EP2895579B1 - Apparatus and process for generating fuel gas from a solid fuel - Google Patents

Apparatus and process for generating fuel gas from a solid fuel Download PDF

Info

Publication number
EP2895579B1
EP2895579B1 EP13798924.0A EP13798924A EP2895579B1 EP 2895579 B1 EP2895579 B1 EP 2895579B1 EP 13798924 A EP13798924 A EP 13798924A EP 2895579 B1 EP2895579 B1 EP 2895579B1
Authority
EP
European Patent Office
Prior art keywords
zone
gasification
gas
air
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13798924.0A
Other languages
German (de)
French (fr)
Other versions
EP2895579A1 (en
Inventor
Armin Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Big Dutchman International GmbH
Original Assignee
Big Dutchman International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Big Dutchman International GmbH filed Critical Big Dutchman International GmbH
Publication of EP2895579A1 publication Critical patent/EP2895579A1/en
Application granted granted Critical
Publication of EP2895579B1 publication Critical patent/EP2895579B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/725Redox processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1207Heating the gasifier using pyrolysis gas as fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1609Post-reduction, e.g. on a red-white-hot coke or coal bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1618Modification of synthesis gas composition, e.g. to meet some criteria
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Definitions

  • the invention relates to a method and a device for producing fuel gas from a solid in a shaft gasifier, and comprising: a gasification zone, into which the solid can be introduced via a filling opening, an oxidation zone for oxidizing the gas generated, which is connected to the gasification zone Conduction of the gas generated in the gasification zone is connected in the oxidation zone.
  • Another aspect of the invention is a gasification process for producing a flammable gas from a solid.
  • Gasification devices of the aforementioned type and gasification processes are used to gas solid substances such as organic or inorganic, carbonaceous materials, in particular wood, plants or plant residues, as completely as possible in a controlled process in order to produce an ignitable, in particular combustible gas.
  • this gas thus produced is burned in a process downstream of the gasification to thereby perform work and, for example, operate a power generator.
  • EP 1 865 046 A1 For example, a gasifier and a gasification process are known, which generate a pyrolysis gas in a shaft gasifier in a three-stage process by gasification of the solid, which is then converted by partial oxidation and thermal decomposition to a crude gas and converted by reduction into an ignitable product gas.
  • gasification especially with changing properties of the solid, is incomplete, so that the amount of energy lying in the solid is not completely exhausted as a result.
  • a regulation and / or monitoring of the quality of the first process in particular, the gasification, on metrological recording of the temperature but also the achieved gas composition and adjusting the supplied gas for the gasification process is out EP 1 865 046 A1 known.
  • Optimization potential for shaft gasifiers with multi-stage process chains often lies in the quality / purity of the final product gas, which is decisive for the subsequent combustion, the need for additional filters and also indirectly for the maintenance intensity of the shaft gasifier.
  • a reduction of the efficiency can occur by almost unavoidable leakage gases from the gasification zone into the reduction zone, or by changing properties of the gasified solid during the gasification process.
  • DE 10 2010 033 646 A1 discloses a gasification device with a measuring unit and a control device.
  • the shaft gasifier according to the invention is developed so that a first air supply device and a second air supply device supply air into the gasification zone, wherein the second air supply device is adjusted in the processing direction of the solid of the first air supply device; a measuring unit for determining a measurement signal, which is designed to determine a qualitative or quantitative amount of predetermined gas fractions of the raw gas generated in the oxidation zone or the flammable product gas and this characterized in the measurement signal; and a control device, which is signal-wise coupled to the measuring unit for transmitting the measurement signal and is configured such that it controls the amount of air to be supplied to the second air supply device in dependence on the measurement signal.
  • the measuring unit is designed to directly or indirectly determine the tar content in the raw gas or product gas produced, and the control device controls the amount of air supplied via the second air supply device as a function of the directly or indirectly determined tar content of the raw gas produced.
  • the first and second air supply devices may supply air to the gasification zone as needed and independently of each other.
  • the measuring device measures the qualitative or quantitative amount of a predetermined proportion of a gas.
  • gas is understood as meaning substances which consist of a chemical element or chemical compound in the gaseous state of aggregation (eg oxygen, methane, carbon monoxide etc.) as well as a mixture of gases consisting of several substances (eg air).
  • the control device which is signal-technically coupled to the measuring device can then regulate the air supply of the second air-supply device as a function of the measurement result.
  • the second air supply device is readjusted in the processing direction of the first air supply device, since their control reacts to already running processes in the gasification zone.
  • the air supply can be optimized in a predetermined level of the gasification zone and it offers the opportunity to react flexibly to changes in characteristic properties of the process products during the passage of the process chain. According to the invention, it has been recognized that a loss of efficiency with regard to the purity of the gas produced-caused by an undesired transfer of produced process substances from the gasification zone into the reduction zone-can be prevented as a result.
  • the present invention solves the problem by controlling the leakage gases occurring over the oxidation zone
  • Supply of air from a second air supply device are oxidized directly in the gasification zone.
  • the amount of air required the second air supply device is controlled as needed. This is done according to the invention with the aid of the measuring device which directly or indirectly measures the tar content of the raw gas or product gas produced and depending on the measured value obtained, which gives information about the contamination by unoxidized pyrolysis gas and in the dependence of the signal technically connected control device regulates the air supply of the second air supply device ,
  • the gasification device developed according to the invention a measuring device and signaling processing is provided, which allows conclusions about the strength of the leakage gases occurring on the basis of the measured tar content to draw.
  • the air supply of the second air supply device can be regulated via the signal-technically connected control device. With increased tar content of the generated raw gas or product gas, the air supply of the second air supply device is amplified, with little or no presence of a measurable tar content, the air supply can be reduced.
  • the measuring unit can also be configured such that it measures the direct or indirect CO content of the product gas produced and the air supply of the second air supply device is adjusted with the aid of the signal-technically connected control unit as a function of the signal-technically processed measured value.
  • the determined CO content can provide information about the efficiency of the respective desired substance conversion.
  • the latter is highest in the reduction zone when the raw gas from the oxidation zone and the pyrolyzed solid coke from the gasification zone meet as hot as possible, ideally at about 1000 ° C.
  • the air supply can be regulated via signaling technology by means of the signal-technically connected control device in such a way that the coke is once again heated as much as possible before it enters the reduction zone.
  • the air supply devices can be used individually, but also in combination.
  • the measurement of the gas constituents in the product gas may in a preferred embodiment be preceded by a prior filtering and / or cooling of the gas.
  • Gasification of a solid in a large gasification zone is achieved by means of the gasification apparatus developed according to the invention, without undesired transfer of the product substances produced, for example unoxidized raw gas, as leakage gas or insufficiently heated coke.
  • the oxidation zone is connected to the gasification zone for conducting the pyrolysis gas produced in the gasification zone into the oxidation zone.
  • the gasification zone and the oxidation zone are separated by at least one wall.
  • the connection of the oxidation zone with the gasification zone for the conduction of the in The pyrolysis gas generated in the gasification zone into the oxidation zone can preferably be effected by a fluidic connection in certain sections, for example through one or more openings in the wall.
  • the wall has openings pointing obliquely downward in an operating position in the upper part of the oxidation zone, via which the pyrolysis gas formed in the gasification zone passes into the oxidation zone on the basis of the local pressure and flow conditions.
  • the openings are preferably formed in that the sloping wall ends at the level of the respective opening and offset radially inwards, is continued just above the opening. The slightly overlapping sloping walls of the oxidation zone can thus prevent undesired entry of the solid into the oxidation zone or clogging of the openings by the supplied solid.
  • the gasification zone and the oxidation zone are in thermal contact, preferably via the at least one wall which separates the gasification zone and the oxidation zone from each other. This allows a particularly advantageous utilization of the resulting process heat.
  • the oxidation zone is at least partially, preferably completely surrounded by the gasification zone in relation to its cross section.
  • the oxidation zone is arranged centrally within the gasification device by being surrounded by the gasification zone in relation to a cross section through the gasification device at least in a region, but preferably completely.
  • an annular gasification zone is formed around the oxidation zone and consequently enables effective heat transfer from the gasification zone into the oxidation zone and vice versa.
  • this embodiment can be realized such that the gasification device is designed as a shaft carburetor and the oxidation zone as centrally disposed within the shaft gasifier oxidation chamber is executed, which is surrounded by an annular gasification zone.
  • a temperature measuring unit measures the temperature in or in the immediate vicinity of the oxidation chamber. Based on the signal-technically processed measurement results, the air supply can be regulated in the gasification zone, preferably via the first air supply device, so that preferably a temperature of about 1000 ° prevails in the oxidation zone.
  • the solid of the gasification zone in the operating position can be fed by gravity alone through a solids feed opening.
  • a reduction zone which is connected to the oxidation zone for supplying the raw gas formed in the oxidation zone and is designed to chemically reduce the raw gas supplied to it.
  • a fuel gas can be generated from the pyrolysis gas processed in the oxidation zone.
  • filtering of solid constituents by the coke in the reduction zone can furthermore be achieved.
  • other methods for filtering for example by means of filter candles or the like may be provided.
  • the reduction zone of the construction described above or above in the direction of gravity below the gasification zone so that it is in direct connection and the solid can, under the action of gravity, pass directly from the gasification zone into the reduction zone.
  • a portion of the oxidation zone should be formed so that it separates the gasification zone in the flow direction of the gas generated from the reduction zone.
  • a preferred embodiment of the measuring unit for determining the tar content in the raw gas or product gas produced is a CH4 sensor which provides indirect information on the tar content contained in the gas via the determined CH4 content and thus via signal processing for the regulation of the air supply in the second Air supply level can be used.
  • the resulting in the gasification of the solid pyrolysis gas is a mixture of carbon monoxide (CO), hydrogen (H 2 ), water vapor (H 2 O), carbon dioxide (CO 2 ), methane (CH 4 ) and a number of trace gases and impurities in the form of long-chain hydrocarbons (tars).
  • CO carbon monoxide
  • H 2 hydrogen
  • H 2 O water vapor
  • CO 2 carbon dioxide
  • CH 4 methane
  • the second air supply device is arranged immediately before the transition from the gasification zone into the reduction zone.
  • a further preferred embodiment provides both an additional air supply device in the region of the gasification zone for the oxidation of occurring leakage gases before and a further air supply device immediately before the transition from the gasification in the reduction zone for optimized heating of the coke before.
  • Another aspect of the invention is a carburetor device of the type mentioned in the opening paragraph, which further comprises a gas suction device having a suction opening laterally on the gasification device, and which is characterized in that the gas suction device comprises a suction ring, which is designed, a uniform velocity distribution over to produce the cross section of the carburetor for the gas to be sucked off by the ring the gas has a largest outlet cross section on the side facing away from the outlet opening, which narrows towards the outlet opening side facing.
  • the suction device is arranged annularly around the reduction zone, wherein the suction ring on the side facing away from the outlet opening in the direction of gravity offers the largest opening to the flammable gas, which tapers continuously or stepwise towards the outlet opening side facing.
  • the method may be further developed by individually controlling the feeding of air in the gasification zone for gasification sectors distributed regularly or irregularly across the cross section.
  • the tar content in the produced raw gas or product gas is measured directly or indirectly and the air supply is adjusted via the second air supply device according to the associated signal-processed measurement result
  • the direct transfer of parts of the generated pyrolysis gas without previous oxidation in the reduction zone be prevented.
  • the determination of the indirect tar content can be carried out with a CH4 sensor.
  • the feeding immediately before the transition of the gasification zone in the reduction zone is particularly advantageous, since the pyrolyzed solid coke is heated again just before entering the reduction zone and the subsequent reduction of the raw gas with the aid of Coke in this case can be particularly effective.
  • the gasification process may alternatively or concurrently be advanced to include the step of extracting the flammable gas with a gas exhaust device, the gas exhaust device having a suction port located laterally on the gasifier and a uniform velocity distribution across the cross section of the gasifier for the gas to be exhausted to produce, characterized in that the gas suction device has a suction ring, which provides the gas a largest outlet cross-section on the side facing away from the outlet opening, which narrows towards the outlet opening facing side.
  • FIG. 1 a longitudinally cutaway side view of a preferred embodiment of the gasification device according to the invention.
  • Fig. 1 shows a preferred embodiment of the present Schachtvergasers 1.
  • the solid gasification zone 2 can be supplied, which surrounds the centrally located oxidation zone 3 in a horizontal cross section on all sides.
  • a cylindrical embodiment as in Fig. 1 This leads to a ring-shaped around the oxidation zone pronounced gasification zone, which is separated by the wall 14 of the oxidation zone of this, but with a corresponding configuration of the wall 14 in thermal contact with this.
  • the oxidation zone 3 is supplied with air via an air feed tube 11 which is enclosed by a cover tube 12 and which preferably runs centrally longitudinally along the center of the carburetor.
  • the air supply pipe can also be arranged laterally outside the longitudinal axis or in the radial direction and run parallel to it.
  • the oxidation zone preferably has a bell-shaped configuration on, wherein the upper part 13, which decreases conically from above obliquely downward, facilitates the supply of the solid into the gasification zone solely by gravity.
  • the wall 14 has obliquely downwardly pointing openings 15, via which the pyrolysis gas formed in the gasification zone passes into the oxidation zone due to the local pressure and flow conditions.
  • the openings are formed in that the sloping wall ends at the level of the respective opening and offset radially inwards, is continued just above the opening.
  • the slightly overlapping obliquely sloping walls 13 of the oxidation zone prevent undesired entry of the solid into the oxidation zone or clogging of the openings by the supplied solid.
  • an individually controllable amount of air is supplied via air nozzles 4, 5, 6, which extend in the radial direction to the center axis of the carburetor and are distributed in uniform or non-uniform intervals on the circumference of the shaft gasifier.
  • Air is injected via the air supply device 4 in the first plane to maintain the temperature necessary for the processes taking place in the upper part of the shaft carburettor.
  • a temperature measuring unit (7) measures the temperature in or in the immediate vicinity of the oxidation chamber and the air supply via the air supply device 4 is regulated according to the signal-technically processed measurement results, so that preferably there is a temperature of about 1000 ° in the oxidation zone.
  • An indication of the efficiency of the reduction process can be obtained by measuring the CO content in the final product gas.
  • the measuring unit 10 directly or indirectly measures the CO content of the product gas, so that the control unit can regulate the air supply of the third air supply device 6 as a function of the measurement result obtained by signal processing of the measured value.
  • the generated gas is sucked through an outlet opening 16.
  • a suction ring 17 which encloses the reduction zone, designed so that it has the largest outlet cross-section 18 on the side facing away from the outlet opening, which with increasing approach to the outlet opening narrows so that the side immediately before the outlet opening offers the smallest outlet cross-section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Industrial Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Erzeugung von Brenngas aus einem Feststoff in einem Schachtvergaser, und umfasst:eine Vergasungszone, in die über eine Einfüllöffnung der Feststoff einfüllbar ist, eine Oxidationszone zur Oxidation des erzeugten Gases ausgebildet ist, die mit der Vergasungszone zur Leitung des in der Vergasungszone erzeugten Gases in die Oxidationszone verbunden ist.The invention relates to a method and a device for producing fuel gas from a solid in a shaft gasifier, and comprising: a gasification zone, into which the solid can be introduced via a filling opening, an oxidation zone for oxidizing the gas generated, which is connected to the gasification zone Conduction of the gas generated in the gasification zone is connected in the oxidation zone.

Ein weiterer Aspekt der Erfindung ist ein Vergasungsverfahren zur Erzeugung eines entzündbaren Gases aus einem Feststoff.Another aspect of the invention is a gasification process for producing a flammable gas from a solid.

Vergasungsvorrichtungen der vorgenannten Bauart und Vergasungsverfahren werden dazu verwendet, um feste Stoffe wie organische oder anorganische, kohlenstoffhaltige Materialien, insbesondere Holz, Pflanzen oder Pflanzenreste, in einem kontrollierten Verfahren möglichst vollständig zu vergasen, um hierdurch ein zündfähiges, insbesondere brennbares Gas zu erzeugen. Typischerweise wird dieses so erzeugte Gas in einem der Vergasung nachgeschalteten Prozess verbrannt, um hierdurch Arbeit zu verrichten und beispielsweise einen Stromerzeuger zu betreiben.Gasification devices of the aforementioned type and gasification processes are used to gas solid substances such as organic or inorganic, carbonaceous materials, in particular wood, plants or plant residues, as completely as possible in a controlled process in order to produce an ignitable, in particular combustible gas. Typically, this gas thus produced is burned in a process downstream of the gasification to thereby perform work and, for example, operate a power generator.

Aus EP 1 865 046 A1 sind ein Vergaser und ein Vergasungsverfahren bekannt, welches in einem Schachtvergaser in einem dreistufigen Prozess durch Vergasung des Feststoffs ein Pyrolysegas erzeugen, welches dann durch partielle Oxidation und thermische Aufspaltung zu einem Rohgas umgewandelt wird und durch Reduktion in ein zündfähiges Produktgas überführt wird. Bei dem in dieser Patentanmeldung offenbarten Stand der Technik gelingt die Vergasung, insbesondere bei sich ändernden Eigenschaften des Feststoffes zu Weilen nur unvollständig, so dass die in dem Feststoff liegende Energiemenge dadurch nicht vollständig ausgeschöpft wird.Out EP 1 865 046 A1 For example, a gasifier and a gasification process are known, which generate a pyrolysis gas in a shaft gasifier in a three-stage process by gasification of the solid, which is then converted by partial oxidation and thermal decomposition to a crude gas and converted by reduction into an ignitable product gas. In the prior art disclosed in this patent application, gasification, especially with changing properties of the solid, is incomplete, so that the amount of energy lying in the solid is not completely exhausted as a result.

Eine Regulierung und/oder Überwachung der Güte speziell des ersten Prozesses, der Vergasung, über messtechnische Erfassung der Temperatur aber auch der erzielten Gaszusammensetzung und ein Anpassen der für den Vergasungsprozess zugeführten Luft ist aus EP 1 865 046 A1 bekannt. Optimierungspotential bei Schachtvergasern mit mehrstufigen Prozessketten liegt oftmals in der Güte/Reinheit des final erzeugten Produktgases, welche entscheidend ist für die anschließende Verbrennung, Notwendigkeit zusätzlicher Filter und auch indirekt für die Wartungsintensität des Schachtvergasers. Eine Verminderung der Effizienz kann dabei durch nahezu unvermeidbare Leckagegase aus der Vergasungszone in die Reduktionszone auftreten, oder durch sich verändernde Eigenschaften des zu vergasenden Feststoffes während des Vergasungsprozesses.A regulation and / or monitoring of the quality of the first process in particular, the gasification, on metrological recording of the temperature but also the achieved gas composition and adjusting the supplied gas for the gasification process is out EP 1 865 046 A1 known. Optimization potential for shaft gasifiers with multi-stage process chains often lies in the quality / purity of the final product gas, which is decisive for the subsequent combustion, the need for additional filters and also indirectly for the maintenance intensity of the shaft gasifier. A reduction of the efficiency can occur by almost unavoidable leakage gases from the gasification zone into the reduction zone, or by changing properties of the gasified solid during the gasification process.

DE 10 2010 033 646 A1 offenbart eine Vergasungseinrichtung mit einer Messeinheit und einer Steuervorrichtung. DE 10 2010 033 646 A1 discloses a gasification device with a measuring unit and a control device.

Es ist Aufgabe der vorliegenden Erfindung, einen Vergaser bzw. ein Vergasungsverfahren bereitzustellen, welches eine effizientere Vergasung eines Feststoffs erreicht und damit eine erhöhte Reinheit des Produktgases gewährleistet.It is an object of the present invention to provide a gasifier or a gasification process, which achieves a more efficient gasification of a solid and thus ensures an increased purity of the product gas.

Diese Aufgabe wird erfindungsgemäß gelöst, indem der Schachtvergasers erfindungsgemäß so fortgebildet wird, dass eine erste Luftzufuhrvorrichtung und eine zweite Luftzufuhrvorrichtung Luft in die Vergasungszone zuführen, wobei die zweite Luftzufuhrvorrichtung in Verarbeitungsrichtung des Feststoffes der ersten Luftzufuhrvorrichtung nachgestellt ist; eine Messeinheit zur Bestimmung eines Messignals, welche zur Bestimmung einer qualitativen oder quantitativen Menge vorbestimmter Gasanteile des in der Oxidationszone erzeugten Rohgases oder des endzündbaren Produktgases ausgebildet ist und dieses im Messignal charakterisiert; und eine Steuervorrichtung, welche signaltechnisch mit der Messeinheit zur Übermittlung des Messsignals gekoppelt ist und derart ausgestaltet ist, dass sie die Menge der zuzuführenden Luft der zweiten Luftzufuhrvorrichtung in Abhängigkeit des Messsignals steuert. Die Messeinheit ist ausgebildet um direkt oder indirekt den Teergehalt im erzeugten Rohgas beziehungsweise Produktgas zu bestimmen, und die Steuervorrichtung steuert die über die zweite Luftzufuhrvorrichtung zugeführte Luftmenge in Abhängigkeit des direkt oder indirekt ermittelten Teergehaltes des erzeugten Rohgases. Die erste und zweite Luftzufuhrvorrichtung können der Vergasungszone bedarfsabhängig und unabhängig voneinander Luft zuführen. Die Messvorrichtung misst die qualitativen oder quantitativen Menge eines vorbestimmten Anteils eines Gases. Dabei ist unter Gas sowohl Stoffe, welche aus einem chemischen Element oder chemischen Verbindung bestehen, im gasförmigen Aggregatszustand zu verstehen (z.B. Sauerstoff, Methan, Kohlenmonoxid usw.) als auch ein aus mehreren Stoffen bestehendes Gasgemisch (z.B. Luft). Die Steuervorrichtung, welche signaltechnisch mit der Messvorrichtung gekoppelt ist kann dann die Luftzufuhr der zweiten Luftzufuhrvorrichtung in Abhängigkeit des Messergebnisses regulieren. Die zweite Luftzufuhrvorrichtung ist dabei der ersten Luftzufuhrvorrichtung in Verarbeitungsrichtung nachgestellt, da ihre Steuerung auf bereits ablaufende Prozesse in der Vergasungszone reagiert.This object is achieved according to the invention by the shaft gasifier according to the invention is developed so that a first air supply device and a second air supply device supply air into the gasification zone, wherein the second air supply device is adjusted in the processing direction of the solid of the first air supply device; a measuring unit for determining a measurement signal, which is designed to determine a qualitative or quantitative amount of predetermined gas fractions of the raw gas generated in the oxidation zone or the flammable product gas and this characterized in the measurement signal; and a control device, which is signal-wise coupled to the measuring unit for transmitting the measurement signal and is configured such that it controls the amount of air to be supplied to the second air supply device in dependence on the measurement signal. The measuring unit is designed to directly or indirectly determine the tar content in the raw gas or product gas produced, and the control device controls the amount of air supplied via the second air supply device as a function of the directly or indirectly determined tar content of the raw gas produced. The first and second air supply devices may supply air to the gasification zone as needed and independently of each other. The measuring device measures the qualitative or quantitative amount of a predetermined proportion of a gas. In this case, gas is understood as meaning substances which consist of a chemical element or chemical compound in the gaseous state of aggregation (eg oxygen, methane, carbon monoxide etc.) as well as a mixture of gases consisting of several substances (eg air). The control device which is signal-technically coupled to the measuring device can then regulate the air supply of the second air-supply device as a function of the measurement result. The second air supply device is readjusted in the processing direction of the first air supply device, since their control reacts to already running processes in the gasification zone.

Durch die messtechnisch erfasste qualitative oder quantitative Menge eines vorbestimmten Gases einer ausgewählten Stufe des Vergasungsprozesses kann erfindungsgemäß die Luftzufuhr in einer vorbestimmten Ebene der Vergasungszone optimiert werden und es bietet sich die Möglichkeit, flexibel auf Veränderungen charakteristischer Eigenschaften der Prozessprodukte während des Durchlaufens der Prozesskette zu reagieren. Erfindungsgemäß wurde erkannt, dass hierdurch ein Effizienzverlust bezüglich der Reinheit des erzeugten Gases - hervorgerufen durch einen unerwünschten Übertritt erzeugter Prozessstoffe von der Vergasungszone in die Reduktionszone - unterbunden werden kann. Während herkömmliche Vorrichtungen und Verfahren oftmals ausgerichtet sind, den nahezu unvermeidlichen Übertritt von Pyrolysegas aus der Vergasungszone direkt in die Reduktionszone so gut es geht zu verringern und einen Weg über die Oxidationszone zu erzwingen, löst die vorliegende Erfindung das Problem, indem die auftretenden Leckagegase über die Zufuhr von Luft aus einer zweiten Luftzufuhrvorrichtung direkt in der Vergasungszone oxidiert werden. Die Menge der benötigten Luft der zweiten Luftzufuhrvorrichtung wird dabei bedarfsabhängig gesteuert. Dies geschieht erfindungsgemäß mit Hilfe der Messvorrichtung, welche direkt oder indirekt den Teergehalt des erzeugten Rohgases beziehungsweise Produktgases misst und abhängig vom erhaltenen Messwert, welcher Aufschluß über die Verunreinigung durch nicht oxidiertes Pyrolysegas gibt und in dessen Abhängigkeit die signaltechnisch verbundene Steuervorrichtung die Luftzufuhr der zweiten Luftzufuhrvorrichtung reguliert.By metrologically detected qualitative or quantitative amount of a predetermined gas a selected stage of the gasification process, the air supply can be optimized in a predetermined level of the gasification zone and it offers the opportunity to react flexibly to changes in characteristic properties of the process products during the passage of the process chain. According to the invention, it has been recognized that a loss of efficiency with regard to the purity of the gas produced-caused by an undesired transfer of produced process substances from the gasification zone into the reduction zone-can be prevented as a result. While conventional apparatuses and methods are often designed to reduce as nearly as possible the almost inevitable transfer of pyrolysis gas from the gasification zone directly into the reduction zone and to force a path across the oxidation zone, the present invention solves the problem by controlling the leakage gases occurring over the oxidation zone Supply of air from a second air supply device are oxidized directly in the gasification zone. The amount of air required the second air supply device is controlled as needed. This is done according to the invention with the aid of the measuring device which directly or indirectly measures the tar content of the raw gas or product gas produced and depending on the measured value obtained, which gives information about the contamination by unoxidized pyrolysis gas and in the dependence of the signal technically connected control device regulates the air supply of the second air supply device ,

Mit der erfindungsgemäß fortgebildeten Vergasungsvorrichtung wird eine Messvorrichtung und signaltechnische Verarbeitung bereitgestellt, welche es erlaubt anhand des gemessenen Teergehaltes Rückschlüsse über die Stärke der auftretenden Leckagegase zu ziehen. Um diese in der Vergasungszone sicher zu oxidieren, kann abhängig vom erhaltenen Messwert über die signaltechnisch verbundene Steuervorrichtung die Luftzufuhr der zweiten Luftzufuhrvorrichtung reguliert werden. Bei erhöhtem Teergehalt des erzeugten Rohgases beziehungsweise Produktgases wird die Luftzufuhr der zweiten Luftzufuhrvorrichtung verstärkt, bei geringem oder Nichtvorhandensein eines messbaren Teergehaltes kann die Luftzufuhr verringert werden.With the gasification device developed according to the invention, a measuring device and signaling processing is provided, which allows conclusions about the strength of the leakage gases occurring on the basis of the measured tar content to draw. In order to safely oxidize them in the gasification zone, depending on the measured value obtained, the air supply of the second air supply device can be regulated via the signal-technically connected control device. With increased tar content of the generated raw gas or product gas, the air supply of the second air supply device is amplified, with little or no presence of a measurable tar content, the air supply can be reduced.

Erfindungsgemäß kann die Messeinheit jedoch auch derart ausgestaltet sein, dass sie den direkten oder indirekten CO-Gehalt des erzeugten Produktgases misst und abhängig vom signaltechnisch verarbeiteten Messwert die Luftzufuhr der zweiten Luftzufuhrvorrichtung mit Hilfe der signaltechnisch verbundene Steuereinheit angepasst wird.According to the invention, however, the measuring unit can also be configured such that it measures the direct or indirect CO content of the product gas produced and the air supply of the second air supply device is adjusted with the aid of the signal-technically connected control unit as a function of the signal-technically processed measured value.

Mit der so erfindungsgemäß fortgebildeten Vergasungsvorrichtung kann der ermittelte CO-Gehalt wie schon der Teergehalt Aufschluss über die Effizienz der jeweiligen erwünschten Stoffumsetzung geben. Letztere ist in der Reduktionszone dann am höchsten, wenn das Rohgas aus der Oxidationszone und der pyrolisierte Feststoff Koks aus der Vergasungszone möglichst heiß aufeinander treffen, idealerweise bei etwa 1000°C. Abhängig vom messtechnisch erfassten CO-Gehalt des letztlich erhaltenen Produktgases kann über signaltechnische Verarbeitung die Luftzufuhr über die signaltechnisch verbundene Steuervorrichtung derart reguliert werden, dass das Koks vor Eintritt in die Reduktionszone noch einmal möglichst stark aufgeheizt wird.With the gasification device developed according to the invention, the determined CO content, like the tar content, can provide information about the efficiency of the respective desired substance conversion. The latter is highest in the reduction zone when the raw gas from the oxidation zone and the pyrolyzed solid coke from the gasification zone meet as hot as possible, ideally at about 1000 ° C. Depending on the metrologically detected CO content of the product gas ultimately obtained, the air supply can be regulated via signaling technology by means of the signal-technically connected control device in such a way that the coke is once again heated as much as possible before it enters the reduction zone.

Erfindungsgemäß können die Luftzufuhrvorrichtungen einzeln, aber auch in Kombination verwendet werden. Der Messung der Gasbestandteile im Produktgas können in einer bevorzugten Ausführungsform eine vorherige Filterung und/oder Abkühlung des Gases vorangeschaltet sein.According to the invention, the air supply devices can be used individually, but also in combination. The measurement of the gas constituents in the product gas may in a preferred embodiment be preceded by a prior filtering and / or cooling of the gas.

Mittels der erfindungsgemäß fortgebildeten Vergasungsvorrichtung wird eine Vergasung eines Feststoffs in einer großen Vergasungszone erzielt, ohne dass dabei unerwünschte Übertritte der erzeugten Produktstoffe, beispielsweise nicht oxidiertes Rohgas, als Leckagegas, oder ungenügend erhitztes Koks, auftreten.Gasification of a solid in a large gasification zone is achieved by means of the gasification apparatus developed according to the invention, without undesired transfer of the product substances produced, for example unoxidized raw gas, as leakage gas or insufficiently heated coke.

Die Oxidationszone ist mit der Vergasungszone zur Leitung des in der Vergasungszone erzeugten Pyrolysegases in die Oxidationszone verbunden. Vorzugsweise sind die Vergasungszone und die Oxidationszone durch mindestens eine Wandung voneinander getrennt. Die Verbindung der Oxidationszone mit der Vergasungszone zur Leitung des in der Vergasungszone erzeugten Pyrolysegases in die Oxidationszone kann vorzugsweise durch eine fluidtechnische Verbindung in bestimmten Abschnitten, beispielsweise durch eine oder mehrere Öffnungen in der Wandung, erfolgen. Durch einen solchen Aufbau der Vergasungseinrichtung, insbesondere durch eine solche räumliche Trennung der Vergasungszone und der Oxidationszone, kann der Prozessablauf der Vergasung verbessert werden.The oxidation zone is connected to the gasification zone for conducting the pyrolysis gas produced in the gasification zone into the oxidation zone. Preferably, the gasification zone and the oxidation zone are separated by at least one wall. The connection of the oxidation zone with the gasification zone for the conduction of the in The pyrolysis gas generated in the gasification zone into the oxidation zone can preferably be effected by a fluidic connection in certain sections, for example through one or more openings in the wall. By such a construction of the gasification device, in particular by such a spatial separation of the gasification zone and the oxidation zone, the process sequence of the gasification can be improved.

Ferner ist bevorzugt, dass die Wandung in einem in Betriebsstellung oberen Teil der Oxidationszone schräg nach unten zeigende Öffnungen aufweist, über die das in der Vergasungszone entstandene Pyrolysegas auf Grund der örtlichen Druck- und Strömungsverhältnisse in die Oxidationszone gelangt. Die Öffnungen werden vorzugsweise dadurch ausgebildet, dass die schrägabfallende Wandung auf Höhe der jeweiligen Öffnung endet und radial nach innen versetzt, kurz oberhalb der Öffnung fortgeführt wird. Die sich damit leicht überlappenden schräg abfallenden Wandungen der Oxidationszone können so einen unerwünschten Eintritt des Feststoffes in die Oxidationszone oder eine Verstopfung der Öffnungen durch den zugeführten Feststoff verhindern.Furthermore, it is preferred that the wall has openings pointing obliquely downward in an operating position in the upper part of the oxidation zone, via which the pyrolysis gas formed in the gasification zone passes into the oxidation zone on the basis of the local pressure and flow conditions. The openings are preferably formed in that the sloping wall ends at the level of the respective opening and offset radially inwards, is continued just above the opening. The slightly overlapping sloping walls of the oxidation zone can thus prevent undesired entry of the solid into the oxidation zone or clogging of the openings by the supplied solid.

Besonders bevorzugt ist es, dass die Vergasungszone und die Oxidationszone in thermischem Kontakt sind, vorzugsweise über die mindestens eine Wandung, welche die Vergasungszone und die Oxidationszone voneinander trennt. Dies ermöglicht eine besonders vorteilhafte Ausnutzung der entstehenden Prozesswärme.It is particularly preferred that the gasification zone and the oxidation zone are in thermal contact, preferably via the at least one wall which separates the gasification zone and the oxidation zone from each other. This allows a particularly advantageous utilization of the resulting process heat.

Mittels einer ersten bevorzugten Ausführungsform ist vorgesehen, dass die Oxidationszone bezogen auf ihren Querschnitt zumindest teilweise, vorzugsweise vollständig von der Vergasungszone umgeben ist. Gemäß dieser Ausführungsform ist die Oxidationszone zentral innerhalb der Vergasungsvorrichtung angeordnet, indem sie in Bezug auf einen Querschnitt durch die Vergasungsvorrichtung zumindest in einem Bereich, vorzugsweise aber vollständig von der Vergasungszone umgeben ist. Hierdurch wird insbesondere eine ringförmige Vergasungszone um die Oxidationszone ausgebildet und folglich ein wirksamer Wärmeübergang von der Vergasungszone in die Oxidationszone und umgekehrt ermöglicht. Dabei ist zu verstehen, dass einerseits durch die Zufuhr von Pyrolysegas aus der Vergasungszone in die Oxidationszone ein konvektiver Wärmetransport stattfindet, durch die Umgebung der Oxidationszone mit der Vergasungszone aber darüber hinaus auch durch direkte Wärmeleitung ein Wärmetransport stattfinden kann. Insbesondere kann diese Ausführungsform solcherart verwirklicht werden, dass die Vergasungsvorrichtung als Schachtvergaser ausgeführt ist und die Oxidationszone als zentral innerhalb des Schachtvergasers angeordnete Oxidationskammer ausgeführt ist, die von einer ringförmigen Vergasungszone umgeben ist.By means of a first preferred embodiment it is provided that the oxidation zone is at least partially, preferably completely surrounded by the gasification zone in relation to its cross section. According to this embodiment, the oxidation zone is arranged centrally within the gasification device by being surrounded by the gasification zone in relation to a cross section through the gasification device at least in a region, but preferably completely. As a result, in particular, an annular gasification zone is formed around the oxidation zone and consequently enables effective heat transfer from the gasification zone into the oxidation zone and vice versa. It should be understood that on the one hand by the supply of pyrolysis gas from the gasification zone in the oxidation zone, a convective heat transfer takes place, but through the environment of the oxidation zone with the gasification zone but also by direct heat conduction heat transfer can take place. In particular, this embodiment can be realized such that the gasification device is designed as a shaft carburetor and the oxidation zone as centrally disposed within the shaft gasifier oxidation chamber is executed, which is surrounded by an annular gasification zone.

In einer weiteren bevorzugten Ausführungsform misst eine Temperaturmesseinheit dabei die Temperatur in oder in unmittelbarer Nähe der Oxidationskammer. Anhand der signaltechnisch verarbeiteten Messergebnisse kann die Luftzufzuhr in die Vergasungszone, vorzugsweise über die erste Luftzufuhrvorrichtung reguliert werden, so dass vorzugsweise eine Temperatur von etwa 1000° in der Oxidationszone vorherrscht.In a further preferred embodiment, a temperature measuring unit measures the temperature in or in the immediate vicinity of the oxidation chamber. Based on the signal-technically processed measurement results, the air supply can be regulated in the gasification zone, preferably via the first air supply device, so that preferably a temperature of about 1000 ° prevails in the oxidation zone.

Weiterhin ist bevorzugt, dass der Feststoff der Vergasungszone in Betriebsstellung allein unter Ausnutzung der Schwerkraft durch eine Feststoffzufuhröffnung zugeführt werden kann.Furthermore, it is preferred that the solid of the gasification zone in the operating position can be fed by gravity alone through a solids feed opening.

Mit einer derartig ausgebildeten Ausführungsform kann eine effiziente und robuste Feststoffzufuhr erzielt werden, da keinerlei mechanische Zuführvorrichtungen, welche bei Fehlfunktion den Ablauf stören können, auftreten.With such an embodiment, an efficient and robust supply of solids can be achieved, since no mechanical feed devices, which can interfere with the operation in case of malfunction, occur.

Noch weiter ist bevorzugt, die erfindungsgemäße Vergasungsvorrichtung fortzubilden durch eine Reduktionszone, welche mit der Oxidationszone zur Zuleitung des in der Oxidationszone gebildeten Rohgases verbunden ist und ausgebildet ist, um das ihr zugeleitete Rohgas chemisch zu reduzieren. In der Reduktionszone kann insbesondere mithilfe von Koks, der aus der Vergasungszone in die Reduktionszone befördert wird und sich aus entgasten Feststoffresten zusammensetzt, ein Brenngas aus dem in der Oxidationszone aufbereitetem Pyrolysegas erzeugt werden. Hierbei kann weiterhin auch eine Filterung von Festbestandteilen durch den Koks in der Reduktionszone erzielt werden. Alternativ oder zusätzlich hierzu können aber auch andere Verfahren zur Filterung, beispielsweise mittels Filterkerzen oder dergleichen vorgesehen sein.It is even further preferred to refine the gasification device according to the invention by means of a reduction zone, which is connected to the oxidation zone for supplying the raw gas formed in the oxidation zone and is designed to chemically reduce the raw gas supplied to it. In the reduction zone, in particular by means of coke, which is conveyed from the gasification zone into the reduction zone and composed of degassed solid residues, a fuel gas can be generated from the pyrolysis gas processed in the oxidation zone. In this case, filtering of solid constituents by the coke in the reduction zone can furthermore be achieved. Alternatively or additionally, however, other methods for filtering, for example by means of filter candles or the like may be provided.

Weiterhin ist es bevorzugt die Reduktionszone der eingangs oder zuvor erläuterten Bauweise in Schwerkraftrichtung unterhalb der Vergasungszone anzuordnen, so dass sie in direkter Verbindung steht und der Feststoff unter Einwirken der Schwerkraft direkt aus der Vergasungszone in die Reduktionszone übertreten kann. Dabei sollte vorzugsweise ein Abschnitt der Oxidationszone so ausgebildet sein, dass er die Vergasungszone in Strömungsrichtung des erzeugten Gases von der Reduktionszone trennt. In dieser Reduktionszone kann, wie zuvor erläutert, aus dem pyrolisierten und oxidierten bzw. gecrackten Rohgas aus der Oxidationszone ein Brenngas zur Erzeugung und hierbei eine zusätzliche Filterwirkung erzielt werden.Furthermore, it is preferable to arrange the reduction zone of the construction described above or above in the direction of gravity below the gasification zone so that it is in direct connection and the solid can, under the action of gravity, pass directly from the gasification zone into the reduction zone. In this case, preferably, a portion of the oxidation zone should be formed so that it separates the gasification zone in the flow direction of the gas generated from the reduction zone. In this reduction zone, as explained above, from the pyrolyzed and oxidized or cracked Crude gas from the oxidation zone, a fuel gas to produce and this an additional filtering effect can be achieved.

Eine bevorzugte Realisierung der Messeinheit zur Bestimmung des Teergehaltes im erzeugten Rohgas beziehungsweise Produktgas stellt ein CH4-Sensor dar, welcher über den ermittelten CH4-Gehalt indirekten Aufschluss über den im Gas enthaltenen Teergehalt bietet und somit über signaltechnische Verarbeitung für die Regulierung der Luftzufuhr in der zweiten Luftzufuhrebene verwendet werden kann.A preferred embodiment of the measuring unit for determining the tar content in the raw gas or product gas produced is a CH4 sensor which provides indirect information on the tar content contained in the gas via the determined CH4 content and thus via signal processing for the regulation of the air supply in the second Air supply level can be used.

Das bei der Vergasung des Feststoffes entstehende Pyrolysegas stellt ein Gemisch aus Kohlenmonoxid (CO), Wasserstoff (H2), Wasserdampf (H2O), Kohlendioxid (CO2), Methan (CH4) sowie einer Reihe von Spurengasen und Verunreinigungen in Form von langkettigen Kohlenwasserstoffen (Teere) dar. Bei der anschließenden partiellen Oxidation in der Oxidationszone werden die leicht brennbaren Bestandteile oxidiert. Dies ist eine exotherme Reaktion, so dass sich die Temperatur erhöht. Diese wird auf ca. 1.000 °C geregelt, wobei nicht oxidierte langkettige Kohlenwasserstoffe (Teere) in kurzkettige Moleküle zerfallen (cracking). Bei der partiellen Oxidation der leicht brennbaren Bestandteile entstehen in der Oxidationskammer typische Verbrennungsprodukte wie H2O und CO2. Diese Gase werden beim Auftreffen auf den in der Vergasungszone enstandenen Koks in der Reduktionszone endotherm umgewandelt zu H2 und CO. Dabei sinkt die Temperatur, da thermische Energie umgewandelt wird in chemische Energie. Nicht oxidierte und nicht gecrackte Leckagegase, die die Oxidationskammer umgehen, durchströmen die Reduktionszone, ohne an den endothermen Reaktionen teilzunehmen. Sie finden sich demnach im fertigen Produktgas wieder. Der Gehalt an diesen Verunreinigungen lässt sich durch eine CH4 (Methan)-Messung im Produktgas feststellen.The resulting in the gasification of the solid pyrolysis gas is a mixture of carbon monoxide (CO), hydrogen (H 2 ), water vapor (H 2 O), carbon dioxide (CO 2 ), methane (CH 4 ) and a number of trace gases and impurities in the form of long-chain hydrocarbons (tars). In the subsequent partial oxidation in the oxidation zone, the readily combustible constituents are oxidized. This is an exothermic reaction so that the temperature increases. This is controlled at about 1,000 ° C, with non-oxidized long-chain hydrocarbons (tars) decay into short-chain molecules (cracking). In the partial oxidation of easily combustible constituents, typical combustion products such as H 2 O and CO 2 are formed in the oxidation chamber. These gases are endothermically converted to H 2 and CO upon impact with the coke formed in the gasification zone in the reduction zone. The temperature drops as thermal energy is converted into chemical energy. Unoxidized and uncracked leakage gases bypassing the oxidation chamber pass through the reduction zone without participating in the endothermic reactions. They are therefore found in the finished product gas again. The content of these impurities can be determined by a CH 4 (methane) measurement in the product gas.

Bei einer Realisierung der Messeinheit zur Bestimmung des CO-Gehaltes im erzeugten Produktgas ist eine Ausführungsform zu bevorzugen, bei der die zweite Luftzufuhrvorrichtung unmittelbar vor dem Übergang von der Vergasungszone in die Reduktionszone angeordnet ist.In an embodiment of the measuring unit for determining the CO content in the product gas produced, an embodiment is preferred in which the second air supply device is arranged immediately before the transition from the gasification zone into the reduction zone.

Eine weitere bevorzugte Ausführungsform sieht sowohl eine zusätzliche Luftzufuhrvorrichtung im Bereich der Vergasungszone zur Oxidation auftretender Leckagegase vor als auch eine weitere Luftzufuhrvorrichtung unmittelbar vor dem Übergang von der Vergasungs- in die Reduktionszone zur optimierten Aufheizung des Kokses vor.A further preferred embodiment provides both an additional air supply device in the region of the gasification zone for the oxidation of occurring leakage gases before and a further air supply device immediately before the transition from the gasification in the reduction zone for optimized heating of the coke before.

Ein weiterer Aspekt der Erfindung ist eine Vergaservorrichtung der eingangs erwähnten Art, welche ferner eine Gasabsaugvorrichtung aufweist, welche eine seitlich an der Vergasungseinrichtung befindliche Absaugöffnung aufweist, und welche dadurch gekennzeichnet ist, dass die Gasabsaugvorrichtung einen Absaugring umfasst, welcher ausgestaltet ist, eine gleichmäßige Geschwindigkeitsverteilung über den Querschnitt des Vergasers für das abzusaugende Gas zu erzeugen, indem der Ring dem Gas einen größten Austrittsquerschnitt auf der der Austrittsöffnung abgewandten Seite bietet, welcher sich zur Austrittsöffnung zugewandten Seite hin verengt.Another aspect of the invention is a carburetor device of the type mentioned in the opening paragraph, which further comprises a gas suction device having a suction opening laterally on the gasification device, and which is characterized in that the gas suction device comprises a suction ring, which is designed, a uniform velocity distribution over to produce the cross section of the carburetor for the gas to be sucked off by the ring the gas has a largest outlet cross section on the side facing away from the outlet opening, which narrows towards the outlet opening side facing.

Dieser Aspekt der Erfindung kann in Kombination mit den bereits aufgeführten bevorzugten Ausführungsformen realisiert werden.This aspect of the invention can be realized in combination with the already mentioned preferred embodiments.

In einer bevorzugten Ausführungsform befindet sich die Absaugvorrichtung dabei ringförmig um die Reduktionszone angeordnet, wobei der Absaugring dem entzündbaren Gas auf der der Austrittsöffnung abgewandten Seite in Schwerkraftrichtung die größte Öffnung bietet, welche sich kontinuierlich oder auch stufenweise zur Austrittsöffnung zugewandten Seite hin verjüngt.In a preferred embodiment, the suction device is arranged annularly around the reduction zone, wherein the suction ring on the side facing away from the outlet opening in the direction of gravity offers the largest opening to the flammable gas, which tapers continuously or stepwise towards the outlet opening side facing.

Ein weiterer Aspekt der Erfindung ist ein Vergasungsverfahren zur Erzeugung entzündbaren Gases aus einem Feststoff, mit den Schritten:

  • Zuführen von Feststoff in eine Vergasungszone
  • Vergasen des Feststoffes in der Vergasungszone mittels Pyrolyse bzw. Vergasung
  • Zuführen des in der Vergasungszone erzeugten Pyrolysegases in eine Oxidationszone
  • Zuführen von Luft in die Vergasungszone
welches sich dadurch auszeichnet, dass die Vergasung in der Vergasungszone von Luft aus mindestens zwei Luftzufuhrvorrichtungen stattfindet, wobei die zweite Luftzufuhrvorrichtung in Verarbeitungsrichtung des Feststoffes der ersten Luftzufuhrvorrichtung nachgestellt ist, und die Zuführung von Luft über die zweite Luftzufuhrvorrichtung abhängig von der Messung der qualitativen oder quantitativen Menge vorbestimmter Gase - Reingase wie auch Gasgemische - im in der Oxidationszone erzeugten Rohgas oder im endzündbaren Produktgas gesteuert wird. Das erfindungsgemäße Vergasungsverfahren kann insbesondere mit der zuvor beschriebenen Vergasungsvorrichtung ausgeführt werden und zeichnet sich dadurch aus, dass durch die individuell steuerbare Luftzufuhr in verschiedene Ebenen der Vergasungszone unerwünschte Austritte von Prozessstoffen aus der Vergasungszone in die angrenzenden Prozesszonen unterbunden werden können.Another aspect of the invention is a gasification process for producing flammable gas from a solid, comprising the steps of:
  • Feeding solid into a gasification zone
  • Gasification of the solid in the gasification zone by means of pyrolysis or gasification
  • Feeding the pyrolysis gas generated in the gasification zone into an oxidation zone
  • Supplying air to the gasification zone
which is characterized in that the gasification in the gasification zone of air takes place from at least two air supply devices, wherein the second air supply device is adjusted in the processing direction of the solid of the first air supply device, and the supply of air via the second air supply device depending on the measurement of the qualitative or quantitative Quantity of predetermined gases - Pure gases as well as gas mixtures - in the produced in the oxidation zone raw gas or in the final ignitable product gas is controlled. The gasification method according to the invention can be carried out in particular with the gasification device described above and is characterized by the fact that the individually controllable air supply to different levels of the gasification zone undesirable discharges of process materials from the gasification zone can be prevented in the adjacent process zones.

Das Verfahren kann zusätzlich fortgebildet werden, indem das Zuführen von Luft in der Vergasungszone individuell für regelmäßig oder unregelmäßig über den Querschnitt verteilten Vergasungssektoren gesteuert wird.The method may be further developed by individually controlling the feeding of air in the gasification zone for gasification sectors distributed regularly or irregularly across the cross section.

Eine weitere Fortbildung sieht folgende zusätzliche Verfahrensschritte vor:

  • Zufuhr von Luft in die Oxidationszone und Wandeln des Pyrolysegases in einem unterstöchiometrischen Prozess mittels Teiloxidation und Spaltung in der Oxidationszone in ein Rohgas,
    • Zuführen des Rohgases aus der Oxidationszone in eine Reduktionszone,
    • Zuführen von teilweise oder vollständig pyrolysiertem Feststoff in die Reduktionszone,
    • Reduzieren des Rohgases in der Reduktionszone mittels des pyrolysierten. Feststoffes in ein Brenngas.
Further training provides the following additional procedural steps:
  • Supply of air into the oxidation zone and conversion of the pyrolysis gas in a substoichiometric process by partial oxidation and cleavage in the oxidation zone in a raw gas,
    • Feeding the raw gas from the oxidation zone into a reduction zone,
    • Feeding partially or completely pyrolyzed solid into the reduction zone,
    • Reduction of the raw gas in the reduction zone by means of the pyrolyzed. Solid in a fuel gas.

Mit Hilfe der Messeinheit wird direkt oder indirekt der Teergehalt im erzeugten Rohgas beziehungsweise Produktgas gemessen und die Luftzufuhr wird über die zweite Luftzufuhrvorrichtung entsprechend des zugehörigen signaltechnisch verarbeiteten Messergebnisses angepasst Mit Hilfe der in Abhängigkeit vom Teergehalt gesteuerten Luftzufuhr kann der direkte Übertritt von Teilen des erzeugten Pyrolysegases ohne vorherige Oxidation in die Reduktionszone verhindert werden. Die Bestimmung des indirekten Teergehaltes kann dabei mit einem CH4-Sensor vorgenommen werden.With the help of the measuring unit, the tar content in the produced raw gas or product gas is measured directly or indirectly and the air supply is adjusted via the second air supply device according to the associated signal-processed measurement result With the aid of controlled depending on the tar content air supply, the direct transfer of parts of the generated pyrolysis gas without previous oxidation in the reduction zone be prevented. The determination of the indirect tar content can be carried out with a CH4 sensor.

Beim Zuführen von Luft in Abhängigkeit des CO-Gehaltes ist das Zuführen unmittelbar vor dem Übergang der Vergasungszone in die Reduktionszone besonders vorteilhaft, da der pyrolisierte Feststoff Koks unmittelbar vor dem Eintritt in die Reduktionszone noch einmal aufgeheizt wird und die anschließende Reduktion des Rohgases mit Hilfe des Kokses in diesem Fall besonders effektiv verlaufen kann.When supplying air as a function of the CO content, the feeding immediately before the transition of the gasification zone in the reduction zone is particularly advantageous, since the pyrolyzed solid coke is heated again just before entering the reduction zone and the subsequent reduction of the raw gas with the aid of Coke in this case can be particularly effective.

Das Vergasungsverfahren kann alternativ oder parallel dahingehend fortentwickelt werden, dass es den Schritt des Absaugens des entzündbaren Gases mit einer Gasabsaugvorrichtung umfasst, wobei die Gasabsaugvorrichtung eine seitlich an der Vergasungseinrichtung befindliche Absaugöffnung aufweist und ausgestaltet ist eine gleichmäßige Geschwindigkeitsverteilung über den Querschnitt des Vergasers für das abzusaugende Gas zu erzeugen, dadurch gekennzeichnet, dass die Gasabsaugvorrichtung einen Absaugring aufweist, welcher dem Gas einen größten Austrittsquerschnitt auf der der Austrittsöffnung abgewandten Seite bietet, welcher sich zur Austrittsöffnung zugewandten Seite hin verengt.The gasification process may alternatively or concurrently be advanced to include the step of extracting the flammable gas with a gas exhaust device, the gas exhaust device having a suction port located laterally on the gasifier and a uniform velocity distribution across the cross section of the gasifier for the gas to be exhausted to produce, characterized in that the gas suction device has a suction ring, which provides the gas a largest outlet cross-section on the side facing away from the outlet opening, which narrows towards the outlet opening facing side.

Die Erfindung wird im Weiteren näher durch beispielhafte, nicht einschränkende bevorzugte Ausführungsformen erläutert.The invention will be further explained in more detail by way of exemplary non-limiting preferred embodiments.

Figur 1 eine längsgeschnittende Seitenansicht einer bevorzugten Ausführungsform der erfindungsgemäßen Vergasungsvorrichtung. FIG. 1 a longitudinally cutaway side view of a preferred embodiment of the gasification device according to the invention.

Fig. 1 zeigt eine bevorzugte Ausführungsform des vorliegenden Schachtvergasers 1. Mittels der Feststoffzufuhröffnung 9 kann der Feststoff der Vergasungszone 2 zugeführt werden, welche die zentral gelegene Oxidationszone 3 in einem horizontalen Querschnitt allseitig umschließt. Bei einer zylindrischen Ausführungsform wie in der Fig. 1 gezeigt, führt dies zu einer ringförmig um die Oxidationszone ausgeprägten Vergasungszone, welche durch die Wandung 14 der Oxidationszone von dieser getrennt ist, jedoch bei entsprechender Ausgestaltung der Wandung 14 in thermischen Kontakt mit dieser steht. Der Oxidationszone 3 wird über ein Luftzuführrohr 11, welches von einem Umhüllungsrohr umschlossen ist 12, und welches vorzugsweise zentral in Längsrichtung entlang der Mittelachtes des Vergasers verläuft, Luft zugeführt. Das Luftzufuhrrohr kann aber auch außerhalb der Längsachse oder in radialer Richtung seitlich angeordnet sein und parallel zu dieser verlaufen. Die Oxidationszone weißt vorzugsweise eine Glockenförmige Ausgestaltung auf, wobei der obere Teil 13, welcher kegelförmig von oben schräg nach unten abfällt, die Zufuhr des Feststoffes in die Vergasungszone allein aufgrund der Schwerkraft erleichtert. Fig. 1 shows a preferred embodiment of the present Schachtvergasers 1. By means of the solid feed opening 9, the solid gasification zone 2 can be supplied, which surrounds the centrally located oxidation zone 3 in a horizontal cross section on all sides. In a cylindrical embodiment as in Fig. 1 This leads to a ring-shaped around the oxidation zone pronounced gasification zone, which is separated by the wall 14 of the oxidation zone of this, but with a corresponding configuration of the wall 14 in thermal contact with this. The oxidation zone 3 is supplied with air via an air feed tube 11 which is enclosed by a cover tube 12 and which preferably runs centrally longitudinally along the center of the carburetor. However, the air supply pipe can also be arranged laterally outside the longitudinal axis or in the radial direction and run parallel to it. The oxidation zone preferably has a bell-shaped configuration on, wherein the upper part 13, which decreases conically from above obliquely downward, facilitates the supply of the solid into the gasification zone solely by gravity.

Im oberen Teil der Oxidationszone 3 weist die Wandung 14 schräg nach unten zeigende Öffnungen 15 auf, über die das in der Vergasungszone entstandene Pyrolysegas auf Grund der örtlichen Druck- und Strömungsverhältnisse in die Oxidationszone gelangt. Die Öffnungen werden dadurch ausgebildet, dass die schrägabfallende Wandung auf Höhe der jeweiligen Öffnung endet und radial nach innen versetzt, kurz oberhalb der Öffnung fortgeführt wird. Die sich damit leicht überlappenden schräg abfallenden Wandungen 13 der Oxidationszone verhindern einen unerwünschten Eintritt des Feststoffes in die Oxidationszone oder eine Verstopfung der Öffnungen durch den zugeführten Feststoff.In the upper part of the oxidation zone 3, the wall 14 has obliquely downwardly pointing openings 15, via which the pyrolysis gas formed in the gasification zone passes into the oxidation zone due to the local pressure and flow conditions. The openings are formed in that the sloping wall ends at the level of the respective opening and offset radially inwards, is continued just above the opening. The slightly overlapping obliquely sloping walls 13 of the oxidation zone prevent undesired entry of the solid into the oxidation zone or clogging of the openings by the supplied solid.

In die Vergasungszone 2 wird über Luftdüsen 4, 5, 6, welche in radialer Richtung zur Mittelachse des Vergasers verlaufen und in gleichmäßigen oder ungleichmäßigen Abständen auf dem Umfang des Schachtvergasers verteilt sind, eine individuell regelbare Menge an Luft zugeführt. Über die Luftzufuhrvorrichtung 4 in der ersten Ebene wird Luft zur Aufrechterhaltung der für die im oberen Teil des Schachtvergasers ablaufenden Prozesse notwendigen Temperatur eingedüst. Eine Temperaturmesseinheit (7) misst dabei die Temperatur in oder in unmittelbarer Nähe der Oxidationskammer und die Luftzufuhr über die Luftzufuhrvorrichtung 4 wird anhand der signaltechnisch verarbeiteten Messergebnisse entsprechend reguliert, so dass vorzugsweise eine Temperatur von etwa 1000° in der Oxidationszone herrscht.Into the gasification zone 2, an individually controllable amount of air is supplied via air nozzles 4, 5, 6, which extend in the radial direction to the center axis of the carburetor and are distributed in uniform or non-uniform intervals on the circumference of the shaft gasifier. Air is injected via the air supply device 4 in the first plane to maintain the temperature necessary for the processes taking place in the upper part of the shaft carburettor. A temperature measuring unit (7) measures the temperature in or in the immediate vicinity of the oxidation chamber and the air supply via the air supply device 4 is regulated according to the signal-technically processed measurement results, so that preferably there is a temperature of about 1000 ° in the oxidation zone.

Während der Großteil des entstandenen Pyrolysegases dann den vorgesehenen Weg durch die Oxidationszone nimmt, lässt es sich nicht vermeiden, dass ein Bruchteil direkt aus der Vergasungszone in die Reduktionszone 8 dringt. Um eine so entstehende Verunreinigung des oxidierten Pyrolysegases zu vermeiden, wird mit Hilfe einer zweiten Luftzufuhrvorrichtung 5, welche in Betriebsstellung der ersten Luftzufuhrvorrichtung 4 nachgestellt ist, weitere Luft in die Vergasungszone zugeführt, um die Leckagegase direkt in der Vergasungszone 2 zu oxidieren. Die benötigte Menge an zuzuführender Luft wird mit Hilfe der Messeinheit 10 ermittelt, welche direkt oder indirekt den Teergehalt des erzeugten Produktgases misst, und über eine signaltechnisch verbundene Steuereinheit abhängig vom signaltechnisch verarbeiteten Messwert reguliert.While the majority of the resulting pyrolysis gas then takes the intended path through the oxidation zone, it can not be avoided that a fraction penetrates directly from the gasification zone into the reduction zone 8. In order to avoid such a contamination of the oxidized pyrolysis gas, with the aid of a second air supply device 5, which is adjusted in the operating position of the first air supply device 4, further air is supplied to the gasification zone in order to oxidize the leakage gases directly in the gasification zone 2. The required amount of air to be supplied is determined with the aid of the measuring unit 10, which directly or indirectly measures the tar content of the product gas produced, and regulated via a signal-technically connected control unit depending on the signal-technically processed measured value.

Eine solche Oxidation der Leckagegase führt lokal zu Temperaturerhöhungen des pyrolysierten Feststoffes, des Kokses, welcher in der Reduktionszone über eine endotherme Reaktion das oxidierte Pyrolysegas reduzieren soll, so dass eine vorherige Temperaturerhöhung durchaus positive Auswirkungen hat. Um die Temperatur des Kokses unabhängig von der Menge der in der zweiten Luftzufuhrebene eingedüsten Luft zu regulieren - entweder ohne eine vorherige Oxidation von Leckagegasen über eine zweite Luftzufuhrvorrichtung oder wie in Fig.1 gezeigt zusätzlich dazu - wird Luft über eine weitere Luftzufuhrvorrichtung 6 unmittelbar vor dem Übertritt des Kokses aus der Vergasungszone 2 in die Reduktionszone 8 in die Vergasungszone eingedüst, so dass das oxidierte Pyrolysegas und das Koks bei vorzugsweise 1000° in der Reduktionszone aufeinandertreffen. Aufschluss auf die Effizienz des Reduktionsprozesses kann eine Messung des CO-Gehaltes im finalen Produktgas geben. Die Messeinheit 10 misst direkt oder indirekt den CO-Gehalt des Produktgases, so dass über signaltechnische Verarbeitung des Messwertes die Steuereinheit die Luftzufuhr der dritten Luftzufuhrvorrichtung 6 in Abhängigkeit vom erhaltenen Messergebnis regulieren kann.Such oxidation of the leakage gases leads locally to temperature increases of the pyrolyzed solid, the coke, which is to reduce the oxidized pyrolysis gas in the reduction zone via an endothermic reaction, so that a previous increase in temperature has quite positive effects. To regulate the temperature of the coke, regardless of the amount of air sprayed in the second air supply plane - either without a prior oxidation of leakage gases via a second air supply device or as in FIG Fig.1 shown in addition to it - air is injected via a further air supply device 6 immediately before the passage of the coke from the gasification zone 2 in the reduction zone 8 in the gasification zone, so that the oxidized pyrolysis gas and the coke meet at preferably 1000 ° in the reduction zone. An indication of the efficiency of the reduction process can be obtained by measuring the CO content in the final product gas. The measuring unit 10 directly or indirectly measures the CO content of the product gas, so that the control unit can regulate the air supply of the third air supply device 6 as a function of the measurement result obtained by signal processing of the measured value.

Im unteren Teil der in Figur 1 dargestellten Vergaservorrichtung wird das erzeugte Gas über eine Austrittsöffnung 16 abgesaugt. Um eine gleichmäßige Geschwindigkeitsverteilung des erzeugten Gases über den Querschnitt des Vergasers zu erzielen, ist ein Absaugring 17, welcher die Reduktionszone umschließt, so ausgestaltet, dass er den größten Austrittsquerschnitt 18 auf der der Austrittsöffnung abgewandten Seite aufweist, welcher sich mit zunehmender Annäherung an die Austrittsöffnung verengt, so dass die Seite unmittelbar vor der Austrittsöffnung den kleinsten Austrittsquerschnitt bietet.In the lower part of in FIG. 1 shown gasifier device, the generated gas is sucked through an outlet opening 16. In order to achieve a uniform velocity distribution of the gas produced over the cross section of the carburetor, a suction ring 17, which encloses the reduction zone, designed so that it has the largest outlet cross-section 18 on the side facing away from the outlet opening, which with increasing approach to the outlet opening narrows so that the side immediately before the outlet opening offers the smallest outlet cross-section.

Claims (15)

  1. Gasification apparatus (1) for generating a flammable product gas from a solid material, comprising:
    a gasification zone (2), into which the solid material can be filled via a solid material feed opening (9) and from which solid material a pyrolysis gas is generated,
    an oxidation zone (3) for the oxidation of the generated pyrolysis gas, which oxidation zone is connected to the gasification zone (2) in order to conduct the pyrolysis gas generated in the gasification zone (2) into the oxidation zone (3),
    characterised in that
    a first air feed device (4) and a second air feed device (5; 6) feed air into the gasification zone (2), wherein the second air feed device (5; 6) is arranged downstream of the first air feed device (4) in the processing direction of the solid material,
    a measuring unit (7; 10) for determining a measurement signal, which measuring unit is designed to determine a qualitative or quantitative amount of predetermined gas components of the flammable product gas and characterises this in the measurement signal, and
    a control device which is coupled in signal terms to the measuring unit (7; 10) for transmission of the measurement signal and is configured in such a way that it controls the amount of air that is to be fed in by the first and/or second air feed device (5; 6) as a function of the measurement signal,
    wherein the measuring unit (7; 10) is designed to determine directly or indirectly the tar content in the generated raw gas or product gas, and wherein the control device controls the amount of air that is fed in via the second air feed device (5; 6) as a function of the directly or indirectly determined tar content of the generated raw gas or product gas.
  2. Gasification apparatus (1) according to claim 1, characterised in that the gasification zone (2) and the oxidation zone (3) are in thermal contact, wherein either the oxidation zone (3) encloses the gasification zone (2) in a cross-section of the shaft gasifier in the direction of passage of the solid material, or the gasification zone (2) encloses the oxidation zone (3) in a cross-section of the shaft gasifier in the direction of passage of the solid material, and wherein the gasification zone (2) is preferably subdivided into a plurality of gasification sectors which are regularly or irregularly distributed over the cross-section and which each have an individual controllable air feed.
  3. Gasification apparatus (1) according to any one of claims 1 or 2, characterised in that the gasification zone (2), in the operating position, is arranged in the direction of gravity below a solid material feed opening (9) for feeding in solid materials under the effect of gravity.
  4. Gasification apparatus (1) according to any one of claims 1 to 3, characterised by a reduction zone (8) which is connected to the oxidation zone (3) for the feeding-in of the raw gas formed in the oxidation zone (3) and which is designed to chemically reduce the raw gas fed thereto.
  5. Gasification apparatus (1) according to any one of claims 1 to 4, characterised in that a reduction zone or with regard to claim 4 the reduction zone (8) is arranged in the direction of gravity below the gasification zone (2) and is connected to the latter for the direct transfer of solid material under the effect of gravity from the gasification zone (2) into the reduction zone (8), and preferably a section of the oxidation zone (3) is arranged in such a way that it separates the gasification zone (2) from the reduction zone (8) in the flow direction of the generated gas.
  6. Gasification apparatus (1) according to any one of claims 1 to 5, wherein the measuring unit (7; 10) is a CH4 sensor which is configured in such a way that it enables, via signal processing, an indirect conclusion to be drawn about the proportion of tar contained in the raw gas or product gas.
  7. Gasification apparatus (1) according to claim 4 or 5, wherein the measuring unit (10) is designed to measure directly or indirectly the CO content of the generated product gas, and the control device is designed in such a way that it controls the amount of air fed in by the second air feed device (5; 6) as a function of the CO content of the generated product gas that is directly or indirectly determined by the measuring unit (10).
  8. Gasification apparatus (1) according to claim 7, wherein the second air feed device is located immediately before the transition from the gasification zone (2) into the reduction zone (8).
  9. Gasification apparatus (1) according to any one of the preceding claims, further comprising a gas suction device which has a suction opening (16) located on the side of the gasification apparatus and which is characterised in that the gas suction device comprises a suction ring (17) which is configured to generate a uniform rate distribution over the cross-section of the gasifier for the gas that is to be extracted by suction, in that the ring offers the gas a maximum outlet cross-section (18) on the side facing away from the outlet opening, which tapers towards the side facing the outlet opening.
  10. Gasification method for generating a flammable product gas from a solid material,
    comprising the steps:
    - feeding solid material into a gasification zone (2),
    - gasifying the solid material in the gasification zone (2) by means of pyrolysis or gasification,
    - feeding the pyrolysis gas generated in the gasification zone (2) into an oxidation zone (3),
    - feeding air into a gasification zone (2), characterised in that
    a second air feed device (5; 6) is arranged downstream of a first air feed device (4) in a processing direction of the solid material, and the feeding of air via the second air feed device (5; 6) is controlled as a function of the measurement of a qualitative or quantitative amount of a predetermined gas component in the raw gas - generated in the oxidation zone (3) - or in the flammable product gas, wherein a direct or indirect measurement of the tar content in the generated raw gas or product gas is carried out, and the amount of air fed in via the second air feed device (5; 6) is added as a function of the measurement signals which have been subjected to signal processing.
  11. Gasification method according to claim 10, wherein the feeding of air into a gasification zone (2) is controlled individually for gasification sectors which are regularly or irregularly distributed over the cross-section.
  12. Gasification method according to claim 10 or 11, which further comprises:
    - feeding air into the oxidation zone (3) and converting the pyrolysis gas into a raw gas in a substoichiometric process by means of partial oxidation and cracking in the oxidation zone (3),
    - feeding the raw gas from the oxidation zone (3) into a reduction zone (8);
    - feeding partially or completely pyrolysed solid material into the reduction zone (8),
    - chemically reducing the raw gas into the flammable product gas in the reduction zone (8) by means of the pyrolysed solid material.
  13. Gasification method according to any one of claims 10 to 12, wherein the CH4 content of the generated product gas is measured in order to draw an indirect conclusion, via signal processing, about the proportion of tar contained in the raw gas or product gas and to control the feeding of air from the second air feed device (5; 6) as a function of the measurement.
  14. Gasification method according to claim 12, characterised in that
    the CO content of the product gas generated in the reduction zone (8) is measured and the amount of air fed in by the second air feed device is controlled as a function of the determined CO content.
  15. Gasification method according to any one of claims 10 to 14, wherein the method further includes:
    extracting the flammable gas by suction using a gas suction device which has a suction opening (16) located on the side of the gasification apparatus and which is configured to generate a uniform rate distribution over the cross-section of the gasifier for the gas that is to be extracted by suction,
    characterised in that
    the gas suction device has a suction ring (17) which offers the gas a maximum outlet cross-section (18) on the side facing away from the outlet opening, which tapers towards the side facing the outlet opening.
EP13798924.0A 2012-09-13 2013-09-13 Apparatus and process for generating fuel gas from a solid fuel Not-in-force EP2895579B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202012008777.0U DE202012008777U1 (en) 2012-09-13 2012-09-13 Apparatus for producing fuel gas from a solid fuel
PCT/EP2013/002765 WO2014040744A1 (en) 2012-09-13 2013-09-13 Apparatus for generating fuel gas from a solid fuel

Publications (2)

Publication Number Publication Date
EP2895579A1 EP2895579A1 (en) 2015-07-22
EP2895579B1 true EP2895579B1 (en) 2016-11-09

Family

ID=49683661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13798924.0A Not-in-force EP2895579B1 (en) 2012-09-13 2013-09-13 Apparatus and process for generating fuel gas from a solid fuel

Country Status (6)

Country Link
US (1) US20150240172A1 (en)
EP (1) EP2895579B1 (en)
CN (1) CN104837963A (en)
DE (1) DE202012008777U1 (en)
ES (1) ES2612887T3 (en)
WO (1) WO2014040744A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982151B2 (en) * 2016-09-29 2021-04-20 Expander Energy Inc. Process for converting carbonaceous material into low tar synthesis gas
US20180086994A1 (en) * 2016-09-29 2018-03-29 Expander Energy Inc. Process For Converting Carbonaceous Material Into Low Tar Synthetic Gas
FR3067038B1 (en) * 2017-05-31 2020-02-14 Raymond Guyomarc'h DEVICE AND INSTALLATION FOR CONVERTING RAW CARBONATED AND / OR HYDROCARBON RAW MATERIALS INTO SYNTHESIS GAS
CN113430011B (en) * 2021-07-26 2022-04-01 赣州市怡辰宏焰能源科技有限公司 Conical grate type biomass gasification furnace
CN114854454B (en) * 2022-04-27 2023-04-14 西安交通大学 Self-heating coal supercritical water thermochemical reduction hydrogen production reactor and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1384711A (en) * 1971-03-19 1975-02-19 Exxon Research Engineering Co Production of combustible gases
US6647903B2 (en) * 2000-09-14 2003-11-18 Charles W. Aguadas Ellis Method and apparatus for generating and utilizing combustible gas
DE102004020919B4 (en) * 2004-04-28 2009-12-31 Kbi International Ltd. Reactor for thermal waste treatment with injection agents
CA2610806C (en) * 2005-06-03 2013-09-17 Plasco Energy Group Inc. A system for the conversion of carbonaceous feedstocks to a gas of a specified composition
US7819070B2 (en) * 2005-07-15 2010-10-26 Jc Enviro Enterprises Corp. Method and apparatus for generating combustible synthesis gas
DE202006009174U1 (en) 2006-06-08 2007-10-11 Rudolf Hörmann GmbH & Co. KG Apparatus for producing fuel gas from a solid fuel
FI122109B (en) * 2006-11-17 2011-08-31 Leo Ruokamo Method for gasification of fuel and gasification generator
DE102010033646B4 (en) * 2010-02-05 2012-05-24 Pyrox Gmbh Method and shaft carburetor for producing fuel gas from a solid fuel
EP2536811B1 (en) * 2010-02-16 2015-10-14 Big Dutchman International GmbH Gasification device and gasification method
FR2965816B1 (en) * 2010-10-12 2014-04-25 S3D DEVICE FOR TRANSFORMING A FUEL
CN102453550B (en) * 2011-05-06 2013-12-04 华东理工大学 Multi-nozzle multi-stage oxygen supplying entrained-flow gasifier and gasification method thereof
DE102011117142A1 (en) * 2011-10-28 2013-05-02 Ligento green power GmbH Gasification reactor for carbonaceous fuel
DE102011117140A1 (en) * 2011-10-28 2013-05-02 Ligento green power GmbH Method for operating a gasification reactor

Also Published As

Publication number Publication date
DE202012008777U1 (en) 2015-10-06
EP2895579A1 (en) 2015-07-22
CN104837963A (en) 2015-08-12
WO2014040744A1 (en) 2014-03-20
ES2612887T3 (en) 2017-05-19
US20150240172A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
EP2895579B1 (en) Apparatus and process for generating fuel gas from a solid fuel
EP2536811B1 (en) Gasification device and gasification method
DE2651302C3 (en) Device for generating distillation gas from waste
DE3732867A1 (en) METHOD AND DEVICE FOR GENERATING GENERATOR GAS AND ACTIVATED COAL FROM SOLID FUELS
DE102010033646B4 (en) Method and shaft carburetor for producing fuel gas from a solid fuel
DE102004024672B4 (en) Apparatus and method for producing a tar-free lean gas by gasification of biomass
EP0157758A2 (en) Method for producing synthetic gases, in particular reduction gases, and device for carrying out the method
DE202006009174U1 (en) Apparatus for producing fuel gas from a solid fuel
WO2011067130A1 (en) System for generating a product gas from organic input materials
WO2010057458A2 (en) Apparatus in the form of a moving bed carburetor and method for operating the same in an arrangement for the thermal decomposition of waste products and waste materials
DE102008043131B4 (en) Process and apparatus for thermochemical gasification of solid fuels
DE60016159T2 (en) Device for the pyrolysis of hydrogen gas
WO2018024404A1 (en) Facility and method for transforming carbon-containing fuels into synthesis gas
WO2015058864A1 (en) Reactor and method for gasification of fuels
EP3037395B1 (en) Method and device for obtaining a product containing phosphorus in a form that is easily used by plants from bulk material of at least partially organic origin
AT506919B1 (en) METHOD AND DEVICE FOR GASIFICATION OF SOLID FUELS
EP1160307B1 (en) Process and apparatus for thermal treatment and chemical conversion of natural or synthetic materials to a product gas
DE102013112995B4 (en) A method of heating a fuel bed in a fixed bed pressure gasification reactor
DE102011075438A1 (en) Process and apparatus for producing synthesis gas from carbon dioxide-containing educts by gasification
DE4340459C1 (en) Process for operating fluidised bed reactor
DE2454767C3 (en) Method and device for the continuous conversion of coal into a gas consisting of saturated hydrocarbons
EP3858952A1 (en) Method and device for separating solid fuels by thermal decomposition by partial oxidation
DE68905681T2 (en) METHOD FOR CHANGING THE POLLUTANTS IN A RAW HIGH TEMPERATURE HIGH PRESSURE SYNTHESIS GAS FLOW.
DE102011101077A1 (en) Process and reactor for the autothermal reforming of fuels
DE102012223567A1 (en) Method for removing e.g. biomass formed from tar compounds during pyrolysis in fluidized bed reactor, involves performing gasification of pyrolysis residual substance with process gas for forming product gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10J 3/26 20060101ALI20160412BHEP

Ipc: C10J 3/64 20060101ALI20160412BHEP

Ipc: C10J 3/72 20060101ALI20160412BHEP

Ipc: C10J 3/82 20060101ALI20160412BHEP

Ipc: C10J 3/06 20060101AFI20160412BHEP

INTG Intention to grant announced

Effective date: 20160426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 843903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005347

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2612887

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005347

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180921

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180829

Year of fee payment: 6

Ref country code: NL

Payment date: 20180920

Year of fee payment: 6

Ref country code: LV

Payment date: 20180919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181004

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181024

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 843903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013005347

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190913

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20191001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190913

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190913