EP2876405B1 - Guided missile and method for steering a guided missile - Google Patents

Guided missile and method for steering a guided missile Download PDF

Info

Publication number
EP2876405B1
EP2876405B1 EP14003885.2A EP14003885A EP2876405B1 EP 2876405 B1 EP2876405 B1 EP 2876405B1 EP 14003885 A EP14003885 A EP 14003885A EP 2876405 B1 EP2876405 B1 EP 2876405B1
Authority
EP
European Patent Office
Prior art keywords
drive
guided missile
missile
thrust
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14003885.2A
Other languages
German (de)
French (fr)
Other versions
EP2876405A1 (en
Inventor
Ludwig Netter
Harald Wasner
Thomas Gallhauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MBDA Deutschland GmbH
Original Assignee
MBDA Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MBDA Deutschland GmbH filed Critical MBDA Deutschland GmbH
Priority to PL14003885T priority Critical patent/PL2876405T3/en
Publication of EP2876405A1 publication Critical patent/EP2876405A1/en
Application granted granted Critical
Publication of EP2876405B1 publication Critical patent/EP2876405B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust
    • F42B10/661Steering by varying intensity or direction of thrust using several transversally acting rocket motors, each motor containing an individual propellant charge, e.g. solid charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/66Steering by varying intensity or direction of thrust
    • F42B10/663Steering by varying intensity or direction of thrust using a plurality of transversally acting auxiliary nozzles, which are opened or closed by valves

Definitions

  • the longitudinal axis can be aligned to a velocity vector of the missile such that the first thrust of the first drive generates a predefined transverse acceleration perpendicular to the velocity vector. Since a direction of the first thrust deviates from the direction of a current speed of the guided missile by the orientation of the guided missile, the first thrust can be dismantled into a longitudinal thrust component and into a transverse thrust component.
  • the method is carried out with the following additional steps: First, an angle of attack between the longitudinal axis and the velocity vector is determined, which is necessary for the first thrust of the first drive to generate the specified lateral acceleration. This is possible in particular by trigonometric calculation, since the first thrust of the first drive and the lateral acceleration are known. Subsequently, the second drive is at least partially activated, so that the missile occupies the specific angle of attack. This is done in particular by a suitable control of the second drive.
  • the guided missile is additionally configured in such a way that it has an aerodynamic control unit. Therefore, it is the missile in particular possible to switch between aerodynamic steering and steering by interaction of the first drive and the second drive.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Die vorliegende Erfindung betrifft einen Lenkflugkörper. Außerdem betrifft die Erfindung ein Verfahren zum Lenken eines Lenkflugkörpers. Der Lenkflugkörper ist insbesondere ein Integral-Flugkörper.
In der Regel wird ein Integral-Flugkörper in der unteren Abfangschicht, das bedeutet unterhalb von vorzugsweise 30 Kilometern Flughöhe, zur Bekämpfung von Zielen benutzt, in der die Luftdichte groß genug ist, um den Flugkörper aerodynamisch zu steuern und die geforderte Querbeschleunigung mit aerodynamischen Auftrieb zu gewährleisten.
In der oberen Abfangschicht werden zweistufige oder auch mehrstufige Flugkörper verwendet, die eine Antriebsstufe und eine Wirkstufe, auch Kill Vehicle genannt, umfassen. Hierbei wird nach dem Abwurf der Antriebsstufe das Kill Vehicle mit Querschubdüsen (DACS = Divert Attitude Control System) in ein vorgegebenes Ziel gelenkt. Ein DACS setzt sich zusammen aus vier Düsen im Schwerpunkt des Flugkörpers, die die geforderte Querbeschleunigung aufbringen, und aus mindestens vier Düsen am Heck oder auch an der Spitze des Kill Vehicles, die die Lage des Kill Vehicles kontrollieren.
Ein Integral-Flugkörper, der verzugsweise in der unteren Abfangschicht eingesetzt wird, benutzt in der Regel die aerodynamischen Steuerflächen, um den Flugkörper relativ zur Anströmung anzustellen und zu trimmen. Durch diese Anstellung des Flugkörpers wird ein Auftrieb erzeugt, so dass der Flugkörper gelenkt werden kann. Ein anderer Lenkflugkörper ist beispielsweise aus der FR 2 684 723 A1 bekannt. Ein Lenkflugkörper gemäß dem Oberbegriff des Anspruchs 1 ist aus der DE 199 49 640 und der US 2,822,755 A bekannt.
Bei größeren Abfanghöhen nimmt mit abnehmender Luftdichte die aerodynamische Wirksamkeit immer weiter ab, und der Flugkörper kann die geforderte Querbeschleunigung nicht mehr aufbringen und trifft nicht mehr. Unter günstigen Bedingungen sind Treffer mit Querschubtrimmung und aerodynamischem Auftrieb bis zu 30 km Höhe möglich, was somit auch den Einsatzbereich für einen Integral-Flugkörper in der Höhe begrenzt.
Es ist daher Aufgabe der Erfindung, einen Lenkflugkörper bereitzustellen, der bei einfacher und kostengünstiger Herstellung einen großen Einsatzbereich aufweist. Die Lösung der Aufgabe erfolgt durch die Merkmale des unabhängigen Anspruchs 1.
The present invention relates to a guided missile. Moreover, the invention relates to a method for steering a guided missile. The guided missile is in particular an integral missile.
Typically, an integral missile in the lower scavenger layer, that is below about 30 kilometers of altitude, is used to combat targets in which the air density is large enough to aerodynamically control the missile and provide the required lateral acceleration with aerodynamic lift guarantee.
In the upper interception layer two-stage or multi-stage missiles are used, which include a drive stage and an action stage, also called kill vehicle. Here, after the dropping of the drive stage, the kill vehicle with transverse thrust nozzles (DACS = Divert Attitude Control System) is directed to a predetermined destination. A DACS consists of four nozzles in the center of gravity of the missile, which provide the required lateral acceleration, and at least four nozzles at the rear or at the top of the kill vehicle, which control the position of the kill vehicle.
An integral missile, which is preferably used in the lower interceptor layer, typically uses the aerodynamic control surfaces to position and trim the missile relative to the airflow. Through this employment of the missile, a buoyancy is generated, so that the missile can be steered. Another missile is for example from the FR 2 684 723 A1 known. A missile according to the preamble of claim 1 is known from DE 199 49 640 and the US 2,822,755 A known.
With larger interception heights, the aerodynamic effectiveness decreases with decreasing air density, and the missile can no longer apply the required lateral acceleration and no longer hits. Under cheap Conditions are hits with transverse thrust trim and aerodynamic lift up to 30 km altitude possible, thus limiting the range of application for an integral missile in height.
It is therefore an object of the invention to provide a guided missile, which has a large field of application with simple and cost-effective production. The object is achieved by the features of independent claim 1.

Weiterhin betrifft die Erfindung gemäß unabhängigem Anspruch 7 ein Verfahren zum Steuern eines Lenkflugkörpers nach einem der Ansprüche 1 - 6, wobei der Lenkflugkörper eine Längsachse aufweist und einen ersten Antrieb sowie einen zweiten Antrieb umfasst. Durch den ersten Antrieb ist ein erster Schub entlang der Längsachse und durch den zweiten Antrieb ein zweiter Schub senkrecht zu der Längsachse erzeugbar. Das Verfahren umfasst erfindungsgemäß die folgenden Schritte: Zunächst wird der erste Antrieb aktiviert. Dabei ist insbesondere vorgesehen, dass der erste Antrieb ein Triebwerk ist, das mehrmals aktivierbar ist. Besonders bevorzugt ist der erste Antrieb ein Doppelimpulstriebwerk. Der erfindungsgemäße Schritt des Aktivierens des ersten Antriebs ist insbesondere ein letztmaliges Aktivieren des Triebwerks oder des Doppelimpulstriebwerks. Anschließend wird der Lenkflugkörper durch zumindest partielles Aktivieren des zweiten Antriebs ausgerichtet. Das Ausrichten folgt bevorzugt einer vorgegebenen Lenkvorschrift, die eine Richtung vorgibt, in die der Lenkflugkörper zu fliegen hat.Furthermore, the invention according to independent claim 7 relates to a method for controlling a guided missile according to one of claims 1-6, wherein the missile has a longitudinal axis and comprises a first drive and a second drive. By the first drive, a first thrust along the longitudinal axis and by the second drive, a second thrust perpendicular to the longitudinal axis can be generated. According to the invention, the method comprises the following steps: First, the first drive is activated. It is provided in particular that the first drive is an engine that can be activated several times. Particularly preferably, the first drive is a double pulse engine. The step of activating the first drive according to the invention is in particular a last activation of the engine or of the double pulse engine. Subsequently, the missile is aligned by at least partially activating the second drive. The alignment preferably follows a predetermined steering regulation, which specifies a direction in which the guided missile has to fly.

Durch das Ausrichten wird insbesondere eine Wirkrichtung des ersten Antriebs verändert, so dass der Lenkflugkörper eine Richtungsänderung vollführt.
Die Unteransprüche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt. Bevorzugt ist der Lenkflugkörper ausschließlich durch den ersten Antrieb und den zweiten Antrieb lenkbar. Somit ist bevorzugt vorgesehen, dass der Lenkflugkörper lediglich mit dem ersten Schub und dem zweiten Schub lenkbar ist. Dabei ist der zweite Schub insbesondere für eine Rotation des Lenkflugkörpers um den Schwerpunkt des Lenkflugkörpers verwendbar. Der erste Schub wiederum ist insbesondere für eine translatorische Beschleunigung des Schwerpunktes des Lenkflugkörpers verwendbar.
Vorteilhafterweise weist der zweite Antrieb einen vordefinierten Abstand zu einem Schwerpunkt des Lenkflugkörpers auf. Außerdem ist bevorzugt vorgesehen, dass der zweite Antrieb eine Wirkrichtung innehat, die einen vordefinierten Winkel zu der Längsachse des Lenkflugkörpers einnimmt, wobei der vordefinierte Winkel insbesondere 90° oder im Wesentlichen 90° beträgt. Dies erlaubt, mit dem zweiten Antrieb eine Rotation des Lenkflugkörpers um den Schwerpunkt auszuführen. Somit ist der Lenkflugkörper ausrichtbar. Für eine optimale Lenkbarkeit des Lenkflugkörpers ist der vordefinierte Abstand möglichst groß, insbesondere so groß wie möglich, zu wählen.
In einer bevorzugten Ausführungsform umfasst der zweite Antrieb Schubdüsen, die insbesondere kartesisch angeordnet sind. Vorzugsweise umfasst der zweite Antrieb vier Schubdüsen, die kranzförmig um die Längsachse orientiert sind. Besonders bevorzugt sind die Querschubdüsen regelmäßig um den Umfang des Lenkflugkörpers angeordnet. Es ist vorgesehen, dass eine minimale Betriebsdauer des zweiten Antriebs zumindest einer maximalen Betriebsdauer des ersten Antriebs entspricht. Somit ist sichergestellt, dass der zweite Antrieb während einer gesamten Betriebsdauer des ersten Antriebs aktivierbar ist. Da der zweite Antrieb bevorzugt zum Ausrichten und damit Lenken des Lenkflugkörpers verwendet wird, ist somit sichergestellt, dass der Lenkflugkörper während der Betriebsdauer des ersten Antriebs lenkbar ist. Die Betriebsdauer des ersten Antriebs ist insbesondere eine Betriebsdauer zwischen einem letztmaligen Aktivieren und einem letztmaligen Deaktivieren des ersten Antriebs.
By aligning in particular a direction of action of the first drive is changed, so that the missile makes a change in direction.
The dependent claims have advantageous developments of the invention to the content. Preferably, the guided missile is steerable exclusively by the first drive and the second drive. Thus, it is preferably provided that the guided missile is only steerable with the first thrust and the second thrust. In this case, the second thrust can be used in particular for a rotation of the guided missile about the center of gravity of the guided missile. The first thrust in turn can be used in particular for a translatory acceleration of the center of gravity of the guided missile.
Advantageously, the second drive has a predefined distance to a center of gravity of the guided missile. In addition, it is preferably provided that the second drive has a direction of action, which occupies a predefined angle to the longitudinal axis of the missile, wherein the predefined angle is in particular 90 ° or substantially 90 °. This allows to perform with the second drive rotation of the missile about the center of gravity. Thus, the missile is alignable. For optimal steerability of the missile, the predefined distance is as large as possible, in particular as large as possible to choose.
In a preferred embodiment, the second drive comprises thrust nozzles, which are arranged in particular Cartesian. Preferably, the second drive comprises four thrusters, which are oriented in a circle around the longitudinal axis. Particularly preferably, the transverse thrust nozzles are regularly arranged around the circumference of the missile. It is provided that a minimum operating time of the second drive corresponds to at least a maximum operating time of the first drive. This ensures that the second drive can be activated during a whole operating period of the first drive. Since the second drive is preferably used for aligning and thus steering the missile is thus ensuring that the guided missile is steerable during the service life of the first drive. The operating time of the first drive is in particular an operating period between a last activation and a last deactivation of the first drive.

Der erste Antrieb ist insbesondere ein Doppelimpulstriebwerk. Die minimale Betriebsdauer des zweiten Antriebs entspricht daher zumindest einer maximalen Betriebsdauer eines zweiten Impulses des Doppelimpulstriebwerks.The first drive is in particular a double pulse engine. The minimum operating time of the second drive therefore corresponds to at least a maximum operating time of a second pulse of the double pulse motor.

Schließlich ist vorteilhafterweise vorgesehen, dass durch Ansteuerung des zweiten Antriebs die Längsachse derart zu einem Geschwindigkeitsvektor des Lenkflugkörpers ausrichtbar ist, dass der erste Schub des ersten Antriebs eine vordefinierte Querbeschleunigung senkrecht zu dem Geschwindigkeitsvektor erzeugt. Da durch das Ausrichten des Lenkflugkörpers eine Richtung des ersten Schubs von der Richtung einer aktuellen Geschwindigkeit des Lenkflugkörpers abweicht, ist der erste Schub in eine Längsschubkomponente und in eine Querschubkomponente zerlegbar.Finally, it is advantageously provided that by driving the second drive, the longitudinal axis can be aligned to a velocity vector of the missile such that the first thrust of the first drive generates a predefined transverse acceleration perpendicular to the velocity vector. Since a direction of the first thrust deviates from the direction of a current speed of the guided missile by the orientation of the guided missile, the first thrust can be dismantled into a longitudinal thrust component and into a transverse thrust component.

Für das erfindungsgemäße Verfahren ist insbesondere vorgesehen, dass die folgenden Schritte zusätzlich zu den bereits genannten Schritten ausgeführt werden. Zunächst wird eine Querbeschleunigung senkrecht zu einem Geschwindigkeitsvektor des Lenkflugkörpers festgelegt. Dabei ist vorgesehen, dass der Lenkflugkörper die festgelegte Querbeschleunigung einnehmen soll. Die Querbeschleunigung wird bevorzugt von einem übergeordneten Navigationssystem festgelegt, wobei das Navigationssystem den Lenkflugkörper insbesondere zu einem zu bekämpfenden Ziel lenkt. Anschließend wird die Längsachse des Lenkflugkörpers relativ zu dem Geschwindigkeitsvektor des Lenkflugkörpers ausgerichtete, indem der zweite Antrieb zumindest partiell aktiviert wird. Als Ergebnis der Ausrichtung erzeugt der erste Antrieb den ersten Schub derart, dass die festgelegte Querbeschleunigung erreicht wird. Ob der erste Schub die festgelegte Querbeschleunigung erzeugt, ist insbesondere durch Zerlegung eines den ersten Schub darstellenden Vektors in eine Längsschubbeschleunigung und in eine Querschubbeschleunigung feststellbar.For the method according to the invention, provision is made in particular for the following steps to be carried out in addition to the steps already mentioned. First, a lateral acceleration is determined perpendicular to a velocity vector of the missile. It is envisaged that the missile should take the specified lateral acceleration. The lateral acceleration is preferably determined by a superordinate navigation system, wherein the navigation system directs the guided missile in particular to a target to be counteracted. Subsequently, the longitudinal axis of the missile is aligned relative to the velocity vector of the missile by the second drive is at least partially activated. As a result of the alignment, the first drive generates the first thrust such that the specified lateral acceleration is achieved. Whether the first thrust generates the specified lateral acceleration can be determined in particular by decomposing a vector representing the first thrust into a longitudinal thrust acceleration and into a transverse thrust acceleration.

Außerdem ist besonders bevorzugt vorgesehen, dass das Verfahren mit folgenden zusätzlichen Schritten ausgeführt wird: Zunächst wird ein Anstellwinkel zwischen Längsachse und Geschwindigkeitsvektor bestimmt, der notwendig ist, damit der erste Schub des ersten Antriebs die festgelegte Querbeschleunigung erzeugt. Dies ist insbesondere durch trigonometrische Berechnung möglich, da der erste Schub des ersten Antriebs und die Querbeschleunigung bekannt sind. Anschließend wird der zweite Antrieb zumindest partiell aktiviert, so dass der Lenkflugkörper den bestimmten Anstellwinkel einnimmt. Dies erfolgt insbesondere durch eine passende Regelung des zweiten Antriebs.
Der Lenkflugkörper ist insbesondere zusätzlich derart ausgestaltet, dass dieser eine aerodynamische Steuereinheit aufweist. Daher ist es dem Lenkflugkörper insbesondere möglich, zwischen aerodynamischer Lenkung und Lenkung durch Zusammenspiel von erstem Antrieb und zweitem Antrieb zu wechseln.
Bei der Bekämpfung von TBMs (Tactical Ballistic Missiles) versucht man das Ziel mit einem Direkttreffer zu zerstören, um die notwendige Zerstörungsenergie aufzubringen. Ein Direkttreffer gegen schnelle und/oder manövrierende TBMs setzt eine hohe Agilität des Flugkörpers voraus. Diese wird erreicht durch die Verwendung einer Querschubeinheit vor dem Schwerpunkt (ACS = Attitude Control System) - für das neue Lenkkonzept vorzugsweise 4 kartesisch angeordnete Querschubdüsen. Durch die hohe Dynamik der Querschubdüsen und die Vermeidung des Allpassverhaltens (Einbau der Düsen vor dem Schwerpunkt) kann die Zeitkonstante des Flugkörpers soweit verbessert werden, dass ein Direkttreffer möglich ist. Die notwendige Querbeschleunigung, um den Flugkörper zum Direkttreffer zu führen, wird jedoch auch beim Einsatz der Querschubdüsen (ACS) größtenteils durch den aerodynamischen Auftrieb des Flugköpers erzielt (im Gegensatz zu einem Kill Vehicle mit einem DACS).
In addition, it is particularly preferably provided that the method is carried out with the following additional steps: First, an angle of attack between the longitudinal axis and the velocity vector is determined, which is necessary for the first thrust of the first drive to generate the specified lateral acceleration. This is possible in particular by trigonometric calculation, since the first thrust of the first drive and the lateral acceleration are known. Subsequently, the second drive is at least partially activated, so that the missile occupies the specific angle of attack. This is done in particular by a suitable control of the second drive.
In particular, the guided missile is additionally configured in such a way that it has an aerodynamic control unit. Therefore, it is the missile in particular possible to switch between aerodynamic steering and steering by interaction of the first drive and the second drive.
When fighting TBMs (Tactical Ballistic Missiles), you try to destroy the target with a direct hit in order to muster the necessary destruction energy. A direct hit against fast and / or maneuvering TBMs requires a high agility of the missile. This is achieved by the use of a transverse thrust unit in front of the center of gravity (ACS = Attitude Control System) - for the new steering concept preferably 4 Cartesian arranged transverse thrust nozzles. Due to the high dynamics of the transverse thrust nozzles and the avoidance of the all-pass behavior (installation of the nozzles in front of the center of gravity), the time constant of the missile can be improved to such an extent that a direct hit is possible. The necessary lateral acceleration to direct the missile to the direct hit, however, is also achieved when using the transverse thrust nozzles (ACS) largely by the aerodynamic lift of the missile (in contrast to a Kill Vehicle with a DACS).

Die Erfindung wird nun anhand der beigefügten Zeichnungen detailliert beschrieben. In den Zeichnungen ist:

Figur 1
eine schematische Darstellung eines Lenkflugkörpers gemäß einem Ausführungsbeispiel der Erfindung,
Figur 2
eine schematische Darstellung des Lenkflugkörpers gemäß dem Ausführungsbeispiel der Erfindung während eines ersten Lenkvorgangs,
Figur 3
eine schematische Darstellung des Lenkflugkörpers gemäß dem Ausführungsbeispiel der Erfindung während eines zweiten Lenkvorgangs, und
Figur 4
eine schematische Darstellung wirkenden Kräfte bei Ausführen des zweiten Lenkvorgangs.
The invention will now be described in detail with reference to the accompanying drawings. In the drawings:
FIG. 1
a schematic representation of a missile according to an embodiment of the invention,
FIG. 2
a schematic representation of the missile according to the embodiment of the invention during a first steering operation,
FIG. 3
a schematic representation of the missile according to the embodiment of the invention during a second steering operation, and
FIG. 4
a schematic representation acting forces when performing the second steering operation.

Figur 1 zeigt schematisch einen Lenkflugkörper 1 gemäß der Erfindung. Der Lenkflugkörper 1 weist eine Längsachse 2 auf, um die sich der Lenkflugkörper zylinderförmig erstreckt. Durch einen ersten Antrieb 3 und einen zweiten Antrieb 4 ist der Lenkflugkörper 1 antreibbar und/oder lenkbar.
Der erste Antrieb 3 ist bevorzugt ein Triebwerk, insbesondere ein Raketentriebwerk. Auch ist vorgesehen, dass der erste Antrieb 3 ein Doppelimpulstriebwerk ist, das mehrmals aktivierbar und deaktivierbar ist. Der zweite Antrieb 4 umfasst eine Vielzahl von Querschubdüsen, die kranzförmig um die Längsachse 2 angeordnet sind. Dabei weisen die Querschubdüsen des zweiten Antriebs 4 einen vordefinierten Abstand zu dem Schwerpunkt 5 des Lenkflugkörpers 1 auf. Eine Wirkrichtung der Querschubdüsen ist jeweils senkrecht zu der Längsachse 2 orientiert, wobei die Wirkrichtung insbesondere von der Längsachse 2 weg weist. Dadurch ist mit dem zweiten Antrieb 4 eine Rotationsbewegung des Lenkflugkörpers 1 um den Schwerpunkt 5 erzeugbar.
Insbesondere ist der erste Antrieb 3 an einem Ende des Lenkflugkörpers 1 angebracht. An einem gegenüberliegenden Ende ist bevorzugt eine Wirkeinheit 7 des Lenkflugkörpers 1 vorgesehen. Der Schwerpunkt 5 liegt insbesondere zwischen dem zweiten Antrieb 4 und dem ersten Antrieb 3.
FIG. 1 schematically shows a guided missile 1 according to the invention. The guided missile 1 has a longitudinal axis 2 around which the guided missile extends in a cylindrical manner. By a first drive 3 and a second drive 4 of the guided missile 1 is driven and / or steerable.
The first drive 3 is preferably an engine, in particular a rocket engine. It is also provided that the first drive 3 is a double-pulse engine, which can be activated and deactivated several times. The second drive 4 comprises a plurality of transverse thrust nozzles, which are arranged in a circle around the longitudinal axis 2. The transverse thrust nozzles of the second drive 4 have a predefined distance to the center of gravity 5 of the guided missile 1. A direction of action of the transverse thrust nozzles is oriented in each case perpendicular to the longitudinal axis 2, wherein the effective direction in particular points away from the longitudinal axis 2. As a result, a rotational movement of the steering missile 1 about the center of gravity 5 can be generated with the second drive 4.
In particular, the first drive 3 is attached to one end of the guided missile 1. At an opposite end, an active unit 7 is preferred provided the missile 1. The center of gravity 5 lies in particular between the second drive 4 and the first drive 3.

Zur aerodynamischen Steuerung weist der Lenkflugkörper 1 aerodynamische Steuereinheiten 6 auf, die ebenfalls bevorzugt kranzförmig um die Längsachse 2 orientiert sind. Die aerodynamischen Steuereinheiten 6 sind vorteilhafterweise Steuerflächen, die an dem Ende des Lenkflugkörpers 1 angebracht sind, an dem auch der erste Antrieb 3 vorgesehen ist.For aerodynamic control, the guided missile 1 on aerodynamic control units 6, which are also preferably oriented in a circle around the longitudinal axis 2. The aerodynamic control units 6 are advantageously control surfaces which are attached to the end of the guided missile 1, on which the first drive 3 is also provided.

Insgesamt ist der Lenkflugkörper 1 daher auf unterschiedliche Arten steuerbar. Dabei ist vorgesehen, dass ein Steuerkonzept ab Erreichen einer vordefinierten Flughöhe geändert wird. So ist insbesondere vorgesehen, den Lenkflugkörper 1 unterhalb der vordefinierten Flughöhe aerodynamisch zu steuern, wie dies in Figur 2 gezeigt ist. Oberhalb der vordefinierten Flughöhe wird der Lenkflugkörper 1 insbesondere durch ein Zusammenspiel von erstem Antrieb 3 und zweitem Antrieb 4 gesteuert. Dies ist in den Figuren 3 und 4 gezeigt.Overall, the guided missile 1 is therefore controllable in different ways. It is provided that a control concept is changed from reaching a predefined altitude. In particular, it is provided to aerodynamically control the guided missile 1 below the predefined flying height, as shown in FIG FIG. 2 is shown. Above the predefined altitude, the guided missile 1 is controlled in particular by an interaction of the first drive 3 and the second drive 4. This is in the FIGS. 3 and 4 shown.

Figur 2 zeigt den Lenkflugkörper 1 aus Figur 1 während eines Fluges mit aerodynamischer Lenkung. Durch die aerodynamischen Steuereinheiten 6 ist der Lenkflugkörper 1 derart steuerbar, dass die Längsachse 2 um einen Anstellwinkel 10 aus der horizontalen Ebene verdrehbar ist. Auf diese Weise wird eine Auftriebskraft 20 erzeugt, die eine Lenkung des Lenkflugkörpers 1 erlaubt. Der Auftriebskraft 20 wirkt eine Gewichtskraft 30 des Lenkflugkörpers 1 entgegen. Weiterhin wirkt eine Vortriebskraft 40 auf den Schwerpunkt 5 des Lenkflugkörpers 1 ein, der eine Widerstandskraft 50 entgegenwirkt. Solange der erste Antrieb 3 abgeschaltet ist, sind alle genannten Kräfte nahezu gleich groß, so dass sich der Lenkflugkörper 1 in einem nahezu stationären Flug befindet. Der stationäre Flug wird dabei lediglich durch den Luftwiderstand abgebremst. Jedoch ist der Lenkflugkörper auch ohne aktiven ersten Antrieb 3 lenkbar. FIG. 2 shows the guided missile 1 from FIG. 1 during a flight with aerodynamic steering. By the aerodynamic control units 6 of the guided missile 1 is controlled so that the longitudinal axis 2 is rotated by an angle of attack 10 from the horizontal plane. In this way, a buoyancy force 20 is generated, which allows steering of the steering missile 1. The buoyant force 20 counteracts a weight 30 of the guided missile 1. Furthermore, a driving force 40 acts on the center of gravity 5 of the guided missile 1, which counteracts a resistance force 50. As long as the first drive 3 is switched off, all said forces are almost equal, so that the guided missile 1 is in a nearly stationary flight. The stationary flight is slowed down only by the air resistance. However, the missile is steerable even without active first drive 3.

Figur 3 zeigt den Lenkflugkörper 1 aus Figur 1 während eines Fluges mit Lenkung durch Aktivierung des ersten Antriebs 3 und des zweiten Antriebs 4. Eine solche Lenkung erfolgt insbesondere dann, wenn die aerodynamische Wirkung der aerodynamischen Steuereinheiten 6 für eine Lenkung des Lenkflugkörpers 1 nicht mehr ausreicht. Zur Lenkung wird der Anstellwinkel 10 durch Aktivieren des zweiten Antriebs 4 erzeugt. Dies geschieht dadurch, dass der durch den zweiten Antrieb 4 erzeugte zweite Schub 200 eine Rotationsbewegung des Lenkflugkörpers 1 um den Schwerpunkt 5 bewirkt. Die Rotation bedingt daher eine Verdrehung der Längsachse 2 des Lenkflugkörpers 1 gegenüber einem aktuellen Geschwindigkeitsvektor 300 des Lenkflugkörpers 1 um den Anstellwinkel 10.
Gleichzeigt ist vorgesehen, dass der erste Antrieb 3 einen ersten Schub 100 erzeugt. Da der erste Schub 100 durch das beschriebene Ausrichten des Lenkflugkörpers 1 mittels des zweiten Antriebs 4 nun von der Richtung des Geschwindigkeitsvektors 300 abweicht, wird eine auf den Schwerpunkt 5 wirkende Querbeschleunigung 400 erzeugt, die den Lenkflugkörper 1 lenkt. Die Querbeschleunigung 400 wird insbesondere derart erzeugt, dass diese gleich groß wie eine Soll-Querbeschleunigung ist. Die Soll-Querbeschleunigung ist eine Querbeschleunigung, die der Lenkflugkörper 1 einnehmen soll und wird insbesondere von einem Navigationssystem vorgegeben, das den Lenkflugkörper 1 zu einem Ziel lenkt. Ein beispielhafter Lenkvorgang ist in Figur 4 gezeigt.
Figur 4 zeigt schematisch das Zustandekommen der Lenkung aus Figur 3. Durch das Aufbringen des Anstellwinkels 10 wird ein Vektor des ersten Schubs 100 um den Anstellwinkel 10 relativ zu dem Geschwindigkeitsvektor 300 gedreht. Daher lässt sich der erste Schub 100 in die Querbeschleunigung 400 und in eine Längsbeschleunigung 500 zerlegen. Die Längsbeschleunigung 500 erfolgt in Richtung des Geschwindigkeitsvektors 300, dient also dazu, die Fluggeschwindigkeit des Lenkflugkörpers 1 zu erhöhen. Die Querbeschleunigung 400 hingegen erfolgt senkrecht zu dem Geschwindigkeitsvektor 300 und dient daher zur Richtungsänderung des Lenkflugkörpers 1. Somit ist der Lenkflugkörper 1 auch ohne aerodynamische Steuereinheiten 6 vollständig lenkbar. Gemäß der Erfindung ist der Lenkflugkörper 1 ein Integral-Flugkörper der durch ein Triebwerk als erster Antrieb 3 und eine Querschubeinheit als zweiter Antrieb 4 angetrieben wird. Durch die Verwendung eines neuen Lenkkonzepts kombiniert mit Auslegungsanpassungen für das Triebwerk, d.h. den ersten Antrieb 3, und die Querschubeinheit, d.h. den zweiten Antrieb 4, kann die Abfanghöhe erheblich gesteigert werden. Die technischen Voraussetzungen, die der Lenkflugkörper 1 für das neue Lenkkonzept erfüllen muss, sind:

  • Der Lenkflugkörper 1 muss im Endgame, d.h. im Endanflug auf das Ziel, bis zum Treffer angetrieben fliegen. Der Antrieb erfolgt insbesondere durch das Triebwerk, d.h. durch den ersten Antrieb 3.
  • Die Querschubeinheit, d.h. der zweite Antrieb 4, muss eine Betriebsdauer haben, die der Antriebsdauer des Triebwerks im Endgame entspricht. Bekannte Integral-Flugkörper der unteren Abfangschicht besitzen in der Regel ein Doppelimpulstriebwerk, dessen zweiter Impuls variabel gezündet werden kann. Ein derartiges Doppelimpulstriebwerk ist auch in dem Lenkflugkörper 1 als erster Antrieb 3 vorhanden. Simulationstechnische Untersuchungen haben ergeben, dass der zweite Impuls mindestens fünf Sekunden lang sein soll, und auch die Querschubeinheit eine entsprechende Betriebsdauer haben soll. Mit diesen Voraussetzungen kann der Integral-Flugkörper auch in großer Höhe, in denen die aerodynamische Wirksamkeit verschwindend gering ist, noch gelenkt und gesteuert werden.
FIG. 3 shows the guided missile 1 from FIG. 1 during a flight with steering by activation of the first drive 3 and the second drive 4. Such steering takes place in particular when the aerodynamic effect of aerodynamic control units 6 for a steering of the missile 1 is no longer sufficient. For steering the angle of attack 10 is generated by activating the second drive 4. This happens because the second thrust 200 generated by the second drive 4 causes a rotational movement of the steering missile 1 about the center of gravity 5. The rotation therefore requires a rotation of the longitudinal axis 2 of the guided missile 1 with respect to a current velocity vector 300 of the guided missile 1 by the angle of attack 10.
Similarly, it is provided that the first drive 3 generates a first thrust 100. Since the first thrust 100 now deviates from the direction of the speed vector 300 by means of the described alignment of the guided missile 1 by means of the second drive 4, a transverse acceleration 400 acting on the center of gravity 5 is generated, which steers the guided missile 1. The lateral acceleration 400 is generated in particular such that it is equal to a desired lateral acceleration. The desired lateral acceleration is a lateral acceleration which the guided missile 1 is to assume and is predefined in particular by a navigation system which directs the guided missile 1 to a destination. An exemplary steering operation is in FIG. 4 shown.
FIG. 4 schematically shows the formation of the steering FIG. 3 , By applying the angle of attack 10, a vector of the first thrust 100 is rotated by the angle of attack 10 relative to the velocity vector 300. Therefore, the first thrust 100 can be decomposed into the lateral acceleration 400 and into a longitudinal acceleration 500. The longitudinal acceleration 500 takes place in the direction of the speed vector 300, thus serving to increase the flying speed of the guided missile 1. The lateral acceleration 400, however, is perpendicular to the velocity vector 300 and therefore serves to change the direction of the missile 1. Thus, the missile 1 is completely steerable even without aerodynamic control units 6. According to the invention, the guided missile 1 is an integral missile which is driven by an engine as a first drive 3 and a transverse thrust unit as a second drive 4. Through the use of a new steering concept combined with design adjustments for the engine, ie the first drive 3, and the shear unit, ie the second drive 4, the interception height can be increased considerably. The technical requirements that the guided missile 1 must meet for the new steering concept are:
  • The guided missile 1 must fly in the endgame, ie in the final approach to the target, driven to hit. The drive is in particular by the engine, ie by the first drive. 3
  • The transverse thrust unit, ie the second drive 4, must have an operating time which corresponds to the drive duration of the engine in the endgame. Known integral missiles of the lower interception layer usually have a double pulse engine whose second pulse can be ignited variably. Such a double pulse engine is also present in the guided missile 1 as the first drive 3. Simulation studies have shown that the second pulse should be at least five seconds long, and also the shear unit should have a corresponding operating time. With these prerequisites, the integral missile can still be steered and controlled even at high altitudes, where the aerodynamic efficiency is negligible.

Für den als Integral-Flugkörper ausgebildeten Lenkflugkörper 1 ist vorgesehen, dass dieser mittels der aerodynamischen Steuereinheiten 6 lenkbar ist. Dabei wird bevorzugt eine aerodynamische Wirksamkeit der aerodynamischen Steuereinheiten 6 wiederholend überprüft. Die Überprüfung ist beispielsweise eine Abschätzung der Luftdichte anhand einer erfassten Flughöhe des Integral-Flugkörpers.
Wird im Endgame die aerodynamische Wirksamkeit zu klein, so wird die Regelung, insbesondere die der Lenkung des Integral-Flugkörpers, dahin gehend geändert, dass mit den Querschubdüsen nur noch die Lage des Flugkörpers geregelt wird.
For trained as integral missile missile 1 is provided that this is steerable by means of the aerodynamic control units 6. In this case, an aerodynamic effectiveness of the aerodynamic control units 6 is preferably checked repeatedly. The check is, for example, an estimate of the air density based on a detected altitude of the integral missile.
If the aerodynamic efficiency becomes too small in the endgame, then the control, in particular that of the steering of the integral missile, is changed in such a way that only the position of the missile is regulated with the transverse thruster.

Dadurch, dass der Flugkörper angetrieben fliegt, kann er gegenüber dem Geschwindigkeitsvektor so ausgerichtet werden, dass die Schubkomponente senkrecht zu dem Geschwindigkeitsvektor der geforderten Querbeschleunigung entspricht.Because the missile is propelled, it can be oriented with respect to the velocity vector so that the thrust component perpendicular to the velocity vector corresponds to the required lateral acceleration.

Für dieses neue Lenkkonzept muss das eigentliche Lenkgesetz nicht geändert werden, solange es eine Soll-Querbeschleunigung, d.h. insbesondere eine vom Integral-Flugkörper einzunehmende Querbeschleunigung, liefert. Aus der geforderten Soll-Querbeschleunigung asoll , der Masse des Integral-Flugkörpers und des Schubs des Triebwerks wird im Geschwindigkeitskoordinatensystem der notwendige Anstellwinkel beispielsweise wie folgt bestimmt: Anstellwinkel = arcsin a soll × Masse Schub

Figure imgb0001
For this new steering concept, the actual steering law need not be changed as long as it delivers a desired lateral acceleration, ie in particular a lateral acceleration to be assumed by the integral missile. From the required target lateral acceleration a soll , the mass of the integral missile and the thrust of the engine, the necessary angle of attack is determined in the velocity coordinate system, for example as follows: angle of attack = arcsin a should × Dimensions thrust
Figure imgb0001

Mit einer Lageregelung mit entsprechender Dynamik wird der Schubbedarf der Querschubeinheit, d.h. insbesondere der Querschubdüsen, bestimmt. Durch die erzeugte Kraft der Querschubdüsen wird der Flugkörper so ausgerichtet, dass die Querkomponente des Schubes der geforderten Querbeschleunigung entspricht.With a position control with appropriate dynamics, the thrust requirement of the shear unit, ie in particular the transverse thrust nozzles, determined. Due to the generated force of the transverse thrust nozzles of the missile is aligned so that the transverse component of the thrust of the required lateral acceleration corresponds.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
LenkflugkörperMissile
22
Längsachse des LenkflugkörpersLongitudinal axis of the guided missile
33
erster Antriebfirst drive
44
zweiter Antriebsecond drive
55
Schwerpunkt des LenkflugkörpersFocus of the missile
66
aerodynamische Steuereinheitaerodynamic control unit
77
Wirkeinheiteffective unit
1010
Anstellwinkelangle of attack
2020
Auftriebskraftbuoyancy
3030
Gewichtskraftweight force
4040
Vortriebskraftpropulsive force
5050
Widerstandskraftresistance
100100
erster Schub des ersten Antriebsfirst thrust of the first drive
200200
zweiter Schub des zweiten Antriebssecond thrust of the second drive
300300
Geschwindigkeitsvektor des LenkflugkörpersSpeed vector of the guided missile
400400
Querbeschleunigunglateral acceleration
500500
Längsbeschleunigunglongitudinal acceleration

Claims (8)

  1. Guided missile (1), having a longitudinal axis (2) and comprising at least a first drive (3), by means of which a first thrust (100) can be generated along the longitudinal axis (2), and a second drive (4), by means of which a second thrust (200) can be generated perpendicular to the longitudinal axis (2), the guided missile (1) being set up to actuate the second drive (4) when the first drive (3) is activated in such a way that the guided missile (1) can be guided, the centre of gravity (5) of the guided missile (1) being positioned between the first drive (3) and the second drive (4), and in such a way that by actuating the second drive (4) the longitudinal axis (2) can be orientated with respect to a velocity vector (300) of the guided missile (1) in such a way that the first thrust (100) of the first drive (3) generates a predefined transverse acceleration (400) perpendicular to the velocity vector (300), characterised in that the first drive (3) is a double pulse engine, a minimum operating duration of the second drive (4) corresponding to at least a maximum operating duration of the second pulse of the double pulse engine, and in that the double pulse engine can be activated and deactivated repeatedly.
  2. Guided missile (1) according to claim 1, characterised in that the guided missile (1) can be guided purely by the first drive (3) and the second drive (4).
  3. Guided missile (1) according to either of the preceding claims, characterised in that the second drive ( 4 ) is at a predefined distance from the centre of gravity (5) of the guided missile.
  4. Guided missile (1) according to any of the preceding claims, characterised in that the second drive (4) comprises thrust nozzles, which are preferably arranged in a Cartesian manner.
  5. Guided missile (1) according to any of the preceding claims, characterised in that a minimum operating duration of the second drive (4) corresponds to at least a maximum operating duration of the first drive (3), the operating duration of the second drive (4) in particular corresponding to that of the first drive (3).
  6. Guided missile (1) according to any of the preceding claims, characterised in that the operating duration of the second drive (4) corresponds to the operating duration of the second pulse of the double pulse engine.
  7. Method for controlling a guided missile (1) according to any of claims 1 - 6, wherein the guided missile has a longitudinal axis (2) and comprises a first drive (3), by means of which a first thrust (100) can be generated along the longitudinal axis (2), and a second drive (4), by means of which a second thrust (200) can be generated perpendicular to the longitudinal axis (2), the centre of gravity (5) of the guided missile (1) being positioned between the first drive (3) and the second drive (4), the first drive (3) being a double pulse engine, a minimum operating duration of the second drive (4) corresponding to at least a maximum operating duration of the second pulse of the double pulse engine, and the double pulse engine being able to be activated and deactivated repeatedly, comprising the steps of:
    - activating the first drive (3),
    - orientating the guided missile (1) by at least partially activating the second drive (4), in particular in parallel with operating the first drive (3) ,
    - establishing a transverse acceleration (400), perpendicular to a velocity vector (300) of the guided missile (1), to be adopted by the guided missile (1), and
    - orientating the longitudinal axis (2) of the guided missile (1) relative to the velocity vector (300) of the guided missile (1) by at least partially activating the second drive (4), in particular in parallel with operating the first drive (3), in such a way that the first thrust (100) of the first drive generates the established transverse acceleration (400) .
  8. Method according to claim 7, comprising the additional steps of:
    - determining an angle of attack (10), between the longitudinal axis (2) and the velocity vector (300), which is required for the first thrust (100) of the first drive (3) to generate the established transverse acceleration (400), and
    - at least partially activating the second drive (4), in particular in parallel with operating the first drive (3), in such a way that the guided missile (1) adopts the determined angle of attack (10).
EP14003885.2A 2013-11-20 2014-11-19 Guided missile and method for steering a guided missile Active EP2876405B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14003885T PL2876405T3 (en) 2013-11-20 2014-11-19 Guided missile and method for steering a guided missile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013019342 2013-11-20
DE102014004251.0A DE102014004251A1 (en) 2013-11-20 2014-03-24 Guided missile and method for steering a missile

Publications (2)

Publication Number Publication Date
EP2876405A1 EP2876405A1 (en) 2015-05-27
EP2876405B1 true EP2876405B1 (en) 2018-01-10

Family

ID=52020884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14003885.2A Active EP2876405B1 (en) 2013-11-20 2014-11-19 Guided missile and method for steering a guided missile

Country Status (4)

Country Link
EP (1) EP2876405B1 (en)
DE (1) DE102014004251A1 (en)
ES (1) ES2665370T3 (en)
PL (1) PL2876405T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016101560A1 (en) * 2016-01-28 2017-08-03 Bayern-Chemie Gesellschaft Für Flugchemische Antriebe Mbh Transverse thrust device for active web and attitude control of missiles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822755A (en) * 1950-12-01 1958-02-11 Mcdonnell Aircraft Corp Flight control mechanism for rockets
US3749334A (en) * 1966-04-04 1973-07-31 Us Army Attitude compensating missile system
DE2809281C2 (en) * 1978-03-03 1984-01-05 Emile Jean Versailles Stauff Control device for a self-rotating projectile
GB8803164D0 (en) * 1988-02-11 1988-08-24 British Aerospace Reaction control system
FR2684723B1 (en) * 1991-12-10 1995-05-19 Thomson Csf SOLID PROPERGOL PROPELLER WITH MODULAR PUSH AND MISSILE EQUIPPED.
US5631830A (en) * 1995-02-03 1997-05-20 Loral Vought Systems Corporation Dual-control scheme for improved missle maneuverability
US5590850A (en) * 1995-06-05 1997-01-07 Hughes Missile Systems Company Blended missile autopilot
DE19645562A1 (en) * 1996-04-02 1997-10-09 Bodenseewerk Geraetetech Regulator for nonlinear closed-loop controlled system
US6308911B1 (en) * 1998-10-30 2001-10-30 Lockheed Martin Corp. Method and apparatus for rapidly turning a vehicle in a fluid medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL2876405T3 (en) 2018-07-31
EP2876405A1 (en) 2015-05-27
ES2665370T3 (en) 2018-04-25
DE102014004251A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
DE102011120855B4 (en) Thrust vector control
DE102006031625A1 (en) Device for yaw control of a nozzle with a rectangular outlet cross-section
WO2008074608A1 (en) Method for influencing the movement of a land vehicle, and a device directed to this purpose
DE3606423A1 (en) ROTOR SYSTEM IN CONNECTION WITH AIRCRAFT CONTROLS
DE19949640A1 (en) Method and device for quickly turning a moving body in a fluid medium
DE2538665A1 (en) PROCEDURE AND EQUIPMENT FOR LETTERING BOMBS
DE602005000222T2 (en) Missile for field reconnaissance
EP2876405B1 (en) Guided missile and method for steering a guided missile
EP2413086A2 (en) Method for controlling a guided missile powered by an engine
DE2730751A1 (en) AERODYNAMIC CONTROL SURFACE WITH INTEGRATED THRUST VECTOR
EP3882564B1 (en) Guided missile and method for ejecting a guided missile from a support platform
DE3340037C2 (en)
EP3667226A1 (en) Projectile steering system with activatable brake unit
DE102016101560A1 (en) Transverse thrust device for active web and attitude control of missiles
DE10347761B4 (en) Control of a projectile by plasma discharge
DE102017009671A1 (en) Method for dropping a missile
DE3142742C2 (en)
DE102016009384B4 (en) Method for dropping a guided missile from a flying platform
DE60302281T2 (en) Weapon containing a rocket mounted on a stealth plane and weapon system containing a stealth plane and such a weapon
DE102019007104B3 (en) Fragmentation warhead for a missile
DE965185C (en) Aerodynamically stabilized, uncontrollable flying body
EP3594610B1 (en) Missile
DE3529897C2 (en)
EP1612504A1 (en) Warhead for ordnance ammunition
DE1578077C2 (en) Warhead for an anti-tank projectile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150904

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962879

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006864

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2665370

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180425

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006864

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181119

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141119

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 962879

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191119

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20231115

Year of fee payment: 10

Ref country code: IT

Payment date: 20231124

Year of fee payment: 10

Ref country code: FR

Payment date: 20231120

Year of fee payment: 10

Ref country code: DE

Payment date: 20231130

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231110

Year of fee payment: 10

Ref country code: BG

Payment date: 20231120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231109

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240129

Year of fee payment: 10