EP2862235B1 - Antenna arrangement and method - Google Patents

Antenna arrangement and method Download PDF

Info

Publication number
EP2862235B1
EP2862235B1 EP13718328.1A EP13718328A EP2862235B1 EP 2862235 B1 EP2862235 B1 EP 2862235B1 EP 13718328 A EP13718328 A EP 13718328A EP 2862235 B1 EP2862235 B1 EP 2862235B1
Authority
EP
European Patent Office
Prior art keywords
antenna
feed
signal
antenna element
antenna arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13718328.1A
Other languages
German (de)
French (fr)
Other versions
EP2862235A1 (en
Inventor
Ali Topak
Juergen Hasch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2862235A1 publication Critical patent/EP2862235A1/en
Application granted granted Critical
Publication of EP2862235B1 publication Critical patent/EP2862235B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present invention relates to an antenna arrangement, in particular Traveling Wave antenna arrangement, with adjustable radiation characteristic.
  • the present invention further relates to a method of operating an antenna arrangement.
  • radio antennas are mounted on radio towers of the mobile service providers, each covering a specific area of the supplied by the respective radio tower radio cell.
  • three antennas may be provided, each of which has an opening angle of about 120 °.
  • Phased array antennas are known in which the antenna pattern is electronically pivotable.
  • Phased array antennas consist of a plurality of transmitting elements (array), which are fed from a common signal source.
  • the individual transmission elements of the phased array antenna are driven with a suitably phase-shifted signal.
  • the individual emitted electromagnetic waves in the desired direction interfere with a constructive interference and thus form a maximum of radiated energy in the desired direction.
  • phased array antennas have a phase shifter and an attenuator for individually adjusting phase and amplitude for each of the transmitting elements.
  • FIG Fig. 1 An exemplary phased array antenna is shown in FIG Fig. 1 shown.
  • the phased array antenna of Fig. 1 has 4 transmission elements S1 - S4, which are each coupled to a common signal source FN (also called Feed Network). Between the signal source FN and the individual transmission elements is in each case an attenuator V1 - V4 and a series arranged in phase shifter P1 - P4 arranged.
  • FN also called Feed Network
  • An antenna suitable for use in radar applications for example, in the DE102010040793 (A1 ).
  • US 6,320,542 discloses a patch antenna with patch elements. Each patch element of this patch antenna has two separate connection points, which can be used to feed the respective patch element.
  • WO 2007/004932 A1 and JP 2005 020368 A Each show Traveling Wave antenna arrangements with two connection points which are fed by different signals.
  • the present invention discloses an antenna arrangement with the features of patent claim 1 and a method with the features of claim 8.
  • the idea underlying the present invention is now to take this knowledge into account and to provide a possibility to feed a single antenna with two feed signals, which are adapted such that the superimposition of the two electromagnetic waves caused by the feed signals is a desired one Property, eg has a directivity.
  • the present invention provides a signal generating unit which generates an infeed signal, which is supplied to two individual feed-in points of an antenna element.
  • the present invention further provides a signal conditioning unit which adjusts the feed signal for at least one of the two feed points so that a desired antenna pattern results from the radiated electromagnetic waves.
  • the signal conditioning unit adjusts the amplitude and phase of the feed signal supplied to one of the feed terminals.
  • the area in which the electromagnetic waves are emitted usually can not be limited exactly. Rather, it is a maximum of electrical energy in the given direction transmitted. Therefore, depending on the setting of the amplitude and phase of the drive signals fed at the feeding points of the antenna element, the direction and width of the main antenna lobe can be adjusted by the present invention.
  • adjustment of the direction and width of the main antenna lobe can take place with only one signal adaptation unit, which only adapts the feed signal which is fed to one of the two feed points.
  • the present invention provides a way to provide an antenna device with an antenna pattern that is extremely robust to amplitude and phase errors of the feed-in signals.
  • the antenna element has an array antenna which has one of the feed terminals at each end. This makes it possible to provide a somewhat complex and easy-to-manufacture antenna element with which a desired antenna diagram can be set.
  • the array antenna comprises a waveguide antenna. Additionally or alternatively, the array antenna has a microstrip antenna. This makes it possible to adapt the present invention to different applications and requirements.
  • the feed signal has a frequency adapted to the antenna element such that an electromagnetic wave emitted by the antenna element has a predetermined emission characteristic. This makes it possible to predetermine a desired directional characteristic of the main antenna lobe in the antenna arrangement according to the invention already by the geometry of the antenna element and a feed signal tuned thereto without the signal conditioning unit having to change the signal.
  • the at least one signal adaptation unit is configured to adjust the amplitude and / or the phase of the feed signal in such a way that the waves produced by the feed signal fed in at the first feed connection and at the second feed connection and radiated from the antenna element are superimposed such that a superposed wave emitted by the antenna element has the predetermined changed emission characteristic.
  • the signal conditioning unit has an adjustable phase shifter. This makes it possible to provide a simple, component-based signal conditioning unit.
  • the signal conditioning unit comprises an adjustable amplifier. This also makes it possible to provide a simple, component-based signal conditioning unit.
  • Fig. 2 shows a block diagram of an exemplary embodiment of an antenna arrangement 1 according to the invention.
  • the antenna arrangement 1 has an antenna element 2 which has a first feed connection 3 at one end and a second feed connection 4 at its other end. Furthermore, the antenna arrangement 1 has a signal generation unit 5, which is directly coupled to the first feed connection 3. The signal generation unit 5 is coupled to the second feed connection 4 indirectly via a signal adaptation unit 6, which is designed to adapt the amplitude and / or the phase of the corresponding feed signal in accordance with a predetermined emission characteristic.
  • Fig. 2 So is a dual-powered antenna element 2, which is fed from both sides simultaneously.
  • This can be, for example, a linear array antenna. Further exemplary embodiments of the antenna arrangement 1 are described in FIGS FIGS. 4 to 6 shown.
  • Fig. 3 shows a flowchart of an exemplary embodiment of a method according to the invention.
  • an infeed signal is generated. Furthermore, in a second step S2, the feed-in signal is fed to a first feed connection 3 of an antenna element 2 of the antenna arrangement 1 and to a second feed connection 4 of the antenna element 2 of the antenna arrangement 1. In this case, however, an adapted feed signal is fed to at least one of the feed terminals 3, 4.
  • This adapted feed-in signal is adapted in a third step S3 by adjusting the amplitude and / or the phase of the feed-in signal in accordance with a predetermined emission characteristic.
  • Fig. 4 shows a block diagram of another exemplary embodiment of an antenna arrangement 1 according to the invention.
  • the antenna arrangement 1 in Fig. 4 largely corresponds to the antenna arrangement 1 Fig. 2 ,
  • the antenna arrangement 1 from Fig. 4 differs from the antenna arrangement 1 Fig. 2 merely in that the antenna element 2 is designed as a waveguide antenna element 2-1 with only one antenna column, and that the signal adaptation unit 6 has an adjustable phase shifter 7 and an adjustable amplifier 8.
  • Fig. 5 shows a block diagram of another exemplary embodiment of an antenna arrangement 1 according to the invention.
  • the antenna arrangement 1 in Fig. 5 largely corresponds to the antenna arrangement 1 Fig. 4 ,
  • the antenna arrangement 1 from Fig. 5 differs from the antenna arrangement 1 Fig. 4 merely in that the antenna element 2 is designed as a patch array antenna 2-2 with only one antenna gap.
  • Fig. 6 shows a block diagram of another exemplary embodiment of an antenna arrangement 1 according to the invention.
  • the antenna arrangement 1 in Fig. 6 largely corresponds to the antenna arrangement 1 Fig. 4 ,
  • the antenna arrangement 1 from Fig. 6 differs from the antenna arrangement 1 Fig. 4 merely in that the antenna element 2 is designed as a patch array antenna 2-3 with four antenna columns 11-1, 11-2, 11-3, 11-4.
  • Fig. 7 shows an antenna diagram of an exemplary embodiment of an antenna arrangement 1 according to the invention.
  • the antenna diagram of the Fig. 7 the antenna diagram of a dual-powered antenna element 2, 2-1, 2-2, 2-3 according to the invention in a destructive superposition.
  • the antenna diagram of the Fig. 7 is drawn on the abscissa axis of the beam angle theta from -100 ° to + 100 °. Furthermore, the antenna gain in dBi from -40dBi to + 15dBi is plotted on the ordinate axis.
  • a curve is drawn, which shows half-sinusoidal waves between -90 ° and + 90 ° and represents the antenna gain.
  • the destructive interference of the two signals becomes particularly clear at an angle of 0 °.
  • the curve drops to about -38dBi.
  • Fig. 8 shows a further antenna diagram of another exemplary embodiment of an antenna arrangement according to the invention.
  • the antenna diagram of the Fig. 8 in contrast to the Fig. 7 the antenna diagram of a dual-powered antenna element 2, 2-1, 2-2, 2-3 according to the invention in a constructive overlay.
  • Fig. 8 In the antenna diagram of the Fig. 8 is as well as in Fig. 7 drawn on the abscissa axis of the beam angle theta from -100 ° to + 100 °. Furthermore, the antenna gain in dBi from -40 to +20 is plotted on the ordinate axis.
  • each half-sinusoidal waves pointing between -90 ° and + 90 ° and represents the antenna gain.
  • the constructive interference of the two signals becomes particularly clear at an angle of 0 °.
  • the curve shows a maximum of about 17dBi.
  • Fig. 9 shows a further antenna diagram of another exemplary embodiment of an antenna arrangement according to the invention.
  • the antenna diagram of the Fig. 9 corresponds to the antenna diagram of an antenna element according to Fig. 5 .
  • the antenna diagram of the Fig. 9 is drawn on the abscissa axis of the beam angle of - 90 ° to + 90 °. Furthermore, the antenna gain in dBi from -30dBi to + 15dBi is plotted on the ordinate axis.
  • the first feed signal for the first signal curve S1 has an amplitude of 1 volt and a phase angle of 0 °.
  • the second feed signal for the first signal curve S1 has an amplitude of 0.2 volts and a phase angle of 0 °.
  • the first feed signal for the second signal curve S2 has an amplitude of 1 volt and a phase angle of 0 °.
  • the second feed signal for the second signal curve S2 has an amplitude of 0 volts and a phase angle of 0 °.
  • the first feed signal for the third signal curve S3 has an amplitude of 1 volt and a phase angle of 0 °.
  • the second feed signal for the third signal curve S3 has an amplitude of 0.4 volts and a phase angle of 150 °.
  • the first feed signal for the fourth signal curve S4 has an amplitude of 1 volt and a phase angle of 0 °.
  • the second feed signal for the fourth signal curve S4 has an amplitude of 0.6 volts and a phase angle of 180 °.
  • the first feed signal for the fifth signal curve S5 has an amplitude of 1 volt and a phase angle of 0 °.
  • the second feed signal for the fifth signal curve S5 has an amplitude of 1 volt and a phase angle of 180 °.
  • the first feed signal for the sixth signal curve S6 has an amplitude of 0.6 volts and a phase angle of 180 °.
  • the second feed signal for the sixth signal curve S6 has an amplitude of 1 volt and a phase angle of 0 °.
  • the first feed signal for the seventh signal curve S7 has an amplitude of 0.4 volts and a phase angle of 150 °.
  • the second feed signal for the seventh signal curve S7 has an amplitude of 1 volt and a phase angle of 0 °.
  • the first feed signal for the eighth signal curve S8 has an amplitude of 0 volts and a phase angle of 0 °.
  • the second feed signal for the eighth signal curve S8 has an amplitude of 1 volt and a phase angle of 0 °.
  • the maximum of the first curve S1 is about -10 °.
  • the maximum of the second curve S2 is about -8 °.
  • the maximum of the third curve S3 is about -6 °.
  • the maximum of the fourth curve S4 is about -3 °.
  • the maximum of the fifth curve S5 is about + 3 °.
  • the maximum of the sixth curve S6 is approximately + 6 °.
  • the maximum of the seventh curve S7 is approximately + 8 °.
  • the maximum of the eighth curve S8 is about 10 °.
  • Fig. 10 shows the configuration of an exemplary embodiment of an antenna element 2 according to the invention for further illustrating the Fig. 9 presented analytical model.
  • the antenna element 2 in Fig. 10 has ten arranged in a row transmitting elements 10, which are electrically connected to each other. For reasons of clarity, only one of the transmitting elements 10 is provided with a reference numeral. Furthermore, the antenna element 2 in Fig. 10 a first feed terminal 3 at the right end of the antenna element 2 and a second feed terminal 4 at the left end of the antenna element 2. In Fig. 10 Furthermore, the distance d is drawn in, which marks the distance between two the centers of two transmitting elements 10.
  • Fig. 10 a coordinate cross is drawn, wherein the abscissa axis of the coordinate system is arranged parallel to the row of transmitting elements 10.
  • the E plane denotes the sectional plane of the antenna diagram in the direction of the electric field components (here horizontal), the H plane the sectional plane of the antenna diagram orthogonal thereto (here vertical).
  • FIGS. 11 to 13 To illustrate the present invention, in each case an antenna element 2.
  • the antenna elements 2 in the FIGS. 11 to 13 in each case five transmitting elements 10, a first feed connection 3 and a second feed connection 4.
  • Fig. 11 corresponds to the distance D between the individual transmitting elements 10 of half the wavelength of the injected signal. It follows that the main emission of the antenna takes place in the direction perpendicular to the row of transmitting elements 10. This is represented by an arrow perpendicular to the row of transmitting elements 10.
  • the distance D between the individual transmission elements 10 is greater than half the wavelength of the signal fed in at the first and the second supply connection 3, 4. It follows that the two signals are emitted not perpendicular, but at an angle to the vertical radiation. It will caused by the signal which is fed to the first (right) feed terminal 3, a radiation having a negative angle to the radiation perpendicular to the row of transmitting elements 10, ie an angle shifted counterclockwise. Likewise, a radiation is caused by the signal which is fed to the second (left) feed terminal 4, which has a positive angle with respect to the radiation perpendicular to the row of transmitting elements 10, ie an angle shifted clockwise.
  • FIG. 13 Finally, an antenna element 2 is shown in which the distance D between the individual transmitting elements 10 is less than half the wavelength of the signal fed in at the first and the second feed connection 3, 4.
  • Fig. 13 is one of the Fig. 12
  • a radiation is caused, which compared to the perpendicular to the series of transmitting elements 10 radiation standing a positive angle, ie a clockwise shifted angle , having.
  • a radiation is caused by the signal which is fed to the second (left) feed terminal 4, which has a negative angle with respect to the perpendicular to the series of transmitting elements 10 radiation, ie, a counterclockwise shifted angle.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Die vorliegende Erfindung bezieht sich auf eine Antennenanordnung, insbesondere Traveling Wave Antennenanordnung, mit einstellbarer Abstrahlcharakteristik. Die vorliegende Erfindung bezieht sich ferner auf ein Verfahren zum Betreiben einer Antennenanordnung.The present invention relates to an antenna arrangement, in particular Traveling Wave antenna arrangement, with adjustable radiation characteristic. The present invention further relates to a method of operating an antenna arrangement.

Stand der TechnikState of the art

Es gibt eine Vielzahl von Anwendungen, in denen es erwünscht oder notwendig ist, elektromagnetische Wellen mittels einer Antenne auszustrahlen. Insbesondere ist es in einigen Anwendungen erforderlich die elektromagnetischen Wellen mit einer vorgegebenen Richtwirkung auszusenden.There are a variety of applications in which it is desirable or necessary to emit electromagnetic waves by means of an antenna. In particular, in some applications it is necessary to emit the electromagnetic waves with a given directivity.

Beispielsweise ist es in Radaranwendungen vorteilhaft, elektromagnetische Wellen mit einer gewissen Richtwirkung auszusenden, um so die an einem Objekt reflektierten und empfangenen elektromagnetischen Wellen der Position des Objekts zuordnen zu können. Eine weitere Anwendung, in welcher es wünschenswert ist, elektromagnetische Wellen mit einer Richtwirkung auszusenden, ist der Mobilfunk. Beispielsweise werden auf Funktürmen der Mobilfunkanbieter mehrere Funkantennen angebracht, welche jeweils einen bestimmten Bereich der durch den jeweiligen Funkturm versorgten Funkzelle abdecken. Beispielsweise können drei Antennen vorgesehen sein, von denen jede einen Öffnungswinkel von ca. 120° aufweist.For example, in radar applications, it is advantageous to emit electromagnetic waves with a certain directivity so as to be able to associate the electromagnetic waves reflected and received on an object with the position of the object. Another application in which it is desirable to emit electromagnetic waves with directivity is mobile radio. For example, several radio antennas are mounted on radio towers of the mobile service providers, each covering a specific area of the supplied by the respective radio tower radio cell. For example, three antennas may be provided, each of which has an opening angle of about 120 °.

Insbesondere in Radaranwendungen ist es notwendig, die Richtung, in welche die elektromagnetischen Wellen ausgestrahlt werden, zu variieren, um einen größeren räumlichen Bereich mittels des Radars überwachen zu können. Dabei kommen beispielsweise bewegliche bzw. schwenkbare Antennen zum Einsatz.Especially in radar applications, it is necessary to vary the direction in which the electromagnetic waves are emitted in order to be able to monitor a larger spatial area by means of the radar. For example, movable or pivotable antennas are used.

Bei solchen Antennen ist eine Mechanik notwendig, die es ermöglicht, die auf der Mechanik angebrachte Antenne in geeigneter Weise zu bewegen.In such antennas, a mechanism is necessary, which makes it possible to move the mounted on the mechanics antenna in a suitable manner.

Ferner sind heute sog. Phased-Array-Antennen bekannt, bei welchen das Antennendiagramm elektronisch schwenkbar ist. Phased-Array-Antennen bestehen dabei aus einer Vielzahl von Sendeelementen (Array), welche aus einer gemeinsamen Signalquelle gespeist werden. Um das Antennendiagramm einer solchen Phased-Array-Antenne zu schwenken, werden die einzelnen Sendeelemente der Phased-Array-Antenne mit einem geeignet phasenverschobenen Signal angesteuert. Dadurch, überlagern sich die einzelnen ausgestrahlten elektromagnetischen Wellen in der gewünschten Richtung mit einer konstruktiven Interferenz und bilden so ein Maximum aus ausgestrahlter Energie in der gewünschten Richtung.Furthermore, today so-called. Phased array antennas are known in which the antenna pattern is electronically pivotable. Phased array antennas consist of a plurality of transmitting elements (array), which are fed from a common signal source. In order to pan the antenna pattern of such a phased array antenna, the individual transmission elements of the phased array antenna are driven with a suitably phase-shifted signal. As a result, the individual emitted electromagnetic waves in the desired direction interfere with a constructive interference and thus form a maximum of radiated energy in the desired direction.

Solche Phased-Array-Antennen weisen zur individuellen Einstellung von Phase und Amplitude für jedes der Sendeelemente einen Phasenschieber und ein Dämpfungsglied auf.Such phased array antennas have a phase shifter and an attenuator for individually adjusting phase and amplitude for each of the transmitting elements.

Eine Beispielhafte Phased-Array-Antenne ist in Fig. 1 dargestellt. Die Phased-Array-Antenne der Fig. 1 weist 4 Sendeelemente S1 - S4 auf, die jeweils mit einer gemeinsamen Signalquelle FN (auch Feed Network genannt) gekoppelt sind. zwischen der Signalquelle FN und den einzelnen Sendeelementen ist jeweils ein Dämpfungsglied V1 - V4 sowie ein in Reihe dazu angeordneter Phasenschieber P1 - P4 angeordnet.An exemplary phased array antenna is shown in FIG Fig. 1 shown. The phased array antenna of Fig. 1 has 4 transmission elements S1 - S4, which are each coupled to a common signal source FN (also called Feed Network). between the signal source FN and the individual transmission elements is in each case an attenuator V1 - V4 and a series arranged in phase shifter P1 - P4 arranged.

Eine für den Einsatz in Radaranwendungen geeignete Antenne wird beispielsweise in der DE102010040793 (A1 ) gezeigt.An antenna suitable for use in radar applications, for example, in the DE102010040793 (A1 ).

US 6,320,542 offenbart eine Patch-Antenne mit Patch-Elementen. Jedes Patch-Element dieser Patch-Antenne umfasst zwei separate Anschlusspunkte, über die das jeweilige Patch-Element gespeist werden kann. US 6,320,542 discloses a patch antenna with patch elements. Each patch element of this patch antenna has two separate connection points, which can be used to feed the respective patch element.

WO 2007/004932 A1 und JP 2005 020368 A zeigen jeweils Traveling Wave Antennenanordnungen mit zwei Anschlusspunkten die von unterschiedlichen Signalen gespeist werden. WO 2007/004932 A1 and JP 2005 020368 A Each show Traveling Wave antenna arrangements with two connection points which are fed by different signals.

Offenbarung der ErfindungDisclosure of the invention

Die vorliegende Erfindung offenbart eine Antennenanordnung mit den Merkmalen des Patentanspruchs 1 und ein Verfahren mit den Merkmalen des Patentanspruchs 8.The present invention discloses an antenna arrangement with the features of patent claim 1 and a method with the features of claim 8.

Die der vorliegenden Erfindung zu Grunde liegende Idee besteht nun darin, dieser Erkenntnis Rechnung zu tragen und eine Möglichkeit vorzusehen, eine einzelne Antenne mit zwei Einspeisesignalen zu speisen, welche derart angepasst sind, dass die Überlagerung der zwei auf Grund der Einspeisesignale hervorgerufenen elektromagnetischen Wellen eine gewünschte Eigenschaft, z.B. eine Richtwirkung aufweist.The idea underlying the present invention is now to take this knowledge into account and to provide a possibility to feed a single antenna with two feed signals, which are adapted such that the superimposition of the two electromagnetic waves caused by the feed signals is a desired one Property, eg has a directivity.

Dazu sieht die vorliegende Erfindung eine Signalerzeugungseinheit vor, welche ein Einspeisesignal erzeugt, welches zwei einzelnen Einspeisepunkten eines Antennenelementes zugeführt wird. Zur Anpassung des Antennendiagramms sieht die vorliegende Erfindung ferner eine Signalanpassungseinheit vor, welche das Einspeisesignal für mindestens einen der zwei Einspeisepunkte derart anpasst, dass ein gewünschtes Antennendiagramm aus den ausgestrahlten elektromagnetischen Wellen resultiert. Die Signalanpassungseinheit passt dazu insbesondere die Amplitude und die Phase des Einspeisesignals an, welches einem der Einspeiseanschlüsse zugeführt wird.For this purpose, the present invention provides a signal generating unit which generates an infeed signal, which is supplied to two individual feed-in points of an antenna element. To adapt the antenna pattern, the present invention further provides a signal conditioning unit which adjusts the feed signal for at least one of the two feed points so that a desired antenna pattern results from the radiated electromagnetic waves. In particular, the signal conditioning unit adjusts the amplitude and phase of the feed signal supplied to one of the feed terminals.

Werden elektromagnetische Wellen mit einer Richtwirkung ausgestrahlt, kann der Bereich, in dem die elektromagnetischen Wellen ausgesendet werden, üblicherweise nicht exakt eingegrenzt werden. Vielmehr wird dabei ein Maximum elektrischer Energie in die angegeben Richtung übertragen. Je nach Einstellung von Amplitude und Phase der Ansteuersignale, welche an den Einspeisepunkten des Antennenelements eingespeist werden, kann daher mit Hilfe der vorliegenden Erfindung die Richtung und Breite der Haupt-Antennenkeule eingestellt werden.If electromagnetic waves are emitted with a directivity, the area in which the electromagnetic waves are emitted, usually can not be limited exactly. Rather, it is a maximum of electrical energy in the given direction transmitted. Therefore, depending on the setting of the amplitude and phase of the drive signals fed at the feeding points of the antenna element, the direction and width of the main antenna lobe can be adjusted by the present invention.

Insbesondere kann eine Einstellung der Richtung und Breite der Haupt-Antennenkeule mit nur einer Signalanpassungseinheit erfolgen, welche lediglich das Einspeisesignal anpasst, welches an einen der zwei Einspeisepunkte geführt wird.In particular, adjustment of the direction and width of the main antenna lobe can take place with only one signal adaptation unit, which only adapts the feed signal which is fed to one of the two feed points.

Ferner stellt die vorliegende Erfindung eine Möglichkeit bereit, eine Antennenvorrichtung mit einem Antennendiagramm bereitzustellen, welches äußerst robust gegenüber Amplituden- und Phasenfehlern der Einspeisesignale ist.Further, the present invention provides a way to provide an antenna device with an antenna pattern that is extremely robust to amplitude and phase errors of the feed-in signals.

Vorteilhafte Ausführungsformen und Weiterbildungen ergeben sich aus den Unteransprüchen sowie aus der Beschreibung unter Bezugnahme auf die Figuren.Advantageous embodiments and further developments emerge from the dependent claims and from the description with reference to the figures.

In einer Ausführungsform weist das Antennenelement eine Array-Antenne auf, welche jeweils an einem Ende einen der Einspeiseanschlüsse aufweist. Dies ermöglicht es, ein wenig komplexes und einfach herzustellendes Antennenelement bereitzustellen, mit welchem ein gewünschtes Antennendiagramm eingestellt werden kann.In one embodiment, the antenna element has an array antenna which has one of the feed terminals at each end. This makes it possible to provide a somewhat complex and easy-to-manufacture antenna element with which a desired antenna diagram can be set.

In einer Ausführungsform weist die Array-Antenne eine Hohlleiter-Antenne auf. Zusätzlich oder alternativ weist die Array-Antenne eine Mikrostreifen-Antenne auf. Dies ermöglicht es, die vorliegende Erfindung an unterschiedliche Anwendungen und Anforderungen anzupassen.In one embodiment, the array antenna comprises a waveguide antenna. Additionally or alternatively, the array antenna has a microstrip antenna. This makes it possible to adapt the present invention to different applications and requirements.

In einer Ausführungsform weist das Einspeisesignal eine dem Antennenelement derart angepasste Frequenz auf, dass eine von dem Antennenelement ausgestrahlte elektromagnetische Welle eine vorgegebene Abstrahlcharakteristik aufweist. Dies ermöglicht es, bei der erfindungsgemäßen Antennenanordnung eine gewünschte Richtcharakteristik der Hauptantennenkeule bereits durch die Geometrie des Antennenelements und ein darauf abgestimmtes Einspeisesignal vorzugeben, ohne dass die Signalanpassungseinheit das Signal ändern müsste.In one embodiment, the feed signal has a frequency adapted to the antenna element such that an electromagnetic wave emitted by the antenna element has a predetermined emission characteristic. This makes it possible to predetermine a desired directional characteristic of the main antenna lobe in the antenna arrangement according to the invention already by the geometry of the antenna element and a feed signal tuned thereto without the signal conditioning unit having to change the signal.

In einer Ausführungsform ist die mindestens eine Signalanpassungseinheit dazu ausgebildet, die Amplitude und/oder die Phase des Einspeisesignals derart anzupassen, dass sich die durch das an dem ersten Einspeiseanschluss und an dem zweiten Einspeiseanschluss eingespeiste Einspeisesignal hervorgerufenen und von dem Antennenelement abgestrahlten Wellen derart überlagern, dass eine überlagerte von dem Antennenelement abgestrahlte Welle die vorgegebene veränderte Abstrahlcharakteristik aufweist. Dies ermöglicht eine dynamische Variation der Richtung und Breite der Haupt-antennenkeule der erfindungsgemäßen Antennenanordnung gemäß einer gewünschten Abstrahlcharakteristik.In one embodiment, the at least one signal adaptation unit is configured to adjust the amplitude and / or the phase of the feed signal in such a way that the waves produced by the feed signal fed in at the first feed connection and at the second feed connection and radiated from the antenna element are superimposed such that a superposed wave emitted by the antenna element has the predetermined changed emission characteristic. This allows a dynamic variation of the direction and width of the main antenna lobe of the antenna arrangement according to the invention according to a desired radiation characteristic.

In einer Ausführungsform weist die Signalanpassungseinheit einen einstellbaren Phasenschieber auf. Dies ermöglicht es, eine einfache, auf wenigen Bauteilen basierende Signalanpassungseinheit bereitzustellen.In one embodiment, the signal conditioning unit has an adjustable phase shifter. This makes it possible to provide a simple, component-based signal conditioning unit.

In einer Ausführungsform weist die Signalanpassungseinheit einen einstellbaren Verstärker auf. Dies ermöglicht es ebenfalls, eine einfache, auf wenigen Bauteilen basierende Signalanpassungseinheit bereitzustellen.In one embodiment, the signal conditioning unit comprises an adjustable amplifier. This also makes it possible to provide a simple, component-based signal conditioning unit.

Die obigen Ausgestaltungen und Weiterbildungen lassen sich, sofern sinnvoll, beliebig miteinander kombinieren. Weitere mögliche Ausgestaltungen, Weiterbildungen und Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmalen der Erfindung. Insbesondere wird dabei der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der vorliegenden Erfindung hinzufügen.The above embodiments and developments can, if appropriate, combine with each other as desired. Further possible refinements, developments and implementations of the invention also include combinations of features of the invention which have not been explicitly mentioned above or described below with regard to the exemplary embodiments. In particular, the person skilled in the art will also add individual aspects as improvements or additions to the respective basic form of the present invention.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die vorliegende Erfindung wird nachfolgend anhand der in den schematischen Figuren der Zeichnungen angegebenen Ausführungsbeispiele näher erläutert. Es zeigen dabei:

Fig. 1
eine beispielhafte herkömmliche Phased-Array-Antenne;
Fig. 2
ein Blockschaltbild einer beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung;
Fig. 3
ein Ablaufdiagramm einer beispielhaften Ausführungsform eines erfindungsgemäßen Verfahrens;
Fig. 4
ein Blockschaltbild einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung;
Fig. 5
ein Blockschaltbild einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung;
Fig. 6
ein Blockschaltbild einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung;
Fig. 7
ein Antennendiagramm einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung;
Fig. 8
ein weiteres Antennendiagramm einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung;
Fig. 9
ein weiteres Antennendiagramm einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung;
Fig. 10
ein Blockschaltbild einer beispielhaften Ausführungsform eines erfindungsgemäßen Antennenelements;
Fig. 11
ein Blockschaltbild einer weiteren beispielhaften Ausführungsform eines erfindungsgemäßen Antennenelements;
Fig. 12
ein Blockschaltbild einer weiteren beispielhaften Ausführungsform eines erfindungsgemäßen Antennenelements;
Fig. 13
ein Blockschaltbild einer weiteren beispielhaften Ausführungsform eines erfindungsgemäßen Antennenelements.
The present invention will be explained in more detail with reference to the exemplary embodiments indicated in the schematic figures of the drawings. It shows:
Fig. 1
an exemplary conventional phased array antenna;
Fig. 2
a block diagram of an exemplary embodiment of an antenna arrangement according to the invention;
Fig. 3
a flowchart of an exemplary embodiment of a method according to the invention;
Fig. 4
a block diagram of another exemplary embodiment of an antenna arrangement according to the invention;
Fig. 5
a block diagram of another exemplary embodiment of an antenna arrangement according to the invention;
Fig. 6
a block diagram of another exemplary embodiment of an antenna arrangement according to the invention;
Fig. 7
an antenna diagram of another exemplary embodiment of an antenna arrangement according to the invention;
Fig. 8
a further antenna diagram of another exemplary embodiment of an antenna arrangement according to the invention;
Fig. 9
a further antenna diagram of another exemplary embodiment of an antenna arrangement according to the invention;
Fig. 10
a block diagram of an exemplary embodiment of an antenna element according to the invention;
Fig. 11
a block diagram of another exemplary embodiment of an antenna element according to the invention;
Fig. 12
a block diagram of another exemplary embodiment of an antenna element according to the invention;
Fig. 13
a block diagram of another exemplary embodiment of an antenna element according to the invention.

In allen Figuren sind gleiche bzw. funktionsgleiche Elemente und Vorrichtungen - sofern nichts Anderes angegeben ist - mit denselben Bezugszeichen versehen worden.In all figures, the same or functionally identical elements and devices - unless otherwise stated - have been given the same reference numerals.

Ausführungsformen der ErfindungEmbodiments of the invention

Fig. 2 zeigt ein Blockschaltbild einer beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung 1. Fig. 2 shows a block diagram of an exemplary embodiment of an antenna arrangement 1 according to the invention.

Die Antennenanordnung 1 weist ein Antennenelement 2 auf, das an einem Ende einen ersten Einspeiseanschluss 3 und an dessen anderen Ende einen zweiten Einspeiseanschluss 4 aufweist. Ferner weist die Antennenanordnung 1 eine Signalerzeugungseinheit 5 auf, die mit dem ersten Einspeiseanschluss 3 direkt gekoppelt ist. Die Signalerzeugungseinheit 5 ist mit dem zweiten Einspeiseanschluss 4 indirekt über eine Signalanpassungseinheit 6 gekoppelt, welche dazu ausgebildet ist, die Amplitude und/oder die Phase des entsprechenden Einspeisesignals entsprechend einer vorgegebenen Abstrahlcharakteristik anzupassen.The antenna arrangement 1 has an antenna element 2 which has a first feed connection 3 at one end and a second feed connection 4 at its other end. Furthermore, the antenna arrangement 1 has a signal generation unit 5, which is directly coupled to the first feed connection 3. The signal generation unit 5 is coupled to the second feed connection 4 indirectly via a signal adaptation unit 6, which is designed to adapt the amplitude and / or the phase of the corresponding feed signal in accordance with a predetermined emission characteristic.

In Fig. 2 ist also ein dual gespeistes Antennenelement 2, welches von beiden Seiten gleichzeitig gespeist wird. Dies kann z.B. eine Linear-Array-Antenne sein. Weitere beispielhafte Ausführungsformen der Antennenanordnung 1 werden in den Figuren 4 bis 6 gezeigt.In Fig. 2 So is a dual-powered antenna element 2, which is fed from both sides simultaneously. This can be, for example, a linear array antenna. Further exemplary embodiments of the antenna arrangement 1 are described in FIGS FIGS. 4 to 6 shown.

Fig. 3 zeigt ein Ablaufdiagramm einer beispielhaften Ausführungsform eines erfindungsgemäßen Verfahrens. Fig. 3 shows a flowchart of an exemplary embodiment of a method according to the invention.

In einem ersten Schritt S1 des erfindungsgemäßen Verfahrens wird ein Einspeisesignal erzeugt. Ferner wird in einem zweiten Schritt S2 das Einspeisesignal an einem ersten Einspeiseanschluss 3 eines Antennenelements 2 der Antennenanordnung 1 und an einem zweiten Einspeiseanschluss 4 des Antennenelements 2 der Antennenanordnung 1 eingespeist. Dabei wird aber an mindestens einem der Einspeiseanschlüsse 3, 4 ein angepasstes Einspeisesignal eingespeist. Dieses angepasste Einspeisesignal wird in einem dritten Schritt S3 angepasst, indem die Amplitude und/oder die Phase des Einspeisesignals entsprechend einer vorgegebenen Abstrahlcharakteristik angepasst werden.In a first step S1 of the method according to the invention, an infeed signal is generated. Furthermore, in a second step S2, the feed-in signal is fed to a first feed connection 3 of an antenna element 2 of the antenna arrangement 1 and to a second feed connection 4 of the antenna element 2 of the antenna arrangement 1. In this case, however, an adapted feed signal is fed to at least one of the feed terminals 3, 4. This adapted feed-in signal is adapted in a third step S3 by adjusting the amplitude and / or the phase of the feed-in signal in accordance with a predetermined emission characteristic.

Fig. 4 zeigt ein Blockschaltbild einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung 1. Fig. 4 shows a block diagram of another exemplary embodiment of an antenna arrangement 1 according to the invention.

Die Antennenanordnung 1 in Fig. 4 entspricht weitgehend der Antennenanordnung 1 aus Fig. 2. Die Antennenanordnung 1 aus Fig. 4 unterscheidet sich von der Antennenanordnung 1 aus Fig. 2 lediglich dahingehend, dass das Antennenelement 2 als Hohlleiter-Antennenelement 2-1 mit nur einer Antennenspalte ausgebildet ist, und dass die Signalanpassungseinheit 6 einen einstellbaren Phasenschieber 7 und einen einstellbaren Verstärker 8 aufweist.The antenna arrangement 1 in Fig. 4 largely corresponds to the antenna arrangement 1 Fig. 2 , The antenna arrangement 1 from Fig. 4 differs from the antenna arrangement 1 Fig. 2 merely in that the antenna element 2 is designed as a waveguide antenna element 2-1 with only one antenna column, and that the signal adaptation unit 6 has an adjustable phase shifter 7 and an adjustable amplifier 8.

Fig. 5 zeigt ein Blockschaltbild einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung 1. Fig. 5 shows a block diagram of another exemplary embodiment of an antenna arrangement 1 according to the invention.

Die Antennenanordnung 1 in Fig. 5 entspricht weitgehend der Antennenanordnung 1 aus Fig. 4. Die Antennenanordnung 1 aus Fig. 5 unterscheidet sich von der Antennenanordnung 1 aus Fig. 4 lediglich dahingehend, dass das Antennenelement 2 als Patch-Array-Antenne 2-2 mit nur einer Antennenspalte ausgebildet ist.The antenna arrangement 1 in Fig. 5 largely corresponds to the antenna arrangement 1 Fig. 4 , The antenna arrangement 1 from Fig. 5 differs from the antenna arrangement 1 Fig. 4 merely in that the antenna element 2 is designed as a patch array antenna 2-2 with only one antenna gap.

Fig. 6 zeigt ein Blockschaltbild einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung 1. Fig. 6 shows a block diagram of another exemplary embodiment of an antenna arrangement 1 according to the invention.

Die Antennenanordnung 1 in Fig. 6 entspricht weitgehend der Antennenanordnung 1 aus Fig. 4. Die Antennenanordnung 1 aus Fig. 6 unterscheidet sich von der Antennenanordnung 1 aus Fig. 4 lediglich dahingehend, dass das Antennenelement 2 als Patch-Array-Antenne 2-3 mit vier Antennenspalten 11-1, 11-2, 11-3, 11-4 ausgebildet ist.The antenna arrangement 1 in Fig. 6 largely corresponds to the antenna arrangement 1 Fig. 4 , The antenna arrangement 1 from Fig. 6 differs from the antenna arrangement 1 Fig. 4 merely in that the antenna element 2 is designed as a patch array antenna 2-3 with four antenna columns 11-1, 11-2, 11-3, 11-4.

Fig. 7 zeigt ein Antennendiagramm einer beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung 1. Fig. 7 shows an antenna diagram of an exemplary embodiment of an antenna arrangement 1 according to the invention.

Dabei zeigt das Antennendiagramm der Fig. 7 das Antennendiagramm eines erfindungsgemäßen dual gespeisten Antennenelements 2, 2-1, 2-2, 2-3 bei einer destruktiven Überlagerung.The antenna diagram of the Fig. 7 the antenna diagram of a dual-powered antenna element 2, 2-1, 2-2, 2-3 according to the invention in a destructive superposition.

In dem Antennendiagramm der Fig. 7 ist auf der Abszissenachse der Abstrahlwinkel Theta von -100° bis +100° eingezeichnet. Ferner ist auf der Ordinatenachse der Antennengewinn in dBi von -40dBi bis +15dBi eingezeichnet.In the antenna diagram of the Fig. 7 is drawn on the abscissa axis of the beam angle theta from -100 ° to + 100 °. Furthermore, the antenna gain in dBi from -40dBi to + 15dBi is plotted on the ordinate axis.

In dem Antennendiagramm der Fig. 7 ist eine Kurve eingezeichnet, welche halbsinus-förmige Wellen zeigend zwischen -90° und +90° verläuft und den Antennengewinn darstellt. Die destruktive Interferenz der zwei Signale wird bei einem Winkel von 0° besonders deutlich. Hier fällt dieKurve auf ca. -38dBi ab.In the antenna diagram of the Fig. 7 a curve is drawn, which shows half-sinusoidal waves between -90 ° and + 90 ° and represents the antenna gain. The destructive interference of the two signals becomes particularly clear at an angle of 0 °. Here the curve drops to about -38dBi.

Fig. 8 zeigt ein weiteres Antennendiagramm einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung. Fig. 8 shows a further antenna diagram of another exemplary embodiment of an antenna arrangement according to the invention.

Dabei zeigt das Antennendiagramm der Fig. 8 im Gegensatz zu der Fig. 7 das Antennendiagramm eines erfindungsgemäßen dual gespeisten Antennenelements 2, 2-1, 2-2, 2-3 bei einer konstruktiven Überlagerung.The antenna diagram of the Fig. 8 in contrast to the Fig. 7 the antenna diagram of a dual-powered antenna element 2, 2-1, 2-2, 2-3 according to the invention in a constructive overlay.

In dem Antennendiagramm der Fig. 8 ist ebenso, wie in Fig. 7 auf der Abszissenachse der Abstrahlwinkel Theta von -100° bis +100° eingezeichnet. Ferner ist auf der Ordinatenachse der Antennengewinn in dBi von -40 bis +20 eingezeichnet.In the antenna diagram of the Fig. 8 is as well as in Fig. 7 drawn on the abscissa axis of the beam angle theta from -100 ° to + 100 °. Furthermore, the antenna gain in dBi from -40 to +20 is plotted on the ordinate axis.

In dem Antennendiagramm der Fig. 8 ist ebenfalls eine Kurve zu sehen, welche jeweils halbsinus-förmige Wellen zeigend zwischen -90° und +90° verläuft und den Antennengewinn darstellt. Die konstruktive Interferenz der zwei Signale wird bei einem Winkel von 0° besonders deutlich. Hier zeigt die Kurve ein Maximum von ca. 17dBi.In the antenna diagram of the Fig. 8 is also a curve to see, each half-sinusoidal waves pointing between -90 ° and + 90 ° and represents the antenna gain. The constructive interference of the two signals becomes particularly clear at an angle of 0 °. Here the curve shows a maximum of about 17dBi.

Fig. 9 zeigt ein weiteres Antennendiagramm einer weiteren beispielhaften Ausführungsform einer erfindungsgemäßen Antennenanordnung. Fig. 9 shows a further antenna diagram of another exemplary embodiment of an antenna arrangement according to the invention.

Das Antennendiagramm der Fig. 9 entspricht dem Antennendiagramm eines Antennenelements gemäß Fig. 5.The antenna diagram of the Fig. 9 corresponds to the antenna diagram of an antenna element according to Fig. 5 ,

In dem Antennendiagramm der Fig. 9 ist auf der Abszissenachse der Abstrahlwinkel von - 90° bis +90° eingezeichnet. Ferner ist auf der Ordinatenachse der Antennengewinn in dBi von -30dBi bis +15dBi eingezeichnet.In the antenna diagram of the Fig. 9 is drawn on the abscissa axis of the beam angle of - 90 ° to + 90 °. Furthermore, the antenna gain in dBi from -30dBi to + 15dBi is plotted on the ordinate axis.

Schließlich sind in dem Antennendiagramm der Fig. 9 acht unterschiedliche Signalkurven S1 bis S8 dargestellt, die jede für sich das Antennendiagramm des Antennenelements 2 gemäß Fig. 5 bei unterschiedlichen Amplituden und Phasenwinkeln der Einspeisesignale darstellen.Finally, in the antenna diagram of Fig. 9 eight different signal curves S1 to S8 are shown, each of which is the antenna pattern of the antenna element 2 according to FIG Fig. 5 represent at different amplitudes and phase angles of the feed signals.

Dabei weist das erste Einspeisesignal für die erste Signalkurve S1 eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf. Das zweite Einspeisesignal für die erste Signalkurve S1 weist eine Amplitude von 0.2Volt und einen Phasenwinkel von 0° auf.In this case, the first feed signal for the first signal curve S1 has an amplitude of 1 volt and a phase angle of 0 °. The second feed signal for the first signal curve S1 has an amplitude of 0.2 volts and a phase angle of 0 °.

Ferner weist das erste Einspeisesignal für die zweite Signalkurve S2 eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf. Das zweite Einspeisesignal für die zweite Signalkurve S2 weist eine Amplitude von 0Volt und einen Phasenwinkel von 0° auf.Furthermore, the first feed signal for the second signal curve S2 has an amplitude of 1 volt and a phase angle of 0 °. The second feed signal for the second signal curve S2 has an amplitude of 0 volts and a phase angle of 0 °.

Ferner weist das erste Einspeisesignal für die dritte Signalkurve S3 eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf. Das zweite Einspeisesignal für die dritte Signalkurve S3 weist eine Amplitude von 0.4Volt und einen Phasenwinkel von 150° auf.Furthermore, the first feed signal for the third signal curve S3 has an amplitude of 1 volt and a phase angle of 0 °. The second feed signal for the third signal curve S3 has an amplitude of 0.4 volts and a phase angle of 150 °.

Ferner weist das erste Einspeisesignal für die vierte Signalkurve S4 eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf. Das zweite Einspeisesignal für die vierte Signalkurve S4 weist eine Amplitude von 0.6Volt und einen Phasenwinkel von 180° auf.Furthermore, the first feed signal for the fourth signal curve S4 has an amplitude of 1 volt and a phase angle of 0 °. The second feed signal for the fourth signal curve S4 has an amplitude of 0.6 volts and a phase angle of 180 °.

Ferner weist das erste Einspeisesignal für die fünfte Signalkurve S5 eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf. Das zweite Einspeisesignal für die fünfte Signalkurve S5 weist eine Amplitude von 1Volt und einen Phasenwinkel von 180° auf.Furthermore, the first feed signal for the fifth signal curve S5 has an amplitude of 1 volt and a phase angle of 0 °. The second feed signal for the fifth signal curve S5 has an amplitude of 1 volt and a phase angle of 180 °.

Ferner weist das erste Einspeisesignal für die sechste Signalkurve S6 eine Amplitude von 0.6Volt und einen Phasenwinkel von 180° auf. Das zweite Einspeisesignal für die sechste Signalkurve S6 weist eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf.Furthermore, the first feed signal for the sixth signal curve S6 has an amplitude of 0.6 volts and a phase angle of 180 °. The second feed signal for the sixth signal curve S6 has an amplitude of 1 volt and a phase angle of 0 °.

Ferner weist das erste Einspeisesignal für die siebte Signalkurve S7 eine Amplitude von 0.4Volt und einen Phasenwinkel von 150° auf. Das zweite Einspeisesignal für die siebte Signalkurve S7 weist eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf.Furthermore, the first feed signal for the seventh signal curve S7 has an amplitude of 0.4 volts and a phase angle of 150 °. The second feed signal for the seventh signal curve S7 has an amplitude of 1 volt and a phase angle of 0 °.

Schließlich weist das erste Einspeisesignal für die achte Signalkurve S8 eine Amplitude von 0Volt und einen Phasenwinkel von 0° auf. Das zweite Einspeisesignal für die achte Signalkurve S8 weist eine Amplitude von 1Volt und einen Phasenwinkel von 0° auf.Finally, the first feed signal for the eighth signal curve S8 has an amplitude of 0 volts and a phase angle of 0 °. The second feed signal for the eighth signal curve S8 has an amplitude of 1 volt and a phase angle of 0 °.

Alle Kurven steigen in etwa von -90° bis ca. -30° von -30dBi bis ca. -12dBi an. Ebenso fallen alle Kurven von ca. +30° bis 90° von ca. -12dBi bis -30dBi ab.All curves increase in about -90 ° to about -30 ° from -30dBi to about -12dBi. Similarly, all curves fall from about + 30 ° to 90 ° from about -12dBi to -30dBi.

Bei allen Kurven ist deutlich zu erkennen, dass das jeweilige Maximum der entsprechenden Kurven gegenüber dem Winkel von 0° verschoben ist. Das Maximum der ersten Kurve S1 liegt bei ca. -10°. Das Maximum der zweiten Kurve S2 liegt bei ca. -8°. Das Maximum der dritten Kurve S3 liegt bei ca. -6°. Das Maximum der vierten Kurve S4 liegt bei ca. -3°. Das Maximum der fünften Kurve S5 liegt bei ca. +3°. Das Maximum der sechsten Kurve S6 liegt bei ca. +6°. Das Maximum der siebten Kurve S7 liegt bei ca. +8°. Das Maximum der achten Kurve S8 liegt bei ca. 10°.In all curves it can be clearly seen that the respective maximum of the corresponding curves is shifted with respect to the angle of 0 °. The maximum of the first curve S1 is about -10 °. The maximum of the second curve S2 is about -8 °. The maximum of the third curve S3 is about -6 °. The maximum of the fourth curve S4 is about -3 °. The maximum of the fifth curve S5 is about + 3 °. The maximum of the sixth curve S6 is approximately + 6 °. The maximum of the seventh curve S7 is approximately + 8 °. The maximum of the eighth curve S8 is about 10 °.

In Fig. 9 wird deutlich, dass eine Anpassung der Phasen- und Amplitudenunterschiede zwischen den zwei Einspeisesignalen genutzt werden kann, um das Antennendiagramm einer Array-Antenne anzupassen. Dabei ergibt sich das Antennendiagramm aus folgendem analytischen Modell: Total Radiation = EF 1 × AF 1 + EF 2 + AF 2

Figure imgb0001
EF 1 = EF 2 = " F
Figure imgb0002
AF 1 = i = 1 M a i exp j 2 π d sin θ i λ 0
Figure imgb0003
AF 2 = i = 1 M a l exp j 2 π d sin θ i λ 0
Figure imgb0004

  • Dabei steht EF1 für den Element Factor, wenn das Antennenelement über den ersten Einspeiseanschluss 3 gespeist wird.
  • Ferner steht AF1 für den Array Factor, wenn das Antennenelement über den ersten Einspeiseanschluss 3 gespeist wird.
  • Ferner steht EF2 für den Element Factor, wenn das Antennenelement über den zweiten Einspeiseanschluss 4 gespeist wird.
  • Ferner steht AF2 für den Array Factor, wenn das Antennenelement über den zweiten Einspeiseanschluss 4 gespeist wird.
  • Ferner steht θ für die Beamrichtung der Hauptabstrahlung, an für die Anregung jedes einzelnen Sendeelements 10 des Array-Antennenelements 2, d für den Abstand zwischen zwei Sendeelementen 10 und M für die Anzahl der Sendeelemente 10 in dem Array-Antennenelement 2.
In Fig. 9 It can be seen that an adjustment of the phase and amplitude differences between the two feed-in signals can be used to match the antenna pattern of an array antenna. The antenna diagram results from the following analytical model: Total Radiation = EF 1 × AF 1 + EF 2 + AF 2
Figure imgb0001
EF 1 = EF 2 = " F
Figure imgb0002
AF 1 = Σ i = 1 M a i exp - j 2 π d sin θ i λ 0
Figure imgb0003
AF 2 = Σ i = 1 M a l exp j 2 π d sin θ i λ 0
Figure imgb0004
  • In this case, EF1 stands for the element Factor when the antenna element is fed via the first feed connection 3.
  • Further, AF1 stands for the array factor when the antenna element is fed via the first feed terminal 3.
  • Further, EF2 stands for the element Factor when the antenna element is fed via the second feed terminal 4.
  • Further, AF2 stands for the array factor when the antenna element is fed via the second feed terminal 4.
  • Furthermore, θ stands for the beam direction of the main radiation, a n for the excitation of each individual transmission element 10 of the array antenna element 2, d for the distance between two transmission elements 10 and M for the number of transmission elements 10 in the array antenna element 2.

Fig. 10 zeigt die Konfiguration einer beispielhaften Ausführungsform eines erfindungsgemäßen Antennenelements 2 zur weiteren Veranschaulichung des zu Fig. 9 dargestellten analytischen Modells. Fig. 10 shows the configuration of an exemplary embodiment of an antenna element 2 according to the invention for further illustrating the Fig. 9 presented analytical model.

Das Antennenelement 2 in Fig. 10 weist zehn in einer Reihe angeordnete Sendeelemente 10 auf, welche elektrisch leitend miteinander verbunden sind. Aus Gründen der Übersichtlichkeit ist lediglich eines der Sendeelemente 10 mit einem Bezugszeichen versehen. Ferner weist das Antennenelement 2 in Fig. 10 einen ersten Einspeiseanschluss 3 am rechten Ende des Antennenelements 2 und einen zweiten Einspeiseanschluss 4 am linken Ende des Antennenelements 2 auf. In Fig. 10 ist ferner der Abstand d eingezeichnet, welcher den Abstand zwischen zwei den Mittelpunkten zweier Sendeelemente 10 kennzeichnet.The antenna element 2 in Fig. 10 has ten arranged in a row transmitting elements 10, which are electrically connected to each other. For reasons of clarity, only one of the transmitting elements 10 is provided with a reference numeral. Furthermore, the antenna element 2 in Fig. 10 a first feed terminal 3 at the right end of the antenna element 2 and a second feed terminal 4 at the left end of the antenna element 2. In Fig. 10 Furthermore, the distance d is drawn in, which marks the distance between two the centers of two transmitting elements 10.

Ferner ist in der Mitte des Antennenelements 2 der Winkel θ eingezeichnet, welcher die Richtung der Hauptabstrahlung des Antennenelements 2 kennzeichnet. Schließlich ist in Fig. 10 ein Koordinatenkreuz eingezeichnet, wobei die Abszissenachse des Koordinatenkreuzes parallel zu der Reihe von Sendeelementen 10 angeordnet ist. Die E-Ebene bezeichnet die Schnittebene des Antennendiagrammes in Richtung der elektrischen Feldkomponenten (hier horizontal), die H-Ebene die Schnittebene des Antennendiagrammes orthogonal dazu (hier vertikal).Further, in the center of the antenna element 2, the angle θ is marked, which indicates the direction of the main radiation of the antenna element 2. Finally, in Fig. 10 a coordinate cross is drawn, wherein the abscissa axis of the coordinate system is arranged parallel to the row of transmitting elements 10. The E plane denotes the sectional plane of the antenna diagram in the direction of the electric field components (here horizontal), the H plane the sectional plane of the antenna diagram orthogonal thereto (here vertical).

Die Figuren 11 bis 13 zeigen zur Veranschaulichung der vorliegenden Erfindung jeweils ein Antennenelement 2. Dabei weisen die Antennenelemente 2 in den Figuren 11 bis 13 jeweils fünf Sendeelemente 10, einen ersten Einspeiseanschluss 3 sowie einen zweiten Einspeiseanschluss 4 auf.The FIGS. 11 to 13 To illustrate the present invention, in each case an antenna element 2. In this case, the antenna elements 2 in the FIGS. 11 to 13 in each case five transmitting elements 10, a first feed connection 3 and a second feed connection 4.

In Fig. 11 entspricht der Abstand D zwischen den einzelnen Sendeelementen 10 der halben Wellenlänge des eingespeisten Signals. Daraus ergibt sich, dass die Hauptabstrahlung der Antenne in zu der Reihe aus Sendeelementen 10 senkrechter Richtung erfolgt. Dies ist durch einen auf der Reihe aus Sendeelementen 10 senkrecht stehenden Pfeil dargestellt.In Fig. 11 corresponds to the distance D between the individual transmitting elements 10 of half the wavelength of the injected signal. It follows that the main emission of the antenna takes place in the direction perpendicular to the row of transmitting elements 10. This is represented by an arrow perpendicular to the row of transmitting elements 10.

In Fig. 12 ist der Abstand D zwischen den einzelnen Sendeelementen 10 größer als die halbe Wellenlänge des an dem ersten und dem zweiten Einspeiseanschluss 3, 4 eingespeisten Signals. Daraus ergibt sich, dass die zwei Signale nicht senkrecht, sondern in einem Winkel gegenüber der Senkrechten Abstrahlung ausgestrahlt werden. Dabei wird durch das Signal, welches an dem ersten (rechten) Einspeiseanschluss 3 eingespeist wird, eine Ausstrahlung hervorgerufen, welche gegenüber der Senkrecht auf der Reihe von Sendeelementen 10 stehenden Abstrahlung einen negativen Winkel, also einen gegen den Uhrzeigersinn verschobenen Winkel, aufweist. Ebenso wird durch das Signal, welches an dem zweiten (linken) Einspeiseanschluss 4 eingespeist wird, eine Ausstrahlung hervorgerufen, welche gegenüber der Senkrecht auf der Reihe von Sendeelementen 10 stehenden Abstrahlung einen positiven Winkel, also einen im Uhrzeigersinn verschobenen Winkel, aufweist.In Fig. 12 the distance D between the individual transmission elements 10 is greater than half the wavelength of the signal fed in at the first and the second supply connection 3, 4. It follows that the two signals are emitted not perpendicular, but at an angle to the vertical radiation. It will caused by the signal which is fed to the first (right) feed terminal 3, a radiation having a negative angle to the radiation perpendicular to the row of transmitting elements 10, ie an angle shifted counterclockwise. Likewise, a radiation is caused by the signal which is fed to the second (left) feed terminal 4, which has a positive angle with respect to the radiation perpendicular to the row of transmitting elements 10, ie an angle shifted clockwise.

In Fig. 13 wird schließlich ein Antennenelement 2 gezeigt, bei dem der Abstand D zwischen den einzelnen Sendeelementen 10 kleiner als die halbe Wellenlänge des an dem ersten und dem zweiten Einspeiseanschluss 3, 4 eingespeisten Signals ist. In Fig. 13 ist ein der Fig. 12 entgegengesetzter Effekt zu beobachten, bei welchem durch das Signal, welches an dem ersten (rechten) Einspeiseanschluss 3 eingespeist wird, eine Ausstrahlung hervorgerufen wird, welche gegenüber der Senkrecht auf der Reihe von Sendeelementen 10 stehenden Abstrahlung einen positiven Winkel, also einen im Uhrzeigersinn verschobenen Winkel, aufweist. Ebenso wird durch das Signal, welches an dem zweiten (linken) Einspeiseanschluss 4 eingespeist wird, eine Ausstrahlung hervorgerufen, welche gegenüber der Senkrecht auf der Reihe von Sendeelementen 10 stehenden Abstrahlung einen negativen Winkel, also einen gegen den Uhrzeigersinn verschobenen Winkel, aufweist.In Fig. 13 Finally, an antenna element 2 is shown in which the distance D between the individual transmitting elements 10 is less than half the wavelength of the signal fed in at the first and the second feed connection 3, 4. In Fig. 13 is one of the Fig. 12 To observe the opposite effect, in which by the signal which is fed to the first (right) feed terminal 3, a radiation is caused, which compared to the perpendicular to the series of transmitting elements 10 radiation standing a positive angle, ie a clockwise shifted angle , having. Likewise, a radiation is caused by the signal which is fed to the second (left) feed terminal 4, which has a negative angle with respect to the perpendicular to the series of transmitting elements 10 radiation, ie, a counterclockwise shifted angle.

Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele vorstehend beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Art und Weise modifizierbar. Insbesondere lässt sich die Erfindung in mannigfaltiger Weise verändern oder modifizieren, ohne vom Kern der Erfindung abzuweichen.Although the present invention has been described above with reference to preferred embodiments, it is not limited thereto, but modifiable in a variety of ways. In particular, the invention can be varied or modified in many ways without deviating from the gist of the invention.

Claims (10)

  1. Antenna arrangement (1), in particular a travelling wave antenna arrangement (1), having an adjustable radiation characteristic, having:
    an antenna element (2) that has a first feed connection (3) at a first end of the antenna element (2) and a second feed connection (4) at another end of the antenna element (2);
    a signal generation unit (5) that is designed to generate a feed signal and that is designed to provide the feed signal at the first feed connection (3) of the antenna element (2) and at the second feed connection (4) of the antenna element (2);
    at least one signal adaptation unit (6) that is electrically arranged between the signal generation unit (5) and one of the feed connections (3, 4) and that is designed to adapt the amplitude and/or the phase of the applicable feed signal according to a prescribed radiation charactistic,
    characterized in that
    the antenna element (2) comprises a plurality of transmission elements (10) arranged in a row and electrically connected in series, wherein the first end of the antenna element is at the first transmission element in the row and the other end is at the last transmission element in the row.
  2. Antenna arrangement according to Claim 1,
    characterized in that
    the antenna element (2) has an array antenna (2-1, 2-2, 2-3) that has one of the feed connections (3, 4) at each end.
  3. Antenna arrangement according to Claim 2,
    characterized in that
    the array antenna (2-1, 2-2, 2-3) has a waveguide antenna (2-1); and/or
    in that the array antenna (2-1, 2-2, 2-3) has a microstrip antenna (2-2).
  4. Antenna arrangement according to one of the preceding Claims 1 to 3,
    characterized in that
    a distance (D) between adjacent individual transmission elements (10) corresponds to half a wavelength of the feed signal.
  5. Antenna arrangement according to one of the preceding Claims 1 to 3,
    characterized in that
    a distance (D) between adjacent individual transmission elements (10) is greater or less than half a wavelength of the feed signal.
  6. Antenna arrangement according to one of the preceding Claims 1 to 5,
    characterized in that
    the signal adaptation unit (6) has an adjustable phase shifter (7).
  7. Antenna arrangement according to one of the preceding Claims 1 to 6,
    characterized in that
    the signal adaptation unit (6) has an adjustable amplifier (8).
  8. Method for operating an antenna arrangement (1) according to one of the preceding claims, having the steps of:
    generating (S1) a feed signal;
    feeding in (S2) the feed signal at the first feed connection of the antenna element (2) of the antenna arrangement (1) and at the second feed connection (4) of the antenna element (2) of the antenna arrangement (1);
    wherein the feed signal is fed in at the antenna element (2) having the plurality of transmission elements (10) arranged in a row and electrically connected in series;
    wherein an adapted feed signal is fed in at at least one of the feed connections (3, 4); and
    wherein the adapting (S3) of the feed signal results in the amplitude and/or the phase of the feed signal being adapted according to a prescribed radiation characteristic.
  9. Method according to Claim 8,
    characterized in that
    the feed signal is generated at a frequency adapted to suit the antenna element (2) such that a distance (D) between adjacent individual transmission elements (10) corresponds to half a wavelength of the feed signal.
  10. Method according to Claim 8,
    characterized in that
    the feed signal is generated at a frequency adapted to suit the antenna element (2) such that a distance (D) between adjacent individual transmission elements (10) is greater or less than half a wavelength of the feed signal.
EP13718328.1A 2012-06-19 2013-04-24 Antenna arrangement and method Active EP2862235B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012210314A DE102012210314A1 (en) 2012-06-19 2012-06-19 Antenna arrangement and method
PCT/EP2013/058436 WO2013189634A1 (en) 2012-06-19 2013-04-24 Antenna arrangement and method

Publications (2)

Publication Number Publication Date
EP2862235A1 EP2862235A1 (en) 2015-04-22
EP2862235B1 true EP2862235B1 (en) 2019-04-17

Family

ID=48182906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13718328.1A Active EP2862235B1 (en) 2012-06-19 2013-04-24 Antenna arrangement and method

Country Status (5)

Country Link
US (1) US9912054B2 (en)
EP (1) EP2862235B1 (en)
CN (1) CN104604027B (en)
DE (1) DE102012210314A1 (en)
WO (1) WO2013189634A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014212494A1 (en) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Antenna device with adjustable radiation characteristic and method for operating an antenna device
CN104868233B (en) * 2015-05-27 2018-02-13 电子科技大学 A kind of microband travelling wave antenna array of left-right-hand circular polarization restructural
WO2017000106A1 (en) 2015-06-29 2017-01-05 华为技术有限公司 Phase-controlled array system and beam scanning method
WO2017196122A1 (en) 2016-05-13 2017-11-16 삼성전자 주식회사 Wireless power transmission device and control method therefor
KR102630934B1 (en) 2016-05-13 2024-01-30 삼성전자주식회사 Wireless power transmitter and method for controlling thereof
US10439297B2 (en) * 2016-06-16 2019-10-08 Sony Corporation Planar antenna array
US10892550B2 (en) 2016-06-16 2021-01-12 Sony Corporation Cross-shaped antenna array
US10256922B2 (en) * 2017-08-04 2019-04-09 Rohde & Schwarz Gmbh & Co. Kg Calibration method and system
US10811782B2 (en) * 2018-04-27 2020-10-20 Hrl Laboratories, Llc Holographic antenna arrays with phase-matched feeds and holographic phase correction for holographic antenna arrays without phase-matched feeds
CN112768914B (en) * 2020-12-29 2022-03-22 中山大学 3X 4 broadband wave beam fixed array antenna

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364052A (en) * 1980-10-29 1982-12-14 Bell Telephone Laboratories, Incorporated Antenna arrangements for suppressing selected sidelobes
US4605931A (en) 1984-09-14 1986-08-12 The Singer Company Crossover traveling wave feed for microstrip antenna array
GB9512620D0 (en) * 1995-06-21 1995-08-23 Philips Electronics Nv Receiver
WO1997033342A1 (en) 1996-03-08 1997-09-12 Nippon Steel Corporation Planar array antenna
KR100285779B1 (en) * 1997-12-10 2001-04-16 윤종용 Base station antennas for mobile communications
JP3296482B2 (en) 1998-08-13 2002-07-02 富士写真フイルム株式会社 Thermal development device
US6320542B1 (en) * 1998-09-22 2001-11-20 Matsushita Electric Industrial Co., Ltd. Patch antenna apparatus with improved projection area
US6043779A (en) * 1999-03-11 2000-03-28 Ball Aerospace & Technologies Corp. Antenna apparatus with feed elements used to form multiple beams
JP3917112B2 (en) 2003-06-26 2007-05-23 日本電信電話株式会社 Multi-beam antenna
BRPI0520358A2 (en) * 2005-07-04 2009-06-13 Ericsson Telefon Ab L M repeater antenna for use in point to point applications in telecommunication systems
US7352325B1 (en) * 2007-01-02 2008-04-01 International Business Machines Corporation Phase shifting and combining architecture for phased arrays
GB2463884B (en) * 2008-09-26 2014-01-29 Kathrein Werke Kg Antenna array with differently power rated amplifiers
US9118113B2 (en) * 2010-05-21 2015-08-25 The Regents Of The University Of Michigan Phased antenna arrays using a single phase shifter
DE102010040793A1 (en) 2010-09-15 2012-03-15 Robert Bosch Gmbh Group antenna for radar sensors
DE102010041438A1 (en) 2010-09-27 2012-03-29 Robert Bosch Gmbh Antenna system for radar sensors
DE102014212494A1 (en) * 2014-06-27 2015-12-31 Robert Bosch Gmbh Antenna device with adjustable radiation characteristic and method for operating an antenna device

Also Published As

Publication number Publication date
DE102012210314A1 (en) 2013-12-19
EP2862235A1 (en) 2015-04-22
US9912054B2 (en) 2018-03-06
WO2013189634A1 (en) 2013-12-27
CN104604027B (en) 2018-09-25
US20150325926A1 (en) 2015-11-12
CN104604027A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
EP2862235B1 (en) Antenna arrangement and method
EP2676327B1 (en) Array antenna
EP1782502B1 (en) Antenna structure with patch elements
DE19714570B4 (en) Multibeam radar system
EP2965382B1 (en) Antenna arrangement with variable direction characteristic
DE2657888C2 (en) ANTENNA ARRANGEMENT
DE112019006800T5 (en) Antenna device and radar device
EP3465817B1 (en) Antenna device for a radar detector having at least two radiation directions, and motor vehicle having at least one radar detector
DE112018002210T5 (en) Radar antenna array for three-dimensional imaging
DE10237823A1 (en) Calibration device for an antenna array and associated antenna array and method for its operation
DE3149200A1 (en) CIRCULAR POLARIZED MICROSTRIP LADDER ANTENNA
EP1530816B9 (en) Calibration device for a switchable antenna array and corresponding operating method
DE112018007422B4 (en) WAVEGUIDE SLOT GROUP ANTENNA
DE2244724A1 (en) CONTROL DEVICE FOR AN ANTENNA LINE FOR GENERATING ELECTRONICALLY SWIVELING RADIATION DIAGRAMS
EP2195679A1 (en) Real-time delay system with group antenna for spatially alterable irradiation characteristic for ultra broadband pulses of very high power
DE60302041T2 (en) PHASENARRAY ANTENNA WITH ARCHIMEDIC SPIRAL ELEMENT ARRAY AND ASSOCIATED METHODS
DE102010041438A1 (en) Antenna system for radar sensors
EP3161903B1 (en) Antenna with adjustable beam pattern and method of operation thereof
EP1610148B1 (en) Radar sensor
EP1476921B1 (en) Device for emitting and receiving electromagnetic radiation
WO2016045830A1 (en) Antenna for short-range radar
DE102012224062B4 (en) Stripline antenna, array antenna and radar device
EP0935825B1 (en) Radar sensor for a vehicle
WO2006103128A1 (en) Antenna array with high-density integration
DE102017201321A1 (en) Zig zag antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013012652

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0013200000

Ipc: H01Q0021000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 1/38 20060101ALN20181217BHEP

Ipc: H01Q 3/26 20060101ALI20181217BHEP

Ipc: H01Q 21/00 20060101AFI20181217BHEP

Ipc: H01Q 21/06 20060101ALI20181217BHEP

Ipc: H01Q 3/36 20060101ALN20181217BHEP

Ipc: H01Q 13/20 20060101ALN20181217BHEP

Ipc: H01Q 3/28 20060101ALN20181217BHEP

Ipc: H01Q 21/08 20060101ALN20181217BHEP

INTG Intention to grant announced

Effective date: 20190109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012652

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1122590

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190424

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012652

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200421

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1122590

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200423

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130424

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 12