EP2876275A1 - Hubkolben-Brennkraftmaschine und Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine - Google Patents

Hubkolben-Brennkraftmaschine und Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine Download PDF

Info

Publication number
EP2876275A1
EP2876275A1 EP14002466.2A EP14002466A EP2876275A1 EP 2876275 A1 EP2876275 A1 EP 2876275A1 EP 14002466 A EP14002466 A EP 14002466A EP 2876275 A1 EP2876275 A1 EP 2876275A1
Authority
EP
European Patent Office
Prior art keywords
compressed air
electromagnetic valve
air
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14002466.2A
Other languages
English (en)
French (fr)
Other versions
EP2876275B1 (de
Inventor
Franz Werner Prümm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Publication of EP2876275A1 publication Critical patent/EP2876275A1/de
Application granted granted Critical
Publication of EP2876275B1 publication Critical patent/EP2876275B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/06After-charging, i.e. supplementary charging after scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • F02D17/023Cutting-out the inactive cylinders acting as compressor other than for pumping air into the exhaust system
    • F02D17/026Cutting-out the inactive cylinders acting as compressor other than for pumping air into the exhaust system delivering compressed fluid, e.g. air, reformed gas, to the active cylinders other than during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air

Definitions

  • the invention relates to a reciprocating internal combustion engine and a method for operating a reciprocating internal combustion engine.
  • ATL exhaust gas turbocharger
  • the achievable higher excess air causes a lower nitrogen oxide and particle emission.
  • problematic operating ranges are acceleration processes from idling or the low partial load, since at the time of acceleration there is still no sufficient boost pressure available to maintain a permanently high excess air. Increased nitrogen oxide and particulate emissions (soot emissions) during acceleration processes are the result.
  • the object of the invention is in particular to provide a reciprocating internal combustion engine which is suitable for use with an exhaust gas turbocharger for minimizing pollutant emissions and / or which enables a more efficient operation of the reciprocating internal combustion engine. It is a further object of the invention to provide an improved method of operating a reciprocating internal combustion engine which avoids the disadvantages of conventional operating methods.
  • said objects are achieved by a reciprocating internal combustion engine, in which in addition to the arranged at the air inlet or air outlet of the cylinder head air inlet and outlet valves over which the charge cycle in the exhaust stroke and intake stroke takes place, an electromagnetic valve for introducing air is arranged in the combustion chamber and / or air output from the combustion chamber.
  • the electromagnetic valve hereinafter also referred to as an electromagnetically actuated injector is, for example, an electrically controlled solenoid valve.
  • the electromagnetic valve is preferably arranged at the end of a compressed air line, which connects the cylinder, on which the electromagnetic valve is arranged, with a compressed air reservoir of a compressed air system.
  • the electromagnetic valve thus couples in an open position the combustion chamber of the cylinder and a compressed air reservoir via the compressed air line.
  • an additional air introduction into the combustion chamber by means of the electromagnetic valve does not take place via the conventional charge air supply line, but via a separate compressed air line.
  • the intake valves and exhaust valves on the cylinder head may be formed as poppet valves be.
  • the compressed air reservoir can be set up, for example, to feed the air brake of a vehicle.
  • such an electromagnetic valve is arranged on each cylinder head of a cylinder bank.
  • the electromagnetic valve can be controlled to introduce air into the combustion chamber and / or for air delivery from the combustion chamber. Due to the precise and quickly switchable electromagnetic valve thus the amount of air in the combustion chamber can be controlled even with closed inlet and outlet valves, for example in the compression stroke.
  • the electromagnetic valve is preferably controlled by a control unit, such that in a region of closing of the intake valves, the electromagnetic valve is brought into an open position to additionally introduce air into the combustion chamber via the electromagnetic valve.
  • the electromagnetic valve is brought back into a closed position when or before the increased pressure in the cylinder due to the compression in the compression stroke exceeds the air pressure in the compressed air system.
  • the aforesaid region of closing the intake valves should also include times immediately before and immediately after closing the intake valves.
  • the electromagnetic valve is designed so that an effective cross-section of the electromagnetic valve, that is, an effective air injection cross section is in the range of 5 to 20 mm 2 , more preferably in the range of 10 to 15 mm 2 .
  • an effective cross-section of the electromagnetic valve that is, an effective air injection cross section is in the range of 5 to 20 mm 2 , more preferably in the range of 10 to 15 mm 2 .
  • I effective cross sections of 10 to 15 mm 2 are particularly advantageous.
  • the preferred effective opening area of the electromagnetic valve is thus larger than conventional electromagnetic valves and reduces the time required for air injection and air extraction. This is advantageous because of the high compression ratios In diesel engines Verdichtungsenddrücke be achieved in the compression stroke in the order of 50 bar, so that the increased pressure in the cylinder by the compression in a short time exceeds the pressure in the compressed air system of the compressed air tank 1. The available time window for air injection is thus small.
  • the electromagnetic valve can be controlled and controlled by means of a control unit.
  • the control unit may be set up such that control parameters of the valve, in particular regarding a decision as to whether an actuation of the electromagnetic valve in the current operating state, regarding an opening start of the electromagnetic valve and / or an opening end of the electromagnetic valve in response to a piston position, a load request , an engine speed and / or a boost pressure in the cylinder are determined.
  • the control unit is adapted to determine the control parameters of the electromagnetic valve as a function of a pressure and / or a temperature in a compressed air storage system containing compressed air.
  • the engine control unit is used as a control unit for the electromagnetic valve.
  • the reciprocating internal combustion engine is designed with common rail injection.
  • the control unit of the common rail injection system are used, so that for example in a diesel engine, the same engine control unit for controlling the diesel injectors 11 and for controlling the corresponding electromagnetically actuated air injectors 4 is used.
  • the reciprocating internal combustion engine is preferably a self-igniting internal combustion engine (diesel engine).
  • the reciprocating internal combustion engine with the electromagnetic valve may also be designed as a gasoline engine (gasoline engine), which will be explained in more detail below.
  • Another aspect of the invention relates to a motor vehicle, in particular a commercial vehicle with a reciprocating internal combustion engine according to one of the aspects described above.
  • the electromagnetic valve can pneumatically couple the combustion chamber with the compressed air system of the brakes, as already mentioned above.
  • the commercial vehicle comprises a first compressed air system with a first compressed air reservoir, for. B. for supplying the brakes with compressed air, and a second compressed air system with a second compressed air reservoir, wherein the second compressed air reservoir is operated during operation of the vehicle at a higher pressure than the first compressed air reservoir.
  • the second compressed air reservoir is pneumatically coupled to the combustion chamber via the electromagnetic valve and further configured to fill the first pressure accumulator with compressed air.
  • the high compression ratios are exploited in the compression stroke to fill the second compressed air reservoir via a removal of compressed air from the combustion chamber by opening the electromagnetic valve.
  • This has the advantage that the compressed air system for the brakes can be made smaller and for the same volume a larger mass of compressed air can be stored overall.
  • the electromagnetic valves can be designed with smaller effective cross-sections.
  • a method for operating a reciprocating internal combustion engine, wherein compressed air is introduced from a compressed air reservoir via the electromagnetic valve in the combustion chamber, in addition to the charge air, which is introduced via the at least one inlet valve into the combustion chamber. Furthermore, compressed air can be removed from the combustion chamber via the electromagnetic valve and returned to the compressed air reservoir.
  • the additional air injection of compressed air via the electromagnetic valve begins in the region of closing of the at least one inlet valve and ends at the latest when a gas pressure in the cylinder reaches an air pressure in the compressed air reservoir.
  • an electromagnetically operable injector which, compared to poppet valves, can be actuated more precisely and more quickly in order to introduce air into the combustion chamber at short intervals and / or to discharge air from the combustion chamber, allows further additional advantageous operating method of the reciprocating internal combustion engine by appropriate up and Zuberichtung the valve.
  • the method includes the step of, in at least one cylinder with fuel injection shut off, opening and closing the electromagnetic valve in the region of top dead center, preferably immediately before top dead center, in operating conditions where full engine torque is not required the downward movement of the piston is closed again to remove compressed air from the combustion chamber and supply the compressed air reservoir.
  • the internal combustion engine according to the invention can thus be used in operating states in which not the full engine power or the full engine torque is required for compressed air generation. Due to the higher pressure in the cylinder, which arises in the compression stroke, the compressed air reservoirs are filled.
  • the reciprocating internal combustion engine can also be used for brake energy recovery. If deceleration phases without fuel injection as described above are used for generating compressed air, the system will increase in efficiency as braking energy is used to generate compressed air.
  • the control unit controls the electromagnetic valve as follows. At the beginning of the compression stroke of the pushing operation immediately after closing the intake valve, the electromagnetic valve is brought into an open position. At this time, the pressure in the combustion chamber is smaller than in the compressed air reservoir. There is an additional air injection of compressed air into the combustion chamber. At the latest when the gas pressure in the cylinder or in the combustion chamber reaches the pressure in the compressed air reservoir, the electromagnetic valve is closed again. Subsequently, in the region of top dead center, z. B. before top dead center, the electromagnetic valve re-opened and then closed again during the downward movement of the piston to remove compressed air from the combustion chamber and return the compressed air reservoir.
  • a higher braking effect is thus generated in that additional air is introduced into the cylinder in the compression stroke, so that an increased compression work is performed by the increased cylinder charge during the upward movement of the piston, which acts on the crankshaft braking.
  • the injector is opened at top dead center of the piston and removed to fill the compressed air system.
  • a utility vehicle in which the compressed air generation by means of the described removal of compressed air from the combustion chamber and feeding into the compressed air reservoir takes place without a separately mounted air compressor is provided for compressed air generation.
  • Another advantage of the present invention is thus that with a suitable design of the system can be dispensed with the commonly used in commercial vehicles air compressor for compressed air production.
  • the electromagnetic valve is activated so that the amount of air that has been introduced into the combustion chamber via the inlet valve is reduced by an at least partial removal by the electromagnetic valve before combustion in order to increase the exhaust gas temperature specifically.
  • This lube control which is controlled by the electromagnetic valve, enables a targeted increase in the exhaust gas temperatures in order, for example, to allow a previous activity of the exhaust aftertreatment systems after an engine start.
  • This mode is thus preferably used after a cold start until the engine reaches normal operating temperature. Further, in idle and low load range with this embodiment, the effectiveness of the exhaust aftertreatment system can be increased. In contrast to reducing the amount of air by throttling the intake air no loss of efficiency due to throttle losses must be accepted.
  • this mode can be carried out in a self-igniting reciprocating internal combustion engine by providing a lambda probe in a closed loop, wherein the lambda probe measures the controlled variable and the electromagnetic valve is controlled as an actuator.
  • a lambda control as is known per se from the prior art for gasoline engines, be represented for a diesel engine, which corresponds qualitatively to the lambda control of a modern gasoline engine.
  • FIG. 1 schematically shows the structure of the cylinder of a self-igniting internal combustion engine according to an embodiment.
  • the piston 7 movably guided in the cylinder is moved by a connecting rod 8 driven by the crankshaft.
  • At least one inlet valve 5 and at least one outlet valve 6 in the form of poppet valves are arranged on the cylinder head 3. These are opened in the intake stroke and exhaust stroke, the so-called.
  • Charge change part in a known manner alternately with a possible valve overlap and closed again to suck fresh gas from the charge air duct via the inlet valve 5 into the cylinder and push exhaust gas through the exhaust valve 6 from the cylinder.
  • an exhaust gas turbocharger may be provided (not shown), which may generate an overpressure for loading the cylinder via the intake valve 5.
  • the fuel injection into the combustion chamber 3 takes place via the diesel injector 11 arranged on the cylinder head.
  • an electrically actuated solenoid valve 4 is arranged, which opens into the combustion chamber 3.
  • the opening of the solenoid valve 4, which is located outside the combustion chamber 13, is connected to a compressed air line 2 a via which the electromagnetic valve 4 is connected to a compressed air system.
  • the other cylinders of the cylinder bank (in FIG. 1 not shown) are constructed in a comparable manner.
  • a compressed air tank 1 is arranged, from which, for example, the compressed air brake of a commercial vehicle is supplied with compressed air (not shown).
  • the compressed air lines 2a from the electromagnetic valves 4 of each cylinder of the cylinder bank are brought together by an air distributor rail 10 in a compressed air line 2b, which is connected to the compressed air tank 1.
  • a shut-off valve 9 is further provided.
  • the compressed air tank 1, as is typically used in commercial vehicles, is operated in a range of 10 to 12 bar.
  • the control of the electromagnetic valve 4 is effected by the control unit of the common rail injection system, which is connected via a control line to the electromagnetic valve 4 (not shown).
  • the control unit for controlling common rail injectors 11, in particular the output stage for controlling common rail injectors 11, is also suitable for driving the electromagnetic injector 4. According to the present embodiment, therefore, the same output stage, which is used to drive the diesel injector 11, by means of a multiplex method, also used to drive the electromagnetic valve 4.
  • the control unit determines the control variables or parameters required for the control of the electromagnetic valve 4, eg. B. Operation of the valve YES or NO, opening and opening end of the valve 4.
  • the determination of the control variables takes place in dependence on the current load request, the engine speed and the boost pressure, which are already present in the control unit for controlling the diesel injectors 11.
  • the control device is set up to determine the pressure and the temperature in the air system 1 via a digital interface with further control devices arranged in the vehicle or directly by corresponding sensors 17 as further variables used for the calculation of the control parameters.
  • a pressure and temperature sensor 17 on the compressed air tank 1 and a further pressure and temperature sensor 17 is arranged on the distributor rail 10 to measure the pressure and the temperature in the compressed air tank 1 and in the distributor rail 10.
  • FIG. 2 shows a modification of the embodiment FIG. 1 for gasoline engines, so that reference is made to avoid repetition of the above description.
  • a special feature of this internal combustion engine is that Instead of a diesel injector 11, a spark plug 12 is provided, with which the air-fuel mixture in the combustion chamber 13 is ignited. Further, an additional check valve 14 is provided upstream of the electromagnetic valve 4 in the compressed air line 2, to prevent combustible mixture from the combustion chamber 13 via the electromagnetic valve 4 enters the compressed air system.
  • FIG. 3 shows a further modification of the embodiment FIG. 1 and differs from this in that now a two-stage compressed air system is provided.
  • the individual cylinders via their respective electromagnetic valves 4 and the compressed air lines 2a are not connected directly to the compressed air tank 1, from which, for example, the compressed air brake of the commercial vehicle is fed. Rather, a second compressed air tank 14, which is operated at a higher pressure than the first pressure vessel 1, disposed between the first compressed air tank 1 and the cylinders.
  • a pressure and temperature sensor 17 is arranged in each case on the first compressed-air reservoir 1, on the second compressed-air reservoir 14 and on the distributor rail 10 in order to determine the pressure and the temperature in the first compressed-air reservoir 1, in the second compressed-air reservoir 14 and in the distributor. Rail 10 to measure.
  • the second compressed air tank is a high-pressure vessel, which is operated in the order of about 30 bar.
  • the two compressed air tanks 1, 14 are in turn connected via a compressed air line 2c. Between the two compressed air tanks, a check valve 15 and a pressure regulator 16 is arranged. Due to the high compression ratios of diesel engines, compression pressures of the order of 50 bar are achieved. This makes it possible to fill the high pressure vessel 14 via the electromagnetic valve 4 with compressed air generated in the compression stroke with the method described above.
  • the air injection into the cylinder also takes place from the high-pressure tank 14 via the pressure control valve 16 or other controllable valves is a filling of the normal compressed air tank 1 from the high pressure vessel 14th
  • the arrangement off FIG. 3 with two-stage compressed air system has the following advantages:
  • the compressed air system 1 for the brakes can be made smaller, because in the high-pressure system 14 stored air is available as a reserve. With the same volume can be stored in the high pressure system 14 a higher mass of compressed air. Furthermore, a larger mass of compressed air can be stored overall for the same volume.
  • Another advantage is that the electromagnetic valves 4 can be made with a smaller effective cross-section, because the air from the high-pressure system 14 has a higher density and because more time is available for the air injection during the compression phase. Valves 4 with smaller effective cross-section can also be made smaller and thus also require less installation space in the cylinder head 13.
  • an advantage is that the masses to be moved are smaller with a smaller effective cross-section. Therefore, the technical implementation is easier to implement and leads to reduced costs.
  • a first mode includes the additional injection of air, especially during acceleration operations from idle or the low part load, when the exhaust gas turbocharging does not provide sufficient boost pressure for the filling of the cylinder with air.
  • control unit of the electromagnetic valve detects that the cylinders are not sufficiently filled via the intake valves 5 depending on the engine speed and the detected supercharging pressure
  • the control unit activates the operation of the electromagnetic valves 4 of the cylinders and determines the opening start and the opening end of FIG Valves within the four-stroke process.
  • the electromagnetic valves 4 are controlled by the control unit such that in a region of closing of the intake valves, the electromagnetic valve is brought into an open position to additionally compressed air, which is provided by the compressed air reservoir 1, in the combustion chamber 13th via the electromagnetic valve 4 introduce.
  • the electromagnetic valve 4 is again brought into a closed position when or before the increased in the compression stroke in the compression stroke in the cylinder exceeds the air pressure in the compressed air tank 1.
  • the filling of the cylinder with air depends primarily on the instantaneous boost pressure. Therefore, the additional air to be blown through the electromagnetic valves 4 can be steadily reduced depending on the increasing boost pressure. If the boost pressure has reached the required value, the additional air injection is switched off.
  • the first mode of operation maintains a permanently high air surplus to reduce nitrogen oxide and particulate emissions.
  • a second mode can be used for compressed air generation.
  • a third mode can be used for brake energy recovery. This thrust phases are used without fuel injection for compressed air generation according to the second mode. This results in an increase in efficiency of the system, as braking energy is used for compressed air generation.
  • a fourth mode can be used for brake assistance.
  • Another advantage of the invention is that in overrun mode, without diesel injection, the valve operation of the electromagnetic valves 4 can be set so that the braking effect of the engine is increased.
  • the valve operation of the electromagnetic valves 4 can be set so that the braking effect of the engine is increased.
  • FIG. 1 shown system by appropriate dimensioning of the compressed air reservoir and the operating modes in which compressed air is generated to interpret so that thereby the compressed air demand of the vehicle is covered and can be completely dispensed with the commonly used in commercial vehicles air compressor for compressed air generation.
  • a fifth mode of operation of the solenoid valve 4 is to reduce the amount of air for combustion.
  • the exhaust gas temperature can be selectively increased, for example, an earlier activity of the exhaust aftertreatment system to allow after engine start. Even at idle and low load range, the effectiveness of the exhaust aftertreatment system can be increased with this measure.
  • a particular advantage of this mode is that, in contrast to reducing the amount of air by throttling the intake air while no loss of efficiency due to throttle losses must be taken into account.
  • the electromagnetic valve 4 can be operated according to the first mode, in addition via the electromagnetic valve 4 compressed air is introduced into the combustion chamber 13 to provide an additional way to influence the air fuel ratio in the combustion chamber 13.
  • an additional check valve 14 is provided to prevent a combustible mixture from the combustion chamber 13 enters the compressed air system, the above-mentioned modes in which by the piston 7 compressed air from the combustion chamber 13 via the electromagnetic valve. 4 is not possible. This restriction applies regardless of the type of mixture formation. Both in the classic outer mixture formation as well as in the direct injection into the combustion chamber is during compaction at least temporarily ignitable Kraftstöffluftgemisch in the cylinder.
  • the aforementioned fifth mode for reducing the amount of air for combustion can also be used for fuel economy.
  • the throttle valve remains largely open even in the partial load range. This reduces the throttle losses. Part of the air in the cylinder is blown off via the electromagnetic air valve 4. When the in-cylinder air mass is equal to the load demand, the air valve 4 is closed and compression begins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Die Erfindung betrifft eine Hubkolben-Brennkraftmaschine und ein Betriebsverfahren für eine Hubkolben-Brennkraftmaschine. Die Hubkolben-Brennkraftmaschine umfasst wenigstens ein am Zylinderkopf (3) angeordnetes Lufteinlassventil (5) und ein am Zylinderkopf angeordnetes Luftauslassventil (6), wobei am Zylinderkopf (3) ein elektromagnetisches Ventil zur Lufteinbringung in den Brennraum (13) und/oder Luftausbringung aus dem Brennraum (13) angeordnet ist. Das Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine ist gekennzeichnet durch die Schritte, dass Druckluft aus dem Druckluftspeicher (1) über das elektromagnetische Ventil (4) in den Brennraum (13) eingebracht wird, zusätzlich zur Ladeluft, die über das wenigstens eine Einlassventil (5) in den Brennraum (13) eingebracht wird; und/oder dass komprimierte Luft über das elektromagnetische Ventil aus dem Brennraum (13) entnommen und dem Druckluftspeicher (1) zugeführt wird.

Description

  • Die Erfindung betrifft eine Hubkolben-Brennkraftmaschine und ein Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine.
  • Dieselmotoren für Kraftfahrzeuge, insbesondere für Nutzfahrzeuge, sind dem Stand der Technik entsprechend üblicherweise mit einer Abgasturboaufladung (ATL) ausgestattet. Der damit erzielbare höhere Luftüberschuss bewirkt eine geringere Stickstoffoxid- und Partikelemission. Problematische Betriebsbereiche sind jedoch Beschleunigungsvorgänge aus dem Leerlauf oder der niederen Teillast, da hier zum Zeitpunkt der Beschleunigung noch kein ausreichender Ladedruck zur Verfügung steht, um einen permanent hohen Luftüberschuss aufrechtzuerhalten. Eine erhöhte Stickstoffoxid- und Partikelemission (Rußausstoß) bei Beschleunigungsvorgängen sind die Folge.
  • Aus der Praxis ist zur Minimierung dieser Nachteile bekannt, eine zusätzliche Lufteinblasung vorzusehen, bei der während der Beschleunigung Luft aus dem Bremsluftsystem des Fahrzeugs in das Ladeluftverteilerrohr geleitet wird. Das Rückschlagen der zugeführten Luft zur Ansauganlage wird durch Klappen verhindert. Derartige Klappen verhindern jedoch, dass von der Abgasturboaufladung erzeugte Ladeluft zum Motor gelangen kann. Nachteilig an diesem Ansatz ist daher, dass die gesamte benötigte Luft bis zum Aufbau eines ausreichenden Ladedrucks aus dem Bremsluftsystem entnommen werden muss.
  • In der Patentschrift DE 101 29 976 B4 wird ein Verfahren beschrieben, das zum Zusatzeinblasen von Luft die zum Anlassen benötigten, als Tellerventile ausgeführten Anlassventile eines Großmotors verwendet. Diese werden pneumatisch oder hydraulisch angesteuert.
  • Es ist eine Aufgabe der Erfindung, eine verbesserte Hubkolben-Brennkraftmaschine bereitzustellen, mit der Nachteile herkömmlicher Hubkolben-Brennkraftmaschinen vermieden werden können. Die Aufgabe der Erfindung ist es insbesondere, eine Hubkolben-Brennkraftmaschine bereitzustellen, die sich für den Einsatz mit einem Abgasturbolader zur Minimierung der Schadstoffemissionen eignet und/oder die einen effizienteren Betrieb der Hubkolben-Brennkraftmaschine ermöglicht. Es ist eine weitere Aufgabe der Erfindung, ein verbessertes Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine bereitzustellen, das Nachteile herkömmlicher Betriebsverfahren vermeidet.
  • Diese Aufgaben werden durch eine Hubkolben-Brennkraftmaschine und ein Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen und Anwendungen der Erfindung sind Gegenstand der abhängigen Ansprüche und werden in der folgenden Beschreibung unter teilweiser Bezugnahme auf die Figuren näher erläutert.
  • Gemäß allgemeinen Gesichtspunkten der Erfindung werden die genannten Aufgaben durch eine Hubkolben-Brennkraftmaschine gelöst, bei der zusätzlich zu den am Lufteinlass bzw. Luftauslass des Zylinderkopfs angeordneten Lufteinlass- bzw. Luftauslassventilen, über die der Ladungswechsel im Ausstoßtakt und Ansaugtakt erfolgt, ein elektromagnetisches Ventil zur Lufteinbringung in den Brennraum und/oder Luftausbringung aus dem Brennraum angeordnet ist.
  • Das elektromagnetische Ventil, nachfolgend auch als elektromagnetisch betätigbarer Injektor bezeichnet, ist beispielsweise ein elektrisch gesteuertes Magnetventil. Das elektromagnetische Ventil ist vorzugsweise am Ende einer Druckluftleitung angeordnet, die den Zylinder, an dem das elektromagnetische Ventil angeordnet ist, mit einem Druckluftspeicher eines Druckluftsystems verbindet. Das elektromagnetische Ventil koppelt somit in einer geöffneten Stellung den Brennraum des Zylinders und einen Druckluftspeicher über die Druckluftleitung. Somit erfolgt eine Zusatzlufteinbringung in den Brennraum mittels des elektromagnetischen Ventils nicht über die herkömmliche Ladeluftzufuhrleitung, sondern über eine separate Druckluftleitung. Die Einlassventile und Auslassventile am Zylinderkopf können als Tellerventile ausgebildet sein. Der Druckluftspeicher kann beispielsweise eingerichtet sein, die Druckluftbremse eines Fahrzugs zu speisen.
  • Vorzugsweise ist an jedem Zylinderkopf einer Zylinderbank ein derartiges elektromagnetisches Ventil angeordnet. Das elektromagnetische Ventil ist zur Lufteinbringung in den Brennraum und/oder zur Luftausbringung aus dem Brennraum ansteuerbar. Durch das präzise und schnell schaltbare elektromagnetische Ventil kann somit die Luftmenge im Brennraum auch bei geschlossenen Ein- und Auslassventilen gesteuert werden, beispielsweise im Verdichtungstakt.
  • Zur Zusatzlufteinblasung ist das elektromagnetische Ventil vorzugsweise von einer Steuereinheit angesteuert, derart, dass in einem Bereich des Schließens der Einlassventile das elektromagnetische Ventil in eine Öffnungsstellung gebracht wird, um zusätzlich Luft in den Brennraum über das elektromagnetische Ventil einzubringen. Das elektromagnetische Ventil wird wieder in eine Schließstellung gebracht, wenn oder bevor der durch die Kompression im Verdichtungstakt erhöhte Druck im Zylinder den Luftdruck im Druckluftsystem übersteigt. Der vorgenannte Bereich des Schließens der Einlassventile soll auch Zeitpunkte unmittelbar vor und unmittelbar nach dem Schließen der Einlassventile umfassen.
  • Da über das elektromagnetische Ventil Zusatzluft direkt in den Brennraum eingebracht werden kann, vorzugsweise nach Schließen der Einlassventile, entfällt die Notwendigkeit von Rückschlagklappen. Die Befüllung der Zylinder mit Luft, unter anderem mit Unterstützung des Abgasturboladers, kann in üblicher Weise erfolgen, so dass die Zusatzeinblasung über das elektromagnetische Ventil nur bei Bedarf zugeschaltet werden kann. Dadurch kann ein permanent hoher Luftüberschuss aufrecht erhalten werden, um die Stickstoffoxid- und Partikelemission zu reduzieren.
  • Vorzugsweise ist das elektromagnetische Ventil so ausgebildet, dass ein effektiver Querschnitt des elektromagnetischen Ventils, das heißt ein effektiver Querschnitt zur Lufteinblasung im Bereich von 5 bis 20 mm2, weiter vorzugsweise im Bereich von 10 bis 15 mm2 liegt. Für Zylinderhubvolumen von 1,5 bis 2 I sind effektive Querschnitte von 10 bis 15 mm2 besonders vorteilhaft. Der bevorzugte effektive Öffnungsquerschnitt des elektromagnetischen Ventils ist somit größer als bei herkömmlichen elektromagnetischen Ventilen und reduziert die erforderliche Zeitdauer zur Lufteinblasung und Luftentnahme. Dies ist vorteilhaft, da durch die hohen Verdichtungsverhältnisse bei Dieselmotoren Verdichtungsenddrücke im Verdichtungstakt in der Größenordnung von 50 bar erreicht werden, so dass der durch die Kompression erhöhte Druck im Zylinder in kurzer Zeit den Druck im Druckluftsystem des Druckluftbehälters 1 übersteigt. Das zur Verfügung stehende Zeitfenster zur Lufteinblasung ist somit klein.
  • Das elektromagnetische Ventil ist mittels einer Steuereinheit auf- und zusteuerbar. Die Steuereinheit kann so eingerichtet sein, dass Steuerparameter des Ventils, insbesondere betreffend eine Entscheidung, ob eine Betätigung des elektromagnetischen Ventils im momentanen Betriebszustand erfolgt, betreffend einen Öffnungsbeginn des elektromagnetischen Ventils und/oder ein Öffnungsende des elektromagnetischen Ventils in Abhängigkeit von einer Kolbenstellung, einer Lastanforderung, einer Motordrehzahl und/oder eines Ladedrucks im Zylinder bestimmt werden. Ferner besteht im Rahmen der Erfindung die Möglichkeit, dass die Steuereinheit eingerichtet ist, die Steuerparameter des elektromagnetischen Ventils in Abhängigkeit von einem Druck und/oder einer Temperatur in einem den Druckluftspeicher enthaltenden Druckluftsystem zu bestimmen.
  • Gemäß einer bevorzugten Ausführungsform wird das Motorsteuergerät als Steuereinheit für das elektromagnetische Ventil verwendet. Bei einer vorteilhaften Variante dieser Ausgestaltungsform ist die Hubkolben-Brennkraftmaschine mit Common-Rail-Einspritzung ausgeführt. Als Steuereinheit für das elektromagnetische Ventil kann dann vorteilhafterweise die Steuereinheit des Common-Rail-Einspritzsystems verwendet werden, so dass beispielsweise bei einem Dieselmotor das gleiche Motorsteuergerät zur Steuerung der Dieselinjektoren 11 und zur Steuerung der entsprechenden elektromagnetisch betätigbaren Luftinjektoren 4 verwendet wird.
  • Die Hubkolben-Brennkraftmaschine ist vorzugsweise eine selbstzündende Brennkraftmaschine (Dieselmotor). Die Hubkolben-Brennkraftmaschine mit dem elektromagnetischen Ventil kann ferner als Ottomotor (Benzinmotor) ausgebildet sein, was nachfolgend noch detaillierter erläutert wird.
  • Ein weiterer Aspekt der Erfindung betrifft ein Kraftfahrzeug, insbesondere ein Nutzfahrzeug mit einer Hubkolben-Brennkraftmaschine gemäß einer der vorstehend beschriebenen Aspekte.
  • Besonders vorteilhaft ist die Anwendung der Erfindung bei Nutzfahrzeugen. Hierbei kann das elektromagnetische Ventil den Brennraum mit dem Druckluftsystem der Bremsen pneumatisch koppeln, wie vorstehend bereits erwähnt.
  • Gemäß einem besonders bevorzugten Ausführungsbeispiel umfasst das Nutzfahrzeug ein erstes Druckluftsystem mit einem ersten Druckluftspeicher, z. B. zur Versorgung der Bremsen mit Druckluft, und ein zweites Druckluftsystem mit einem zweiten Druckluftspeicher, wobei der zweite Druckluftspeicher im Betrieb des Fahrzeugs mit einem höheren Druck als der erste Druckluftspeicher betrieben wird. Der zweite Druckluftspeicher ist mit dem Brennraum über das elektromagnetische Ventil pneumatisch koppelbar und ferner ausgebildet, den ersten Druckspeicher mit Druckluft zu befüllen.
  • In dieser Ausführungsvariante werden somit die hohen Verdichtungsverhältnisse im Verdichtungstakt ausgenutzt, um den zweiten Druckluftspeicher über eine Entnahme von komprimierter Luft aus dem Brennraum durch Öffnen des elektromagnetischen Ventils zu befüllen. Dies hat den Vorteil, dass das Druckluftsystem für die Bremsen kleiner ausgeführt werden kann und bei gleichem Volumen insgesamt eine größere Masse an Druckluft gespeichert werden kann. Ferner können die elektromagnetischen Ventile mit kleineren effektiveren Querschnitten ausgelegt werden.
  • Gemäß allgemeinen Gesichtspunkten der Erfindung wird ein Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine bereitgestellt, wobei Druckluft aus einem Druckluftspeicher über das elektromagnetische Ventil in den Brennraum eingebracht wird, zusätzlich zur Ladeluft, die über das wenigstens eine Einlassventil in den Brennraum eingebracht wird. Ferner kann komprimierte Luft über das elektromagnetische Ventil aus dem Brennraum entnommen und dem Druckluftspeicher wieder zugeführt werden. Wie vorstehend bereits erwähnt beginnt die Zusatzlufteinblasung von Druckluft über das elektromagnetische Ventil im Bereich des Schließens des wenigstens einen Einlassventils und endet spätestens, wenn ein Gasdruck im Zylinder einen Luftdruck im Druckluftspeicher erreicht.
  • Das Vorsehen eines elektromagnetisch betätigbaren Injektors, der im Vergleich zu Tellerventilen präziser ansteuerbar und schneller betreibbar ist, um in kurzen Zeitabständen Luft in den Brennraum einzuführen und/oder Luft aus dem Brennraum auszubringen, ermöglicht weitere zusätzliche vorteilhafte Betriebsverfahren der Hubkolben-Brennkraftmaschine durch entsprechende Auf- und Zusteuerung des Ventils.
  • Gemäß einem bevorzugten Ausführungsbeispiel umfasst das Verfahren den Schritt, dass in Betriebszuständen, bei denen nicht das volle Motordrehmoment benötigt wird, bei wenigstens einem Zylinder mit abgeschalteter Kraftstoffeinspritzung das elektromagnetische Ventil im Bereich des oberen Totpunkts, vorzugsweise unmittelbar vor Erreichen des oberen Totpunkts, geöffnet und während der Abwärtsbewegung des Kolbens wieder geschlossen wird, um komprimierte Luft aus dem Brennraum zu entnehmen und dem Druckluftspeicher zuzuführen.
  • Die erfindungsgemäße Brennkraftmaschine kann somit in Betriebszuständen, bei denen nicht die volle Motorleistung beziehungsweise das volle Motordrehmoment benötigt wird, zur Drucklufterzeugung verwendet werden. Durch den höheren Druck im Zylinder, der im Verdichtungstakt entsteht, werden die Druckluftspeicher befüllt.
  • In diesem Betriebsmodus kann die Hubkolben-Brennkraftmaschinen auch zur Bremsenergierückgewinnung genutzt werden. Werden Schubphasen ohne Kraftstoffeinspritzung wie vorstehend beschrieben zur Drucklufterzeugung genutzt, ergibt sich eine Effizienzsteigerung des Systems, da Bremsenergie zur Drucklufterzeugung verwendet wird.
  • Gemäß einer vorteilhaften Variante der vorgenannten Ausführungsform ist der Betriebszustand, bei dem nicht die volle Motorleistung genutzt wird, ein Schubbetrieb ohne Kraftstoffeinspritzung. In dieser Variante steuert die Steuerungseinheit das elektromagnetische Ventil wie folgt. Zu Beginn des Verdichtungstakts des Schubbetriebs unmittelbar nach Schließen des Einlassventils wird das elektromagnetische Ventil in eine geöffnete Stellung gebracht. Zu diesem Zeitpunkt ist der Druck im Brennraum kleiner als im Druckluftspeicher. Es erfolgt eine Zusatzlufteinblasung von Druckluft in den Brennraum. Spätestens wenn der Gasdruck im Zylinder bzw. im Brennraum den Druck im Druckluftspeicher erreicht, wird das elektromagnetische Ventil wieder geschlossen. Anschließend wird im Bereich des oberen Totpunkts, z. B. vor dem oberen Totpunkt, das elektromagnetische Ventil wieder geöffnet und während der Abwärtsbewegung des Kolbens anschließend wieder geschlossen, um komprimierte Luft aus dem Brennraum zu entnehmen und dem Druckluftspeicher rückzuführen.
  • Gemäß dieser Ausführungsvariante wird somit eine höhere Bremswirkung dadurch erzeugt, dass im Verdichtungstakt zusätzlich Luft in den Zylinder eingebracht wird, so dass durch die erhöhte Zylinderfüllung während der Aufwärtsbewegung des Kolbens eine erhöhte Verdichtungsarbeit verrichtet wird, die auf die Kurbelwelle bremsend wirkt. Um zu verhindern, dass die in der Luft gespeicherte Energie in der Abwärtsbewegung beschleunigend auf die Kurbelwelle wirkt, wird der Injektor im oberen Totpunkt des Kolbens wieder geöffnet und zur Befüllung des Druckluftsystems entnommen.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Nutzfahrzeug vorgeschlagen, bei dem die Drucklufterzeugung mittels der beschriebenen Entnahme von komprimierter Luft aus dem Brennraum und Zuführung in den Druckluftspeicher erfolgt, ohne dass ein separat verbauter Luftpresser zur Drucklufterzeugung vorgesehen ist. Ein weiterer Vorteil der vorliegenden Erfindung ist somit, dass bei geeigneter Auslegung des Systems auf den bei Nutzfahrzeugen üblicherweise verbauten Luftpresser zur Drucklufterzeugung verzichtet werden kann.
  • Gemäß einer weiteren vorteilhaften Ausführungsvariante wird das elektromagnetische Ventil so angesteuert, dass die Luftmenge, die über das Einlassventil in den Brennraum eingebracht wurde, über eine zumindest teilweise Entnahme durch das elektromagnetische Ventil vor der Verbrennung reduziert wird, um die Abgastemperatur gezielt zu erhöhen. Diese über das elektromagnetisches Ventil gesteuerte Verfettung ermöglicht eine gezielte Erhöhung der Abgastemperaturen, um beispielsweise eine frühere Aktivität der Abgasnachbehandlungssysteme nach einem Motorstart zu ermöglichen.
  • Diese Betriebsart wird somit vorzugsweise nach einem Kaltstart eingesetzt, bis der Motor die normale Betriebstemperatur erreicht. Ferner kann im Leerlauf und Schwachlastbereich mit dieser Ausführungsvariante die Wirksamkeit des Abgasnachbehandlungssystems gesteigert werden. Im Gegensatz zur Reduzierung der Luftmenge durch Drosselung der Ansaugluft muss dabei keine Wirkungsgradverschlechterung durch Drosselverluste in Kauf genommen werden.
  • Gemäß einer vorteilhaften Variante dieser Ausgestaltungsform kann diese Betriebsart bei einer selbstzündenden Hubkolben-Brennkraftmaschine durch Vorsehen einer Lambdasonde auch in einem geschlossenen Regelkreis erfolgen, wobei die Lambdasonde die Regelgröße misst und das elektromagnetische Ventil als Stellglied angesteuert wird. Dadurch kann eine Lambda-Regelung, wie sie an sich aus dem Stand der Technik für Ottomotoren bekannt ist, für einen Dieselmotor dargestellt werden, die qualitativ der Lambda-Regelung eines modernen Ottomotors entspricht.
  • Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügten Zeichnungen beschrieben. Es zeigen:
  • Figur 1
    ein schematisches Blockschaltbild einer Brennkraftmaschine eines Dieselmotors gemäß einem Ausführungsbeispiel;
    Figur 2
    ein schematisches Blockschaltbild einer Brennkraftmaschine eines Ottomotors gemäß einem Ausführungsbeispiel; und
    Figur 3
    ein schematisches Blockschaltbild einer Diesel-Brennkraftmaschine gemäß einem weiteren Ausführungsbeispiel.
  • Figur 1 zeigt schematisch den Aufbau des Zylinders einer selbstzündenden Brennkraftmaschine gemäß einem Ausführungsbeispiel. Der im Zylinder beweglich geführte Kolben 7 wird durch einen von der Kurbelwelle angetriebenen Pleuel 8 bewegt. Am Zylinderkopf 3 sind mindestens ein Einlassventil 5 und mindestens ein Auslassventil 6 in Form von Tellerventilen angeordnet. Diese werden im Ansaugtakt und Ausstoßtakt, dem sog. Ladungswechselteil, in bekannter Weise abwechselnd mit einer möglichen Ventilüberschneidung geöffnet und wieder geschlossen, um Frischgas aus dem Ladeluftkanal über das Einlassventil 5 in den Zylinder einzusaugen und Abgas über das Auslassventil 6 aus dem Zylinder zu schieben. Ferner kann ein Abgasturbolader vorgesehen sein (nicht gezeigt), der einen Überdruck zum Laden des Zylinders über das Einlassventil 5 erzeugen kann. Die Kraftstoffeinspritzung in den Brennraum 3 erfolgt über den am Zylinderkopf angeordneten Dieselinjektor 11.
  • Am Zylinderkopf 3 ist ein elektrisch betätigbares Magnetventil 4 angeordnet, das in den Brennraum 3 mündet. Die außerhalb des Brennraums 13 liegende Öffnung des Magnetventils 4 ist an einer Druckluftleitung 2a angeschlossen, über die das elektromagnetische Ventil 4 mit einem Druckluftsystem verbunden ist. Die anderen Zylinder der Zylinderbank (in Figur 1 nicht gezeigt) sind in vergleichbarer Weise aufgebaut.
  • Im Druckluftsystem ist ein Druckluftbehälter 1 angeordnet, aus dem beispielsweise die Druckluftbremse eines Nutzfahrzeugs mit Druckluft versorgt wird (nicht gezeigt). Die Druckluftleitungen 2a von den elektromagnetischen Ventilen 4 jedes Zylinders der Zylinderbank werden durch ein Luftverteiler-Rail 10 in eine Druckluftleitung 2b zusammengeführt, die mit dem Druckluftbehälter 1 verbunden ist. Zwischen dem Druckluftbehälter 1 und dem Luftverteiler-Rail 10 ist ferner ein Absperrventil 9 vorgesehen. Der Druckluftbehälter 1, wie er typischerweise bei Nutzfahrzeugen zum Einsatz kommt, wird in einem Bereich von 10 bis 12 bar betrieben.
  • Die Ansteuerung des elektromagnetischen Ventils 4 erfolgt durch das Steuergerät des Common-Rail-Einspritzsystems, das über eine Steuerleitung mit dem elektromagnetischen Ventil 4 verbunden ist (nicht gezeigt). Die Steuereinheit zur Ansteuerung von Common-Rail-Injektoren 11, insbesondere die Endstufe zur Ansteuerung von Common-Rail-Injektoren 11, ist auch zur Ansteuerung des elektromagnetischen Injektors 4 geeignet. Gemäß dem vorliegenden Ausführungsbeispiel wird somit die gleiche Endstufe, die zur Ansteuerung des Dieselinjektors 11 verwendet wird, mittels eines Multiplexverfahrens, auch zur Ansteuerung des elektromagnetischen Ventils 4 genutzt.
  • Die Steuereinheit ermittelt die für die Steuerung des elektromagnetischen Ventils 4 benötigten Steuerungsgrößen bzw. -parameter, z. B. Betrieb des Ventils JA oder NEIN, Öffnungsbeginn und Öffnungsende des Ventils 4. Die Ermittlung der Steuerungsgrößen erfolgt in Abhängigkeit von der aktuellen Lastanforderung, der Motordrehzahl und des Ladedrucks, die bereits im Steuergerät für die Steuerung der Dieselinjektoren 11 vorliegen. Ferner ist das Steuergerät eingerichtet, über eine digitale Schnittstelle mit weiteren, im Fahrzeug angeordneter Steuergeräten oder direkt von entsprechenden Sensoren 17 den Druck und die Temperatur im Luftsystem 1 als weitere für die Berechnung der Steuerungsparameter verwendete Größen zu ermitteln. In diesem Ausführungsbeispiel ist ein Druck- und Temperaturmessfühler 17 am Druckluftbehälter 1 und ein weiterer Druck- und Temperaturmessfühler 17 ist an der Verteiler-Rail 10 angeordnet, um den Druck und die Temperatur im Druckluftbehälter 1 bzw. in der Verteiler-Rail 10 zu messen.
  • Figur 2 zeigt eine Abwandlung des Ausführungsbeispiels aus Figur 1 für Ottomotoren, so dass zur Vermeidung von Wiederholungen auf die vorstehende Beschreibung verwiesen wird. Eine Besonderheit dieser Brennkraftmaschine besteht darin, dass anstatt eines Dieselinjektors 11 eine Zündkerze 12 vorgesehen ist, mit der das Luft-Kraftstoffgemisch im Brennraum 13 gezündet wird. Ferner ist ein zusätzliches Rückschlagventil 14 stromauf des elektromagnetischen Ventils 4 in der Druckluftleitung 2 vorgesehen, um zu verhindern, dass brennfähiges Gemisch aus dem Brennraum 13 über das elektromagnetische Ventil 4 in das Druckluftsystem gelangt.
  • Figur 3 zeigt eine weitere Abwandlung des Ausführungsbeispiels aus Figur 1 und unterscheidet sich von diesem dadurch, dass nun ein zweistufiges Druckluftsystem vorgesehen ist. Im Unterschied zu dem Ausführungsbeispiel aus Figur 1 sind die einzelnen Zylinder über ihre jeweiligen elektromagnetischen Ventile 4 und die Druckluftleitungen 2a nicht direkt an den Druckluftbehälter 1, aus dem beispielsweise die Druckluftbremse des Nutzfahrzeugs gespeist wird, angeschlossen. Vielmehr ist ein zweiter Druckluftbehälter 14, der mit höherem Druck als der erste Druckbehälter 1 betrieben wird, zwischen dem ersten Druckluftbehälter 1 und den Zylindern angeordnet.
  • In diesem Ausführungsbeispiel ist ein Druck- und Temperaturmessfühler 17 jeweils am ersten Druckluftbehälter 1, am zweiten Druckluftbehälter 14 und an der Verteiler-Rail 10 angeordnet, um den Druck und die Temperatur jeweils im ersten Druckluftbehälter 1, im zweiten Druckluftbehälter 14 und in der Verteiler-Rail 10 zu messen.
  • Während der erste Druckluftbehälter typischerweise in einem Bereich von 10 bis 12 bar betrieben wird, ist der zweite Druckluftbehälter ein Hochdruckbehälter, der in der Größenordnung von ca. 30 bar betrieben wird.
  • Die beiden Druckluftbehälter 1, 14 sind wiederum über eine Druckluftleitung 2c verbunden. Zwischen den beiden Druckluftbehältern ist ein Rückschlagventil 15 und ein Druckregler 16 angeordnet. Durch die hohen Verdichtungsverhältnisse bei Dieselmotoren werden Verdichtungsenddrücke in der Größenordnung von 50 bar erreicht. Dadurch ist es möglich, mit den oben beschriebenen Verfahren den Hochdruckbehälter 14 über das elektromagnetische Ventil 4 mit im Verdichtungstakt erzeugter Druckluft zu befüllen. Die Lufteinblasung in die Zylinder erfolgt ebenfalls aus dem Hochdruckbehälter 14. Über das Druckregelventil 16 oder andere ansteuerbare Ventile erfolgt eine Befüllung des normalen Druckluftbehälters 1 aus dem Hochdruckbehälter 14.
  • Die Anordnung aus Figur 3 mit zweistufigem Druckluftsystem hat die folgenden Vorteile: Das Druckluftsystem 1 für die Bremsen kann kleiner ausgeführt werden, weil im Hochdrucksystem 14 gespeicherte Luft als Reserve bereitsteht. Bei gleichem Volumen kann im Hochdrucksystem 14 eine höhere Masse Druckluft gespeichert werden. Ferner kann bei gleichem Volumen insgesamt eine größere Masse an Druckluft gespeichert werden. Ein weiterer Vorteil ist, dass die elektromagnetischen Ventile 4 mit einem kleineren effektiven Querschnitt ausgeführt sein können, weil die Luft aus dem Hochdrucksystem 14 eine höhere Dichte aufweist und weil mehr Zeit für die Lufteinblasung während der Verdichtungsphase zur Verfügung steht. Ventile 4 mit kleinerem effektivem Querschnitt können zudem kleiner ausgeführt werden und benötigen damit auch weniger Einbauraum im Zylinderkopf 13. Schließlich ist ein Vorteil, dass die zu bewegenden Massen bei kleinerem effektivem Querschnitt geringer sind. Daher ist auch die technische Umsetzung einfacher zu realisieren und führt zu reduzierten Kosten.
  • Vorstehend wurden bereits vorteilhafte Betriebsverfahren beschrieben, die mit der erfindungsgemäßen Anordnung eines elektromagnetischen Ventils 4 an einem Zylinderkopf 3 einer Hubkolben-Brennkraftmaschine realisiert werden können. Diese werden nachfolgend anhand der Diesel-Brennkraftmaschine der Figur 1 nochmals beispielhaft erläutert.
  • Eine erste Betriebsart umfasst die Zusatzeinblasung von Luft, insbesondere bei Beschleunigungsvorgängen aus dem Leerlauf oder der niederen Teillast, wenn die Abgasturboaufladung keinen ausreichenden Ladedruck für die Befüllung der Zylinder mit Luft zur Verfügung stellt.
  • Wenn die Steuereinheit des elektromagnetischen Ventil beispielsweise in Abhängigkeit der Motordrehzahl und des erfassten Ladedrucks feststellt, dass keine ausreichende Befüllung der Zylinder über die Einlassventile 5 erfolgt, aktiviert die Steuereinheit den Betrieb der elektromagnetischen Ventile 4 der Zylinder und ermittelt den Öffnungsbeginn und das Öffnungs-ende der Ventile innerhalb des Viertaktprozesses.
  • Zur Zusatzlufteinblasung werden die elektromagnetische Ventile 4 so von der Steuereinheit angesteuert, dass in einem Bereich des Schließens der Einlassventile das elektromagnetische Ventil in eine Öffnungsstellung gebracht wird, um zusätzlich Druckluft, die von dem Druckluftspeicher 1 bereitgestellt wird, in den Brennraum 13 über das elektromagnetische Ventil 4 einzubringen. Das elektromagnetische Ventil 4 wird wieder in eine Schließstellung gebracht, wenn oder bevor der durch die Kompression im Verdichtungstakt erhöhte Druck im Zylinder den Luftdruck im Druckluftbehälter 1 übersteigt.
  • Die Füllung der Zylinder mit Luft hängt in erster Linie vom momentanen Ladedruck ab. Daher kann die einzublasende Zusatzluft über die elektromagnetischen Ventile 4 abhängig vom steigenden Ladedruck stetig vermindert werden. Hat der Ladedruck den benötigten Wert erreicht, wird die Zusatzlufteinblasung abgeschaltet.
  • Durch die erste Betriebsart kann ein permanent hoher Luftüberschuss aufrecht erhalten werden, um die Stickstoffoxid- und Partikelemission zu reduzieren.
  • Eine zweite Betriebsart kann zur Drucklufterzeugung verwendet werden.
  • Durch Ansteuern des elektromagnetischen Ventils 4 derart, dass dies öffnet, wenn der Gasdruck im Brennraum höher als der Luftdruck im Druckluftbehälter 1 ist, strömt komprimierte Luft aus dem Brennraum 13 über das elektromagnetische Ventil 4 aus und in das Druckluftsystem des Druckluftbehälters 1. Der Verdichtungstakt des Zylinders wird folglich für die Erzeugung von Druckluft genutzt, die über das elektromagnetische Ventil aus dem Brennraum 13 ausgeleitet wird. Eine derartige Drucklufterzeugung erfolgt vorzugsweise in Betriebszuständen, bei denen nicht die volle Motorleistung bzw. das volle Motordrehmoment benötigt wird. Hierbei wird bei einem oder mehreren Zylindern die Einspritzung des Kraftstoffs abgeschaltet, was an sich aus dem Stand der Technik bekannt ist. Nach der Verdichtung der im Zylinder befindlichen Luft wird vor dem oberen Totpunkt das Magnetventil 4 geöffnet. Durch den höheren Druck im Zylinder wird der Druckluftspeicher 1 befüllt. Wenn der Zylinderdruck durch die Dekompression während der Abwärtsbewegung des Kolbens 7 unter den Druck des Druckluftbehälters 1 fällt, wird das elektromagnetische Ventil 4 wieder geschlossen.
  • Eine dritte Betriebsart kann zur Bremsenergierückgewinnung eingesetzt werden. Hierbei werden Schubphasen ohne Kraftstoffeinspritzung zur Drucklufterzeugung gemäß der zweiten Betriebsart genutzt. Daraus ergibt sich eine Effizienzsteigerung des Systems, da Bremsenergie zur Drucklufterzeugung verwendet wird.
  • Eine vierte Betriebsart kann zur Bremsunterstützung genutzt werden. Ein weiterer Vorzug der Erfindung besteht darin, dass im Schubbetrieb, ohne Dieseleinspritzung, der Ventilbetrieb der elektromagnetischen Ventile 4 so eingerichtet werden kann, dass die Bremswirkung des Motors erhöht wird. Zunächst ist festzustellen, dass sich allein durch die Drucklufterzeugung eine Bremswirkung ergibt, da eine Umwandlung von kinetischer Energie resultierend aus der Fahrzeugbewegung in ein erhöhtes Druckniveau im Druckspeichersystem erfolgt. Eine höhere Bremswirkung lässt sich ferner erzeugen, wenn zu Beginn des Verdichtungstakts, unmittelbar nach Schließen des Einlassventils 5, der Injektor 4 geöffnet und dadurch zusätzliche Luft in den Brennraum 13 eingebracht wird. Spätestens wenn der Druck im Zylinder bzw. Brennraum 13 und im Druckluftsystem des Druckluftbehälters 1 ausgeglichen ist, wird der Injektor 4 wieder geschlossen. Durch die erhöhte Zylinderfüllung wird während der Aufwärtsbewegung des Kolbens 7 eine erhöhte Verdichtungsarbeit verrichtet, die auf die Kurbelwelle (nicht gezeigt) bremsend wirkt. Um zu verhindern, dass in der Luft gespeicherte Energie in der Abwärtsbewegung beschleunigend auf die Kurbelwelle wirkt, wird der Injektor 4 im oberen Totpunkt des Kolbens 7 wieder geöffnet. Die zu Beginn des Vorgangs eingeblasene Luft wird in das Druckluftsystem 1 zurückbefördert. Hierbei kann das Verfahren so ausgebildet werden, dass mehr Luft in das Druckluftsystem 1 zurückbefördert wird als entnommen wurde, wodurch auch diese Betriebsweise zur Befüllung des Druckluftsystems 1 dienen kann. Es ergibt sich somit eine Effizienzsteigerung der Brennkraftmaschine, da Bremsenergie zur Drucklufterzeugung genutzt wird.
  • Im Rahmen der Erfindung besteht ferner die Möglichkeit, das in Figur 1 gezeigte System durch entsprechende Dimensionierung der Druckluftspeicher und der Betriebsarten, in denen Druckluft erzeugt wird, so auszulegen, dass dadurch der Druckluftbedarf des Fahrzeugs gedeckt wird und so auf den bei Nutzfahrzeugen üblicherweise verbauten Luftpresser zur Drucklufterzeugung vollständig verzichtet werden kann.
  • Eine fünfte Betriebsart des Magnetventils 4 sieht vor, die Luftmenge für die Verbrennung zu reduzieren. Hierbei wird mit Hilfe des Magnetventils 4 ein Teil der nach dem Ladungswechsel im Zylinder befindlichen Luft vor der Zündung des Gemischs aus dem Brennraum 13 entnommen. Dadurch kann die Abgastemperatur gezielt erhöht werden, um beispielsweise eine frühere Aktivität des Abgasnachbehandlungssystems nach dem Motorstart zu ermöglichen. Auch im Leerlauf und Schwachlastbereich kann mit dieser Maßnahme die Wirksamkeit des Abgasnachbehandlungssystems gesteigert werden. Ein besonderer Vorzug dieser Betriebsart liegt darin, dass im Gegensatz zur Reduzierung der Luftmenge durch Drosselung der Ansaugluft dabei keine Wirkungsgradverschlechterungen durch Drosselverluste in Kauf genommen werden müssen.
  • Ferner besteht die Möglichkeit, die vorgenannte Betriebsart durch Verwendung einer Lambdasonde auch in einem geschlossenen Regelkreis gemäß einer fünften Betriebsart durchzuführen. Hierbei wird, analog der Lambda-Regelung bei Ottomotoren, durch Regelung der in den Brennraum eingebrachten Luft über das Magnetventil 4 ein vorgegebenes Luftkraftstoffverhältnis in Brennraum 13 eingeregelt. Ein derartiges Regelverfahren ist aus dem Stand der Technik für den Betrieb von Ottomotoren bekannt und kann mit entsprechendem Betrieb des elektromagnetischen Ventils 4 auch für einen Dieselmotor umgesetzt werden.
  • Die vorgenannten verschiedenen Betriebsarten der Brennkraftmaschinen unter Steuerung des elektromagnetischen Ventils 4 sind besonders vorteilhaft für den Betrieb eines Dieselmotors, wie in Figur 1 schematisch dargestellt.
  • Die vorgenannten Betriebsverfahren lassen sich jedoch auch mit Einschränkungen und Abwandlungen auf einen Ottomotor, wie in Figur 2 skizziert, anwenden.
  • In analoger Betriebsweise zum Dieselmotor kann das elektromagnetische Ventil 4 gemäß der ersten Betriebsart so betrieben werden, wobei über das elektromagnetische Ventil 4 zusätzlich Druckluft in den Brennraum 13 eingebracht wird, um eine zusätzliche Möglichkeit vorzusehen, das Luftkraftstoffverhältnis im Brennraum 13 zu beeinflussen.
  • Wenn, wie in Figur 2, gezeigt, ein zusätzliches Rückschlagventil 14 vorgesehen ist, um zu verhindern, dass ein brennfähiges Gemisch aus dem Brennraum 13 in das Druckluftsystem gelangt, sind die vorstehend genannten Betriebsarten, bei denen durch den Kolben 7 komprimierte Luft aus dem Brennraum 13 über das elektromagnetische Ventil 4 entnommen wird, nicht möglich. Diese Einschränkung gilt unabhängig von der Art der Gemischbildung. Sowohl bei der klassischen äußeren Gemischbildung als auch bei der direkten Einspritzung in den Brennraum liegt während der Verdichtung zumindest zeitweise zündfähiges Kraftstöffluftgemisch im Zylinder vor.
  • Wird jedoch anstelle des Rückschlagventils 14 ein anderes Überwachungsmittel in den Druckluftleitungen 2a, 2b vorgesehen, beispielsweise durch entsprechende Sensorik und/oder Abschaltventile in den Leitungen, besteht auch bei Ottomotoren mit Direkteinspritzung die Möglichkeit, das elektromagnetische Ventil 4 in den vorgenannten dritten und vierten Betriebsarten zur Bremsenergierückgewinnung und zur Bremsunterstützung zu betreiben.
  • Ferner kann die vorgenannte fünfte Betriebsart zur Reduzierung der Luftmenge für die Verbrennung ebenfalls zur Kraftstoffersparnis eingesetzt werden. Die Drosselklappe bleibt hierbei auch im Teillastbereich weitgehend geöffnet. Dadurch werden die Drosselverluste reduziert. Ein Teil der im Zylinder befindlichen Luft wird über das elektromagnetische Luftventil 4 abgeblasen. Wenn die im Zylinder befindliche Luftmasse der Lastanforderung entspricht, wird das Luftventil 4 geschlossen, und die Verdichtung beginnt.
  • Hierbei ist die Effektivität umso höher, je später die Kraftstoffeinspritzung einsetzt, denn bis zu diesem Zeitpunkt ist es erforderlich, dass das Luftventil 4 geschlossen ist. Je mehr Zeit zur Ablassung der Luft zur Verfügung steht, desto mehr Luft kann über das elektromagnetische Ventil 4 abgelassen werden und umso weiter kann die Drosselklappe geöffnet sein, wodurch die Drosselverluste minimiert werden.
  • Die vorgenannte Betriebsart für Dieselmotoren, bei denen im Betriebszustand, bei dem nicht die volle Motorleistung bzw. das volle Motordrehmoment benötigt und ein oder mehrere Zylinder unter abgeschalteter Kraftstoffeinspritzung betrieben werden, ist bei einer Vorgabe einer Lambda=1-Regelung nicht mit einem Ottomotor realisierbar, kann aber bei einem mager betriebenen Motor umgesetzt werden.
  • Alle Betriebsarten stellen hohe Anforderungen an die Steuerung des Motors, insbesondere im Lambda=1-Betrieb. Üblicherweise wird ein moderner Ottomotor mit einer vorgesteuerten Kraftstoffeinspritzung, die einer schnellen Lambda-Regelung überlagert ist, betrieben. Zur Kraftstoffsteuerung wird die Luftmasse durch Luftmassenmesser erfasst oder aus dem Druck vor dem Einlasskanal berechnet. Aus der Luftmasse wird die zur stöchiometrischen Verbrennung notwendige Kraftstoffmasse berechnet. Weder der Luftmassensensor noch der Drucksensor können die durch die Luftventile zusätzlich eingebrachte bzw. abgeblasene Luft erfassen. Diese Luftmasse wird daher in dieser Betriebsvariante durch die Motorsteuerung sehr genau berechnet.
  • Obwohl die Erfindung unter Bezugnahme auf bestimmte Ausführungsbeispiele beschrieben worden ist, ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen. Folglich soll die Erfindung nicht auf die offenbarten bestimmten Ausführungsbeispiele begrenzt sein, sondern die Erfindung soll alle Ausführungsbeispiele umfassen, die in den Bereich der beigefügten Patentansprüche fallen.
  • Bezugszeichenliste
  • 1
    Druckluftbehälter 12 bar
    2a, 2b, 2c
    Druckluftleitung
    3
    Zylinderkopf
    4
    elektromagnetisches Ventil
    5
    Einlassventil
    7
    Auslassventil
    8
    Pleuel
    9
    Absperrventil
    10
    Luftverteiler-Rail
    11
    Dieselinjektor
    12
    Zündkerze
    13
    Brennraum
    14
    Druckluftbehälter 30 bar
    15
    Rückschlagventil
    16
    Druckregler
    17
    Druck - und Temperaturmessfühler

Claims (15)

  1. Hubkolben-Brennkraftmaschine, mit mindestens einem am Zylinderkopf (3) angeordneten Lufteinlassventil (5) und mindestens einem am Zylinderkopf angeordnetem Luftauslassventil (6); dadurch gekennzeichnet, dass am Zylinderkopf (3) ein elektromagnetisches Ventil (4) zur Lufteinbringung in den Brennraum (13) und/oder zur Luftausbringung aus dem Brennraum (13) angeordnet ist.
  2. Hubkolben-Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das elektromagnetische Ventil (4) in einer geöffneten Stellung den Brennraum (13) und einen Druckluftspeicher (1) über eine Druckluftleitung (2) pneumatisch koppelt.
  3. Hubkolben-Brennkraftmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein effektiver Querschnitt des elektromagnetischen Ventils (4) im Bereich von 5 bis 20 mm2, weiter vorzugsweise im Bereich von 10 bis 15 mm2, liegt.
  4. Hubkolben-Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektromagnetische Ventil (4) mittels einer Steuereinheit in Abhängigkeit von einem Druck und/oder einer Temperatur des Druckluftsystems, einer Kolbenstellung, einer Lastanforderung, einer Motordrehzahl, und/oder eines Ladedrucks im Zylinder steuerbar ist.
  5. Hubkolben-Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet
    (a) dass die Steuereinheit das Motorsteuergerät ist; oder
    (b) dass die Hubkolben-Brennkraftmaschine als Common-Rail-Einspritzsystem ausgebildet ist und dass die Steuereinheit die Steuereinheit für das Common-Rail-Einspritzsystem ist.
  6. Hubkolben-Brennkraftmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    (a) dass die Hubkolben=Brennkraftmaschine einen Abgasturbolader umfasst; und/oder
    (b) dass das wenigstens eine Lufteinlassventil (5) und das Luftauslassventil (6) alsTellerventile ausgebildet sind; und/oder
    (c) dass die Hubkolben-Brennkraftmaschine eine selbstzündende Brennkraftmaschine oder ein Ottomotor ist.
  7. Kraftfahrzeug, insbesondere Nutzfahrzeug mit einer Hubkolben-Brennkraftmaschine nach einem der Ansprüche 1 bis 6.
  8. Nutzfahrzeug mit einer Hubkolben-Brennkraftmaschine nach einem der Ansprüche 2 bis 6, gekennzeichnet durch ein erstes Druckluftsystem mit einem ersten Druckluftspeicher (17) zur Versorgung der Bremsen mit Druckluft und ein zweites Druckluftsystem mit einem zweiten Druckluftspeicher (1), wobei der zweite Druckluftspeicher (1) mit einem höherem Druck als der erste Druckluftspeicher (17) betreibbar ist und mit dem Brennraum über das elektromagnetische Ventil (4) pneumatisch koppelbar ist, wobei der zweite Druckspeicher (1) ausgebildet ist, den ersten Druckluftspeicher (17) mit Druckluft zu befüllen.
  9. Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine gemäß einem der Ansprüche 2 bis 6, dadurch gekennzeichnet,
    (a) dass Druckluft aus dem Druckluftspeicher (1) über das elektromagnetische Ventil (4) in den Brennraum (13) eingebracht wird, zusätzlich zur Ladeluft, die über das wenigstens eine Einlassventil (5) in den Brennraum (13) eingebracht wird, und/oder
    (b) dass komprimierte Luft über das elektromagnetische Ventil aus dem Brennraum (13) entnommen und dem Druckluftspeicher (1) zugeführt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Zusatzlufteinblasung von Druckluft über das elektromagnetische Ventil (4) im Bereich des Schließens des wenigstens einen Einlassventils (5) beginnt und spätestens endet, wenn ein Gasdruck im Brennraum (13) einen Luftdruck im Druckluftspeicher (3) erreicht.
  11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass in Betriebszuständen, bei denen nicht das volle Motordrehmoment benötigt wird, bei wenigstens einem Zylinder mit abgeschalteter Kraftstoffeinspritzung das elektromagnetische Ventil (4) in der Aufwärtsbewegung des Kolben (7) geöffnet und im Bereich des oberen Totpunkts wieder geschlossen wird, um komprimierte Luft aus dem Brennraum (13) zu entnehmen und dem Druckluftspeicher (1) zuzuführen.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass im Verdichtungstakt eines Schubbetriebs unmittelbar nach Schließen des Einlassventils (5) das elektromagnetische Ventil (4) zur Zusatzlufteinblasung von Druckluft geöffnet wird und, spätestens wenn der Gasdruck im Zylinder einen Luftdruck im Druckluftspeicher (1) erreicht, wieder geschlossen wird.
  13. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass nach einem Ladungswechsel und vor der Verbrennung über das elektromagnetische Ventil (4) im Zylinder befindliche Luft aus dem Brennraum (13) zumindest teilweise entnommen wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass
    (a) die Hubkolben-Brennkraftmaschine eine selbstzündende Hubkolben Brennkraftmaschine ist; und
    (b) dass die Luftentnahme über das elektromagnetische Ventil (4) als Stellglied in einem geschlossenen Lambda-Regelkreis erfolgt.
  15. Verfahren nach einem der vorhergehenden Ansprüche 9 bis 14, dadurch gekennzeichnet, dass Steuerparameter betreffend einen Öffnungsbeginn des elektromagnetischen Ventils (4), ein Öffnungsende des elektromagnetischen Ventils (4) und eine Entscheidung, ob eine Betätigung des elektromagnetischen Ventils (4) erfolgt, in Abhängigkeit von einem Druck und/oder einer Temperatur in einem den Druckluftspeicher (1) enthaltenden Druckluftsystem, einer Kolbenstellung, einer Lastanforderung, einer Motordrehzahl und/oder eines Ladedrucks im Zylinder und/ oder Ansaugkrümmer bestimmt werden.
EP14002466.2A 2013-11-20 2014-07-16 Hubkolben-Brennkraftmaschine und Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine Active EP2876275B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013019340.0A DE102013019340A1 (de) 2013-11-20 2013-11-20 Hubkolben-Brennkraftmaschine und Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2876275A1 true EP2876275A1 (de) 2015-05-27
EP2876275B1 EP2876275B1 (de) 2017-10-11

Family

ID=51211488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14002466.2A Active EP2876275B1 (de) 2013-11-20 2014-07-16 Hubkolben-Brennkraftmaschine und Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine

Country Status (5)

Country Link
EP (1) EP2876275B1 (de)
CN (1) CN104653276B (de)
BR (1) BR102014018992B1 (de)
DE (1) DE102013019340A1 (de)
RU (1) RU2672012C2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060605A1 (en) * 2014-10-15 2016-04-21 Freevalve Ab Combustion engine as well as method for engine braking using such a combustion engine
DE102020131507A1 (de) 2020-11-27 2022-06-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine
DE102021105780A1 (de) 2021-03-10 2022-09-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung sowie Antriebseinrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545192A (en) * 2015-12-08 2017-06-14 Caterpillar Motoren Gmbh & Co Method of operating an engine
DE102020134462A1 (de) 2020-12-21 2022-06-23 Maximilian Geisberger Stromaggregat und Verfahren zum Betreiben eines Stromaggregats
CN117902785B (zh) * 2024-03-18 2024-05-28 兰州恒达石化机械有限公司 一种油田污水处理***及处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865769A1 (fr) * 2004-01-30 2005-08-05 Univ Orleans Procede de fonctionnement d'un moteur hybride pneumatique-thermique a suralimentation par turbocompresseur
DE10129976B4 (de) 2001-06-21 2005-12-22 Man B & W Diesel Ag Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine sowie zur Durchführung des Verfahrens geeignete Hubkolben-Brennkraftmaschine
DE102004028216A1 (de) * 2004-06-09 2005-12-29 Robert Bosch Gmbh Verfahren zur Leistungssteigerung einer Brennkraftmaschine
DE102007001119A1 (de) * 2006-04-12 2007-10-18 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102007027968A1 (de) * 2007-06-19 2009-01-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren und Vorrichtung zum Steigern der Motorbremsleistung einer Hubkolben-Verbrennungsmaschine eines Fahrzeugs, insbesondere eines Motors in Dieselausführung
EP2333271A1 (de) * 2009-11-26 2011-06-15 Iveco S.p.A. Zusätzliches Beschleunigungssystem für eine Verbrennungskraftmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411934C1 (de) * 1994-04-07 1995-03-02 Daimler Benz Ag Vorrichtung zum Umschalten einer Brennkraftmaschine in einen Luftpresserbetrieb
US7050900B2 (en) * 2004-02-17 2006-05-23 Miller Kenneth C Dynamically reconfigurable internal combustion engine
DE102007061420B4 (de) * 2007-12-20 2009-11-26 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Vorrichtung zur Drucklufterzeugung für ein Fahrzeug und Verfahren zum Betreiben einer Vorrichtung zur Drucklufterzeugung
DE102008000326A1 (de) * 2008-02-18 2009-08-20 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Druckluftversorgung einer Brennkraftmaschine bei einem Anfahrvorgang
WO2012067643A1 (en) * 2010-11-15 2012-05-24 Achates Power, Inc. Two stroke opposed-piston engines with compression release for engine braking
CN102133892B (zh) * 2011-03-12 2013-12-18 浙江大学 发动机压缩空气与摩擦制动相匹配的复合制动***及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129976B4 (de) 2001-06-21 2005-12-22 Man B & W Diesel Ag Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine sowie zur Durchführung des Verfahrens geeignete Hubkolben-Brennkraftmaschine
FR2865769A1 (fr) * 2004-01-30 2005-08-05 Univ Orleans Procede de fonctionnement d'un moteur hybride pneumatique-thermique a suralimentation par turbocompresseur
DE102004028216A1 (de) * 2004-06-09 2005-12-29 Robert Bosch Gmbh Verfahren zur Leistungssteigerung einer Brennkraftmaschine
DE102007001119A1 (de) * 2006-04-12 2007-10-18 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102007027968A1 (de) * 2007-06-19 2009-01-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren und Vorrichtung zum Steigern der Motorbremsleistung einer Hubkolben-Verbrennungsmaschine eines Fahrzeugs, insbesondere eines Motors in Dieselausführung
EP2333271A1 (de) * 2009-11-26 2011-06-15 Iveco S.p.A. Zusätzliches Beschleunigungssystem für eine Verbrennungskraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DÖNITZ C ET AL: "Realizing a Concept for High Efficiency and Excellent Driveability: The Downsized and Supercharged Hybrid Pneumatic Engine", SAE TECHNICAL PAPER SERIES, SOCIETY OF AUTOMOTIVE ENGINEERS, WARRENDALE, PA, US, no. 2009-01-1326, 1 April 2009 (2009-04-01), pages 1 - 15, XP002577055, ISSN: 0148-7191 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060605A1 (en) * 2014-10-15 2016-04-21 Freevalve Ab Combustion engine as well as method for engine braking using such a combustion engine
US10344683B2 (en) 2014-10-15 2019-07-09 Freevalve Ab Combustion engine as well as method for engine braking using such a combustion engine
DE102020131507A1 (de) 2020-11-27 2022-06-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine
DE102021105780A1 (de) 2021-03-10 2022-09-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung sowie Antriebseinrichtung

Also Published As

Publication number Publication date
EP2876275B1 (de) 2017-10-11
CN104653276B (zh) 2019-05-21
DE102013019340A1 (de) 2015-05-21
BR102014018992A2 (pt) 2018-05-15
RU2672012C2 (ru) 2018-11-08
BR102014018992B1 (pt) 2023-10-03
RU2014137886A (ru) 2016-04-10
CN104653276A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
EP3023619B1 (de) Anpassung der fluidmenge des systems zur zusatzeinspritzung eines verbrennungsmotors an das signal der klopfregelung
EP2876275B1 (de) Hubkolben-Brennkraftmaschine und Verfahren zum Betrieb einer Hubkolben-Brennkraftmaschine
DE19621297C1 (de) Einrichtung zur Steuerung/Regelung der Zündöl-Einspritzung eines Gasmotors
DE10221162B4 (de) Getrennte Einspritzvorrichtungshauptzeitsteuerkarten zur Anwendung mit und ohne Voreinspritzung
DE102018110898A1 (de) Verfahren zur Steuerung der Kraftstoffeinspritzung in Dieselmotoren
DE112018000453T5 (de) Verfahren und System für Zylinderabschaltung eines Motors
DE102021107917A1 (de) System und verfahren zum einspritzen von kraftstoff in einen motor
EP1090221B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE102011056159A1 (de) Brennstoffeinspritzsteuerung für eine Verbrennungskraftmaschine
DE10225305A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102006017928A1 (de) Brennkraftmaschine mit Brennraumventil
DE10131545A1 (de) Genaue Lieferung des gesamten Brennstoffes, wenn zwei Einspritzereignisse eng gekoppelt sind
DE10342703B4 (de) Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine sowie Brennkraftmaschine
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE102019129982A1 (de) System und verfahren zur ventilsitzeinspritzung
DE19958465C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP0923669B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE102012219202A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
DE10346920B4 (de) Motor mit einem System zur Kraftstoffsteuerung von Einspritzeinrichtungen und Verfahren dafür
DE102007050304A1 (de) Verfahren zur Steuerung eines Kraftstoffversorgungssystems einer Brennkraftmaschine
DE102009045306A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
EP0985089B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE19947784A1 (de) Verfahren zum Starten einer Brennkraftmaschine
EP1199459B1 (de) Verfahren zum Starten einer Brennkraftmaschine
DE102023104448A1 (de) Verfahren zum Betrieb eines Verbrennungsmotors mit gasförmigem Kraftstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170626

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20170905

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 936263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014005728

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014005728

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

26N No opposition filed

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180716

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014005728

Country of ref document: DE

Owner name: MAN TRUCK & BUS SE, DE

Free format text: FORMER OWNER: MAN TRUCK & BUS AG, 80995 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 936263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230726

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 10

Ref country code: DE

Payment date: 20230726

Year of fee payment: 10