EP2860819B1 - Planar array antenna structure - Google Patents

Planar array antenna structure Download PDF

Info

Publication number
EP2860819B1
EP2860819B1 EP13188252.4A EP13188252A EP2860819B1 EP 2860819 B1 EP2860819 B1 EP 2860819B1 EP 13188252 A EP13188252 A EP 13188252A EP 2860819 B1 EP2860819 B1 EP 2860819B1
Authority
EP
European Patent Office
Prior art keywords
array antenna
planar array
antenna structure
ground portion
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13188252.4A
Other languages
German (de)
French (fr)
Other versions
EP2860819A1 (en
Inventor
Wen-Hsien Hsu
Wen-Hsiu Hsu
Chung-Hsuan Wen
Shang-Chun Chao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tecom Co Ltd
Original Assignee
Tecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecom Co Ltd filed Critical Tecom Co Ltd
Priority to EP13188252.4A priority Critical patent/EP2860819B1/en
Publication of EP2860819A1 publication Critical patent/EP2860819A1/en
Application granted granted Critical
Publication of EP2860819B1 publication Critical patent/EP2860819B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array

Definitions

  • the present disclosure relates generally to an antenna, and more particularly to a planar array antenna structure is operated at 5 to 6 GHz.
  • MIMO multi-input and multi-output, or MIMO is the use of multiple antennas at both the transmitter and receiver to improve communication performance. That is, spatial multiplexing and multiple antennas are adopted to transmit and receive multiple data streams through the same frequency channel.
  • the MIMO is applied to the wireless LAN (WLAN) system to increase data rate of IEEE 802.11a or 802.11G by using two transmitting antennas.
  • WLAN wireless LAN
  • TW patent No. M441940 discloses an array structure to provide multiple antenna radiators with same shape by the sheet metal stamping technology. Further, at least three antenna radiators are arranged to stand on a surface of a substrate in a symmetrical and polygonal arrangement, thus increasing antenna directivity, directive gain, and improving communication quality.
  • the three-dimensional shaped array antenna structure can obtain the above-mentioned advantages, the occupied space should not be underestimated when the three-dimensional shaped array antenna structure is installed inside a communication device. Further, it is inconvenient to operate the communication device because of a reserved installation space inside the communication device.
  • the array antenna structure is manufactured by sheet metal stamping multiple antenna radiators and then the antenna radiators are stood on the substrate, thus increasing manufacturing costs and time.
  • An object of the present disclosure is to provide a planar array antenna structure to solve the above-mentioned problems according to claim 1. Accordingly, a plurality of antenna units are disposed on the substrate in a symmetrical and polygonal arrangement so as to generate high-gain radiation variations, effectively restrain the isolation between the radiators, and significantly increase overall performance of the antenna.
  • Another object of the present disclosure is to provide a planar array antenna structure to flatly arrange the antenna radiator on the substrate so as to reduce height of the array antenna structure, easily to manufacture the array antenna structure, reduce manufacturing costs, save space inside the communication device installing the array antenna structure, and conveniently operate the communication device.
  • planar array antenna structure comprising:
  • Fig. 1 , Fig. 2 , and Fig. 3 are a schematic front view, a schematic rear view, and a schematic view of a substrate of a planar array antenna structure according to the present disclosure.
  • the planar array antenna structure includes a substrate 1, an array antenna 2, and a bottom ground portion 3.
  • the substrate 1 has a front surface 11 and a rear surface 12.
  • the substrate 1 is a polyester fiberglass board.
  • the array antenna 2 is composed of a plurality of antenna units 21 and disposed on the front surface 11 of the substrate 1, and the antenna units 21 are disposed on the front surface 11 of the substrate 1 in a symmetrical and polygonal arrangement. Also, a spaced slot 22 is formed between every two antenna units 21.
  • Each antenna unit 21 includes a top ground portion 211, a main radiator 212, and an auxiliary radiator 213.
  • the top ground portion 211 is trapezoidal and has an upper edge 2111 and a lower edge 2112.
  • the main radiator 212 is rectangular or square, and the main radiator 212 has a signal feed point 2121 is arranged at left of the lower edge 2112 of the top ground portion 211, and the signal feed point 2121 is electrically connected to the lower edge 2112 of the top ground portion 211.
  • the auxiliary radiator 213 is inverted L-shaped and arranged at right of the lower edge 2112 of the top ground portion 211 and electrically connected to the lower edge 2112.
  • the number of the antenna units 21 is six exemplified for further demonstration, but not limited.
  • the polygonal arrangement is a triangular arrangement, a quadrilateral arrangement, a pentagonal arrangement, a hexagonal arrangement, a heptagonal arrangement, or an octagonal arrangement.
  • the bottom ground portion 3 is disposed on the rear surface 12 of the substrate 1 and corresponding to the antenna units 21 disposed on the front surface 11 of the substrate 1. In particular, the bottom ground portion 3 is not conductive to the antenna units 21 disposed on the front surface 11.
  • the bottom ground portion 3 is polygonal, such as triangular, quadrilateral, pentagonal, hexagonal, heptagonal, or octagonal.
  • the bottom ground portion 3 has a plurality of included angles 31 thereon, and one notch 32 is formed between two included angles 31 and the notches 32 are correspondingly arranged to the spaced slots 22 formed on the front surfaces 11 of the substrate 1. In this embodiment, the notches 32 are rectangular.
  • a spacing is arranged in a half of the wavelength (permittivity of air is equal to 1) to increase bandwidth and provide better impedance matching.
  • a spacing is arranged in a quarter of the wavelength (permittivity of air is equal to 1) to provide better isolation.
  • Each spaced slot 22 formed between the front surfaces 11 of the substrate 1 and the antenna units 21 is a quarter of the wavelength (permittivity of air is equal to 1) in length.
  • the spaced slots 22 generate a resonance current and provide better isolated ground.
  • the central resonance frequency is located at 6.15 GHz.
  • Each notch 32 formed on the rear surfaces 12 of the substrate 1 is a quarter of the wavelength (permittivity of FR4 is equal to 4.3) in length.
  • the notches 32 generate a resonance current.
  • the central resonance frequency is located at 3.3 GHz and the double frequency is located at 6.5 GHz.
  • the spaced slots 22 and the notches 32 are provided to generate an optimum resonance current to restrain the current generated from adjacent main radiators and auxiliary radiators, thus achieving the best isolation.
  • the frequency band of the resonance current is designed according to length of the spaced slots 22 and the notches 32.
  • the bottom ground portion 3 disposed on the rear surface 12 is not conductive to the top ground portion 211 disposed on the front surface 11. Also, an area of the bottom ground portion 3 is less than that of the top ground portion 211 so as to control the resonance frequency generated by the spaced slots 22 formed on the front surfaces 11 and the notches 32 formed on the rear surfaces 12, thus achieving the best isolation from adjacent antennas.
  • the antenna performance specifications of the planar array antenna structure of the present disclosure are: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB. Because the signals transmitted from the radiators of the antenna is operated via the IEEE 802.11 a/n/ac, the planar array antenna structure can generate high-gain radiation variations, effectively restrain the isolation between the main radiators and the auxiliary radiators, and significantly increase overall performance of the antenna.
  • Fig. 4 is a schematic curve chart showing return loss vs. frequency of different antenna units using the planar array antenna structure according to the present disclosure.
  • Fig. 5 is a schematic curve chart showing isolation vs. frequency of different antenna units using the planar array antenna structure according to the present disclosure.
  • Fig. 6 is a schematic view of another planar array antenna structure according to the present disclosure
  • Fig. 7 and Fig. 8 are schematic curve charts showing return loss vs. frequency and isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 6 , respectively.
  • the major difference between this embodiment and the above-mentioned embodiments shown in Fig. 1 to Fig. 3 is that the absence of the bottom ground portion 3 disposed on the rear surface 12 in this embodiment. Therefore, the return loss is worse about 5 dB as shown in Fig. 7 because of the absence of the bottom ground portion 3.
  • the isolation is also worse about 5 dB as shown in Fig. 8 because of the absence of the bottom ground portion 3.
  • the antenna performance specifications are still meet the following requirements: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB.
  • Fig. 9 is a schematic view of further another planar array antenna structure according to the present disclosure; and reference is made to Fig. 10 and Fig. 11 which are schematic curve charts showing return loss vs. frequency and isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 9 , respectively.
  • the major difference between this embodiment and the above-mentioned embodiments shown in Fig. 1 to Fig. 3 is that there are three sets of symmetrical antenna units 21 are disposed on the front surface 11 of the substrate 1 in this embodiment.
  • the substrate 1 has to be designed as hexagonal.
  • a hexagonal central ground portion 4 is arranged among the three sets of symmetrical antenna units 21.
  • Each edge of the antenna units 21 extends to form a plurality of radial line segments 41, and a spaced slot 22 is arranged between the line segment 41 and the top ground portion 211 of the antenna unit 21.
  • the antenna performance specifications are still meet the following requirements: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB.
  • Fig. 12 is a schematic view of further another planar array antenna structure according to the present disclosure
  • Fig. 13 and Fig. 14 are schematic curve charts showing return loss vs. frequency and isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 12 , respectively.
  • the major difference between this embodiment and the above-mentioned embodiments shown in Fig. 1 to Fig. 3 is that there are four sets of symmetrical antenna units 21 are disposed on the front surface 11 of the substrate 1 in this embodiment.
  • the substrate 1 has to be designed as octagonal.
  • a quadrilateral central ground portion 5 is arranged among the four sets of symmetrical antenna units 21.
  • Each edge of the antenna units 21 extends to form a plurality of trapezoidal line segments 51, and a spaced slot 22 is arranged between the line segment 51 and the top ground portion 211 of the antenna unit 21.
  • the antenna performance specifications are still meet the following requirements: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB.
  • Fig. 15 is a schematic view of a radiation pattern in the x-z plane of a single antenna according to the planar array antenna structure of the present disclosure.
  • Fig. 16 is a schematic view of a radiation pattern in the y-z plane of a single antenna according to the planar array antenna structure of the present disclosure.
  • Fig. 17 is a schematic view of a radiation pattern in the x-y plane of a single antenna according to the planar array antenna structure of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

    BACKGROUND 1. Technical Field
  • The present disclosure relates generally to an antenna, and more particularly to a planar array antenna structure is operated at 5 to 6 GHz.
  • 2. Description of Prior Art
  • In antenna communication, multi-input and multi-output, or MIMO is the use of multiple antennas at both the transmitter and receiver to improve communication performance. That is, spatial multiplexing and multiple antennas are adopted to transmit and receive multiple data streams through the same frequency channel. The MIMO is applied to the wireless LAN (WLAN) system to increase data rate of IEEE 802.11a or 802.11G by using two transmitting antennas.
  • In order to implement the MIMO antenna wireless communication system, the array antenna structure is adopted. TW patent No. M441940 discloses an array structure to provide multiple antenna radiators with same shape by the sheet metal stamping technology. Further, at least three antenna radiators are arranged to stand on a surface of a substrate in a symmetrical and polygonal arrangement, thus increasing antenna directivity, directive gain, and improving communication quality.
  • The documents US 2007/109194 A1 , US 2009/073047 A1 , US 7 336 229B1 US 2009 /128425A1 , WO 2011/154954 A2 , WO 01/52352 A1 , US 2012/139806 A1 , US 2002/190905 A1 disclose different types of antennas for wireless communication systems.
  • Although the three-dimensional shaped array antenna structure can obtain the above-mentioned advantages, the occupied space should not be underestimated when the three-dimensional shaped array antenna structure is installed inside a communication device. Further, it is inconvenient to operate the communication device because of a reserved installation space inside the communication device. In addition, the array antenna structure is manufactured by sheet metal stamping multiple antenna radiators and then the antenna radiators are stood on the substrate, thus increasing manufacturing costs and time.
  • SUMMARY
  • An object of the present disclosure is to provide a planar array antenna structure to solve the above-mentioned problems according to claim 1. Accordingly, a plurality of antenna units are disposed on the substrate in a symmetrical and polygonal arrangement so as to generate high-gain radiation variations, effectively restrain the isolation between the radiators, and significantly increase overall performance of the antenna.
  • Another object of the present disclosure is to provide a planar array antenna structure to flatly arrange the antenna radiator on the substrate so as to reduce height of the array antenna structure, easily to manufacture the array antenna structure, reduce manufacturing costs, save space inside the communication device installing the array antenna structure, and conveniently operate the communication device.
  • In order to achieve the above-mentioned objects, the planar array antenna structure comprising:
    • a substrate having a front surface and a rear surface; and
    • an array antenna composed of a plurality of antenna units and disposed on the front surface of the substrate;
    • wherein the antenna units are disposed on the front surface of the substrate in a symmetrical and polygonal arrangement, and a spaced slot is formed between every two antenna units;
    • wherein the polygonal arrangement is a triangular arrangement, a quadrilateral arrangement, a pentagonal arrangement, a hexagonal arrangement, a heptagonal arrangement, or an octagonal arrangement;
    • wherein each antenna unit has a top ground portion, a main radiator, and an auxiliary radiator;
    • wherein the top ground portion is trapezoidal and has an upper edge and a lower edge;
    • wherein the main radiator is rectangular or square, and the main radiator having a signal feed point is arranged at left of the lower edge of the top ground portion; the signal feed point is electrically connected to the lower edge of the top ground portion;
    • wherein the auxiliary radiator is arranged at right of the lower edge of the top ground portion and electrically connected to the lower edge;
    • wherein the auxiliary radiator is L-shaped;
    • wherein a bottom ground portion is disposed on the rear surface of the substrate and corresponding to the antenna units disposed on the front surface of the substrate;
    • wherein the bottom ground portion is polygonal, such as triangular, quadrilateral, pentagonal, hexagonal, heptagonal, or octagonal; the bottom ground portion has a plurality of included angles thereon, and a notch is formed between two included angles and the notches are correspondingly arranged to the spaced slots formed on the front surfaces of the substrate;
    • wherein each notch is rectangular and configured to generate a resonance current; a length of each notch is a quarter of the wavelength;
    • wherein between the main radiator and the auxiliary radiator, a spacing is arranged in a half of the wavelength to increase bandwidth and provide better impedance matching;
    • wherein between the auxiliary radiator and a main radiator of another adjacent antenna unit, a spacing is arranged in a quarter of the wavelength to provide better isolation;
    • wherein each spaced slot formed between the antenna units is a quarter of the wavelength in length to generate a resonance current and provide better isolated ground;
    • wherein the spaced slots and the notches are configured to generate an optimum resonance current to restrain the current generated from adjacent main radiators and auxiliary radiators to achieve the best isolation;
    • wherein the frequency band of the resonance current is designed according to length of the spaced slots and the notches;
    • wherein the bottom ground portion disposed on the rear surface is not conductive to the top ground portion disposed on the front surface;
    • wherein the area of the bottom ground portion is less than the area of the top ground portion to control the resonance frequency generated by the spaced slots formed on the front surfaces and the notches formed on the rear surfaces, thus achieving the best isolation from adjacent antennas;
    • wherein the planar array antenna structure has a gain which is greater than or equal to 2 dBi;
    • wherein the planar array antenna structure has a return loss which is greater than or equal to 10 dB;
    • wherein the planar array antenna structure has an isolation which is greater than or equal to 20 dB.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the present disclosure as claimed. Other advantages and features of the present disclosure will be apparent from the following description, drawings and claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The features of the present disclosure believed to be novel are set forth with particularity in the appended claims. The present disclosure itself, however, may be best understood by reference to the following detailed description of the present disclosure, which describes an exemplary embodiment of the present disclosure, taken in conjunction with the accompanying drawings, in which:
    • Fig. 1 is a schematic front view of a planar array antenna structure according to the present disclosure;
    • Fig. 2 is a schematic rear view of the planar array antenna structure according to the present disclosure;
    • Fig. 3 is a schematic view of a substrate of the planar array antenna structure according to the present disclosure;
    • Fig. 4 is a schematic curve chart showing return loss vs. frequency of different antenna units using the planar array antenna structure according to the present disclosure;
    • Fig. 5 is a schematic curve chart showing isolation vs. frequency of different antenna units using the planar array antenna structure according to the present disclosure;
    • Fig. 6 is a schematic view of another planar array antenna structure according to the present disclosure;
    • Fig. 7 is a schematic curve chart showing return loss vs. frequency of different antenna units using the planar array antenna structure in Fig. 6;
    • Fig. 8 is a schematic curve chart showing isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 6;
    • Fig. 9 is a schematic view of further another planar array antenna structure according to the present disclosure;
    • Fig. 10 is a schematic curve chart showing return loss vs. frequency of different antenna units using the planar array antenna structure in Fig. 9;
    • Fig. 11 is a schematic curve chart showing isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 9;
    • Fig. 12 is a schematic view of further another planar array antenna structure according to the present disclosure;
    • Fig. 13 is a schematic curve chart showing return loss vs. frequency of different antenna units using the planar array antenna structure in Fig. 12;
    • Fig. 14 is a schematic curve chart showing isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 12;
    • Fig. 15 is a schematic view of a radiation pattern in the x-z plane of a single antenna according to the planar array antenna structure of the present disclosure;
    • Fig. 16 is a schematic view of a radiation pattern in the y-z plane of a single antenna according to the planar array antenna structure of the present disclosure; and
    • Fig. 17 is a schematic view of a radiation pattern in the x-y plane of a single antenna according to the planar array antenna structure of the present disclosure.
    DETAILED DESCRIPTION
  • Reference will now be made to the drawing figures to describe the present invention in detail.
  • Reference is made to Fig. 1, Fig. 2, and Fig. 3 which are a schematic front view, a schematic rear view, and a schematic view of a substrate of a planar array antenna structure according to the present disclosure. The planar array antenna structure includes a substrate 1, an array antenna 2, and a bottom ground portion 3.
  • The substrate 1 has a front surface 11 and a rear surface 12. In particular, the substrate 1 is a polyester fiberglass board.
  • The array antenna 2 is composed of a plurality of antenna units 21 and disposed on the front surface 11 of the substrate 1, and the antenna units 21 are disposed on the front surface 11 of the substrate 1 in a symmetrical and polygonal arrangement. Also, a spaced slot 22 is formed between every two antenna units 21. Each antenna unit 21 includes a top ground portion 211, a main radiator 212, and an auxiliary radiator 213. The top ground portion 211 is trapezoidal and has an upper edge 2111 and a lower edge 2112. The main radiator 212 is rectangular or square, and the main radiator 212 has a signal feed point 2121 is arranged at left of the lower edge 2112 of the top ground portion 211, and the signal feed point 2121 is electrically connected to the lower edge 2112 of the top ground portion 211. The auxiliary radiator 213 is inverted L-shaped and arranged at right of the lower edge 2112 of the top ground portion 211 and electrically connected to the lower edge 2112. For convenience, the number of the antenna units 21 is six exemplified for further demonstration, but not limited. In particular, the polygonal arrangement is a triangular arrangement, a quadrilateral arrangement, a pentagonal arrangement, a hexagonal arrangement, a heptagonal arrangement, or an octagonal arrangement.
  • The bottom ground portion 3 is disposed on the rear surface 12 of the substrate 1 and corresponding to the antenna units 21 disposed on the front surface 11 of the substrate 1. In particular, the bottom ground portion 3 is not conductive to the antenna units 21 disposed on the front surface 11. The bottom ground portion 3 is polygonal, such as triangular, quadrilateral, pentagonal, hexagonal, heptagonal, or octagonal. The bottom ground portion 3 has a plurality of included angles 31 thereon, and one notch 32 is formed between two included angles 31 and the notches 32 are correspondingly arranged to the spaced slots 22 formed on the front surfaces 11 of the substrate 1. In this embodiment, the notches 32 are rectangular.
  • Between the main radiator 212 and the auxiliary radiator 213, a spacing is arranged in a half of the wavelength (permittivity of air is equal to 1) to increase bandwidth and provide better impedance matching.
  • In addition, between the auxiliary radiator 213 and a main radiator 212 of another adjacent antenna unit 21, a spacing is arranged in a quarter of the wavelength (permittivity of air is equal to 1) to provide better isolation.
  • Each spaced slot 22 formed between the front surfaces 11 of the substrate 1 and the antenna units 21 is a quarter of the wavelength (permittivity of air is equal to 1) in length. The spaced slots 22 generate a resonance current and provide better isolated ground. The central resonance frequency is located at 6.15 GHz.
  • Each notch 32 formed on the rear surfaces 12 of the substrate 1 is a quarter of the wavelength (permittivity of FR4 is equal to 4.3) in length. The notches 32 generate a resonance current. The central resonance frequency is located at 3.3 GHz and the double frequency is located at 6.5 GHz.
  • The spaced slots 22 and the notches 32 are provided to generate an optimum resonance current to restrain the current generated from adjacent main radiators and auxiliary radiators, thus achieving the best isolation. In particular, the frequency band of the resonance current is designed according to length of the spaced slots 22 and the notches 32.
  • In addition, the bottom ground portion 3 disposed on the rear surface 12 is not conductive to the top ground portion 211 disposed on the front surface 11. Also, an area of the bottom ground portion 3 is less than that of the top ground portion 211 so as to control the resonance frequency generated by the spaced slots 22 formed on the front surfaces 11 and the notches 32 formed on the rear surfaces 12, thus achieving the best isolation from adjacent antennas.
  • Accordingly, the antenna performance specifications of the planar array antenna structure of the present disclosure are: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB. Because the signals transmitted from the radiators of the antenna is operated via the IEEE 802.11 a/n/ac, the planar array antenna structure can generate high-gain radiation variations, effectively restrain the isolation between the main radiators and the auxiliary radiators, and significantly increase overall performance of the antenna.
  • Reference is made to Fig. 4 which is a schematic curve chart showing return loss vs. frequency of different antenna units using the planar array antenna structure according to the present disclosure.
    1. 1. The return loss of the first antenna unit shown in curve s1 at 5.33 GHz is -21.6 dB;
    2. 2. The return loss of the second antenna unit shown in curve s2 at 5.31 GHz is -21.5 dB;
    3. 3. The return loss of the third antenna unit shown in curve s3 at 5.32 GHz is -19.7 dB;
    4. 4. The return loss of the fourth antenna unit shown in curve s4 at 5.34 GHz is -21.7 dB;
    5. 5. The return loss of the fifth antenna unit shown in curve s5 at 5.32 GHz is -21.4 dB; and
    6. 6. The return loss of the sixth antenna unit shown in curve s6 at 5.23 GHz is -20.25 dB.
  • Reference is made to Fig. 5 which is a schematic curve chart showing isolation vs. frequency of different antenna units using the planar array antenna structure according to the present disclosure.
    1. 1. The isolation of the first antenna unit shown in curve s11 at 5.52 GHz is -32 dB;
    2. 2. The isolation of the second antenna unit shown in curve s12 at 5.75 GHz is -32.2 dB;
    3. 3. The isolation of the third antenna unit shown in curve s13 at 5.50 GHz is -39.2 dB;
    4. 4. The isolation of the fourth antenna unit shown in curve s14 at 5.52 GHz is -31 dB;
    5. 5. The isolation of the fifth antenna unit shown in curve s15 at 5.72 GHz is -34.1 dB; and
    6. 6. The isolation of the sixth antenna unit shown in curve s16 at 5.50 GHz is -38.2 dB.
  • Reference is made to Fig. 6 which is a schematic view of another planar array antenna structure according to the present disclosure; and reference is made to Fig. 7 and Fig. 8 which are schematic curve charts showing return loss vs. frequency and isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 6, respectively. The major difference between this embodiment and the above-mentioned embodiments shown in Fig. 1 to Fig. 3 is that the absence of the bottom ground portion 3 disposed on the rear surface 12 in this embodiment. Therefore, the return loss is worse about 5 dB as shown in Fig. 7 because of the absence of the bottom ground portion 3.
  • In addition, the isolation is also worse about 5 dB as shown in Fig. 8 because of the absence of the bottom ground portion 3. Although the return loss and the isolation are worse, the antenna performance specifications are still meet the following requirements: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB.
  • Reference is made to Fig. 9 which is a schematic view of further another planar array antenna structure according to the present disclosure; and reference is made to Fig. 10 and Fig. 11 which are schematic curve charts showing return loss vs. frequency and isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 9, respectively. The major difference between this embodiment and the above-mentioned embodiments shown in Fig. 1 to Fig. 3 is that there are three sets of symmetrical antenna units 21 are disposed on the front surface 11 of the substrate 1 in this embodiment. Also, the substrate 1 has to be designed as hexagonal. In addition, a hexagonal central ground portion 4 is arranged among the three sets of symmetrical antenna units 21. Each edge of the antenna units 21 extends to form a plurality of radial line segments 41, and a spaced slot 22 is arranged between the line segment 41 and the top ground portion 211 of the antenna unit 21.
  • Similarly, the antenna performance specifications are still meet the following requirements: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB.
  • Reference is made to Fig. 12 which is a schematic view of further another planar array antenna structure according to the present disclosure; and reference is made to Fig. 13 and Fig. 14 which are schematic curve charts showing return loss vs. frequency and isolation vs. frequency of different antenna units using the planar array antenna structure in Fig. 12, respectively. The major difference between this embodiment and the above-mentioned embodiments shown in Fig. 1 to Fig. 3 is that there are four sets of symmetrical antenna units 21 are disposed on the front surface 11 of the substrate 1 in this embodiment. Also, the substrate 1 has to be designed as octagonal. In addition, a quadrilateral central ground portion 5 is arranged among the four sets of symmetrical antenna units 21. Each edge of the antenna units 21 extends to form a plurality of trapezoidal line segments 51, and a spaced slot 22 is arranged between the line segment 51 and the top ground portion 211 of the antenna unit 21.
  • Similarly, the antenna performance specifications are still meet the following requirements: (1) the gain is greater than or equal to 2 dBi; (2) the return loss is greater than or equal to 10 dB; and (3) the isolation is greater than or equal to 20 dB.
  • Reference is made to Fig. 15 which is a schematic view of a radiation pattern in the x-z plane of a single antenna according to the planar array antenna structure of the present disclosure.
  • The maximum gain of the antenna unit shown in curve a11 at 5.15 GHz in the x-z plane and phi=0° is 2.7 dBi.
  • Reference is made to Fig. 16 which is a schematic view of a radiation pattern in the y-z plane of a single antenna according to the planar array antenna structure of the present disclosure.
  • The maximum gain of the antenna unit shown in curve a12 at 5.15 GHz in the y-z plane and phi=90° is 2.0 dBi.
  • Reference is made to Fig. 17 which is a schematic view of a radiation pattern in the x-y plane of a single antenna according to the planar array antenna structure of the present disclosure.
  • The maximum gain of the antenna unit shown in curve a13 at 5.15 GHz in the x-y plane and theta=90° is 4.0 dBi.

Claims (9)

  1. A planar array antenna structure comprising:
    a substrate (1) having a front surface (11) and a rear surface (12); and
    an array antenna (2) composed of a plurality of antenna units (21) and disposed on the front surface (11) of the substrate (1);
    wherein the antenna units (21) are disposed on the front surface (11) of the substrate (1) in a symmetrical and polygonal arrangement, and a spaced slot (22) is formed between every two antenna units (21),
    wherein the polygonal arrangement is a triangular arrangement, a quadrilateral arrangement, a pentagonal arrangement, a hexagonal arrangement, a heptagonal arrangement, or an octagonal arrangement,
    wherein each antenna unit (21) has a top ground portion (211), a main radiator (212), and an auxiliary radiator (213),
    wherein the top ground portion (211) is trapezoidal and has an upper edge (2111) and a lower edge (2112),
    wherein the main radiator (212) is rectangular or square, and the main radiator (212) having a signal feed point (2121) is arranged at left of the lower edge (2112) of the top ground portion (211); the signal feed point (2121) is electrically connected to the lower edge (2112) of the top ground portion (21),
    wherein the auxiliary radiator (213) is L-shaped, and arranged at right of the lower edge (2112) of the top ground portion (21) and electrically connected to the lower edge (2112),
    a bottom ground portion (3) disposed on the rear surface (12) of the substrate (1) and corresponding to the antenna units (21) disposed on the front surface (11) of the substrate (1); the bottom ground portion (3) is polygonal, such as triangular, quadrilateral, pentagonal, hexagonal, heptagonal, or octagonal; the bottom ground portion (3) has a plurality of included angles (31) thereon, and a notch (32) is formed between two included angles (31) and the notches (32) are correspondingly arranged to the spaced slots (22) formed on the front surfaces (11) of the substrate (1),
    wherein the spaced slots (22) and the notches (32) are configured to generate an optimum resonance current to restrain the current generated from adjacent main radiators (212) and auxiliary radiators (213) to achieve the best isolation.
  2. The planar array antenna structure in claim 1, wherein each notch (32) is rectangular and configured to generate a resonance current; a length of each notch (32) is a quarter of the wavelength.
  3. The planar array antenna structure in claim 2, wherein between the main radiator (212) and the auxiliary radiator (213), a spacing is arranged in a half of the wavelength to increase bandwidth and provide better impedance matching.
  4. The planar array antenna structure in claim 3, wherein between the auxiliary radiator (213) and a main radiator (212) of another adjacent antenna unit (21), a spacing is arranged in a quarter of the wavelength to provide better isolation.
  5. The planar array antenna structure in claim 4, wherein each spaced slot (22) formed between the antenna units (21) is a quarter of the wavelength in length to generate a resonance current and provide better isolated ground; the frequency band of the resonance current is designed according to length of the spaced slots (22) and the notches (32).
  6. The planar array antenna structure in claim 5, wherein the bottom ground portion (3) disposed on the rear surface (12) is not conductive to the top ground portion disposed (211) on the front surface (11); the area of the bottom ground portion (3) is less than the area of the top ground portion (211) to control the resonance frequency generated by the spaced slots (22) formed on the front surfaces (11) and the notches (32) formed on the rear surfaces (12), thus achieving the best isolation from adjacent antennas (21).
  7. The planar array antenna structure in claim 6, wherein the planar array antenna structure has a gain which is greater than or equal to 2 dBi.
  8. The planar array antenna structure in claim 7, wherein the planar array antenna structure has a return loss which is greater than or equal to 10 dB.
  9. The planar array antenna structure in claim 8, wherein the planar array antenna structure has an isolation which is greater than or equal to 20 dB.
EP13188252.4A 2013-10-11 2013-10-11 Planar array antenna structure Not-in-force EP2860819B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13188252.4A EP2860819B1 (en) 2013-10-11 2013-10-11 Planar array antenna structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13188252.4A EP2860819B1 (en) 2013-10-11 2013-10-11 Planar array antenna structure

Publications (2)

Publication Number Publication Date
EP2860819A1 EP2860819A1 (en) 2015-04-15
EP2860819B1 true EP2860819B1 (en) 2016-01-06

Family

ID=49326583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13188252.4A Not-in-force EP2860819B1 (en) 2013-10-11 2013-10-11 Planar array antenna structure

Country Status (1)

Country Link
EP (1) EP2860819B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2290501A (en) * 2000-01-07 2001-07-24 Modular Mining Systems, Inc. Array antenna for d-shaped, h-plane radiation pattern
US6686886B2 (en) * 2001-05-29 2004-02-03 International Business Machines Corporation Integrated antenna for laptop applications
FR2888675A1 (en) * 2005-07-13 2007-01-19 Thomson Licensing Sas Soc Par 2-D DIVERSITY ANTENNA SYSTEM AND CARD FOR WIRELESS COMMUNICATION APPARATUS PROVIDED WITH SUCH A SYSTEM
US7333068B2 (en) * 2005-11-15 2008-02-19 Clearone Communications, Inc. Planar anti-reflective interference antennas with extra-planar element extensions
TWM316507U (en) * 2006-12-18 2007-08-01 Wistron Neweb Corp Antenna capable of adjusting impedance matching
KR100910526B1 (en) * 2007-11-20 2009-07-31 삼성전기주식회사 Antenna and mobile communication device using the same
CN102934285A (en) * 2010-06-09 2013-02-13 盖尔创尼克斯有限公司 Directive antenna with isolation feature
US20120139806A1 (en) * 2010-12-02 2012-06-07 Ying Zhan IFS BEAMFORMING ANTENNA FOR IEEE 802.11n MIMO APPLICATIONS
TWM441940U (en) 2012-06-13 2012-11-21 Mag Layers Scient Technics Co Array antenna structure

Also Published As

Publication number Publication date
EP2860819A1 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
US20150097751A1 (en) Planar array antenna structure
US11303016B2 (en) Multi-sector antennas
CN102386482B (en) Multi-loop antenna system and electronic device with same
EP3089270B1 (en) Multi-frequency array antenna
TWI509888B (en) Directional antenna and smart antenna system using the same
US9729213B2 (en) MIMO antenna system
US9564689B2 (en) MIMO antenna system
CN103703620A (en) Wideband dual-polarization array antenna and base station
CN204029975U (en) Double-fed enters dual-polarized high directivity array antenna system
CN102403567A (en) Multi-antenna system and electronic device provided with same
EP3025393B1 (en) Stadium antenna
US7940227B2 (en) Passive wireless transmit and receive terminator
US20150325928A1 (en) Multiband antenna
CN103560335A (en) Multi-band array antenna
CN102377016A (en) High-gain loop array antenna system and electronic device with same
CN107465002B (en) Multi-frequency multi-beam MIMO antenna
US20140125526A1 (en) Multiband antenna and electronic apparatus having the same
US20110273352A1 (en) Antenna Structure
CN109301459B (en) multi-frequency array antenna
US10644389B1 (en) Double-frequency antenna structure with high isolation
EP2860819B1 (en) Planar array antenna structure
CN106229638B (en) Aerial array and antenna
JP6470382B1 (en) Frequency sharing array antenna
CN104167611A (en) Two-way double-polarized antenna
CN103560337A (en) Multi-frequency band array antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150812

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 769560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013004459

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160106

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 769560

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013004459

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

26N No opposition filed

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013004459

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131011

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106