOR USE IN AN AIR CONDITIONING CIRCUIT, ESPECIALLY THE AIR CONDITIONING CIRCUIT OF A MOTOR VEHICLE
US10161687B2 (en) * 2015-01-22 2018-12-25 Mitsubishi Electric Corporation Plate heat exchanger and heat pump outdoor unit
EP3112778B1 (en) * 2015-06-29 2018-01-17 MAHLE International GmbH Condenser
CN107883616A (en) * 2017-11-29 2018-04-06 上海加冷松芝汽车空调股份有限公司 Overcold water-cooled condenser
CN108225084B (en) * 2018-01-09 2019-04-09 桐乡市濮院丰达印染有限公司 Printing and dyeing heat-exchanger rig
US20200400392A1 (en) * 2018-01-30 2020-12-24 Linde Gmbh Insulating surface coating on heat exchangers for reducing thermal stresses
WO2019175616A1 (en) * 2018-03-13 2019-09-19 Carrier Corporation Condenser architecture with multiple segments
EP3572753B1 (en) 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Heat exchanger
EP3572754B1 (en) 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Heat exchanger
JP7400234B2 (en) 2019-07-16 2023-12-19 株式会社デンソー Heat exchanger
KR102315648B1 (en) 2020-10-26 2021-10-21 에스트라오토모티브시스템 주식회사 Heat exchanger for vehicles
DE102022211047A1 (en) 2022-10-19 2024-04-25 Mahle International Gmbh Heat exchanger

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303124A (en) * 1979-06-04 1981-12-01 The A.P.V. Company Limited Plate heat exchanger
US6745827B2 (en) * 2001-09-29 2004-06-08 Halla Climate Control Corporation Heat exchanger
FR2846733B1 (en) * 2002-10-31 2006-09-15 Valeo Thermique Moteur Sa CONDENSER, IN PARTICULAR FOR A CIRCUIT FOR CIMATING A MOTOR VEHICLE, AND CIRCUIT COMPRISING THE CONDENSER
DE10251777A1 (en) * 2002-11-05 2004-05-19 Behr Gmbh & Co. Condenser for a coolant circuit, in the heat exchanger for an air conditioner, has a collector vessel with a filter/drying unit in a housing accessed through an opening closed by a flexible stopper and ring seal
JP4334965B2 (en) * 2003-09-30 2009-09-30 株式会社日阪製作所 Plate heat exchanger
ITMI20040111U1 (en) * 2004-03-17 2004-06-17 Skg Italia S P A CARTRIDGE FOR A CONDENSER IN PARTICULAR OF AN AIR CONDITIONING SYSTEM FOR VEHICLES
DE102005025451A1 (en) * 2005-06-02 2006-12-07 Denso Automotive Deutschland Gmbh Condenser for air conditioning
JP2007078292A (en) * 2005-09-15 2007-03-29 Denso Corp Heat exchanger, and dual type heat exchanger
US20080156466A1 (en) * 2007-01-03 2008-07-03 Alfa Laval Corporate Ab Plate Heat Exchanger With Auxiliary Fluid Circuit
KR100950689B1 (en) * 2009-04-16 2010-03-31 한국델파이주식회사 Plate type heat exchanger
FR2947041B1 (en) * 2009-06-23 2011-05-27 Valeo Systemes Thermiques CONDENSER WITH FRIGORIGENE FLUID RESERVE FOR AIR CONDITIONING CIRCUIT
FR2947045B1 (en) * 2009-06-23 2013-11-29 Valeo Systemes Thermiques HEAT EXCHANGER BLOCK, ESPECIALLY FOR AIR CONDITIONING CONDENSER
FR2950682B1 (en) * 2009-09-30 2012-06-01 Valeo Systemes Thermiques CONDENSER FOR MOTOR VEHICLE WITH ENHANCED INTEGRATION
JP2011099631A (en) * 2009-11-06 2011-05-19 Denso Corp Heat exchanger
DE102010026507A1 (en) * 2010-07-07 2012-01-12 Behr Gmbh & Co. Kg Refrigerant condenser module
JP5488551B2 (en) * 2010-11-03 2014-05-14 株式会社デンソー Receiver and receiver-integrated condenser
JP5960955B2 (en) * 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company Vehicle capacitors
DE102011008429A1 (en) * 2011-01-12 2012-07-12 Behr Gmbh & Co. Kg Device for heat transfer for a vehicle
KR101316859B1 (en) * 2011-12-08 2013-10-10 현대자동차주식회사 Condenser for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20150226469A1 (en) 2015-08-13
CN104620064A (en) 2015-05-13
KR20150060780A (en) 2015-06-03
WO2014044522A1 (en) 2014-03-27
DE102012220594A1 (en) 2014-03-27
CN104620064B (en) 2016-08-24
EP2904335A1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
EP2904335B1 (en) Condenser
EP2909563B1 (en) Condenser
EP3119623B1 (en) Heating and cooling module
DE19719251C2 (en) Distribution / collection box of an at least double-flow evaporator of a motor vehicle air conditioning system
EP0401752B1 (en) Refrigerant condensor for a vehicle air conditioner
EP1400772B1 (en) Plate heat exchanger
DE102006057585A1 (en) Heat exchanger for use in e.g. refrigerant evaporator, has upper and lower tank sections that are arranged at end sections in height direction of core section, and functional section regulating distribution of fluid in reversal sections
DE102004011608A1 (en) Heat exchanger of a vehicle air conditioning system
EP2997318B1 (en) Condenser
WO2015140034A1 (en) Heating/cooling module
DE19933913C2 (en) Evaporator of an automotive air conditioning system
DE102013217287A1 (en) Internal heat exchanger for refrigerant circuit for air conditioning system for motor car, has refrigerant-carrying tubes for transferring refrigerant heat from high pressure side to low pressure side, and are placed one above other
EP2926073B1 (en) Heat exchanger
DE19957945B4 (en) Condenser with subcooling line
DE3918455A1 (en) Coolant liquefier for car air conditioning
WO2014095594A1 (en) Heat exchanger
DE202014101213U1 (en) Heizkühlmodul
EP2937658A1 (en) Internal heat exchanger
DE102013214695A1 (en) capacitor
DE102004018317A1 (en) Heat exchanger for motor vehicles
DE102015120334A1 (en) heat exchangers
DE19959566A1 (en) Evaporation heat exchanger has evaporation structure designed as folded fin with parallel almost S-shaped folds forming internal channels and capillary gaps for liquid
DE60201554T2 (en) High-capacity evaporator for automotive air conditioning
DE102020213172A1 (en) Stacking plate for a stacking plate heat exchanger and associated stacking plate heat exchanger
WO2014198846A1 (en) Heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE INTERNATIONAL GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180523

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200716

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOFMANN, HERBERT

Inventor name: SCHMIDGALL, STEFAN

Inventor name: UNGER, SASCHA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200917

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1333869

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015287

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015287

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210311

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210902

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210902

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210902

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1333869

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201111