EP2846087B1 - Method for operating a steam boiler and device for carrying out the method - Google Patents

Method for operating a steam boiler and device for carrying out the method Download PDF

Info

Publication number
EP2846087B1
EP2846087B1 EP14183027.3A EP14183027A EP2846087B1 EP 2846087 B1 EP2846087 B1 EP 2846087B1 EP 14183027 A EP14183027 A EP 14183027A EP 2846087 B1 EP2846087 B1 EP 2846087B1
Authority
EP
European Patent Office
Prior art keywords
liquid
flow rate
boiler
discharge
discharge line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14183027.3A
Other languages
German (de)
French (fr)
Other versions
EP2846087A3 (en
EP2846087A2 (en
Inventor
Klaus-Hinrich Koch
Hannes Stadler
Paul Koeberlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2846087A2 publication Critical patent/EP2846087A2/en
Publication of EP2846087A3 publication Critical patent/EP2846087A3/en
Application granted granted Critical
Publication of EP2846087B1 publication Critical patent/EP2846087B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down
    • F22B37/565Blow-down control, e.g. for ascertaining proper duration of boiler blow-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/18Applications of computers to steam boiler control

Definitions

  • the invention relates to a method for operating a steam boiler according to claim 1 and a device for carrying out the method according to claim 6.
  • Steam boilers are used to generate steam, for example for industrial applications.
  • a liquid is fed to a steam boiler, which encloses an interior space in a pressure-tight manner with the exception of inlet and outlet lines, and this liquid is heated within the steam boiler to the boiling point.
  • the resulting steam then flows out of the steam boiler and is used for technical applications.
  • the steam condenses in the technical application or in a downstream condenser and is fed back into the steam boiler as a liquid via appropriate devices.
  • Water is used as the liquid.
  • the evaporation of water leads to a concentration of dissolved components within the steam boiler, which do not also evaporate.
  • the disadvantage here is that the water in the boiler can foam up and as a result the moisture in the steam increases. This can negatively affect the downstream technical application, especially with regard to efficiency and damage.
  • the concentration also leads to the settling of components, which can lead to sediment in the steam boiler. This sediment then hinders the transfer of heat from a heat source to the liquid in the steam boiler, so that the efficiency of the steam boiler decreases.
  • the efficiency is the relationship between the thermal output (of a burner) and the useful output (of the steam).
  • the concentration of components in the liquid can be detected, among other things, on the basis of the conductivity of the liquid within the steam boiler, which correlates with the concentration.
  • Concentration is countered in the prior art by regular removal of liquid from the steam boiler, while at the same time replenishing with fresh liquid (see e.g. US 6 655 322 B1 ).
  • the dissolved components are discharged via a so-called blowdown device.
  • Such a discharge line has a discharge line just below the level line. Undissolved components are preferably effected with a discharge line at the geodetically lower end of the steam boiler, so that deposited components, the so-called silting, are also drawn off from the steam boiler (sludge removal).
  • the invention is based on the object of eliminating the disadvantages of the prior art and providing a method which is suitable for optimizing or increasing the efficiency of a steam boiler. It should be economically and ecologically sensible and easy to implement.
  • the invention relates to a method for operating a steam boiler according to claim 1.
  • the advantage of this is that, knowing the actual energy loss when liquid is discharged, optimizations can be made with regard to the future operation of the steam boiler.
  • the boiler efficiency of the steam boiler can be increased as a result.
  • the determination of the actual energy loss of a discharge can be included in addition to taking into account a decreasing efficiency of the steam boiler (based on a concentration).
  • the efficiency of the steam boiler decreases with increasing discharge quantity and the energy losses for discharge increase simultaneously with the operating time. The latter in particular because more liquid has to be discharged with increasing operating time in order to reduce the concentration of components in the liquid in the boiler again.
  • the efficiency of the steam boiler is now through targeted Scheduling of rejections can be optimized.
  • Interruptions in the heating are preferably used for discharging, because here the liquid and components are stratified according to their densities. Floating components settle on the bottom of the boiler. High efficiency leads to low operating costs and emissions. The process is also automated and can therefore be carried out easily and conveniently.
  • the energy expenditure e.g. electricity for a pump and / or a valve
  • the supplied energy can also flow into the supplementary supplied liquid.
  • these energies are relatively low in relation to the energy content of the outflowing liquid and can therefore be disregarded in simple process configurations.
  • the method is particularly suitable when water is used as the liquid.
  • the water composition can vary by conditioning agents, so that the concentration takes place at different rates.
  • the discharge line should open out of the steam boiler at the geodetically lower end, i.e. at the bottom of the boiler, so that deposited components, the so-called sludge or sludge, can be withdrawn from the boiler.
  • desalination is also carried out by means of this discharge line.
  • a discharge line is preferably provided (just below the level line). This is because more dissolved components are deposited here and can be removed from the steam boiler with less fluid exchange.
  • the concentration of components in the liquid can be determined by determining the conductivity of the liquid.
  • the steam boiler has two separate discharge lines, one for desalination and one for sludge removal. This also means that there are no problems when setting the flow rate in the discharge lines.
  • the desalination usually takes place continuously and slowly, whereas the desalination takes place briefly, suddenly and with a high flow rate he follows. Lines and valves can be adapted to these requirements with two separate discharge lines.
  • a more detailed embodiment of the method provides that the analysis device for determining the (actual) energy loss when liquid is discharged through the discharge line determines a flow rate of the discharged liquid. With the help of the discharged flow rate, conclusions can be drawn about the energy loss.
  • a special variant of the invention suggests that this be done with data from a quantity sensor in the discharge line or by a calculation based on a valve position of an discharge valve in the discharge line, a valve characteristic curve and an internal boiler pressure.
  • a quantity sensor is particularly accurate, whereas the second variant without a quantity sensor is more cost-effective.
  • the analysis device for determining the (actual) energy loss when liquid is discharged through the discharge line determines a temperature of the discharged liquid, preferably over time. An enthalpy flow is then calculated based on the flow rate and the temperature of the discharged liquid. The enthalpy flow over the period of discharge corresponds to the energy loss.
  • the temperature is preferably determined immediately downstream of a valve in the discharge line.
  • a supplementary embodiment of the method provides for the determination of the (actual) energy loss when liquid is discharged through the discharge line by determining the internal pressure of the boiler in the interior. An enthalpy flow is then calculated based on the flow rate of the discharged liquid and the internal pressure in the boiler. The associated boiling temperature of the liquid can be determined via the boiler pressure. This enables the flow rate to be converted into an enthalpy flow.
  • a pressure sensor which is usually present anyway, can be coupled to the analysis device.
  • the flow rate is recorded over the entire operating period and via a resettable one Period.
  • a resettable period of time is to be understood as a past time which, similar to a day counter of a motor vehicle, can be set to zero by resetting.
  • a sliding time window can also be used, which considers a defined period of time before the current point in time.
  • a special method design provides that a comparison is made between the flow rate over the entire operating period and the flow rate over the resettable period, and a signal is output if the ratio between the two flow rates changes by a defined amount over time.
  • the signal output can include a visual output of an indication on a display device, e.g. a warning light, a traffic light or a screen, in particular with a graphical course of the flow rate and / or the boiler efficiency.
  • an absolute comparison can be made between the flow rate over the entire operating period with a predefined value, and a signal can be output if this flow rate exceeds the predefined value.
  • the method can be supplemented by the output of a signal if it is established through a comparison that the flow rate exceeds a predefined value over the resettable period of time.
  • a further analysis is carried out by calculating a ratio between the flow rate and an amount of liquid, amount of steam or thermal power supplied from the parameters. If the calculated ratio changes by a defined amount over time, a signal is output.
  • the discharge can thus be designed in such a way that as little liquid as possible is discharged from the steam boiler. Accordingly, little energy is lost.
  • the opening positions and opening times of the valve in the discharge line can be varied.
  • a measurement of the amount of steam is preferably carried out.
  • the thermal output is preferably carried out by measuring the quantity of the fuel used, e.g. gas or oil. If there is no quantity measuring device for this amount of fuel, the power supplied can alternatively be determined by what is known as the burner load requirement, which specifies the default value for the required power. In particular, this is achieved by scaling the burner load requirement to the actual burner output and integrating it over the defined period. Alternatively, a quantity measurement of the liquid supplied to the steam boiler, in particular the amount of feed water, is suitable for determining the useful power.
  • the invention also relates to a device for carrying out the method described above, with a steam boiler from which a discharge line opens, and with an analysis device for determining an (actual) energy loss when liquid is discharged through the discharge line.
  • the steam boiler can be supplemented with a return line, so that the discharged steam can be directed back into the steam boiler after a technical application, preferably condensed as a liquid. This means that little energy is given off to the environment. This also increases the efficiency of the steam boiler.
  • the device has a quantity determination device for determining a flow rate in the discharge line.
  • the quantity determination device can be a quantity sensor or a quantity determination via the valve position, valve characteristic and internal boiler pressure. The energy loss during a discharge can be inferred from the specific flow rate.
  • a steam boiler 1 can be seen. This encloses a hollow interior 2 with boiler base 15. The interior 2 is partially filled with liquid 100, namely up to a level line.
  • a steam outlet 4 opens out at the geodetically upper end of the steam boiler 1. This is connected to a consumer 9 via a steam line 16.
  • a return line 10 leads from the consumer 9 back into the steam boiler 1. In particular, it opens into the steam boiler 1 below the liquid line.
  • a feed line 3 can be seen, via which fresh liquid 100 is introduced into the steam boiler 1.
  • a supply valve 17 is arranged via which the supply of liquid 100 can be released and blocked.
  • Both the return line 10 and the supply line 3 initially open into a common storage vessel 30.
  • the liquid 100 flowing back is collected in the storage vessel 30 and mixed with fresh liquid 100, which replaces any lost liquid 100.
  • Behind the receiving vessel 30, the divide Return line 10 and the supply line 3 have a common line section.
  • the inflow valve 17 is located in this.
  • a discharge line 5 opens out for discharging liquid 100 from the steam boiler 1. With this discharge line 5, sludge removal can be carried out.
  • a discharge valve 11 is arranged in the discharge line 5. On the side of the discharge valve 11 facing away from the steam boiler 1, a first temperature sensor 12 and a quantity sensor 18 for determining a flow rate are positioned and connected to an analysis device 6.
  • a second discharge line 40 opens out of the steam boiler 1. This is used for desalination.
  • the outlet lies just below the level line of the liquid 100.
  • a second discharge valve 42, a second temperature sensor 44 and a second quantity sensor 46 are arranged in the second discharge line 40.
  • the second temperature sensor 44 and the second quantity sensor 46 are each connected to the analysis device 6 in a communicating manner.
  • an outside temperature sensor 8 is provided, which is also connected to the analysis device 6.
  • a burner 20 can also be seen, which supplies heat to the liquid 100 in the steam boiler 1.
  • the burner 20 has a heat exchanger 22. This is designed, among other things, as a horizontal flame tube 22 which passes through the interior 2 of the steam boiler 1. It is below the level line.
  • a boiler control 7 which is connected to the burner 20, the first discharge valve 11, the second discharge valve 42 and the inflow valve 17.
  • the three valves 11, 17, 42 are electrically adjustable by the boiler control 7.
  • the boiler control 7 is connected to the analysis device 6 in a communicating manner.
  • the boiler control 7 is communicatively connected to a pressure sensor 19 for determining a boiler internal pressure and to an exhaust gas temperature sensor 21 in the area of the flame tube 22.
  • the method according to the invention can be carried out with such a device.
  • the analysis device 6 can optionally be designed as part of the boiler control 7.
  • the feed line 3 and the return line 10 open separately into the steam boiler 1.
  • a receiving vessel 30 is then preferably arranged in the return line 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Dampfkessels nach Patentanspruch 1 und eine Vorrichtung zur Durchführung des Verfahrens nach Anspruch 6.The invention relates to a method for operating a steam boiler according to claim 1 and a device for carrying out the method according to claim 6.

Dampfkessel dienen der Erzeugung von Dampf, zum Beispiel für industrielle Anwendungen. Hierfür wird einem Dampfkessel, der bis auf Zu- und Ableitungen einen Innenraum druckdicht umschließt, eine Flüssigkeit zugeführt und diese innerhalb des Dampfkessels bis zur Siedetemperatur erwärmt. Der entstehende Dampf strömt anschließend aus dem Dampfkessel hinaus und wird für technische Anwendungen genutzt. Meist kondensiert der Dampf bei der technischen Anwendung oder einem nachgeschalteten Kondensator und wird als Flüssigkeit über entsprechende Einrichtungen zurück in den Dampfkessel geleitet.Steam boilers are used to generate steam, for example for industrial applications. For this purpose, a liquid is fed to a steam boiler, which encloses an interior space in a pressure-tight manner with the exception of inlet and outlet lines, and this liquid is heated within the steam boiler to the boiling point. The resulting steam then flows out of the steam boiler and is used for technical applications. Usually the steam condenses in the technical application or in a downstream condenser and is fed back into the steam boiler as a liquid via appropriate devices.

Als Flüssigkeit wird Wasser eingesetzt. Die Verdampfung von Wasser führt innerhalb des Dampfkessels zu einer Aufkonzentration von gelösten Komponenten, welche nicht mitverdampfen. Nachteilhaft hieran ist, dass es zu einem Aufschäumen des Wassers im Kessel kommen kann und sich in der Folge die Feuchtigkeit des Dampfes erhöht. Dies kann die nachgeordnete technische Anwendung negativ beeinflussen, insbesondere hinsichtlich der Effizienz und Schäden. Außerdem führt die Aufkonzentration auch zu einem Absetzen von Komponenten, welche zu einem Bodensatz im Dampfkessel führen können. Dieser Bodensatz behindert dann den Wärmetransfer von einer Wärmequelle hin zu der Flüssigkeit im Dampfkessel, sodass die Effizienz des Dampfkessels sinkt. Dabei ist die Effizienz das Verhältnis zwischen aufgewendeter thermischer Leistung (eines Brenners) und abgeführter Nutzleistung (des Dampfes).Water is used as the liquid. The evaporation of water leads to a concentration of dissolved components within the steam boiler, which do not also evaporate. The disadvantage here is that the water in the boiler can foam up and as a result the moisture in the steam increases. This can negatively affect the downstream technical application, especially with regard to efficiency and damage. In addition, the concentration also leads to the settling of components, which can lead to sediment in the steam boiler. This sediment then hinders the transfer of heat from a heat source to the liquid in the steam boiler, so that the efficiency of the steam boiler decreases. The efficiency is the relationship between the thermal output (of a burner) and the useful output (of the steam).

Detektierbar ist die Aufkonzentration von Komponenten in der Flüssigkeit unter anderem anhand der Leitfähigkeit der Flüssigkeit innerhalb des Dampfkessels, welche mit der Aufkonzentration korreliert.The concentration of components in the liquid can be detected, among other things, on the basis of the conductivity of the liquid within the steam boiler, which correlates with the concentration.

Der Aufkonzentration begegnet man im Stand der Technik durch eine regelmäßige Abfuhr von Flüssigkeit aus dem Dampfkessel, bei gleichzeitiger Ergänzung mit frischer Flüssigkeit (siehe z.B. US 6 655 322 B1 ).Concentration is countered in the prior art by regular removal of liquid from the steam boiler, while at the same time replenishing with fresh liquid (see e.g. US 6 655 322 B1 ).

Für die gelösten Komponenten erfolgt die Abfuhr über eine sogenannte Absalzeinrichtung.The dissolved components are discharged via a so-called blowdown device.

Eine solche weist eine Ausschleuseleitung knapp unterhalb der Füllstandslinie auf. Ungelöste Komponenten werden vorzugsweise mit einer Ausschleuseleitung am geodätisch unteren Ende des Dampfkessels bewirkt, sodass abgesetzte Komponenten, die sogenannte Verschlammung, mit aus dem Dampfkessel abgezogen wird (Abschlammung).Such a discharge line has a discharge line just below the level line. Undissolved components are preferably effected with a discharge line at the geodetically lower end of the steam boiler, so that deposited components, the so-called silting, are also drawn off from the steam boiler (sludge removal).

Nachteilhaft an einer Ausschleusung von Flüssigkeit aus dem Dampfkessel ist der damit verbundene Energieverlust, denn es wird bereits erwärmte Flüssigkeit abgeführt. Entsprechend wirken sich sowohl die Aufkonzentration als auch die Ausschleusung negativ auf die Effizienz des Dampfkessels aus. Problematisch ist insbesondere eine pauschale und überdimensioniert ausgelegte Ausschleusung.The disadvantage of discharging liquid from the steam boiler is the associated loss of energy, because liquid that has already been heated is discharged. Accordingly, both the concentration and the discharge have a negative effect on the efficiency of the steam boiler. A general and oversized discharge is particularly problematic.

Der Erfindung liegt die Aufgabe zugrunde, die Nachteile des Standes der Technik zu beseitigen und ein Verfahren bereitzustellen, welches geeignet ist, die Effizienz eines Dampfkessels zu optimieren bzw. zu steigern. Es soll dabei ökonomisch und ökologisch sinnvoll sowie auf einfache Weise durchführbar sein.The invention is based on the object of eliminating the disadvantages of the prior art and providing a method which is suitable for optimizing or increasing the efficiency of a steam boiler. It should be economically and ecologically sensible and easy to implement.

Erfindungsgemäß wird dies mit den Merkmalen der Patentansprüche 1 und 6 gelöst.According to the invention, this is achieved with the features of claims 1 and 6.

Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.Advantageous further developments can be found in the subclaims.

Die Erfindung betrifft ein Verfahren zum Betrieb eines Dampfkessels gemäß Anspruch 1.The invention relates to a method for operating a steam boiler according to claim 1.

Vorteilhaft hieran ist, dass in Kenntnis des tatsächlichen Energieverlustes bei einem Ausschleusen von Flüssigkeit Optimierungen hinsichtlich des zukünftigen Betriebs des Dampfkessels vorgenommen werden können. Insbesondere kann hierdurch die Kesseleffizienz des Dampfkessels gesteigert werden. Die Bestimmung des tatsächlichen Energieverlustes einer Ausschleusung kann nämlich zusätzlich zur Berücksichtigung einer sinkenden Effizienz des Dampfkessels (basierend auf einer Aufkonzentration) einbezogen werden. Die Effizienz des Dampfkessels nimmt mit steigender Ausschleusemenge ab und die Energieverluste für eine Ausschleusung steigen gleichzeitig mit der Betriebszeit. Letzteres insbesondere weil mit zunehmender Betriebsdauer mehr Flüssigkeit ausgeschleust werden muss, um die Konzentration an Komponenten in der Flüssigkeit im Kessel wieder zu reduzieren. Die Effizienz des Dampfkessels ist nunmehr durch gezielte Terminierung von Ausschleusungen optimierbar. Bevorzugt werden dabei Unterbrechungen der Beheizung zum Ausschleusen genutzt, weil hier eine Einschichtung der Flüssigkeit und Komponenten entsprechend ihrer Dichten erfolgt. Schwebende Komponenten setzen sich dabei an der Kesselsohle ab. Eine hohe Effizienz führt zu geringen Betriebskosten und Emissionen. Das Verfahren ist außerdem automatisiert und damit einfach sowie komfortabel durchführbar.The advantage of this is that, knowing the actual energy loss when liquid is discharged, optimizations can be made with regard to the future operation of the steam boiler. In particular, the boiler efficiency of the steam boiler can be increased as a result. The determination of the actual energy loss of a discharge can be included in addition to taking into account a decreasing efficiency of the steam boiler (based on a concentration). The efficiency of the steam boiler decreases with increasing discharge quantity and the energy losses for discharge increase simultaneously with the operating time. The latter in particular because more liquid has to be discharged with increasing operating time in order to reduce the concentration of components in the liquid in the boiler again. The efficiency of the steam boiler is now through targeted Scheduling of rejections can be optimized. Interruptions in the heating are preferably used for discharging, because here the liquid and components are stratified according to their densities. Floating components settle on the bottom of the boiler. High efficiency leads to low operating costs and emissions. The process is also automated and can therefore be carried out easily and conveniently.

Bei der Bestimmung des tatsächlichen Energieverlustes können auch die Energieaufwendungen, z.B. Strom für eine Pumpe und/oder ein Ventil, mit berücksichtigt werden. Ebenso kann die zugeführte Energie der ergänzend zugeführten Flüssigkeit einfließen. Diese Energien sind jedoch verhältnismäßig gering im Verhältnis zum Energiegehalt der ausströmenden Flüssigkeit und können daher in einfachen Verfahrensausgestaltungen unberücksichtigt bleiben.When determining the actual energy loss, the energy expenditure, e.g. electricity for a pump and / or a valve, can also be taken into account. The supplied energy can also flow into the supplementary supplied liquid. However, these energies are relatively low in relation to the energy content of the outflowing liquid and can therefore be disregarded in simple process configurations.

Besonders geeignet ist das Verfahren, wenn als Flüssigkeit Wasser eingesetzt wird. Dieses enthält regelmäßig Komponenten, welche nicht mit verdampfen, insbesondere Salze. Außerdem kann die Wasserzusammensetzung durch Konditionierungsmittel variieren, sodass die Aufkonzentration unterschiedliche schnell abläuft.The method is particularly suitable when water is used as the liquid. This regularly contains components that do not evaporate, especially salts. In addition, the water composition can vary by conditioning agents, so that the concentration takes place at different rates.

Für eine Abschlammung sollte die Ausschleuseleitung am geodätisch unteren Ende, das heißt an der Kesselsohle, aus dem Dampfkessel ausmünden, damit abgesetzte Komponenten, der sogenannte Schlamm bzw. die Verschlammung, aus dem Kessel abgezogen werden können. In kostengünstigen Dampfkesselvarianten erfolgt auch die Absalzung mittels dieser Ausschleuseleitung.For sludge removal, the discharge line should open out of the steam boiler at the geodetically lower end, i.e. at the bottom of the boiler, so that deposited components, the so-called sludge or sludge, can be withdrawn from the boiler. In inexpensive steam boiler variants, desalination is also carried out by means of this discharge line.

Zur Absalzung wird jedoch vorzugsweise eine Ausschleuseleitung (knapp) unterhalb der Füllstandslinie vorgesehen. Hier schichten sich nämlich mehr gelöste Komponenten ein und können mit geringerem Flüssigkeitsaustausch aus dem Dampfkessel entfernt werden. Die Konzentration von Komponenten in der Flüssigkeit ist durch eine Bestimmung der Leitfähigkeit der Flüssigkeit bestimmbar.For desalination, however, a discharge line is preferably provided (just below the level line). This is because more dissolved components are deposited here and can be removed from the steam boiler with less fluid exchange. The concentration of components in the liquid can be determined by determining the conductivity of the liquid.

In einer bevorzugten Ausgestaltung weist der Dampfkessel zwei separate Ausschleuseleitungen auf, eine zur Absalzung und eine zur Abschlammung. Hierdurch bestehen auch keine Probleme bei der Einstellung der Durchflussmenge in den Ausschleuseleitungen. Die Absalzung erfolgt nämlich meist kontinuierlich und langsam, wohingegen die Abschlammung kurzzeitig, schlagartig und mit hoher Durchflussmenge erfolgt. Leitungen und Ventile können bei zwei separaten Ausschleuseleitungen an diese Anforderungen angepasst sein.In a preferred embodiment, the steam boiler has two separate discharge lines, one for desalination and one for sludge removal. This also means that there are no problems when setting the flow rate in the discharge lines. The desalination usually takes place continuously and slowly, whereas the desalination takes place briefly, suddenly and with a high flow rate he follows. Lines and valves can be adapted to these requirements with two separate discharge lines.

Eine nähere Ausgestaltung des Verfahrens sieht vor, dass die Analyseeinrichtung zum Bestimmen des (tatsächlichen) Energieverlustes bei einem Ausschleusen von Flüssigkeit durch die Ausschleuseleitung eine Durchflussmenge der ausgeschleusten Flüssigkeit bestimmt. Mit Hilfe der ausgeschleusten Durchflussmenge kann auf den Energieverlust rückgeschlossen werden.A more detailed embodiment of the method provides that the analysis device for determining the (actual) energy loss when liquid is discharged through the discharge line determines a flow rate of the discharged liquid. With the help of the discharged flow rate, conclusions can be drawn about the energy loss.

Zur Bestimmung der Durchflussmenge schlägt eine spezielle Variante der Erfindung vor, dass diese mit Daten eines Mengensensors in der Ausschleuseleitung oder durch eine Berechnung basierend auf einer Ventilstellung eines Ausschleuseventils in der Ausschleuseleitung, einer Ventilkennlinie und einem Kesselinnendruck erfolgt. Ein Mengensensor ist besonders genau, wohingegen die zweite Variante ohne Mengensensor kostengünstiger ist.To determine the flow rate, a special variant of the invention suggests that this be done with data from a quantity sensor in the discharge line or by a calculation based on a valve position of an discharge valve in the discharge line, a valve characteristic curve and an internal boiler pressure. A quantity sensor is particularly accurate, whereas the second variant without a quantity sensor is more cost-effective.

Gemäß einer speziellen Verfahrensergänzung führt die Analyseeinrichtung zum Bestimmen des (tatsächlichen) Energieverlustes bei einem Ausschleusen von Flüssigkeit durch die Ausschleuseleitung eine Bestimmung einer Temperatur der ausgeschleusten Flüssigkeit durch, vorzugsweise über der Zeit. Anschließend wird ein Enthalpiestrom basierend auf der Durchflussmenge und der Temperatur der ausgeschleusten Flüssigkeit berechnet. Der Enthalpiestrom über dem Zeitraum der Ausschleusung entspricht dem Energieverlust. Vorzugsweise erfolgt die Bestimmung der Temperatur unmittelbar hinter einem Ventil in der Ausschleuseleitung.According to a special addition to the method, the analysis device for determining the (actual) energy loss when liquid is discharged through the discharge line determines a temperature of the discharged liquid, preferably over time. An enthalpy flow is then calculated based on the flow rate and the temperature of the discharged liquid. The enthalpy flow over the period of discharge corresponds to the energy loss. The temperature is preferably determined immediately downstream of a valve in the discharge line.

Eine ergänzende Ausgestaltung des Verfahrens sieht zum Bestimmen des (tatsächlichen) Energieverlustes bei einem Ausschleusen von Flüssigkeit durch die Ausschleuseleitung eine Bestimmung des Kesselinnendrucks im Innenraum vor. Anschließend erfolgt eine Berechnung eines Enthalpiestroms basierend auf der Durchflussmenge der ausgeschleusten Flüssigkeit und dem Kesselinnendruck. Über den Kesseldruck lässt sich die zugehörige Siedetemperatur der Flüssigkeit bestimmen. Damit kann eine Umrechnung der Durchflussmenge in einen Enthalpiestrom erfolgen. Hierfür kann ein meist ohnehin vorhandener Drucksensor mit der Analyseeinrichtung gekoppelt sein.A supplementary embodiment of the method provides for the determination of the (actual) energy loss when liquid is discharged through the discharge line by determining the internal pressure of the boiler in the interior. An enthalpy flow is then calculated based on the flow rate of the discharged liquid and the internal pressure in the boiler. The associated boiling temperature of the liquid can be determined via the boiler pressure. This enables the flow rate to be converted into an enthalpy flow. For this purpose, a pressure sensor, which is usually present anyway, can be coupled to the analysis device.

Zu Analysezwecken erfolgt gemäß der erfindungsgemäßen Ausgestaltung des Verfahrens eine Aufzeichnung der Durchflussmenge über den gesamten Betriebszeitraum und über einen rückstellbaren Zeitraum. Unter rückstellbarem Zeitraum ist eine zurückliegende Zeit zu verstehen, die ähnlich einem Tageszähler eines Kraftfahrzeugs durch Zurückstellen auf null gesetzt werden kann. Es ist jedoch auch ein gleitendes Zeitfenster nutzbar, welches eine definierte Zeitspanne vor dem aktuellen Zeitpunkt betrachtet.For analysis purposes, according to the embodiment of the method according to the invention, the flow rate is recorded over the entire operating period and via a resettable one Period. A resettable period of time is to be understood as a past time which, similar to a day counter of a motor vehicle, can be set to zero by resetting. However, a sliding time window can also be used, which considers a defined period of time before the current point in time.

Zur Analyse sieht eine spezielle Verfahrensgestaltung vor, dass ein Vergleich zwischen der Durchflussmenge über dem gesamten Betriebszeitraum und der Durchflussmenge über dem rückstellbaren Zeitraum erfolgt, sowie ein Signal ausgegeben wird, wenn sich das Verhältnis zwischen den beiden Durchflussmengen über der Zeit um einen definierten Betrag ändert.For the analysis, a special method design provides that a comparison is made between the flow rate over the entire operating period and the flow rate over the resettable period, and a signal is output if the ratio between the two flow rates changes by a defined amount over time.

Durch diesen Vergleich sind Veränderungen der Kesseleffizienz erkennbar. Insbesondere kann auch auf Veränderungen der zugeführten Flüssigkeit geschlossen werden. So lässt sich zum Beispiel eine Verschlechterung der Speisewasserqualität detektieren. Geeignete Maßnahmen zur Optimierung der Kesseleffizienz können anschließend ergriffen werden. Die Signalausgabe kann dabei eine visuelle Ausgabe eines Hinweises auf einer Anzeigeeinrichtung umfassen, z.B. eine Warnleuchte, eine Ampelleuchte oder ein Bildschirm, insbesondere mit graphischem Verlauf der Durchflussmenge und/oder der Kesseleffizienz.This comparison shows changes in boiler efficiency. In particular, changes in the supplied liquid can also be deduced. For example, a deterioration in the quality of the feed water can be detected. Suitable measures to optimize boiler efficiency can then be taken. The signal output can include a visual output of an indication on a display device, e.g. a warning light, a traffic light or a screen, in particular with a graphical course of the flow rate and / or the boiler efficiency.

Darüber hinaus kann ein absoluter Vergleich zwischen der Durchflussmenge über dem gesamten Betriebszeitraum mit einem vordefinierten Wert erfolgen, sowie ein Signal ausgegeben werden, wenn diese Durchflussmenge den vordefinierten Wert überschreitet. Entsprechend kann das Verfahren um die Ausgabe eines Signals ergänzt werden, wenn durch einen Vergleich festgestellt wird, dass die Durchflussmenge über dem rückstellbaren Zeitraum einen vordefinierten Wert übersteigt.In addition, an absolute comparison can be made between the flow rate over the entire operating period with a predefined value, and a signal can be output if this flow rate exceeds the predefined value. Correspondingly, the method can be supplemented by the output of a signal if it is established through a comparison that the flow rate exceeds a predefined value over the resettable period of time.

Eine weitere Analyse erfolgt bei einer Verfahrensvariante durch ein Berechnen eines Verhältnisses zwischen der Durchflussmenge und einem aus den Parametern zugeführte Flüssigkeitsmenge, Dampfmenge oder thermische Leistung. Wenn sich das berechnete Verhältnis über der Zeit um einen definierten Betrag ändert, wird ein Signal ausgegeben.In a variant of the method, a further analysis is carried out by calculating a ratio between the flow rate and an amount of liquid, amount of steam or thermal power supplied from the parameters. If the calculated ratio changes by a defined amount over time, a signal is output.

Mit Hilfe der so bestimmten Parameter können Rückschlüsse auf die Menge an ausgeschleusten Komponenten gemacht werden. Die Ausschleusung kann damit so gestaltet werden, dass möglichst wenig Flüssigkeit aus dem Dampfkessel ausgeschleust wird. Entsprechend wenig Energie geht verloren. Zur Gestaltung der Ausschleusung können die Öffnungsstellungen und Öffnungszeiten des Ventils in der Ausschleuseleitung variiert werden.With the help of the parameters determined in this way, conclusions can be drawn about the amount of discharged components. The discharge can thus be designed in such a way that as little liquid as possible is discharged from the steam boiler. Accordingly, little energy is lost. To design the discharge the opening positions and opening times of the valve in the discharge line can be varied.

Zur Bestimmung der Dampfmenge wird bevorzugt eine Mengenmessung des Dampfes durchgeführt. Die thermische Leistung wird vorzugsweise durch eine Mengenmessung des eingesetzten Brennstoffs, z.B. Gas oder Öl, vorgenommen. Ist keine Mengenmesseinrichtung für diese Brennstoffmenge vorhanden, kann die zugeführte Leistung alternativ durch die sogenannte Brennerlastanforderung, welche den Vorgabewert der angeforderten Leistung angibt, bestimmt werden. Dies insbesondere durch eine Skalierung der Brennerlastanforderung auf die tatsächliche Brennerleistung und eine Integration über den definierten Zeitraum. Alternativ eignet sich zur Bestimmung der Nutzleistung eine Mengenmessung der dem Dampfkessel zugeführten Flüssigkeit, insbesondere der Speisewassermenge.To determine the amount of steam, a measurement of the amount of steam is preferably carried out. The thermal output is preferably carried out by measuring the quantity of the fuel used, e.g. gas or oil. If there is no quantity measuring device for this amount of fuel, the power supplied can alternatively be determined by what is known as the burner load requirement, which specifies the default value for the required power. In particular, this is achieved by scaling the burner load requirement to the actual burner output and integrating it over the defined period. Alternatively, a quantity measurement of the liquid supplied to the steam boiler, in particular the amount of feed water, is suitable for determining the useful power.

Sollte keine Mengenmesseinrichtung für den Dampf und/oder den Flüssigkeitszufluss vorhanden sein, bestehen folgende Alternativen, um die Nutzleistung zu bestimmen:

  • die zugeführte Flüssigkeitsmenge wird über eine Drehzahlvorgabe der zuführenden Pumpe, den Innendruck im Dampfkessel und die Pumpenkennlinie ermittelt; oder
  • die zugeführte Flüssigkeitsmenge wird über eine Ventilstellung eines in der Zuführleitung positionierten Ventils, z.B. durch Position des Schrittmotors des Ventils, sowie dem Innendruck im Dampfkessel und die Ventilkennlinie ermittelt; oder
  • die zugeführte Flüssigkeitsmenge wird durch einfache Zweipunktregelung bestimmt, indem der Flüssigkeitsmassenstrom bei offenem Ventil gleich der Pumpennennleistung gesetzt wird.
If there is no volume measuring device for the steam and / or the liquid inflow, the following alternatives exist to determine the useful power:
  • the amount of liquid supplied is determined by specifying the speed of the supplying pump, the internal pressure in the steam boiler and the pump characteristic curve; or
  • the amount of liquid supplied is determined via a valve position of a valve positioned in the supply line, for example via the position of the stepper motor of the valve, as well as the internal pressure in the steam boiler and the valve characteristic curve; or
  • The amount of liquid supplied is determined by simple two-point control by setting the liquid mass flow equal to the nominal pump output when the valve is open.

Ferner betrifft die Erfindung eine Vorrichtung zur Durchführung des zuvor beschriebenen Verfahrens, mit einem Dampfkessel, aus welchem eine Ausschleuseleitung ausmündet, und mit einer Analyseeinrichtung zur Bestimmung eines (tatsächlichen) Energieverlustes bei einem Ausschleusen von Flüssigkeit durch die Ausschleuseleitung.The invention also relates to a device for carrying out the method described above, with a steam boiler from which a discharge line opens, and with an analysis device for determining an (actual) energy loss when liquid is discharged through the discharge line.

Mit einer solchen Vorrichtung ist es möglich, den tatsächlichen Energieverlust eines Ausschleusens von Flüssigkeit zu Bestimmen und bei zukünftigen Ausschleusevorgängen zu berücksichtigen, insbesondere hinsichtlich einer Maximierung der Kesseleffizienz unter Berücksichtigung der Energieverluste beim Ausschleusen. Die verfahrensgemäßen Vorteile lassen sich mit einer solchen Vorrichtung entsprechend realisieren. Dabei kann die Vorrichtung gemäß den verfahrenstechnisch jeweils notwendigen Vorrichtungsmerkmalen ergänzt sein.With such a device it is possible to determine the actual energy loss when liquid is discharged and to take it into account in future discharge processes, in particular with regard to maximizing the boiler efficiency, taking into account the energy losses during discharge. The advantages according to the method can be realized accordingly with such a device. The Device can be supplemented in accordance with the device features required in each case in terms of process technology.

So kann der Dampfkessel unter anderem um eine Rückführleitung ergänzt sein, sodass der ausgeleitete Dampf nach einer technischen Anwendung wieder zurück in den Dampfkessel leitbar ist, vorzugsweise kondensiert als Flüssigkeit. Damit wird wenig Energie an die Umgebung abgegeben. Auch dies steigert die Effizienz des Dampfkessels.For example, the steam boiler can be supplemented with a return line, so that the discharged steam can be directed back into the steam boiler after a technical application, preferably condensed as a liquid. This means that little energy is given off to the environment. This also increases the efficiency of the steam boiler.

In einer näheren Ausgestaltung weist die Vorrichtung eine Mengenbestimmungseinrichtung zur Bestimmung einer Durchflussmenge in der Ausschleuseleitung auf. Die Mengenbestimmungseinrichtung kann ein Mengensensor oder eine Mengenbestimmung über die Ventilstellung, Ventilkennlinie und Kesselinnendruck sein. Über die Bestimmte Durchflussmenge kann auf den Energieverlust bei einem Ausschleusen geschlossen werden.In a more detailed embodiment, the device has a quantity determination device for determining a flow rate in the discharge line. The quantity determination device can be a quantity sensor or a quantity determination via the valve position, valve characteristic and internal boiler pressure. The energy loss during a discharge can be inferred from the specific flow rate.

Die Zeichnung stellt ein Ausführungsbeispiel der Erfindung dar und zeigt in

Fig. 1
eine schematische Anordnung eines Dampfkessels mit Analyseeinrichtung und Sensoren.
The drawing represents an embodiment of the invention and shows in
Fig. 1
a schematic arrangement of a steam boiler with analysis device and sensors.

In Fig. 1 erkennt man einen Dampfkessel 1. Dieser umschließt einen hohlen Innenraum 2 mit Kesselsohle 15. Der Innenraum 2 ist teilweise, nämlich bis zu einer Füllstandslinie, mit Flüssigkeit 100 gefüllt. Am geodätisch oberen Ende des Dampfkessels 1 mündet ein Dampfausgang 4 aus. Dieser ist über eine Dampfleitung 16 mit einem Verbraucher 9 verbunden. Von dem Verbraucher 9 führt eine Rückführleitung 10 zurück in den Dampfkessel 1. Sie mündet insbesondere unterhalb der Flüssigkeitslinie in den Dampfkessel 1 ein.In Fig. 1 a steam boiler 1 can be seen. This encloses a hollow interior 2 with boiler base 15. The interior 2 is partially filled with liquid 100, namely up to a level line. A steam outlet 4 opens out at the geodetically upper end of the steam boiler 1. This is connected to a consumer 9 via a steam line 16. A return line 10 leads from the consumer 9 back into the steam boiler 1. In particular, it opens into the steam boiler 1 below the liquid line.

Weiterhin erkennt man eine Zuführleitung 3, über welche frische Flüssigkeit 100 in den Dampfkessel 1 eingeleitet wird. In der Zuführleitung 3 ist ein Zuflussventil 17 angeordnet über welches die Zufuhr von Flüssigkeit 100 freigebbar und sperrbar ist.Furthermore, a feed line 3 can be seen, via which fresh liquid 100 is introduced into the steam boiler 1. In the supply line 3, a supply valve 17 is arranged via which the supply of liquid 100 can be released and blocked.

Sowohl die Rückführleitung 10 als auch die Zuführleitung 3 münden zunächst in ein gemeinsames Vorlagegefäß 30. In dem Vorlagegefäß 30 wird die zurückströmende Flüssigkeit 100 gesammelt und mit frischer Flüssigkeit 100 vermischt, welche etwaige verlorene Flüssigkeit 100 ersetzt. Hinter dem Vorlagegefäß 30 teilen sich die Rückführleitung 10 und die Zuführleitung 3 einen gemeinsamen Leitungsabschnitt. In diesem liegt das Zuflussventil 17.Both the return line 10 and the supply line 3 initially open into a common storage vessel 30. The liquid 100 flowing back is collected in the storage vessel 30 and mixed with fresh liquid 100, which replaces any lost liquid 100. Behind the receiving vessel 30, the divide Return line 10 and the supply line 3 have a common line section. The inflow valve 17 is located in this.

Am geodätisch unteren Ende des Dampfkessels 1, insbesondere an der Kesselsohle 15, mündet eine Ausschleuseleitung 5 zum Ausschleusen von Flüssigkeit 100 aus dem Dampfkessel 1 aus. Mit dieser Ausschleuseleitung 5 ist eine Abschlammung durchführbar. In der Ausschleuseleitung 5 ist ein Ausschleuseventil 11 angeordnet. Auf der dem Dampfkessel 1 abgewendeten Seite des Ausschleuseventils 11 sind ein erster Temperatursensor 12 und ein Mengensensor 18 zur Bestimmung einer Durchflussmenge positioniert, sowie mit einer Analyseeinrichtung 6 verbunden.At the geodetically lower end of the steam boiler 1, in particular at the boiler base 15, a discharge line 5 opens out for discharging liquid 100 from the steam boiler 1. With this discharge line 5, sludge removal can be carried out. A discharge valve 11 is arranged in the discharge line 5. On the side of the discharge valve 11 facing away from the steam boiler 1, a first temperature sensor 12 and a quantity sensor 18 for determining a flow rate are positioned and connected to an analysis device 6.

Außerdem mündet eine zweite Ausschleuseleitung 40 aus dem Dampfkessel 1 aus. Diese dient der Absalzung. Hierfür liegt die Ausmündung knapp unterhalb der Füllstandslinie der Flüssigkeit 100. In der zweiten Ausschleuseleitung 40 sind ein zweites Ausschleuseventil 42, ein zweiter Temperatursensor 44 und ein zweiter Mengensensor 46 angeordnet. Der zweite Temperatursensor 44 und der zweite Mengensensor 46 sind jeweils kommunizierend mit der Analyseeinrichtung 6 verbunden. Zusätzlich ist ein Außentemperatursensor 8 vorgesehen, der ebenfalls mit der Analyseeinrichtung 6 verbunden ist.In addition, a second discharge line 40 opens out of the steam boiler 1. This is used for desalination. For this purpose, the outlet lies just below the level line of the liquid 100. A second discharge valve 42, a second temperature sensor 44 and a second quantity sensor 46 are arranged in the second discharge line 40. The second temperature sensor 44 and the second quantity sensor 46 are each connected to the analysis device 6 in a communicating manner. In addition, an outside temperature sensor 8 is provided, which is also connected to the analysis device 6.

Des Weiteren erkennt man einen Brenner 20, welcher der Flüssigkeit 100 im Dampfkessel 1 Wärme zuführt. Zur Übertragung der Wärme auf die Flüssigkeit 100 weist der Brenner 20 einen Wärmetauscher 22 auf. Dieser ist unter anderem als horizontales Flammrohr 22 ausgeführt, welches durch den Innenraum 2 des Dampfkessels 1 hindurchführt. Es liegt unterhalb der Füllstandslinie.A burner 20 can also be seen, which supplies heat to the liquid 100 in the steam boiler 1. In order to transfer the heat to the liquid 100, the burner 20 has a heat exchanger 22. This is designed, among other things, as a horizontal flame tube 22 which passes through the interior 2 of the steam boiler 1. It is below the level line.

Zur Regelung des Dampfkessels 1 ist eine Kesselsteuerung 7 vorhanden, welche mit dem Brenner 20, dem ersten Ausschleuseventil 11, dem zweiten Ausschleuseventil 42 und dem Zuflussventil 17 verbunden ist. Die drei Ventile 11, 17, 42 sind von der Kesselsteuerung 7 elektrisch verstellbar. Die Kesselsteuerung 7 ist kommunizierend mit der Analyseeinrichtung 6 verbunden.To regulate the steam boiler 1, there is a boiler control 7 which is connected to the burner 20, the first discharge valve 11, the second discharge valve 42 and the inflow valve 17. The three valves 11, 17, 42 are electrically adjustable by the boiler control 7. The boiler control 7 is connected to the analysis device 6 in a communicating manner.

Darüber hinaus ist die Kesselsteuerung 7 kommunizierend mit einem Drucksensor 19 zur Bestimmung eines Kesselinnendrucks sowie einem Abgastemperatursensor 21 im Bereich des Flammrohrs 22 verbunden.In addition, the boiler control 7 is communicatively connected to a pressure sensor 19 for determining a boiler internal pressure and to an exhaust gas temperature sensor 21 in the area of the flame tube 22.

Mit einer solchen Vorrichtung ist das erfindungsgemäße Verfahren durchführbar.The method according to the invention can be carried out with such a device.

Abweichend zur Darstellung der Fig. 1 kann die Analyseeinrichtung 6 optional als Bestandteil der Kesselsteuerung 7 ausgebildet sein. Darüber hinaus besteht auch die Möglichkeit die Zuführleitung 3 und die Rückführleitung 10 separat in den Dampfkessel 1 einmünden zu lassen. Vorzugsweise wird dann ein Vorlagegefäß 30 in der Rückführleitung 10 angeordnet.Deviating from the representation of the Fig. 1 the analysis device 6 can optionally be designed as part of the boiler control 7. In addition, there is also the possibility of having the feed line 3 and the return line 10 open separately into the steam boiler 1. A receiving vessel 30 is then preferably arranged in the return line 10.

Claims (6)

  1. Method for operating a steam boiler (1), which has an interior space (2), a supply line (3) for supplying liquid (100), a steam outlet (4), a discharge line (5) for discharging liquid (100) from the steam boiler (1) and a boiler control (7), characterized by a determination of at least the following parameters with the aid of an analysing device (6):
    a) determining an energy loss in the event of a discharge of liquid (100) through the discharge line (5), a determination of a flow rate of discharged liquid (100) through the discharge line (5) being performed, a determination of a temperature of the discharged liquid (100) being performed, and a calculation of an enthalpy flow being performed on the basis of the flow rate and the temperature of the discharged liquid (100),
    b) recording the flow rate over the entire operating time period and over a resettable time period.
  2. Method according Claim 1, the determination of the flow rate being performed with data of a rate sensor in the discharge line (5) or by a calculation on the basis of a valve position of a discharge valve (11) in the discharge line (5), a valve characteristic and an internal boiler pressure.
  3. Method according to either of Claims 1 and 2, the following steps being carried out for determining the energy loss with the analysing device (6):
    c) determining an internal boiler pressure in the interior space (2); and
    d) calculating an enthalpy flow on the basis of the flow rate of the discharged liquid (100) and the internal boiler pressure.
  4. Method according to Claim 1, comprising the step of:
    e) comparing the flow rate over the entire operating time period and the flow rate over the resettable time period;
    f) outputting a signal if the ratio between the two flow rates changes over the time by a defined amount.
  5. Method according to one of Claims 1 to 4, comprising the step of:
    g) calculating a ratio between the flow rate and an amount of liquid, amount of steam or thermal output supplied from the parameters, the thermal output being provided by a measurement of the amount of fuel used or by a burner-load requirement, which specifies the preset value of the required output;
    h) outputting a signal if the ratio changes over time by a defined amount.
  6. Device for carrying out the method according to one of Claims 1 to 5, with a steam boiler (1), which has an interior space (20), a supply line (3) for supplying liquid (100), a steam outlet (4), a discharge line (5) for discharging liquid (100) from the steam boiler (1) and a boiler control (7), characterized by a rate-determining device (18) for determining a flow rate in the discharge line (5) and by an analysing device (6) for determining an energy loss in the event of a discharge of liquid (100) through the discharge line (5), with which a determination of a flow rate of discharged liquid (100) through the discharge line (5) is performed, a determination of a temperature of the discharge liquid (100) is performed, and a calculation of an enthalpy flow is performed on the basis of the flow rate and the temperature of the discharged liquid (100).
EP14183027.3A 2013-09-09 2014-09-01 Method for operating a steam boiler and device for carrying out the method Active EP2846087B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013218009.8A DE102013218009A1 (en) 2013-09-09 2013-09-09 Method for operating a steam boiler and apparatus for carrying out the method

Publications (3)

Publication Number Publication Date
EP2846087A2 EP2846087A2 (en) 2015-03-11
EP2846087A3 EP2846087A3 (en) 2015-04-08
EP2846087B1 true EP2846087B1 (en) 2021-06-02

Family

ID=51429133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14183027.3A Active EP2846087B1 (en) 2013-09-09 2014-09-01 Method for operating a steam boiler and device for carrying out the method

Country Status (3)

Country Link
EP (1) EP2846087B1 (en)
DE (1) DE102013218009A1 (en)
RU (1) RU2676151C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017207799B4 (en) 2017-05-09 2020-08-06 Audi Ag Motor vehicle display device and motor vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3377994A (en) * 1966-08-17 1968-04-16 Frederick H. Horne Steam generating system
US3610208A (en) * 1969-07-25 1971-10-05 Douglas E Penning Boiler protective system
US3680531A (en) * 1971-04-22 1972-08-01 Chemed Corp Automatic boiler blowdown control
US3908605A (en) * 1974-11-01 1975-09-30 Charles M Andersen Automatic boiler blowdown apparatus and method
US4406794A (en) * 1979-02-05 1983-09-27 Brigante Miguel F External sludge collector for boiler bottom blowdown and automatic blowdown control initiated by conductivity probe within the boiler and method
US4465026A (en) * 1983-03-07 1984-08-14 Carberry Victor V Automatic boiler blowdown system including blowdown sequence control
US4639718A (en) * 1984-04-02 1987-01-27 Olin Corporation Boiler blowdown monitoring system and process for practicing same
SU1451287A1 (en) * 1986-12-10 1989-01-15 П. П. Москалец Arrangement for automatic starting of power and central heating plant
US6520122B2 (en) * 2001-04-04 2003-02-18 Autoflame Engineering Ltd. Pressurized steam boilers and their control
US20030226794A1 (en) * 2002-06-06 2003-12-11 Coke Alden L. Steam boiler scale inhibitor, sludge (TSS) and TDS control, and automatic bottom blow-down management system
US6655322B1 (en) * 2002-08-16 2003-12-02 Chemtreat, Inc. Boiler water blowdown control system
US7409301B2 (en) * 2002-12-31 2008-08-05 Cleaver-Brooks, Inc. Boiler water level monitoring and control system
GB0408102D0 (en) * 2004-04-08 2004-05-12 Autoflame Eng Ltd Total dissolved solids
EP1584866A3 (en) * 2004-04-08 2005-11-30 Autoflame Engineering Limited Apparatus and method for measuring total dissolved solids in a steam boiler
RU2302999C2 (en) * 2005-06-01 2007-07-20 Борис Абрамович Штрамбранд Method of the automatic chemical water conditioning with the help of the variable dosing and the additional water softening

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013218009A1 (en) 2015-03-12
EP2846087A3 (en) 2015-04-08
EP2846087A2 (en) 2015-03-11
RU2676151C1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
DE102011003326B4 (en) Method for operating a water softening system and water softening system for carrying out the method
EP3137195A1 (en) Method and device for carrying out an integrity test on a filter element
DE102013113641A1 (en) Apparatus and method for water treatment
AT517729B1 (en) Method and apparatus for determining low temperature properties
DE102010003636A1 (en) Method for monitoring a water treatment plant, in particular a cycle filling plant
DE69409999T2 (en) Electrode boiler with automatic control
EP2846087B1 (en) Method for operating a steam boiler and device for carrying out the method
DE102017105435A1 (en) Heating fittings
DE69602826T2 (en) Water cleaning device with flushing of the membrane chamber
DE1808985A1 (en) Water distillation plant
DE102006024717A1 (en) Method for operating a compressed air lift system for a small wastewater treatment plant and compressed air lift system
WO2008000580A2 (en) Measuring device for purity measurements in a media circuit of a power station and method for operating said measuring device
EP2301651B1 (en) Method for regulating a separation assembly with a reverse osmosis element and reverse osmosis assembly
EP2848862B1 (en) Method for operating a steam boiler and device for carrying out the method
DE602004001491T2 (en) Ventilation system with a reverse osmosis filter cartridge
DE19520917A1 (en) Reverse osmosis assembly used in conjunction with blood dialysis units, etc.
DE19504328A1 (en) Cost-oriented control of a regenerable filter
DE102014206111A1 (en) Method for operating a water heater, in particular a gas water heater
DE202008017408U1 (en) Device for the intersection of liquids of different properties as a controlled variable
DE19504325C2 (en) Method and device for cost-oriented monitoring and / or display of the operating state of a cleanable heat exchanger
DE4400604C1 (en) Disinfection for the product water of a reverse osmosis unit
CH656203A5 (en) Steam boiler with electric resistance heating
DE534596C (en) Method and device for operating storage stoves, in which heat is transferred from a heat storage unit to points of consumption by means of an evaporating heating fluid
EP2821131A1 (en) Apparatus for conditioning water of water circulation systems
DE2742737C2 (en) Clogging meter for automatically measuring the density or concentration of the impurities contained in a liquid metal

Legal Events

Date Code Title Description
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20140901

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F22B 37/56 20060101AFI20150304BHEP

R17P Request for examination filed (corrected)

Effective date: 20151008

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014015633

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014015633

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220303

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1398784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 10

Ref country code: DE

Payment date: 20231124

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602