EP2827973A1 - Procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur, et système correspondant - Google Patents

Procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur, et système correspondant

Info

Publication number
EP2827973A1
EP2827973A1 EP13703109.2A EP13703109A EP2827973A1 EP 2827973 A1 EP2827973 A1 EP 2827973A1 EP 13703109 A EP13703109 A EP 13703109A EP 2827973 A1 EP2827973 A1 EP 2827973A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
ammonia
model
nitrogen oxides
flow rates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13703109.2A
Other languages
German (de)
English (en)
Inventor
Damiano Di-Penta
Pierre-Yves Le-Morvan
Aurelien Ramseyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2827973A1 publication Critical patent/EP2827973A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method and a system for the treatment of exhaust gases, in particular a catalyst capable of treating nitrogen oxides (NOx), especially NO and N0 2 . More specifically, the invention relates to a method for determining the amount of ammonia stored in the catalyst.
  • NOx nitrogen oxides
  • the selective catalytic reduction process (English: selective catalytic reduction S CR) is a known process for the treatment of NOx nitrogen oxides.
  • the process consists of continuous treatment of nitrogen oxide emissions by means of a catalyst in the exhaust line of the engine and a reducing agent injected into the exhaust line.
  • the reducing agent for example urea, is stored in a tank, in the vehicle, and is injected and mixed with the exhaust gas before entering the catalyst.
  • the catalyst accelerates the reduction reaction of the nitrogen oxides by the reducing agent.
  • the amount of reducing agent injected into the exhaust line as well as the amount of reducing agent stored in the catalyst must be precisely controlled: an overdose of the The reducing agent would lead to an increase in consumption unnecessarily and potentially to the release of ammonia (highly odorous and toxic), while underdosing would limit the treatment efficiency of the nitrogen oxides contained in the exhaust gas.
  • the reduction catalyst stores the ammonia of the reducing agent and releases it to reduce oxides. nitrogen contained in the exhaust gas.
  • the mass also called "buffer”
  • this mass is not measurable in real time, and must therefore be estimated by a model.
  • models for evaluating the mass of ammonia stored in the catalyst but the estimate obtained derives with respect to the real value, which leads to an over-injection or an under-injection of the reducing agent. .
  • the present invention aims to solve the technical problems mentioned above.
  • the invention aims to provide a more accurate estimate of the amount of ammonia stored in the catalyst, to allow a better NOx treatment efficiency or to detect a failure of the catalyst or the injector. reducing agent.
  • a method for determining the amount of ammonia stored in a nitrogen oxide reduction catalyst for mounting in an exhaust line of an internal combustion engine According to the method, the flow rates of nitrogen oxides and of ammonia feeding the catalyst are determined, and it is estimated, from said flow rates and a specific model, the quantity of ammonia stored in the catalyst.
  • the method makes it possible to correct the estimated quantity of ammonia stored as a function of the sensitivity of the sensor (used to correct the estimated quantity) to the quantity of ammonia stored. It thus becomes possible to obtain a more precise estimate of the quantity of ammonia stored, in particular over long operating periods, when the measurement of the sensor depends more and more on the level of ammonia stored in the catalyst.
  • the correction of the model as a function of the sensitivity of the measurement of the overall flow rate of nitrogen oxides and ammonia relative to the quantity of ammonia stored in a catalyst is non-linear.
  • the correction is thus carried out only when the sensitivity of the measurement of the overall flow rate of nitrogen oxides and ammonia with respect to the quantity of ammonia stored in a catalyst exceeds, in absolute value, a determined value.
  • the invention also relates, in another aspect, to a method of controlling an exhaust gas treatment system, the treatment system comprising a nitrogen oxide reduction catalyst mounted in an exhaust line of an internal combustion engine, wherein:
  • the quantity of ammonia stored in the catalyst is determined according to the process described above, and then
  • the invention also relates, in another aspect, to an exhaust gas treatment system emitted by an internal combustion engine, comprising a nitrogen oxide reduction catalyst mounted in the exhaust line of the engine, a means for control device and a device for determining the amount of ammonia stored in a nitrogen oxide reduction catalyst, the device comprising a means for determining the flow rates of nitrogen oxides and ammonia feeding the catalyst, and a estimation means capable of estimating, from said flow rates and a given model, the quantity of ammonia stored in the catalyst.
  • the estimation means is also able to estimate, from said flow rates and the determined model, the flow rates of nitrogen oxides and ammonia leaving the catalyst
  • the device also comprises a sensor mounted in downstream of the catalyst and able to measure the overall flow rate of nitrogen oxides and ammonia leaving the catalyst, and a correction means adapted to correct the determined model as a function of the difference between the measured overall flow rate and the flow rates of the catalyst.
  • the correction means being able to correct the model as a function of the sensitivity of the measurement of the overall flow of nitrogen oxides and ammonia compared with the amount of ammonia stored in the catalyst.
  • the correction means is able to correct the model in a non-linear manner as a function of the sensitivity.
  • the treatment system may also comprise an ammonia injection means in the exhaust line, upstream of the catalyst, controlled by the control means and capable of injecting an ammonia flow rate determined by the control means according to the amount of ammonia stored in the catalyst.
  • Figure 1 shows, schematically, an exhaust after-treatment system according to the invention.
  • FIG. 2 represents a block diagram illustrating the architecture of a means for determining the quantity of ammonia stored in a reduction catalyst.
  • FIG. 1 very schematically shows the general structure of an internal combustion engine 1 and an aftertreatment system of the exhaust gases 2.
  • the internal combustion engine 1 comprises, by for example, at least one cylinder 3, an intake manifold 4, an exhaust manifold 5, an exhaust gas recirculation circuit 6 provided with an exhaust gas recirculation valve 7, and a turbo compression system 8.
  • the exhaust after-treatment system 2 comprises an exhaust line 9 comprising an injector 10 of a reducing agent, for example urea, and a reduction catalyst 11 (in English: Selective Catalytic Reduction). SCR) mounted downstream of the injector 10.
  • the exhaust line 9 may also comprise a mixing means mounted between the injector 10 and the reduction catalyst 11, and for homogenizing the mixture constituted by the exhaust gas and the reducing agent.
  • the system 2 also comprises a temperature sensor 12 mounted upstream of the reduction catalyst 11 and making it possible to know the temperature of the gases supplying the catalyst 11 during the various phases of treatment of the exhaust gases.
  • the system 2 can also comprise a NOx sensor 13, mounted downstream of the catalyst 11. The sensor 13 makes it possible in particular to measure the flow of nitrogen oxides and ammonia leaving the catalyst 11 in operation.
  • An electronic control unit 14 processes the various signals and controls the combustion, in particular by sending set values to the cylinder fuel injector. 3 and controlling a device, for example with a valve, controlling the quantity of air supplying the cylinder 3.
  • the electronic control unit 14 may also control the reducing agent injector 10 to introduce into the exhaust line 9 the desired amount of reducing agent.
  • the electronic control unit 14 also comprises means for determining the quantity of ammonia stored in a reduction catalyst 11.
  • the determination means 15 receives several data inputs, including the data of the temperature sensor 12 and the sensor. NOx 13, and allows the electronic control unit 14 to know the amount of ammonia stored in the catalyst 11 to determine the amount of reducing agent to be introduced into the exhaust line 9.
  • the determining means 15 may comprise an estimating means 16 receiving as input: the temperature T values of the gases measured by the sensor 12, the X TM H ⁇ and ⁇ 0 ⁇ rates of ammonia and nitrogen oxides respectively, supplying the reduction catalyst 11 and the exhaust gas flow rates Qch feeding the catalyst.
  • the estimation means 16 calculates, from a dynamic model based on the ammonia adsorption and desorption reaction mechanisms on the catalyst, reduction of the nitrogen oxides by the adsorbed ammonia and oxidation of ammonia, the levels ⁇ and X TM o x of ammonia and nitrogen oxides respectively, leaving the reduction catalyst 11 and ammonia niNH3 mass stored in the catalyst 11.
  • the model can include use the following equation system:
  • the model used makes it possible to correct a drift of the estimate of the mass of ammonia stored in the catalyst.
  • the measurement of the sensor 13 can be written in the following form:
  • a and ⁇ may be constant or dependent on quantities such as temperature or flow rate.
  • the model of the means 16 is then corrected by the following adaptive model:
  • the magnitude ⁇ is the value of the correction loop of the adaptive model.
  • the magnitude ⁇ is thus reintroduced at the input of the model to correct the values obtained.
  • the magnitude ⁇ is given by the following equation:
  • K is the gain of the observer
  • the determining means 15 includes a gap determining means 17, receiving as input the rates o o x and
  • the determination means 15 also includes one means 1 8 receiving as input the S value calculated by the estimation means 16 and outputting the coefficient K. S to be multiplied away by the means 17 to obtain the magnitude ⁇ .
  • the means 17 and 18, as well as the multiplying means thus form a correction means 19 for the model of the estimation means 16.
  • the determination means 15 makes it possible to determine the amount niN H3 stored in the catalyst 11, taking into account the sensitivity S of the sensor relative to the quantity of ammonia stored in the catalyst 11.
  • the sensitivity S generally presents, as a function of the temperature T and the quantity of ammonia stored m N H3, three zones:
  • this zone corresponds to a zone in which there is no correction to be made to the model and in which S 'is zero;
  • the adaptive model then corrects the difference determined by the means 17 by lowering the level ammonia stored in the catalyst 11;
  • the adaptive model then corrects the difference determined by the means 17 by increasing the level of ammonia stored in the catalyst 1 1.
  • the correction made to the model takes into account, non-linearly, the sensitivity of the measurement of NOx and NH 3 with respect to the quantity of ammonia stored, in order to obtain a finer estimate. More precisely, when the model overestimates the real value of m N H3, the calculation of the sensitivity S makes it possible to detect a potential loss of efficiency and to correct the estimate accordingly when the actual value of the quantity of NH 3 stored in catalyst 11 becomes dangerously low. This correction of the estimation occurs only when the criterion S becomes sufficiently large, but makes it possible to increase the flow of ammonia injection in the exhaust line accordingly or to detect a possible failure of the system.
  • the invention makes it possible to estimate more reliably and robustly this amount of ammonia, and in particular can detect a decrease or a significant increase in this amount from the desired value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention concerne un procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur de réduction 11 des oxydes d'azote. Selon le procédé, on détermine les débits d'oxydes d'azote et d'ammoniac alimentant le catalyseur 11, et on estime, à partir desdits débits et d'un modèle déterminé, la quantité d'ammoniac stockée dans le catalyseur 11. On estime également, à partir desdits débits et du modèle déterminé, les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur 11, on mesure le débit global d'oxydes d'azote et d'ammoniac en aval du catalyseur 11 et on corrige le modèle déterminé en fonction de l'écart entre le débit global mesuré et les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur estimés par le modèle, la correction du modèle dépendant de la sensibilité S de la mesure du débit global d'oxydes d'azote et d'ammoniac par rapport à la quantité d'ammoniac stockée dans le catalyseur.

Description

Procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur, et système correspondant La présente invention concerne un procédé et un système de traitement des gaz d' échappements, en particulier un catalyseur capable de traiter des oxydes d ' azote (NOx), notamment NO et N02. Plus précisément, l' invention concerne un procédé pour déterminer la quantité d' ammoniac stockée dans le catalyseur.
Afin de répondre à la baisse des seuils admis pour les émissions de gaz po lluants, des systèmes de traitement des gaz de plus en plus complexes sont disposés dans la ligne d ' échappement des moteurs à mélange pauvre, notamment les moteurs diesels. Ces systèmes de post-traitement permettent notamment de réduire les émissions de particules et d'oxydes d ' azote en plus du monoxyde de carbone et des hydrocarbures imbrûlés.
Le procédé de réduction catalytique sélective (en anglais : sélective catalytic réduction S CR) est un procédé connu de traitement des oxydes d ' azote NOx. Le procédé consiste en un traitement continu des émissions d 'oxydes d ' azote grâce à un catalyseur disposé dans la ligne d ' échappement du moteur et à un agent réducteur injecté dans la ligne d' échappement. L ' agent réducteur, par exemple de l'urée, est stocké dans un réservoir, dans le véhicule, et est injecté et mélangé aux gaz d' échappement avant d' entrer dans le catalyseur. Le catalyseur permet d' accélérer la réaction de réduction des oxydes d' azote par l ' agent réducteur.
Afin de contrôler la réaction de réduction et donc le traitement des émissions, la quantité d ' agent réducteur injectée dans la ligne d' échappement ainsi que la quantité d ' agent réducteur stockée dans le catalyseur, doivent être contrôlées précisément : un surdosage de l' agent réducteur conduirait à augmenter les consommations inutilement et à potentiellement rejeter de l' ammoniac (fortement odorant et toxique), tandis qu 'un sous-dosage limiterait l' efficacité de traitement des oxydes d ' azote contenus dans les gaz d' échappement.
De manière plus précise, le catalyseur de réduction stocke l' ammoniac de l' agent réducteur et le libère pour réduire les oxydes d'azote contenus dans les gaz d'échappement. Ainsi, pour optimiser l'efficacité du procédé de réduction, il est nécessaire de réguler la masse (également appelée « buffer ») d'ammoniac NH3 stockée dans le catalyseur. Cependant, cette masse n'est pas mesurable en temps réel, et doit donc être estimée par un modèle. Il existe ainsi des modèles d'évaluation de la masse d'ammoniac stockée dans le catalyseur, mais l'estimation obtenue dérive par rapport à la valeur réelle, ce qui conduit à une sur-injection ou une sous-injection de l'agent réducteur.
Il est connu de corriger l'estimation de la quantité d'ammoniac stockée dans le catalyseur en utilisant la mesure d'un capteur NOx monté en aval du catalyseur. En effet, le capteur NOx est non seulement sensible aux NOx mais également au NH3 qui s'échappe du catalyseur. De tels dispositifs sont par exemple décrits dans les demandes de brevet US2010/024389 et US2009/288396.
Cependant, il est difficile d'interpréter en temps réel les mesures du capteur NOx (qui correspondent à la fois aux oxydes d'azote et à l'ammoniac) pour corriger l'estimation de la quantité d'ammoniac stockée dans le catalyseur, et les modèles mentionnés précédemment conduisent toujours à une dérive entre l'estimation et la quantité d'ammoniac stockée dans le catalyseur.
La présente invention a pour objet de résoudre les problèmes techniques énoncés précédemment. En particulier l'invention a pour but de proposer une estimation plus précise de la quantité d'ammoniac stockée dans le catalyseur, afin de permettre une meilleure efficacité de traitement des NOx ou afin de détecter une défaillance du catalyseur ou de l'injecteur de l'agent réducteur.
Selon un aspect, il est proposé un procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur de réduction des oxydes d'azote destiné à être monté dans une ligne d'échappement d'un moteur à combustion interne. Selon le procédé, on détermine les débits d'oxydes d'azote et d'ammoniac alimentant le catalyseur, et on estime, à partir desdits débits et d'un modèle déterminé, la quantité d'ammoniac stockée dans le catalyseur. On estime également, à partir desdits débits et du modèle déterminé, les débits d'oxydes d'azote et d' ammoniac sortant du catalyseur, on mesure le débit global d 'oxydes d' azote et d' ammoniac en aval du catalyseur et on corrige le modèle déterminé en fonction de l' écart entre le débit global mesuré et les débits d 'oxydes d' azote et d' ammoniac sortant du catalyseur estimés par le modèle, la correction du modèle dépendant de la sensibilité de la mesure du débit global d 'oxydes d' azote et d' ammoniac par rapport à la quantité d' ammoniac stockée dans le catalyseur.
Ainsi, grâce à un critère robuste basé sur la théorie des observateurs, il est possible d 'obtenir une estimation plus précise de la quantité d' ammoniac stockée dans le catalyseur. En particulier, le procédé permet de corriger la quantité estimée d ' ammoniac stockée en fonction de la sensibilité du capteur (utilisé pour corriger la quantité estimée) à la quantité d' ammoniac stockée. Il devient ainsi possib le d'obtenir une estimation plus précise de la quantité stockée d' ammoniac, en particulier sur des durées de fonctionnement longues, lorsque la mesure du capteur dépend de plus en plus du niveau d' ammoniac stocké dans le catalyseur.
Préférentiellement, la correction du modèle en fonction la sensibilité de la mesure du débit global d 'oxydes d ' azote et d' ammoniac par rapport à la quantité d ' ammoniac stockée dans un catalyseur, est non-linéaire. La correction est ainsi effectuée seulement lorsque la sensibilité de la mesure du débit global d 'oxydes d' azote et d' ammoniac par rapport à la quantité d ' ammoniac stockée dans un catalyseur, dépasse, en valeur absolue, une valeur déterminée.
L ' invention concerne également, selon un autre aspect, un procédé de commande d 'un système de traitement des gaz d' échappements, le système de traitement comprenant un catalyseur de réduction des oxydes d ' azote monté dans une ligne d ' échappement d'un moteur à combustion interne, dans lequel :
- on détermine la quantité d ' ammoniac stockée dans le catalyseur selon le procédé décrit précédemment, puis
- on injecte un débit d ' ammoniac déterminé dans la ligne d' échappement, en amont du catalyseur, en fonction de la quantité d' ammoniac stockée dans le catalyseur. L'invention concerne également, selon un autre aspect, un système de traitement de gaz d'échappement émis par un moteur à combustion interne, comprenant un catalyseur de réduction des oxydes d'azote monté dans la ligne d'échappement du moteur, un moyen de commande et un dispositif de détermination de la quantité d'ammoniac stockée dans un catalyseur de réduction des oxydes d'azote, le dispositif comprenant un moyen de détermination des débits d'oxydes d'azote et d'ammoniac alimentant le catalyseur, et un moyen d'estimation apte à estimer, à partir desdits débits et d'un modèle déterminé, la quantité d'ammoniac stockée dans le catalyseur. Selon l'invention, le moyen d'estimation est également apte à estimer, à partir desdits débits et du modèle déterminé, les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur, et le dispositif comprend également un capteur monté en aval du catalyseur et apte à mesurer le débit global d'oxydes d'azote et d'ammoniac sortant du catalyseur, et un moyen de correction apte à corriger le modèle déterminé en fonction de l'écart entre le débit global mesuré et les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur estimés par le modèle, le moyen de correction étant apte à corriger le modèle en fonction de la sensibilité de la mesure du débit global d'oxydes d'azote et d'ammoniac par rapport à la quantité d'ammoniac stockée dans le catalyseur.
Préférentiellement, le moyen de correction est apte à corriger le modèle de manière non-linéaire en fonction de la sensibilité.
Le système de traitement peut comprendre également un moyen d'injection d'ammoniac dans la ligne d'échappement, en amont du catalyseur, commandé par le moyen de commande et apte à injecter un débit d'ammoniac déterminé par le moyen de commande en fonction de la quantité d'ammoniac stockée dans le catalyseur.
D'autres avantages et caractéristiques de l'invention apparaîtront à l'examen de la description détaillée d'un mode de réalisation de l'invention nullement limitatif, et des dessins annexés, sur lesquels : la figure 1 représente, de manière schématique, un système de post-traitement de gaz d'échappement selon l'invention ; et
la figure 2 représente un schéma synoptique illustrant l'architecture d'un moyen de détermination de la quantité d'ammoniac stockée dans un catalyseur de réduction.
Sur la figure 1, on a représenté, de manière très schématique, la structure générale d'un moteur à combustion interne 1 et d'un système de post-traitement des gaz d'échappement 2. Le moteur à combustion interne 1 comprend, par exemple, au moins un cylindre 3, un collecteur d'admission 4, un collecteur d'échappement 5, un circuit de re-circulation des gaz d'échappement 6 muni d'une vanne de recirculation des gaz d'échappement 7, et un système de turbo compression 8.
Le système de post-traitement des gaz d'échappement 2 comprend une ligne d'échappement 9 comportant un injecteur 10 d'un agent de réduction, par exemple de l'urée, et un catalyseur de réduction 11 (en anglais : Sélective Catalytic Réduction SCR) monté en aval du l'injecteur 10. La ligne d'échappement 9 peut également comprendre un moyen de mélange monté entre l'injecteur 10 et le catalyseur de réduction 11, et permettant d'homogénéiser le mélange constitué des gaz d'échappement et de l'agent de réduction.
Le système 2 comprend également un capteur de température 12 monté en amont du catalyseur de réduction 11 et permettant de connaître la température des gaz alimentant le catalyseur 11 pendant les différentes phases de traitement des gaz d'échappement. Le système 2 peut également comprendre un capteur de NOx 13, monté en aval du catalyseur 11. Le capteur 13 permet notamment de mesurer le débit d'oxydes d'azote et d'ammoniac sortant du catalyseur 11 en fonctionnement.
Une unité de contrôle électronique 14 assure le traitement des différents signaux et la commande de la combustion, notamment en envoyant des valeurs de consigne à l'injecteur de carburant du cylindre 3 et en commandant un dispositif, par exemple à clapet, contrôlant la quantité d'air alimentant le cylindre 3.
L'unité de contrôle électronique 14 peut également commander l'injecteur d'agent réducteur 10 afin d'introduire dans la ligne d'échappement 9 la quantité souhaitée d'agent réducteur.
L'unité de contrôle électronique 14 comprend également un moyen de détermination 15 de la quantité d'ammoniac stockée dans un catalyseur de réduction 11. Le moyen de détermination 15 reçoit en entrée plusieurs données, dont les données du capteur de température 12 et du capteur de NOx 13, et permet à l'unité de contrôle électronique 14 de connaître la quantité d'ammoniac stockée dans le catalyseur 11 afin de déterminer la quantité d'agent réducteur à introduire dans la ligne d'échappement 9.
Ainsi, comme représenté sur la figure 2, le moyen de détermination 15 peut comprendre un moyen d'estimation 16 recevant en entrée : les valeurs T de température des gaz mesurées par le capteur 12, les taux X™H^ et Χχ d'ammoniac et d'oxydes d'azote respectivement, alimentant le catalyseur de réduction 11 et les valeurs de débit de gaz d'échappement Qéch alimentant le catalyseur. Le moyen d'estimation 16 calcule alors, à partir d'un modèle dynamique basé sur les mécanismes réactionnels d'adsorption et de désorption de l'ammoniac sur le catalyseur, de réduction des oxydes d'azote par l'ammoniac adsorbé et d'oxydation de l'ammoniac, les taux ^ et Xox d'ammoniac et d'oxydes d'azote respectivement, sortant du catalyseur de réduction 11 et la masse niNH3 d'ammoniac stockée dans le catalyseur 11. Le modèle peut notamment utiliser le système d'équation suivant :
X NH3 ~ nNH Par ailleurs, le modèle utilisé permet de corriger une dérive de l'estimation de la masse d'ammoniac stockée dans le catalyseur. A cet effet, on considère que la mesure du capteur 13 peut s'écrire sous la forme suivante :
Λ mesure ~ α·Λ NOx + P ·Λ NH3
où a et β peuvent être constants ou dépendants de grandeurs telles que la température ou le débit.
Le modèle du moyen 16 est alors corrigé par le modèle adaptatif suivant :
dth
= fiXNOx > XNH3 , ÛNH3 , T, Qéch ) + A dt
X NOx = h-NOx iXNOx ' X NH3 ' ¾3 ' ^ , Qéch )
¾3 ' ^ , Qéch )
dans lequel les grandeurs avec un chapeau sont des estimations corrigées par la valeur Δ, et où la grandeur S définit la sensibilité de a-^NOx + β·ΧΝ° ΐ Par rapport à la quantité d'ammoniac dans le catalyseur
11.
La grandeur Δ est la valeur de la boucle de correction du modèle adaptatif. La grandeur Δ est ainsi réintroduite en entrée du modèle pour corriger les valeurs obtenues. La grandeur Δ est donnée par l'équation suivante :
où K est le gain de l'observateur, et où :
S'=0 si Sinf< S < Ssup
S' = S sinon
avec Sinf et Ssup deux paramètres de calibration.
Ainsi, le moyen de détermination 15 comprend un moyen de détermination de l'écart 17, recevant en entrée les taux ™ox et
X™H calculés par le moyen d'estimation 16, et les valeurs °"Jure mesurées par le capteur 13 , et fournissant en sortie l' écart
Xm°esure ~ ia -^Νθχ + β -^NHi ]■ Le moyen de détermination 15 comprend également un moyen 1 8 recevant en entrée la valeur S calculée par le moyen d'estimation 16 et fournissant en sortie le coefficient K. S ' à multiplier à l' écart déterminé par le moyen 17 pour obtenir la grandeur Δ. Les moyens 17 et 18, ainsi que le moyen de multiplication forment ainsi un moyen de correction 19 pour le modèle du moyen d'estimation 16.
Ainsi, le moyen de détermination 15 permet de déterminer la quantité niN H3 stockée dans le catalyseur 1 1 en tenant compte de la sensibilité S du capteur par rapport à la quantité d'ammoniac stockée dans le catalyseur 1 1 . La sensibilité S présente généralement, en fonction de la température T et de la quantité d' ammoniac stockée mN H3 , trois zones :
une première zone où T et mN H3 présentent des valeurs moyennes et où S est sensiblement égale à 0 correspondant à une insensibilité des NOx et NH3 sortant du catalyseur par rapport à la quantité d'ammoniac stockée niNH3 : cette zone correspond à une zone dans laquelle il n'y a pas de correction à apporter au modèle et dans laquelle S ' est nul ;
une deuxième zone où mN H3 présente des valeurs proches de zéro et où S est négatif, correspondant à une perte d'efficacité de traitement du catalyseur 1 1 : le modèle adaptatif corrige alors l' écart déterminé par le moyen 17 en abaissant le niveau d'ammoniac stocké dans le catalyseur 1 1 ; et
une troisième zone où T présente des valeurs élevées et où S est positif, correspondant à une fuite d'ammoniac du catalyseur 1 1 : le modèle adaptatif corrige alors l' écart déterminé par le moyen 17 en augmentant le niveau d' ammoniac stocké dans le catalyseur 1 1 . Ainsi, on constate que la correction apportée au modèle tient compte, de manière non-linéaire, de la sensibilité de la mesure des NOx et NH3 par rapport à la quantité d'ammoniac stockée, afin d'obtenir une estimation plus fine. Plus précisément, lorsque le modèle surestime la valeur réelle de mNH3, le calcul de la sensibilité S permet de détecter une potentielle perte d'efficacité et de corriger en conséquence l'estimation lorsque la valeur réelle de la quantité de NH3 stockée dans le catalyseur 11 devient dangereusement basse. Cette correction de l'estimation n'intervient que lorsque le critère S devient suffisamment grand, mais permet d'augmenter en conséquence le débit d'injection d'ammoniac dans la ligne d'échappement ou de détecter une éventuelle panne du système.
Au contraire, lorsque le modèle sous-estime la valeur réelle de mNH3, le calcul de la sensibilité S permet de détecter une potentielle fuite d'ammoniac et de corriger en conséquence l'estimation lorsque la valeur réelle de la quantité de NH3 stockée dans le catalyseur 11 devient dangereusement haute. Ici encore, cette correction de l'estimation n'intervient que lorsque le critère S devient suffisamment grand, mais permet de diminuer en conséquence le débit d'injection d'ammoniac dans la ligne d'échappement ou de détecter une éventuelle panne du système.
Ainsi, grâce à l'intégration de la sensibilité de la mesure des NOx et NH3 par rapport à la quantité d'ammoniac stockée dans le modèle d'estimation de la quantité d'ammoniac stockée dans le catalyseur 11, l'invention permet d'estimer de manière plus fiable et robuste cette quantité d'ammoniac, et en particulier permet de détecter une baisse ou une augmentation importante de cette quantité par rapport à la valeur voulue.

Claims

REVENDICATIONS
1. Procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur de réduction (11) des oxydes d'azote destiné à être monté dans une ligne d'échappement (9) d'un moteur à combustion interne, dans lequel on détermine les débits d'oxydes d'azote et d'ammoniac alimentant le catalyseur (11), et on estime, à partir desdits débits et d'un modèle déterminé, la quantité d'ammoniac stockée dans le catalyseur, caractérisé en ce que :
- on estime également, à partir desdits débits et du modèle déterminé, les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur,
- on mesure le débit global d'oxydes d'azote et d'ammoniac en aval du catalyseur et
- on corrige le modèle déterminé en fonction de l'écart entre le débit global mesuré et les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur estimés par le modèle, la correction du modèle dépendant de la sensibilité (S) de la mesure du débit global d'oxydes d'azote et d'ammoniac par rapport à la quantité d'ammoniac stockée dans le catalyseur.
2. Procédé selon la revendication 1, dans lequel la correction du modèle en fonction la sensibilité (S') de la mesure du débit global d'oxydes d'azote et d'ammoniac par rapport à la quantité d'ammoniac stockée dans un catalyseur, est non-linéaire.
3. Système de traitement de gaz d'échappement (2) émis par un moteur à combustion interne, comprenant un catalyseur de réduction (11) des oxydes d'azote monté dans la ligne d'échappement (9) du moteur, un moyen de commande et un dispositif de détermination de la quantité d'ammoniac stockée dans le catalyseur, le dispositif comprenant un moyen de détermination des débits d'oxydes d'azote et d'ammoniac alimentant le catalyseur, et un moyen d'estimation (16) apte à estimer, à partir desdits débits et d'un modèle déterminé, la quantité d'ammoniac stockée dans le catalyseur, caractérisé en ce que le moyen d'estimation (16) est également apte à estimer, à partir desdits débits et du modèle déterminé, les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur, et en ce que le dispositif comprend également un capteur monté en aval du catalyseur et apte à mesurer le débit global d'oxydes d'azote et d'ammoniac sortant du catalyseur, et un moyen de correction (19) apte à corriger le modèle déterminé en fonction de l'écart entre le débit global mesuré et les débits d'oxydes d'azote et d'ammoniac sortant du catalyseur estimés par le modèle, le moyen de correction (19) étant apte à corriger le modèle en fonction de la sensibilité (S) de la mesure du débit global d'oxydes d'azote et d'ammoniac par rapport à la quantité d'ammoniac stockée dans le catalyseur.
4. Système de traitement (2) selon la revendication précédente, dans lequel le moyen de correction est apte à corriger le modèle de manière non-linéaire en fonction de la sensibilité.
5. Système de traitement (2) selon la revendication 3 ou 4, comprenant également un moyen d'injection d'ammoniac dans la ligne d'échappement, en amont du catalyseur, commandé par le moyen de commande et apte à injecter un débit d'ammoniac déterminé par le moyen de commande en fonction de la quantité d'ammoniac stockée dans le catalyseur.
EP13703109.2A 2012-03-22 2013-02-08 Procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur, et système correspondant Withdrawn EP2827973A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1252590A FR2988305B1 (fr) 2012-03-22 2012-03-22 Procede de determination de la quantite d'ammoniac stockee dans un catalyseur, et systeme correspondant
PCT/EP2013/052609 WO2013139526A1 (fr) 2012-03-22 2013-02-08 Procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur, et système correspondant

Publications (1)

Publication Number Publication Date
EP2827973A1 true EP2827973A1 (fr) 2015-01-28

Family

ID=47678874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13703109.2A Withdrawn EP2827973A1 (fr) 2012-03-22 2013-02-08 Procédé de détermination de la quantité d'ammoniac stockée dans un catalyseur, et système correspondant

Country Status (3)

Country Link
EP (1) EP2827973A1 (fr)
FR (1) FR2988305B1 (fr)
WO (1) WO2013139526A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115059530B (zh) * 2022-07-11 2024-05-17 潍柴动力股份有限公司 一种scr装置中氨需求量确定方法、装置及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009036780A1 (fr) * 2007-09-18 2009-03-26 Fev Motorentechnik Gmbh Surveillance du niveau de nh3 d'un catalyseur scr
JP4726926B2 (ja) 2008-05-22 2011-07-20 株式会社デンソー 内燃機関の排気浄化装置
US8061126B2 (en) * 2008-07-30 2011-11-22 GM Global Technology Operations LLC Nitrogen oxide estimation downstream of a selective catalytic reduction catalyst
ES2434741T3 (es) * 2009-12-23 2013-12-17 Fpt Motorenforschung Ag Método y dispositivo para controlar un convertidor catalítico SCR de un vehículo
DE102010002620A1 (de) * 2010-03-05 2011-09-08 Robert Bosch Gmbh Verfahren zum Betreiben eines SCR-Katalysators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013139526A1 *

Also Published As

Publication number Publication date
FR2988305A1 (fr) 2013-09-27
FR2988305B1 (fr) 2014-02-28
WO2013139526A1 (fr) 2013-09-26

Similar Documents

Publication Publication Date Title
EP3014082A1 (fr) Système et procédé de diagnostic de la réduction catalytique sélective d&#39;un véhicule automobile
EP2092168B1 (fr) Procede de determination de la quantite de carburant a injecter dans une ligne d&#39;echappement en vue de regenerer un filtre a particules
US9008949B2 (en) Soot discharge estimating device for internal combustion engines
FR3012526A1 (fr) Systeme et procede d&#39;estimation du debit d&#39;oxydes d&#39;azotes dans les gaz d&#39;echappement d&#39;un moteur a combustion interne pour vehicule automobile.
EP2430298B1 (fr) Estimation de la concentration en oxydes d&#39;azote d&#39;un moteur à combustion interne.
WO2013139526A1 (fr) Procédé de détermination de la quantité d&#39;ammoniac stockée dans un catalyseur, et système correspondant
EP2877720B1 (fr) Système de traitement des gaz d&#39;échappement comprenant un filtre à particules catalytiques, et procédé correspondant
EP2193261B1 (fr) Procede et systeme de gestion d&#39;un module de traitement des gaz d&#39;echappement
FR2898936A1 (fr) Procede d&#39;estimation de la richesse d&#39;un melange air/carburant
EP2507491B1 (fr) Système et procédé d&#39;estimation de la masse de particules stockées dans un filtre a particules de véhicule automobile
FR2893979A1 (fr) Procede de mesure de la pression dans un systeme de post-traitement d&#39;un moteur thermique.
WO2008043952A2 (fr) Systeme de determination du debit massique d&#39;oxydes d&#39;azote emis dans les gaz d&#39;echappement d&#39;un moteur a combustion interne
FR2929329A1 (fr) Methode de mesure de la quantite d&#39;agent reducteur injectee et dispositif pour la mise en oeuvre de ladite methode
FR2992023A1 (fr) Systeme de traitement des gaz d&#39;echappement et procede correspondant
EP3056703B1 (fr) Procédé et système de réduction des oxydes d&#39;azotes issus d&#39;un moteur à combustion interne
FR2927372A1 (fr) Procede de commande d&#39;alimentation en carburant d&#39;une ligne d&#39;echappement d&#39;un moteur a combustion et dispositif mettant en oeuvre le procede
EP4056820A1 (fr) Procédé et système de détection de fuites d&#39;ammoniac dans un catalyseur de réduction sélective d oxydes d azote
EP2786004A1 (fr) Procede et dispositif permettant d&#39;estimer en continu la richesse cylindre d&#39;un moteur
EP2147200A2 (fr) Procede et dispositif d&#39;adaptation d&#39;un estimateur de temperature d&#39;un systeme de post-traitement des gaz d&#39;echappement
FR2980521A1 (fr) Systeme et procede d&#39;estimation de la masse d&#39;oxydes de soufre stockee dans un piege a oxydes d&#39;azote
EP3536920A1 (fr) Procede de correction d&#39;une estimation d&#39;une quantite d&#39;oxydes d&#39;azote en fonction d&#39;un taux d&#39;hygrometrie
FR2846708A1 (fr) Procede pour la determination d&#39;une charge d&#39;un filtre a particules dans le trajet d&#39;echappement d&#39;un moteur a combustion interne
WO2008043953A1 (fr) Systeme de determination du debit massique d&#39;oxydes d&#39;azote emis dans les gaz d&#39;echappement d&#39;un moteur a combustion interne
FR2983904A1 (fr) Systeme et procede de controle de debit de carburant fourni par une soupape de dosage de carburant d&#39;une ligne d&#39;echappement d&#39;un vehicule automobile
WO2004065766A1 (fr) Procede de commande d&#39;un moteur a combustion interne pour la regeneration de moyens de purification des gaz d&#39;echappement et dispositif associe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190724

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191204