EP2826337B1 - Systèmes de chauffage à micro-ondes améliorés - Google Patents

Systèmes de chauffage à micro-ondes améliorés Download PDF

Info

Publication number
EP2826337B1
EP2826337B1 EP13760361.9A EP13760361A EP2826337B1 EP 2826337 B1 EP2826337 B1 EP 2826337B1 EP 13760361 A EP13760361 A EP 13760361A EP 2826337 B1 EP2826337 B1 EP 2826337B1
Authority
EP
European Patent Office
Prior art keywords
microwave
articles
chamber
launch
launchers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13760361.9A
Other languages
German (de)
English (en)
Other versions
EP2826337A4 (fr
EP2826337A1 (fr
Inventor
Harold Dail Kimrey Jr.
Gregory Eugene CUNNINGHAM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microwave Materials Technologies Inc
Original Assignee
Microwave Materials Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microwave Materials Technologies Inc filed Critical Microwave Materials Technologies Inc
Priority to EP14188868.5A priority Critical patent/EP2866517B1/fr
Priority to EP14188871.9A priority patent/EP2866518B1/fr
Priority to EP17158472.5A priority patent/EP3300456B1/fr
Publication of EP2826337A1 publication Critical patent/EP2826337A1/fr
Publication of EP2826337A4 publication Critical patent/EP2826337A4/fr
Application granted granted Critical
Publication of EP2826337B1 publication Critical patent/EP2826337B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/701Feed lines using microwave applicators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • H05B6/782Arrangements for continuous movement of material wherein the material moved is food

Definitions

  • This invention relates to microwave systems for heating one or more objects, articles, and/or loads.
  • Electromagnetic radiation such as microwave radiation
  • microwave radiation is a known mechanism for delivering energy to an object.
  • the ability of electromagnetic radiation to penetrate and heat an object in a rapid and effective manner has proven advantageous in many chemical and industrial processes.
  • microwave energy has been employed in heating processes wherein the rapid achievement of a prescribed minimum temperature is desired, such as, for example, pasteurization and/or sterilization processes.
  • microwave energy is generally non-invasive, microwave heating may be particularly useful for heating 'sensitive' dielectric materials, such as food and pharmaceuticals.
  • FR2645391 An example of a microwave system is disclosed in FR2645391 .
  • One embodiment of the present invention concerns a microwave system for heating a plurality of articles.
  • the system comprises a microwave chamber configured to receive the articles and a conveyance system for transporting the articles through the microwave chamber along a convey axis.
  • the system also comprises a first microwave launcher configured to propagate microwave energy into the microwave chamber along a first central launch axis, wherein a first launch tilt angle of at least 2° and less than 15° is defined between the first central launch axis and a plane normal to the convey axis.
  • the system comprises a microwave chamber configured to receive the articles and a conveyance system for transporting the articles through the microwave chamber along a convey axis.
  • the system also comprises a first microwave launcher defining at least one launch opening for discharging microwave energy into the microwave chamber; and a substantially microwave-transparent window disposed between the microwave chamber and the launch opening.
  • the window presents a chamber-side surface defining a portion of the microwave chamber and at least 50 percent of the total surface area of the chamber-side surface of the window is oriented at an angle of at least 2° from the horizontal.
  • Yet another embodiment of the present invention concerns a process for heating a plurality of articles in a microwave heating system, the process comprising the steps: (a) passing a plurality of articles through a microwave heating chamber via a conveyance system, wherein the microwave heating chamber is at least partially filled with a liquid medium; (b) generating microwave energy using one or more microwave generators; (c) introducing at least a portion of the microwave energy into the microwave chamber via at least one microwave launcher, wherein at least a portion of the microwave energy introduced into the microwave chamber is discharged at a launch tilt angle of at least 2°; and (d) heating the articles in the microwave heating chamber using at least a portion of the microwave energy discharged therein.
  • One embodiment of the present invention concerns a microwave system for heating a plurality of articles.
  • the system comprises a microwave generator for generating microwave energy having a predominant wavelength ( ⁇ ), a conveyance system for conveying the articles along a convey axis, and a first microwave launcher for launching at least a portion of the microwave energy toward the articles conveyed by the conveyance system.
  • the first microwave launcher defines at least one launch opening having a width (W 1 ) and a depth (D 1 ), wherein W 1 is greater than D 1 , wherein D 1 is not more than 0.625 A.
  • the present invention concerns a microwave system for heating a plurality of articles.
  • the system comprises a microwave generator for generating microwave energy having a predominant wavelength ( ⁇ ), a microwave chamber configured to receive the articles, and a microwave distribution system for directing at least a portion of the microwave energy from the microwave generator to the microwave chamber.
  • the microwave distribution system comprises a first microwave launcher.
  • the first microwave launcher defines a microwave inlet for receiving at least a portion of the microwave energy and at least one launch opening for discharging the microwave energy into the microwave chamber.
  • the microwave inlet has a depth (d 0 ) and the launch opening has a depth (d 1 ).
  • the d 0 is greater than d 1 .
  • Yet another embodiment of the present invention concerns a microwave system for heating a plurality of articles.
  • the system comprises a microwave chamber configured to receive the articles, a conveyance system for transporting the articles through the microwave chamber along a convey axis, and a first microwave launcher defining a microwave inlet and two or more launch openings configured to discharge microwave energy into the microwave chamber.
  • the center points of adjacent launch openings are laterally spaced from one another relative to the convey axis.
  • One embodiment of the present invention concerns a microwave launcher comprising a microwave inlet for receiving microwave energy having a wavelength ( ⁇ ), at least one launch opening for discharging at least a portion of the microwave energy, and a pair of opposing launcher end walls and a pair of opposing launcher sidewalls defining a microwave pathway therebetween.
  • the microwave pathway is configured to permit the passage of microwave energy from the microwave inlet to the launch opening.
  • the launcher also includes a pair of inductive iris panels respectively coupled to and extending inwardly from the pair of end walls. Each of the inductive iris panels extends partially into the microwave pathway to define therebetween an inductive iris through which at least a portion of the microwave energy routed from the microwave inlet to the launch opening can pass.
  • the present invention concerns a microwave system for heating a plurality of articles.
  • the system comprises a microwave generator for generating microwave energy having a wavelength ( ⁇ ), a microwave chamber configured to receive the articles, a conveyance system for conveying the articles through the microwave chamber along a convey axis, and a microwave distribution system for directing at least a portion of the microwave energy from the microwave generator to the microwave chamber.
  • the microwave distribution system comprises a first microwave splitter for dividing at least a portion of the microwave energy into two or more separate portions and at least one pair of microwave launchers each defining a microwave inlet and at least one launch opening for discharging microwave energy into the microwave chamber.
  • the microwave distribution system further comprises a first inductive iris disposed between the first microwave splitter and the launch opening of one of the microwave launchers.
  • Yet another embodiment of the present invention concerns a process for heating a plurality of articles in a microwave heating system, the process comprising the steps: (a) passing a plurality of articles through a microwave heating chamber along one or more convey lines of a conveyance system; (b) generating microwave energy using one or more microwave generators; (c) dividing at least a portion of the microwave energy into two or more separate portions; (d) discharging the portions of microwave energy into the microwave heating chamber via two or more microwave launchers; (e) subsequent to the dividing of step (c) and prior to the discharging of step (d), passing at least one of the portions of microwave energy through a first inductive iris; and (f) heating the articles in the microwave heating chamber using at least a portion of the microwave energy discharged therein.
  • One embodiment of the present invention concerns a method for controlling a microwave heating system comprising the steps of (a) generating microwave energy using one or more microwave generators; (b) passing a plurality of articles through a water-filled microwave chamber via a conveyance system; (c) directing at least a portion of the microwave energy into the microwave chamber via one or more microwave launchers to thereby heat at least a portion of the articles; (d) during at least a portion of steps (a) through (c), determining a value for one or more microwave system parameters to thereby provide at least one determined parameter value; (e) comparing the determined parameter value with a corresponding target parameter value to determine a difference; and (f) based on the difference, taking an action with regard to the microwave heating system.
  • the one or more microwave system parameters are selected from the group consisting of net microwave power, temperature of the water in the microwave chamber, flow rate of the water through the microwave chamber, and conveyance system speed.
  • Another embodiment of the present invention concerns a method controlling a microwave heating system comprising the steps of (a) generating microwave energy with at least one microwave generator; (b) passing at least a portion of the microwave energy through a first waveguide segment; (c) discharging at least a portion of the microwave energy from the first waveguide segment into a microwave chamber via at least one microwave launcher to thereby heat a plurality of articles; (d) determining a first value for net power discharged from the microwave launcher using a first pair of directional couplers; (e) determining a second value for net power discharged from the microwave launcher using a second pair of directional couplers, wherein the first and second pairs of directional couplers are independent from each another; (f) comparing the first value and the second value to determine a first difference; and (g) taking an action with regard to the microwave heating system when the difference is greater than a predetermined amount.
  • the device comprises a fixed section defining a first substantially rectangular opening and a rotatable section comprising a housing and a plurality of spaced-apart, substantially parallel plates received in the housing.
  • the housing comprises opposite first and second end and the first end defines a second opening adjacent to the first opening of the fixed section.
  • Each of the plates is coupled to the second end of the housing and extends generally toward the first and the second openings.
  • the rotatable section is configured to be rotated relative to the fixed section on an axis of rotation that extends through the first and the second openings.
  • Another embodiment of the present invention concerns a method for heating a plurality of articles in a microwave heating system comprising the steps of (a) passing the articles through a heating zone of a microwave chamber via a conveyance system, wherein each of the articles is maintained within the heating zone for an article residence time ( ⁇ ); (b) generating microwave energy with one or more microwave generators; (c) passing at least a portion of the microwave energy through a phase shifting device configured to cyclically shift the phase of the microwave energy at a phase shifting rate (t); (d) discharging at least a portion of the microwave energy exiting the phase shifting device into the heating zone via at least one microwave launcher; and (e) heating the articles in the heating zone with at least a portion of the microwave energy discharged therein, wherein the ratio of the article residence time to the phase shifting rate ( ⁇ :t) is at least 4:1.
  • One embodiment of the present invention concerns a microwave system for heating a plurality of articles.
  • the system comprises at least one microwave generator for generating microwave energy, a microwave chamber, a conveyance system for conveying the articles through the microwave chamber, and a microwave distribution system for directing at least a portion of the microwave energy from the microwave generator to the microwave chamber.
  • the microwave distribution system comprises at least three microwave allocation devices for dividing the microwave energy into at least three separate portions.
  • the microwave distribution system further comprises at least three microwave launchers for discharging the separate portions of microwave energy into the microwave chamber.
  • Each of the microwave allocation devices is configured to divide the microwave energy according to a predetermined power ratio, wherein the predetermined power ratio for at least one of the microwave allocation devices is not 1:1.
  • Another embodiment of the present invention concerns a process for heating a plurality of articles using microwave energy comprising the steps of (a) introducing the initial quantity of microwave power into a microwave distribution manifold; (b) using the microwave distribution manifold to divide the initial quantity of microwave power into a first launch microwave fraction and a first distribution microwave fraction, wherein the power ratio of the first launch microwave fraction to the first distribution microwave fraction is not 1:1; (c) using the microwave distribution manifold to divide the first distribution microwave fraction into a second launch microwave fraction and a second distribution microwave fraction; (d) introducing the first launch microwave fraction into a microwave heating chamber via a first microwave launcher; and (e) introducing the second launch microwave fraction into the microwave heating chamber via a second microwave launcher.
  • One embodiment of the present invention concerns a continuous process for heating a plurality of articles in a microwave heating system comprising the steps of (a) thermalizing the articles in a thermalization zone to thereby provide a plurality of thermalized articles having a substantially uniform temperature; (b) heating the thermalized articles in a microwave heating zone to thereby increase the average temperature of each article by at least 50°C, wherein at least a portion of the heating is carried out at a heating rate of at least 25°C per minute; and (c) cooling the heated articles in a quench zone.
  • the articles are passed through each of the thermalization zone, the microwave heating zone, and the quench zone via one or more conveyance systems, wherein the microwave heating system has an overall production rate of at least 20 packages per minute per convey line.
  • the present invention concerns a microwave system for heating a plurality of articles.
  • the system comprises a thermalization chamber for thermalizing the articles to a substantially uniform temperature, a microwave heating chamber disposed downstream of the thermalization chamber for heating the thermalized articles, and a quench chamber disposed downstream of the microwave heating chamber for cooling the heated articles to a lower temperature.
  • the microwave heating chamber is configured to increase the average temperature of the articles by at least 50°C at a heating rate of at least 25°C per minute.
  • the system comprises at least one convey system configured to transport the articles through the thermalization chamber, the microwave heating chamber, and the quench chamber.
  • the microwave system is configured to achieve an overall production rate of at least 20 packages per minute per convey line.
  • One embodiment of the present invention concerns a process for heating a plurality of articles in a microwave heating system comprising the steps of (a) passing the articles through a pressurized microwave chamber via a conveyance system, wherein the microwave chamber is at least partly filled with a liquid medium; (b) generating microwave energy via one or more microwave generators; (c) introducing at least a portion of the microwave energy into the microwave chamber via one or more microwave launchers; (d) heating the articles in the microwave chamber using at least a portion of the microwave energy introduced therein; and (e) during at least a portion of the heating of step (d), agitating at least a portion of the liquid medium within the microwave chamber, wherein the agitating includes discharging a plurality of fluid jets toward the articles at multiple locations within the microwave chamber.
  • One embodiment of the present invention concerns a locking gate device comprising a pair of spaced apart fixed members presenting opposing sealing surfaces and defining a gate-receiving space between the sealing surfaces, wherein each of the fixed members defines a flow-through opening circumscribed by one of the sealing surfaces, wherein the flow-through openings are substantially aligned with one another; and a gate assembly shiftable within the gate-receiving space between a closed position where the gate assembly substantially blocks the flow-through openings and an open position where the gate assembly does not substantially block the flow-through openings.
  • the gate assembly comprises a pair of spaced apart sealing plates and a drive member disposed between the sealing plates, wherein when the gate assembly is in the closed position the drive member is shiftable relative to the sealing plates between a retracted position and an extended position.
  • the gate assembly further comprises at least one pair of bearings disposed between the sealing plates, wherein shifting of the drive member from the retracted position to the extended position causes the bearings to force the sealing plates apart from one another and into a sealed position where the sealing plates engage the opposing sealing surfaces, wherein shifting of the drive member from the extended position to the retracted position allows the sealing plates to retract towards one another and into an unsealed position where the sealing plates are disengaged from the opposing sealing surfaces.
  • Another embodiment of the present invention concerns a method for moving one or more articles within a pressurized system comprising the steps of (a) passing one or more articles from a first pressurized process zone to a second pressurized process zone through a flow-through opening; (b) shifting a pair of movable plates into the opening; (c) moving the plates apart from one another to thereby seal the plates against a pair of opposed sealing surfaces that at least partially define the opening, wherein the pair of sealed plates substantially isolates the first and the second process zones from one another; (d) creating a pressure differential of at least 15 psig across the pair of sealed plates; (e) depressuring at least one of the first and second process zones to equalize the pressure across the pair of sealed plates; (f) moving the plates toward one another to thereby unseal the plates from the sealing surfaces; (g) shifting the pair of plates out of the opening; and (h) removing the articles from the second process zone back into the first process zone through the flow-through opening and/or inserting a new article into the second process
  • One embodiment of the present invention concerns a microwave heating system for heating a plurality of articles.
  • the system comprises a liquid-filled thermalization chamber, a liquid-filled microwave chamber configured to operate at a higher pressure than the thermalization chamber, and a pressure lock system disposed between the thermalization chamber and the microwave chamber.
  • the pressure lock system comprises a pressure adjustment chamber, a first locking gate valve, and a second locking gate valve, wherein the first locking gate valve is coupled between the thermalization chamber and the pressure adjustment chamber, wherein the second locking gate valve is coupled between the pressure adjustment chamber and the microwave chamber.
  • Another embodiment of the present invention concerns a process for heating a plurality of articles in a microwave heating system comprising (a) passing a plurality of articles through a liquid-filled thermalization zone to thereby provide a plurality of thermalized articles; (b) introducing at least a portion of the thermalized articles into a pressure adjustment zone, wherein the pressure adjustment zone is at least partially defined between a first and a second locking gate valve, wherein the first locking gate valves is in a first open position during at least a portion of the introducing; (c) after the thermalized articles have been introduced into the pressure adjustment zone, shifting the first locking gate valve from the first open position to a first closed position to thereby substantially isolate the pressure adjustment zone from the thermalization zone; (d) shifting the second locking gate valve from a second closed position to a second open position to allow the articles to be transferred from the pressure adjustment zone to a liquid-filled microwave heating zone; and (e) after the articles have been removed from the pressure adjustment zone, shifting the second locking gate valve from the second open position back to the second closed position
  • One embodiment of the present invention concerns a method for heating a plurality of articles comprising the steps of (a) heating a first test article in a small-scale microwave heating system while conveying the first test article through a water-filled, small-scale microwave chamber having a total internal volume of less than 50 cubic feet, wherein at least a portion of the heating of step (a) is accomplished using microwave energy; (b) determining a first prescribed heating profile based on the heating of step (a), wherein the prescribed heating profile comprises at least one value for one or more microwave system parameters selected from the group consisting of net power discharged into the chamber, sequential microwave power distribution, average temperature of the water in the microwave chamber, flow rate of the water in the microwave chamber, and residence time of the article in the microwave chamber; and (c) heating a plurality of first commercial articles in a large-scale microwave heating system while conveying the first commercial articles through a water-filled, large-scale microwave chamber having a total internal volume of at least 250 cubic feet.
  • step (c) At least a portion of the heating of step (c) is accomplished using microwave energy and wherein each of the first commercial articles is substantially similar in size and composition to the first test article, wherein the heating of step (c) is controlled in accordance with the first prescribed heating profile determined in step (b).
  • microwave processes and systems for heating a plurality of articles are described below.
  • suitable articles to be heated in systems and processes of the present invention can include, but are not limited to, foodstuffs, medical fluids, and medical instruments.
  • microwave systems described herein can be used for the pasteurization and/or sterilization of the articles being heated.
  • pasteurization involves rapid heating of an article or articles to a minimum temperature between 80°C and 100°C
  • sterilization involves heating one or more articles to a minimum temperature between 100°C to 140°C.
  • pasteurization and sterilization may take place simultaneously or nearly simultaneously and many processes and systems can be configured to both pasteurize and sterilize one or more articles.
  • Various embodiments of microwave systems and processes configured to heat one or more types of articles will now be discussed in detail, with reference to the Figures.
  • the articles can be rapidly heated using microwave energy discharged into at least a portion of the heating zone by one or more microwave launchers, generally illustrated as launchers 18 in FIG. 1b .
  • the heated articles can then optionally be passed through a holding zone 20, wherein the articles can be maintained at a constant temperature for a specified amount of time.
  • the articles can then be passed to a quench zone 22, wherein the temperature of the articles can be quickly reduced to a suitable handling temperature.
  • the cooled articles can optionally be passed through a second pressure adjustment zone 14b before being removed from system 10 and further utilized.
  • Microwave system 10 can be configured to heat many different types of articles.
  • the articles heated in microwave system 10 can comprise foodstuffs, such as, for example, fruits, vegetables, meats, pastas, pre-made meals, and even beverages.
  • the articles heated in microwave system 10 can comprise packaged medical fluids or medical and/or dental instruments.
  • the articles processed within microwave heating system 10 can be of any suitable size and shape.
  • the articles can comprise individual items or packages having a generally rectangular or prism-like shape or can comprise a continuous web of connected items or packages passed through microwave system 10.
  • the items or packages may be constructed of any material, including plastics, cellulosics, and other microwave-transparent materials, and can be passed through microwave system 10 via one or more conveyance systems, embodiments of which will be discussed in detail below.
  • each of the above-described thermalization, microwave heating, holding, and/or quench zones 12, 16, 20, and 22 can be defined within a single vessel, as generally depicted in FIG. 1b , while, in another embodiment, at least one of the above-described stages can be defined within one or more separate vessels.
  • at least one of the above-described steps can be carried out in a vessel that is at least partially filled with a fluid medium in which the articles being processed can be at least partially submerged.
  • the fluid medium can be a gas or a liquid having a dielectric constant greater than the dielectric constant of air and, in one embodiment, can be a liquid medium having a dielectric constant similar to the dielectric constant of the articles being processed.
  • Water may be particularly suitable for systems used to heat edible and/or medical devices or articles.
  • additives such as, for example, oils, alcohols, glycols, and salts may optionally be added to the liquid medium to alter or enhance its physical properties (e.g., boiling point) during processing, if needed.
  • Microwave system 10 can include at least one conveyance system (not shown in FIGS. 1a and 1b ) for transporting the articles through one or more of the processing zones described above.
  • suitable conveyance systems can include, but are not limited to, plastic or rubber belt conveyors, chain conveyors, roller conveyors, flexible or multiflexing conveyors, wire mesh conveyors, bucket conveyors, pneumatic conveyors, screw conveyors, trough or vibrating conveyors, and combinations thereof.
  • the conveyance system can include any number of individual convey lines and can be arranged in any suitable manner within the process vessels.
  • the conveyance system utilized by microwave system 10 can be configured in a generally fixed position within the vessel or at least a portion of the system can be adjustable in a lateral or vertical direction.
  • conveyance system 110 includes a pair of laterally spaced, substantially parallel convey lines 112, 114 positioned in a generally side-by-side configuration within vessel 120.
  • convey lines 112 and 114 may be laterally spaced from each other and may be positioned on both sides of a convey axis 122, which extends along the length of vessel 120 in the direction of conveyance of the articles passing therethrough.
  • convey lines 112, 114 may also be positioned at different vertical elevations.
  • conveyance system 110 depicted in FIGS. 2a and 2b may also include multiple pairs of laterally spaced convey lines (embodiment not shown), such that the pairs of laterally spaced convey lines are vertically spaced from each other along the vertical dimension of vessel 120.
  • FIGS. 2c and 2d Another embodiment of a conveyance system 110 that includes a pair of vertically-spaced, substantially parallel convey lines 116, 118 positioned in a stacked arrangement within the interior of vessel 120, is shown in FIGS. 2c and 2d .
  • Convey lines 116 and 118 may be configured above and below convey axis 122, which may generally extend along the length of vessel 120, as shown in the cutaway side view of vessel 120 provided in FIG. 2d .
  • vessel 120 shown in FIGS. 2c and 2d may also include multiple pairs of convey lines, laterally spaced from one another within the vessel. Further, each convey line of the pair may or may not be offset from the other in a lateral direction.
  • vessel 120 may include a single convey line, positioned in the middle one-third of the internal volume of vessel 120, or positioned at or near the centerline of the vessel. Additional details of conveyance systems according to several embodiments of the present invention will be discussed in detail below.
  • carrier 210 When a conveyance system is used to transport articles through a liquid-filled process vessel, one or more carriers or other securing mechanisms can be used to control the position of the articles during passage through the liquid medium.
  • carrier 210 comprises a lower securing surface 212a and an upper securing surface 212b configured to secure any suitable number of articles 216 therebetween.
  • upper and/or lower surfaces 212b,a can have a meshed, grid, or grated structure, as generally depicted in FIG. 3 , while, in another embodiment, one or both surfaces 212a,b can be a substantially continuous surface.
  • Carrier 210 can be constructed of plastic, fiberglass, or any other dielectric material and, in one embodiment, may be made of one or more microwave-compatible and/or microwave-transparent materials. In some embodiments, the material may be a lossy material. In some embodiments, carrier 210 can comprise substantially no metal.
  • Lower and upper securing surfaces 212a, 212b may be attached to one another by a securing device, shown as a fastener 219 in FIG. 3 , and, as assembled, carrier 210 may be attached or secured to the conveyance system (not shown in FIG. 3 ) according to any suitable attachment mechanism.
  • at least one side (or edge) of carrier 210 can include one or more attachment mechanisms, such as, for example, upper and lower hooks 218a, 218b shown in FIG. 3 , for securing carrier 210 to a portion (e.g., a bar, a rail, a belt, or a chain) of the conveyance system (not shown).
  • carrier 210 may only include one of hooks 218a, 218b for securing carrier 210 onto the conveyance system.
  • the conveyance system used to transport articles 216 may be configured to transport multiple carriers along one or more conveyance lines and the carriers may be arranged in a side-by-side, laterally-spaced configuration and/or in a vertically-spaced, stacked configuration as described previously.
  • each convey line may include a single carrier for holding a plurality of articles 216, or each convey line may hold multiple carriers stacked or laterally spaced from each other.
  • thermalization step can be carried out under ambient temperature and/or pressure, while, in another embodiment, thermalization can be carried out in a pressurized and/or liquid-filled thermalization vessel at a pressure of not more than about 10 psig, not more than about 5 psig, or not more than about 2 psig.
  • Articles undergoing thermalization can have an average residence time in thermalization zone 12 of at least about 30 seconds, at least about 1 minute, at least about 2 minutes, at least about 4 minutes and/or not more than about 20 minutes, not more than about 15 minutes, or not more than about 10 minutes.
  • the articles withdrawn from thermalization zone 12 can have a temperature of at least about 20°C, at least about 25°C, at least about 30°C, at least about 35°C and/or not more than about 70°C, not more than about 65°C, not more than about 60°C, or not more than about 55°C.
  • the articles removed from thermalization zone 12 can first be passed through a pressure adjustment zone 14a before entering microwave heating zone 16, as generally depicted in FIGS. 1a and 1b .
  • Pressure adjustment zone 14a can be any zone or system configured to transition the articles being heated between an area of lower pressure and an area of higher pressure.
  • pressure adjustment zone 14a can be configured to transition the articles between two zones having a pressure difference of at least about 1 psi, at least about 5 psi, at least about 10 psi and/or not more than about 50 psi, not more than about 45 psi, not more than about 40 psi, or not more than about 35 psi.
  • microwave system 10 can include at least two pressure adjustment zones 14a,b to transition the articles from an atmospheric pressure thermalization zone to a heating zone operated at an elevated pressure before returning the articles back to atmospheric pressure, as described in detail below.
  • FIG. 4a One embodiment of a pressure adjustment zone 314a disposed between a thermalization zone 312 and a microwave heating zone 316 of a microwave heating system 310 is illustrated in FIG. 4a .
  • Pressure adjustment zone 314a is configured to transition a plurality of articles 350, which may be secured within at least one carrier, from lower-pressure thermalization zone 312 to higher-pressure microwave heating zone 316.
  • FIG. 4a shows that pressure adjustment zone 314a may be configured to receive more than one carriers.
  • the carriers may be received simultaneously, such that pressure adjustment zone 314a contains multiple carriers at one time.
  • multiple carriers may be lined up and ready, for example within thermalization zone 312, for being transitioned through pressure adjustment zone 314a, details of which will now be discussed below.
  • one or more carriers 352a can be transitioned from thermalization zone 312 to microwave heating zone 316 by first opening an equilibration valve 330 and allowing the pressure between thermalization zone 312 and pressure adjustment zone 314a to equalize.
  • a gate device 332 can be opened to allow carrier 352a to be moved from a convey line 340a disposed within thermalization zone 312 onto a platform 334 within pressure adjustment zone 314a, as generally shown by the dashed-line carrier 352b in FIG. 4a .
  • gate device 332 and equilibrium valve 330 can be closed in sequence, re-isolating pressure adjustment zone 314a from thermalization zone 312.
  • another equilibration valve 336 can be opened to allow the pressure between pressure adjustment zone 314a and microwave heating zone 316 to equalize.
  • another gate device 338 can be opened to permit carrier 352b to be moved onto another conveyance system 340b disposed within microwave heating zone 316, as generally shown by dashed-line carrier 352c in FIG. 4a .
  • gate device 338 and equalization valve 336 may be closed in sequence, re-isolating microwave heating zone 316 from pressure adjustment zone 314a. The process may then be repeated to transport additional carriers from thermalization zone 312 to microwave heating zone 316 as needed.
  • each of microwave heating zone 316 and thermalization zone 312 can be filled with a non-compressible fluid or liquid, such as, for example, water or solutions including water.
  • a non-compressible fluid or liquid such as, for example, water or solutions including water.
  • filled denotes a configuration where at least 50 percent of the specified volume is filled with the filling medium.
  • the "filling medium” can be a liquid, typically an incompressible liquid, and may be or include, for example, water.
  • "filled" volumes can be at least about 75 percent, at least about 90 percent, at least about 95 percent, or 100 percent full of the filling medium.
  • gate devices 332, 338 and/or pressure adjustment zone 314a may also include two or more one-way flaps or valves, shown as valves or flaps 342, 344 in FIG. 4a , for preventing substantial fluid leakage between thermalization zone 312 and microwave heating zone 316 when gate devices 332 and 338 are open and carrier 352 is passed therethrough.
  • automatic transfer system 380 can include one or more transfer devices that are laterally shiftable (i.e., movable in the direction of transport) during transport of carrier 352 into and/or out of pressurize adjustment zone 314a.
  • a portion of the automatic transfer system 380 may be disposed in thermalization zone 312 and/or microwave heating zone 316 and can be configured for extension into and retraction out of pressure adjustment zone 314a.
  • the transfer devices include a pusher arm 381 configured to push carrier 352 into pressure adjustment zone 314a and a puller arm 382 for pulling carrier 352 into microwave heating zone 316.
  • pusher arm 381 nor puller arm 382 are disposed within pressure adjustment zone 314a, but instead, each is configured to extend into and retract out of pressure adjustment zone 314a, as generally shown by arrows 394a,b in FIG. 4c .
  • Locking gate device 420 further comprises a gate assembly 422, which is configured to be received within gate-receiving space 416 and is shiftable therein between a closed position (as shown in FIGS. 5b and 5c ), wherein gate assembly 422 substantially blocks flow-through openings 418a,b, and an open position (as shown in FIG. 5a ), wherein gate assembly 422 does not substantially block flow-through openings 418a,b.
  • gate assembly 422 comprises a pair of spaced apart sealing plates 424, 426 and a drive member 428 disposed between sealing plates 424, 426.
  • one or more of the bearings of pair 430 can be secured, attached, or at least partially housed within at least one of sealing plates 424, 426 and/or drive member 428.
  • at least one of the bearings 430 a can be fixedly attached to drive member 428, as depicted in the enlarged partial view of gate assembly 422 provided in FIG. 5d .
  • drive member 428 shifts downwardly into gate receiving space 416, one of the bearings 430a from the pair can contact one of sealing plates 424, 426 (shown as plate 426 in FIG. 5d ) and can move along a ramp (or slot) 427 therein.
  • sealing plates 424, 426 are disengaged from opposing sealing surfaces 414a,b, but may remain disposed within gate receiving space 416.
  • sealing plates 424, 426 can be biased towards the unsealed position and can include at least one biasing device 429 (e.g ., a spring or springs) for biasing sealing plates 424, 426 toward the unsealed position.
  • Microwave heating zone 16 can be operated at approximately ambient pressure, or it can include one or more pressurized microwave chambers operated at a pressure of at least about 5 psig, at least about 10 psig, at least about 15 psig and/or not more than about 80 psig, not more than about 60 psig, or not more than about 40 psig.
  • the pressurized microwave chamber can be a liquid-filled chamber having an operating pressure such that the articles being heated can reach a temperature above the normal boiling point of the liquid medium employed therein.
  • microwave heating zone 16 can be configured to increase the average temperature of the articles being heated by at least about 20°C, at least about 30°C, at least about 40°C, at least about 50°C, at least about 75°C and/or not more than about 150°C, not more than about 125°C, or not more than about 100°C, at a heating rate of at least about 15°C per minute (°C/min), at least about 25 °C/min, at least about 35°C/min and/or not more than about 75°C/min, not more than about 50°C/min, or not more than about 40°C/min.
  • Microwave chamber 520 can be any chamber or vessel configured to receive a plurality of articles.
  • Microwave chamber 520 can be of any size and may have one of a variety of different cross-sectional shapes.
  • chamber 520 can have a generally circular or elliptical cross-section, while, in other embodiments, can have a generally square, rectangular, or polygonal cross-sectional shape.
  • microwave chamber 520 can be a pressurized chamber and, in the same or other embodiments, can be configured to be at least partially filled with a liquid medium (a liquid-filled chamber).
  • Microwave chamber 520 can also be configured to receive at least a portion of the microwave energy discharged from one or more microwave launchers 522 and, in one embodiment, can be configured to permit the creation of a stable (or standing) wave pattern therein.
  • at least one dimension of microwave chamber 520 can be at least about 0.30 ⁇ , at least about 0.40 ⁇ , or at least about 0.50 ⁇ , wherein ⁇ is the wavelength of the microwave energy discharged therein.
  • Microwave distribution system 514 comprises a plurality of waveguides or waveguide segments 518 for directing at least a portion of the microwave energy from generator 512 to microwave chamber 520.
  • Waveguides 518 can be designed and constructed to propagate microwave energy in a specific predominant mode, which may be the same as or different than the mode of the microwave energy generated by generator 512.
  • the term "mode" refers to a generally fixed cross-sectional field pattern of microwave energy.
  • waveguides 518 can be configured to propagate microwave energy in a TE xy mode, wherein x and y are integers in the range of from 0 to 5.
  • waveguides 518 can be configured to propagate microwave energy in a TM ab mode, wherein a and b are integers in the range of from 0 to 5. It should be understood that, as used herein, the above-defined ranges of a , b, x , and y values as used to describe a mode of microwave propagation are applicable throughout this description.
  • the predominant mode of microwave energy propagated through waveguides 518 and/or discharged via launchers 522a-f can be selected from the group consisting of TE 10 , TM 01 , and TE 11 .
  • Launchers 522a-f can be the same or different types of launchers and, in one embodiment, at least one of launchers 522a-f can be replaced with a reflective surface (not shown) for reflecting at least a portion of the microwave energy discharged from the other launchers 522 into microwave heating chamber 520.
  • microwave distribution system 514 includes two or more launchers
  • at least some of the launchers may be disposed on generally the same side of microwave chamber 520.
  • the term “same-side launchers” refers to two or more launchers positioned on generally the same side of a microwave chamber. Two or more of the same-side launchers may also be axially spaced from one another. As used herein, the term “axially spaced” denotes spacing in the direction of conveyance of the articles through the microwave system (i.e., spacing in the direction of extension of the convey axis). Additionally, one or more launchers 522 may also be laterally spaced from one or more other launchers 522 of the system.
  • the term "laterally spaced” shall denote spacing in the direction perpendicular to the direction of conveyance of the articles through the microwave system (i.e., spacing perpendicular to the direction of extension of the convey axis).
  • launchers 522a-c and 522d-f are disposed on respective first and second sides 521 a,b of microwave chamber 520 and launcher 522a is axially spaced from launcher 522b and 522c, just as launcher 522e is axially spaced from launchers 522f and 522d.
  • microwave distribution system 514 can comprise at least two (e.g., two or more) pairs of oppositely disposed or opposed launchers.
  • the term "opposed launchers” refers to two or more launchers positioned on generally opposite sides of a microwave chamber. In one embodiment, the opposed launchers may be oppositely facing.
  • the term "oppositely facing” shall denote launchers whose central launch axes are substantially aligned with one another. For simplicity, central launch axis 523c of launcher 522c and central launch axis 523d of launcher 522d are the only central launch axes illustrated in FIG. 6a . However, it should be understood that each of launchers 522a-f include a similar launch axes.
  • Opposed launchers may be generally aligned with one another, or may be staggered from one or more other launchers disposed on the opposite side of microwave chamber 520.
  • a pair of opposed launchers may be a staggered pair of launchers, such that the discharge openings 524 of the launchers 522 are not in substantial alignment with one another.
  • Launchers 522a and 522e constitute one exemplary pair of opposed launchers arranged in a staggered configuration.
  • Staggered opposed launchers may be axially or laterally staggered from one another.
  • the term "axially staggered” shall denote launchers whose central launch axes are axially spaced from one another.
  • laterally staggered shall denote launchers whose central launch axes are laterally spaced from one another.
  • a pair of opposed launchers may be directly opposite launchers, such that the discharge openings of the launcher pair are substantially aligned.
  • launchers 522c and 522d shown in FIG. 6a are configured as a pair of opposite launchers.
  • Microwave heating system 516 depicted in FIGS. 6b and 6c includes a plurality of microwave launchers 522 that can be divided or organized into at least two groups of two or more microwave launchers.
  • Each of first, second, and third convey lines 542a-c can be configured to receive microwave energy from respective first, second, and third groups of microwave launchers.
  • a "group" of launchers can refer to two or more axially spaced launchers, generally position along the convey direction (e.g., launcher group 522a-d, launcher group 522e-h, and/or launcher group 522i-l shown in FIG.
  • a "group" of launchers can include one or more pairs of opposed launchers positioned on different sides of a microwave chamber (e.g ., groups that include pair of launchers 522a and 522m, the group that includes pair of launchers 522b and 522n, group that includes pair of launchers 522c and 522o, and group that includes pair of launchers 522d and 522p, as shown in FIG. 6c ).
  • the group of launchers comprises one or more pairs of opposed launchers
  • the launchers can be arranged in a staggered configuration (not shown) or can be directly opposite one another ( e.g . oppositely facing), as illustrated in FIG. 6c .
  • at least one generator shown as generator 512a in FIG. 6b , can be configured to provide microwave energy to at least one group of microwave launchers.
  • individual microwave launchers 522 of adjacent convey lines 542 can be arranged in a staggered configuration relative to one another in the convey direction.
  • one or more same-side microwave launchers 522a-l may be axially staggered from one another.
  • launchers 522a-d associated with first convey line 542a are arranged in a staggered configuration relative to each of respective launchers 522e-h associated with second convey line 542b with respect to and/or along the convey direction 560.
  • the term “axially staggered” shall denote launchers that are axially spaced from one another by distance greater that 1 ⁇ 2 the maximum axial dimension of the launch openings of the launchers.
  • the term “laterally staggered” shall denote launchers that are laterally spaced from one another by a distance greater that 1 ⁇ 2 the maximum lateral dimension of the launch openings of the launchers.
  • the microwave launchers associated with the non-adjacent convey lines can be arranged in a substantially aligned configuration relative to one another, as illustrated by the arrangement of launchers 522a-d relative to launchers 522i-l shown in FIG. 6b .
  • the launchers 522i-l associated with third convey line 542c may be staggered with respect to launchers 522a-d of first convey line 542a and/or second convey line 542b (embodiment not shown).
  • individual launchers 522 can have any suitable design or configuration and, in one embodiment, can include at least one feature from one or more embodiments of the present invention which will be described in detail herein.
  • Microwave heating zone 616 includes at least one microwave launcher 622 that defines a launch opening 624 for discharging energy into a microwave chamber 620.
  • microwave launcher 622 is configured to discharge microwave energy along a central launch axis 660 toward a conveyance system 640 configured to transport a plurality of articles 650 within microwave chamber 620 along a convey axis 642.
  • central launch axis 660 can be tilted such that a launch tilt angle, ⁇ , is defined between central launch axis 660 and a plane normal to convey axis 642, illustrated as plane 662 in FIG. 7a .
  • launch tilt angle ⁇ can be at least about 2°, at least about 4°, at least about 5° and/or not more than about 15°, not more than about 10°, or not more than about 8°.
  • FIG. 7b another embodiment of a microwave heating system 616 is shown as including two or more launchers 622a-c, each configured to discharge energy into microwave chamber 620 along respective tilted central launch axes 660a-c.
  • the central launch axes of the launchers can be substantially parallel to one another, as generally illustrated by central launch axes 660a,b of launchers 622a,b shown in FIG. 7b .
  • substantially parallel means within 5° of being parallel.
  • the central launch axes of two or more launchers, especially opposed launchers, within microwave heating zone 616 can be substantially parallel or substantially aligned, as illustrated by launch axes 660a,c of microwave launchers 622a,c in FIG. 7b .
  • each launcher can define a respective launch tilt angle, ⁇ n , within the ranges discussed previously.
  • each of the launch tilt angles ⁇ n of each launcher may be substantially the same, while, in another embodiment, at least one of the launch tilt angles ⁇ n can be substantially different than one or more other launch tilt angles.
  • At least one of launch openings 524a-f of launchers 522a-f of microwave system 516 can be at least partially covered by a substantially microwave-transparent window 526a-f disposed between each launch opening 524a-f and microwave chamber 520.
  • Microwave-transparent windows 526a-f can be operable to prevent fluid flow between microwave chamber 520 and microwave launchers 522a-f while still permitting a substantial portion of the microwave energy from launchers 522a-f to pass therethrough.
  • Windows 526a-f can be made of any suitable material, including, but not limited to one or more thermoplastic or glass material such as glass-filled Teflon, polytetrafluoroethylene (PTFE), poly(methyl methacrylate (PMMA), polyetherimide (PEI), aluminum oxide, glass, and combinations thereof.
  • thermoplastic or glass material such as glass-filled Teflon, polytetrafluoroethylene (PTFE), poly(methyl methacrylate (PMMA), polyetherimide (PEI), aluminum oxide, glass, and combinations thereof.
  • Tilt angle ⁇ can be at least about 2°, at least about 4°, at least about 8°, at least about 10° and/or not more than about 45°, not more than about 30°, or not more than about 15° from the horizontal, illustrated as dashed line 762.
  • the tilt angle, ⁇ may also be defined between the axis of elongation 762 of microwave chamber 720 and/or an axis of convey (not shown in FIGS. 8a-c ) when, for example, these axes are parallel to the horizontal.
  • Chamber-side surface 725 of window 726 can be oriented from the horizontal regardless of whether or not launcher 722 is oriented with a launch tilt angle as described above.
  • window 726 can be substantially planar and sloped from the horizontal (as shown in FIG. 8a ), while, in the same or another embodiment, chamber-side surface 725 of window 726 can include one or more convexities (as shown in FIG. 8b ) or concavities (as shown in FIG. 8c ).
  • one or more (or n) total tilt angles may be formed as described above. Depending on the exact configuration of chamber-side surface 725, the multiple tilt angles formed thereby may be the same as or different than other tilt angles formed by the same surface 725.
  • launch opening 838 When used to discharge microwave energy into a microwave chamber, launch opening 838 can be can be elongated in the direction of extension of the microwave chamber
  • side walls 832a,b and end walls 834a,b of launcher 822 can be configured such that the maximum dimension of launch opening 838 (shown in FIG. 9a as W 1 ) can be aligned substantially parallel to the direction of extension of the microwave chamber and/or to the direction of convey of articles passing therethrough.
  • the terminal edges of side walls 832a,b can be oriented parallel to the direction of extension (or the direction of convey), while the terminal edges of end walls 834a,b may be aligned substantially perpendicular to the direction of extension or convey within the microwave chamber (not shown in FIG. 9 ).
  • FIGS. 9b and 9c respectively provide views of a sidewall 832 and end wall 834 of microwave launcher 822 illustrated in FIG. 9a . It should be understood that, while only one of the side or end walls 832, 834 are shown in FIGS. 9b and 9c , the other of the pair could have a similar configuration. In one embodiment, at least one of side wall 832 and end wall 834 can be flared such that the inlet dimension (width W 0 or depth D 0 ) is smaller than the outlet dimension (width W 1 or depth D 1 ), as respectively illustrated in FIGS. 9b and 9c .
  • each of side and end walls 832, 834 define respective width and depth flare angles, ⁇ w and ⁇ d , as shown in FIGS. 9b and 9c .
  • width and/or depth flare angles ⁇ w and/or ⁇ d can be at least about 2°, at least about 5°, at least about 10°, or at least about 15° and/or not more than about 45°, not more than about 30°, or not more than about 15°.
  • the width and depth flare angles ⁇ w and ⁇ d can be the same, while, in another embodiment, the values for ⁇ w and ⁇ d may be different.
  • depth flare angle ⁇ d can be smaller than width flare angle ⁇ w .
  • depth flare angle ⁇ d can be not more than about 0°, such that the inlet depth D 0 and the outlet dimension D 1 of microwave launcher 822 are substantially the same, as illustrated in the embodiment depicted in FIG. 9d .
  • the depth flare angle ⁇ d may be less than 0°, such that D 1 is smaller than D 0 , as shown in FIG. 9e .
  • microwave launcher 822 can be a tapered launcher having a generally inverse profile.
  • microwave launcher 822 comprises n launch openings, between 1 and n of the openings can have a depth and/or width less than or equal to the depth and/or width of the inlet of the launcher. Further embodiments of multi-opening launchers will be discussed in detail below.
  • the depth D 1 of launch opening 838 can be no more than about 0.625 ⁇ , not more than about 0.5 ⁇ , not more than about 0.4 ⁇ , not more than about 0.35 ⁇ , or not more than about 0.25 ⁇ , wherein ⁇ is the wavelength of the predominant mode of microwave energy discharged from launch opening 838.
  • is the wavelength of the predominant mode of microwave energy discharged from launch opening 838.
  • microwave launcher 822 comprises n launch openings
  • the depth of each launch opening, d n can be not more than about 0.625 ⁇ , not more than about 0.5 ⁇ , not more than about 0.4 ⁇ , not more than about 0.35 ⁇ , or not more than about 0.25 ⁇ .
  • each opening can have a depth that is the same or different than one or more of the other launch openings of the same launcher.
  • FIGS. 10a-c another embodiment of a microwave launcher 922 suitable for use in the microwave heating systems described herein is illustrated as comprising a single microwave inlet 936 and two or more launch openings, shown as launch or discharge openings 938a-c, for discharging microwave energy therefrom.
  • Microwave launcher 922 illustrated in FIGS. 10a-c includes first, second, and third spaced apart launch openings 938a-c, which are laterally spaced from one another. Although described herein as defining three launch openings, it should be understood that launcher 922 can include any suitable number of launch openings including at least 2, at least 3, at least 4 and/or not more than 10, not more than 8, or not more than 6.
  • the spacing between each of first, second, and third launch openings 938a-c can be at least about 0.05 A, at least about 0.075 ⁇ , or at least about 0.10 ⁇ and/or not more than about 0.25 A, not more than about 0.15 A, or not more than about 0.1 A, wherein ⁇ is the wavelength of the predominant mode of microwave energy discharged from launcher 922.
  • each of first, second, and third launch openings are separated by one or more dividing septum (or septa) 940a,b disposed within the interior of launcher 922, as shown in FIGS. 10a-c .
  • Septa 940a,b typically have a thickness equal to the desired spacing between the discharge openings 938a-c.
  • microwave launcher 922 defines ( n +1) separated launch openings and ( n +1) separate microwave pathways 937a-c defined between microwave inlet 836 and each of launch openings 938a-c, as particularly shown in FIG. 10c .
  • FIG. 10c As shown in FIG.
  • each of microwave pathways 937a-c has a length, L 1 -L 3 , which extends from inlet 936 to a point perpendicular with respective launch opening 938a-c.
  • L 1 -L 3 can be substantially the same, or at least one of L 1 , L 2 , and L 3 can be substantially different.
  • one or more pathways 937a-c can be longer than one or more other pathways 937a-c.
  • the dimensions (L 1 , L 2 , and/or L 3 ) of pathways 937a-c may be adjusted such that the phase velocity of the microwave energy propagating therethrough accelerates at a more rapid pace within the longer microwave pathways (e.g ., L 1 and L 3 in FIG. 10c ) than through the shorter pathways ( e.g ., L 2 in FIG. 10c ).
  • the longer microwave pathways e.g ., L 1 and L 3 in FIG. 10c
  • shorter pathways e.g ., L 2 in FIG. 10c
  • microwave launcher 922 includes a single septum, only two microwave pathways are created (embodiment not shown) and the length of each pathway is substantially the same. Consequently, little or no control of the phase velocity of microwave energy passing through the equal length pathways may be needed.
  • each of launch openings 938a-c can define a depth, d 1-3 , as generally depicted in FIG. 10b .
  • each of depths d 1 through d 3 can be substantially the same, while, in another embodiment, at least one of the depths d 1 -d 3 can be different.
  • one or more of d 1 -d 3 can be not more than about 0.625 A, not more than about 0.5 A, not more than about 0.4 A, not more than about 0.35 A, or not more than about 0.25 A, wherein ⁇ is the wavelength of the predominant mode of microwave energy discharged from launch opening 938a-c.
  • At least one of d 1 -d 3 can be less than or equal to the depth d 0 of inlet 936 as discussed in detail previously. As shown in FIG. 10b , the depths, d 1-3 , of each of launch openings 938a-c do not include the thickness of septa 940a,b, when present.
  • the microwave distribution system 514 of microwave heating zone 516 can include at least one microwave distribution manifold 525a,b for allocating or distributing microwave energy into chamber 520 via a plurality of launchers 522a-c and 522d-f.
  • microwave distribution manifold 525a,b can include at least three microwave allocation devices configured to divide the microwave energy from generator 512 into two or more separate portions prior to being discharged from at least some of microwave launchers 522a-f.
  • microwave allocation device refers to any device or item operable to divide microwave energy into two or more separate portions, according to a predetermined ratio.
  • predetermined power ratio refers to the ratio of the amount of power of each resultant separate portion exiting a specific microwave allocation device.
  • a microwave allocation device configured to divide the power passing therethrough at a 1:1 power ratio would be configured to divide the power introduced therein into two substantially equal portions.
  • At least one of the microwave allocation devices, shown as inductive irises 570a-h and "T-shaped" or two-way splitter 572 in FIG. 6a , of microwave distribution system 514 can be configured to have a predetermined power ratio that is not 1:1.
  • one or more of the microwave allocation devices 570a-h or 572 can be configured to divide the microwave energy passing therethrough according to a predetermined power ratio of at least about 1:1.5, at least about 1:2, at least about 1:3 and/or not more than about 1:10, not more than about 1:8, or not more than about 1:6.
  • Each of the allocation devices 570a2-h and/or 5 employed by microwave distribution system 514 may be configured to discharge energy according to the same ratio, or one or more of allocation devices 570a-h can be configured at a different power ratio.
  • Allocation devices 570a-h and 572 can be configured such that substantially the same amount of power is discharged from each of launchers 522a-f, while, in another embodiment, the allocation devices 570a-h and 572 can be collectively designed such that more power is diverted to and discharged from one or more launchers 522a-f, with less power being discharged through the remainder of the launchers 522a-f.
  • microwave allocation devices 570a-h and 572 can depend on a variety of factors including, for example, the type of articles being heated, the desired operating conditions of the microwave heating zone 516, and other similar factors.
  • an initial quantity of microwave power can be introduced into microwave distribution system 514 and can be divided into two portions as it passes through splitter 572.
  • the two portions of microwave energy exiting splitter 572 can be approximately of approximately the same power, while, in another embodiment, one of the two portions may have more power than the other.
  • each portion may pass to a respective manifold 525a,b, optionally passing through a phase shifting device 530 prior to entering manifold 525a,b. Described now with respect to microwave distribution manifold 525a, it should be understood that analogous operation is applicable to the lower manifold 525b shown in FIG. 6a .
  • the microwave power exiting splitter 572 and optionally phase shifting device 530 may then pass through a microwave allocation device, shown as iris 570a, whereupon the power can be divided into a first launch microwave fraction and a first distribution microwave fraction.
  • the first launch microwave fraction can be directed toward launcher 522a and can be discharged via outlet 524a
  • the first distribution microwave fraction can be propagated down waveguide 518 toward the additional microwave launchers 522b,c.
  • the power ratio of the first launch microwave fraction to the first distribution microwave fraction exiting iris 570a can be not more than about 1:1, not more than about 0.95:1, not more than about 0.90:1, not more than 0,80:1, not more than about 0.70:1 or not more than 0.60:1. In one embodiment, the power ratio of the first launch microwave fraction to the first distribution microwave fraction is not 1:1.
  • the first distribution microwave fraction propagates toward launchers 522b,c, it can subsequently be divided into a second launch microwave fraction directed toward launcher 522b to be discharged via launch outlet 524b, and a second distribution microwave fraction that propagates down waveguide 518 toward launcher 522c.
  • the ratio of second launch microwave fraction to second distribution microwave fraction can be at least about 0.80:1, at least about 0.90:1, at least about 0.95:1 and/or not more than about 1.2:1, not more than about 1.1:1, not more than about 1.05:1, or can be approximately 1:1.
  • the remainder of the microwave energy e.g., the entirety of the second distribution microwave fraction
  • the remainder of the microwave energy can then be directed to the final microwave launcher 522c and discharged from launch outlet 524c.
  • microwave distribution system 514 can include a microwave distribution manifold 525a,b having more than three launchers.
  • microwave distribution manifold 525 includes n launchers, all but the ( n -1)th step of dividing can be carried out such that the ratio of the launch microwave fraction to the distribution microwave fraction is not 1:1.
  • the power ratio can be not more than about 1:1, not more than about 0.95:1, not more than about 0.90:1, not more than 0,80:1, not more than about 0.70:1 or not more than 0.60:1, while the ( n -1)th dividing step can be carried out such that the ratio of the launch microwave fraction to second distribution microwave fraction can be at least about 0.80:1, at least about 0.90:1, at least about 0.95:1 and/or not more than about 1.2:1, not more than about 1.1:1, not more than about 1.05:1, or can be approximately 1:1.
  • the ( n -1)th distribution microwave fraction can then be sent, in its majority or entirety, as an nth launch microwave fraction to be discharged to the microwave chamber via the nth microwave launcher.
  • one or more of launchers 522 can also include at least one inductive iris disposed within the launcher, as shown in one embodiment illustrated in FIGS. 11a and 11b .
  • one or more of irises 570b and/or 570d may be disposed within launchers 522a and/or 522b, respectively, rather than be disposed within a waveguide as shown in FIG. 6a .
  • first and second iris panels 1072a,b extend inwardly into the microwave pathway 1037 defined between microwave inlet 1036 and launch opening 1038 in a direction that is generally transverse to the direction of microwave propagation through pathway 1037.
  • iris panels obstruct at least about 25 percent, at least about 40 percent, or at least about 50 percent and/or not more than about 75 percent, not more than about 60 percent, or not more than about 55 percent of the total area of microwave pathway 1037 at the location at which they are disposed.
  • first and second iris panels 1072a,b can be configured to obstruct at least a portion of each of the launch openings 1038a-c of the launcher 1022.
  • microwave distribution system 514 is illustrated as further comprise one or more devices or for increasing the uniformity and/or strength of the microwave field created within microwave heating chamber 520.
  • microwave distribution system 514 can include one or more devices designed to modify and/or control the location and strength of the constructive interference bands of the microwave field created within each of individual heating zones 580a-c, which are respectively defined between pairs of launchers 522a and 522f, 522b and 522e, and 522c and 522d.
  • a device can be a phase shifting device, schematically represented in FIG. 6a as device 530, operable to cyclically shift the phase of the microwave energy passing therethrough.
  • each article 550 can have an average residence time ( ⁇ ), within each individual heating zone 580a-c, of at least about 2 seconds, at least about 10 seconds, at least about 15 seconds and/or not more than about 1 minute, not more than about 45 seconds, or not more than about 30 seconds.
  • the average residence time ( ⁇ ) for articles 550 can be greater than the phase shifting rate (t) for which phase shifting device 530 is configured.
  • the ratio of the average residence time of the articles passing through one of individual heating zones 580a-c to the phase shifting rate of device 530 can be at least about 2:1, at least about 3:1, at least about 4:1, at least about 5:1 and/or not more than about 12:1, not more than about 10:1, or not more than about 8:1.
  • Phase shifting device 530 can be any suitable device for rapidly and cyclically shifting the phase of microwave energy passing through microwave distribution system 514. According to one embodiment, phase shifting device 530 can be configured to shift the microwave energy passing therethrough at a phase shifting rate (t) of at least about 1.5 cycles per second, at least about 1.75 cycles per second, or at least about 2.0 cycles per second and/or not more than about 10 cycles per second, not more than about 8 cycles per second, and/or not more than about 6 cycles per second. As used herein, the term “phase shifting rate” refers to the number of complete phase shift cycles completed per second. A "complete phase shift cycle" refers to a phase shift from 0° to 180° and back to 0°. Although shown as including a single phase shifting device 530, it should be understood that any suitable number of phase shifting devices can be utilized within microwave distribution system 514.
  • phase shifting device 530 can comprise a plunger-type tuning device operable to be moved in a generally linear (e.g ., up-and-down motion) within a cylinder to thereby cause the phase of the microwave energy passing therethrough to be cyclically shifted.
  • FIGS. 12a and 12b illustrate two embodiments of a plunger-type tuning device 1130a,b suitable for use in microwave distribution system 514.
  • FIG. 12a depicts a single-plunger phase shifting device 1130a that includes one plunger 1132 operable to move within a single cylinder 1134 via an automatic driver 1136.
  • FIG. 12b illustrates another embodiment of a phase shifting device that comprises a multi-plunger phase shifting device that includes a plurality of plungers 1132a-d disposed and operable to moved within several corresponding cylinders 1134a-d.
  • Plungers 1132a-d can be driven by a single automatic driver 1136, which can be connected to each of plungers 1132a-d via a rotatable cam shaft 1138.
  • Either of plunger-type tuning devices 1130a,b can be connected to a coupler, such as, for example, a short slot hybrid coupler (not shown in FIGS. 12a and 12b ) and can be employed in microwave distribution system 514 as a phase shifting device 530 as described above.
  • FIGS. 13a-e Another embodiment of a suitable phase shifting device is depicted in FIGS. 13a-e .
  • the phase shifting devices illustrated in FIGS. 13a-e are rotatable phase shifting devices.
  • a rotatable phase shifting device 1230 also referred to as a variable phase short circuit, can comprise a fixed section 1210 defining a first substantially rectangular opening 1212 and a rotatable section 1240 positioned proximate said first opening 1212.
  • FIG. 13a rotatable phase shifting device 1230 also referred to as a variable phase short circuit
  • a gap 1213 can be defined between rotatable section 1240 and fixed section 1210 and, in one embodiment, a microwave choke (not shown) can be at least partially disposed within gap 1213 for preventing the leakage of microwave energy from fixed and rotatable sections 1210 and 1240.
  • Rotatable section 1240 comprises a housing 1242 and a plurality of spaced apart, substantially parallel plates 1244a-d received within housing 1242. As shown in FIG. 13a , housing 1242 comprises a first end 1243a and a second end 1243b and first end 1243a defines a second opening 1246 adjacent to first rectangular opening 1212 of fixed section 1210. As indicated by arrows 1290, 1292 in FIG. 13a , rotatable section 1240 can be configured to be rotated relative to fixed section 1210 about an axis of rotation 1211 extending through first and second openings 1212, 1246, as generally shown in FIGS. 13a-c .
  • Fixed section 1210 can be any suitable shape or size and may comprise a circular or a rectangular waveguide.
  • first substantially rectangular opening 1212 can have a width (W R ) and a depth (D R ) such that the ratio of W R :D R is at least about 1.1:1, at least about 1.25:1, or at least about 1.5:1.
  • the width of first openings 1212 of fixed section 1210 and the width of second opening 1246 of rotatable section 1240 are substantially the same, such that the ratio W H :W R is at least about 0.85:1, at least about 0.95:1, or at least about 0.98:1 and/or not more than about 1.15:1, not more than about 1.05:1, or not more than about 1.01:1.
  • each of plates 1244a-d can be coupled to second end 1243b of housing 1242 and can extend generally toward first end 1243a of housing 1242 in a direction toward first and second openings 1212 and 1244.
  • Each of plates 1244a-d can have an extension distance or length, shown as L e in FIG. 13b , of at least about 0.1 ⁇ , at least about 0.2 ⁇ , at least about 0.25 ⁇ and/or not more than about 0.5 ⁇ , not more than about 0.35 ⁇ , or not more than about 0.30 ⁇ . Additionally, as particularly shown in FIG.
  • one or more of plates 1244a-d can have a thickness, k , of at least about 0.01 ⁇ , at least about 0.05 ⁇ and/or not more than about 0.10 ⁇ , or not more than about 0.075 ⁇ , wherein ⁇ is the wavelength of the microwave energy introduced into housing 1242 via first opening 1212.
  • Adjacent plates 1244a-d can be spaced apart by a spacing distance, j , which can be greater than, approximately the same as, or less than the thickness of each plate.
  • j can be at least about 0.01 ⁇ , at least about 0.05 ⁇ and/or not more than about 0.10 ⁇ , or not more than about 0.075 ⁇ .
  • the ratio of the cumulative surface area of the distal ends of plates 1244a-d, generally illustrated as the shaded regions in FIG. 13c , to the total internal exposed surface area of second end 1243b of housing 1242, generally illustrated as the unshaded regions in FIG. 13c can be at least about 0.85:1, at least about 0.95:1, or at least about 0.98:1 and/or not more than about 1.15:1, not more than about 1.10:1, or not more than about 1.05:1.
  • Variable phase short circuit 1230 can be configured to rotate at a speed of at least about 50 revolutions per minute (rpm), at least about 100 rpm, at least about 150 rpm and/or not more than about 1000 rpm, not more than about 900 rpm, or not more than about 800 rpm about axis of rotation 1211, as illustrated in FIG. 13a .
  • at least a portion of the movement of rotatable variable phase short circuit 1230 can be carried out via an actuator 1270 coupled to an automatic driver and/or automatic control system (not shown).
  • at least a portion of the movement can be carried out manually and may optionally include periods of non-rotation.
  • rotating phase shifting device 1233 can include a rotating crank member 1237 coupled via a securing rod 1239 to a plunger 1241 disposed within a waveguide 1243.
  • rod 1239 facilitates a general up-and-down movement of piston or plunger 1241 within waveguide 1243, as indicated by arrow 1263 in FIG. 13e .
  • FIG. 13e Another embodiment of a rotating phase shifting device 1235 is depicted in FIG.
  • rotating phase shifting device 1235 can further comprise one or more biasing devices 1249 (e.g ., one or more springs) for facilitating movement of plunger 1241 within waveguide 1243 in an upward direction.
  • biasing devices 1249 e.g ., one or more springs
  • variable phase short circuits 1330a,b can be connected to adjacent outlets of a coupler 1340, which can be a short slot hybrid coupler.
  • each of variable phase short circuits 1330a,b can be individually adjusted to a desired position such that impedance tuner tunes out energy reflected from microwave launcher 1322 back toward generator 1312.
  • one or both of variable phase short circuits 1330a,b can be further adjusted as needed during the microwave process in order to accommodate changes in the reflection coefficient of the articles being heated.
  • the further adjustments can be at least partially carried out using an automatic control system (not shown).
  • variable phase short circuits as described herein can also be utilized as frequency tuners for matching the frequency of the cavity to the frequency of the generator.
  • one or more variable phase short circuits shown as variable phase short circuit 1330c in FIG. 14b , can be directly coupled to individual ports spaced along a resonant microwave chamber 1320.
  • variable phase short circuit 1330c can be continuously or sporadically rotated and its position can be manually or automatically adjusted depending on changes within microwave chamber 1320 and/or the articles being processed therein (not shown). As a result of this adjustment of variable phase short circuit 1330c, the frequency of microwave energy within the cavity can be more closely matched to the frequency of the generator (not shown).
  • microwave heating system 510 shown in FIG. 6a
  • more thorough and/or more efficient heating of articles 550 passed through microwave chamber 520 may be carried out by, for example, increasing the heat transfer coefficient between the articles and the surrounding fluid medium.
  • a microwave chamber 1420 configured to facilitate quicker and more efficient heating of articles 1450 through changes in the heat transfer coefficient within microwave heating chamber 1420 is illustrated in FIG. 15a .
  • the heat transfer coefficient within microwave chamber 1420 can be increased, at least in part, by agitating the gaseous or liquid medium within chamber 1420 using one or more agitation devices, such as, for example, one or more fluid jet agitators 1430a-d configured to turbulently discharge one or more fluid jets into the interior of microwave chamber 1420.
  • the fluid jets discharged into microwave chamber 1420 can be a liquid or a vapor jet and can have a Reynolds number of at least about 4500, at least about 8000, or at least about 10,000.
  • fluid jet agitator 1430a may also include a plurality of distinct jets, radially spaced from one another along at least a portion of the circumference of chamber 1420, each positioned to discharge a fluid jet toward central axis of elongation 1417 of chamber 1420.
  • fluid jet agitators 1430a-d can be positioned along one or more sides of microwave chamber 1420 and can be disposed between (alternately) with one or more microwave launchers 1422.
  • Use of one or more agitators 1430a-d can increase the heat transfer coefficient between the fluid medium within microwave chamber 1420 and articles 1450 by at least about 1 percent, at least about 5 percent, at least about 10 percent, or at least about 15 percent, as compared to the heat transfer coefficient of a quiescent chamber, ceteris paribus.
  • one or more jets configured and/or operated in a similar manner can be included within one or more other zones of microwave system 10 including thermalization and/or holding zones 12 and/or 20, illustrated previously in FIGS. 1a and 1b .
  • the heated articles after being withdrawn from microwave heating zone 16, the heated articles can then optionally be routed to a temperature holding zone 20, wherein the temperature of the articles can be maintained at or above a certain minimum threshold temperature for a specified residence time.
  • the articles removed from holding zone 20 can have a more consistent heating profile and fewer cold spots.
  • the minimum threshold temperature within holding zone 20 can be the same as the minimum temperature required within microwave heating zone 16 and can be at least about 120°C, at least about 121°C, at least about 122°C and/or not more than about 130°C, not more than about 128°C, or not more than about 126°C.
  • quench zone 22 can be configured to cool the articles by at least about 30°C, at least about 40°C, at least about 50°C and/or not more than about 100°C, not more than about 75°C, or not more than about 50°C in a time period of at least about 1 minute, at least about 2 minutes, at least about 3 minutes and/or not more than about 10 minutes, not more than about 8 minutes, or not more than about 6 minutes.
  • Any suitable type of fluid can be used as a cooling fluid in quench zone 22, including, for example, a liquid medium such as those described previously with respect to microwave heating zone 16 and/or a gaseous medium.
  • microwave heating system 10 may also include a second pressure adjustment zone 14b disposed downstream of microwave heating zone 16 and/or holding zone 20, when present.
  • Second pressure adjustment zone 14b may be configured and operated in a manner similar to that previously described with respect to first pressure adjustment zone 14a.
  • second pressure adjustment zone 14b can be located downstream of quench zone 22, such that a substantial portion or nearly all of quench zone 22 is operated at an elevated (super atmospheric) pressure similar to the pressure under which microwave heating zone 16 and/or holding zone 20 are operated.
  • second pressure adjustment zone 14b can be disposed within quench zone 22, such that a portion of quench zone 22 can be operated at a super-atmospheric pressure similar to the pressure of microwave heating zone 16 and/or holding zone 20, while another portion of quench zone 22 can be operated at approximately atmospheric pressure.
  • the cooled articles can have a temperature of at least about 20°C, at least about 25°C, at least about 30°C and/or not more than about 70°C, not more than about 60°C, or not more than about 50°C.
  • the cooled, treated articles can then be removed from microwave heating zone 10 for subsequent storage or use.
  • one or more methods for controlling the operation of microwave heating system 10 are provided, for example, to ensure a consistent and continuous exposure to microwave energy for each article or package passing through microwave heating system 10.
  • the major steps of one embodiment of a method 1500 suitable for controlling the operation of microwave system 10 are depicted by individual blocks 1510-1530 in FIG. 16 .
  • the first step of control method 1500 is to determine a value for one or more microwave system parameters related to microwave heating zone 16, as represented by block 1510.
  • microwave system parameters can include, but are not limited to, net power discharged, speed of conveyance system, and temperature and/or flow rate of the water within the microwave heating chamber.
  • the resulting determined value for the specific parameter can then be compared to a corresponding target value for the same parameter in order to determine a difference. Based on the difference, one or more actions can be taken to adjust the operation of microwave system 10, as represented by block 1530 in FIG. 16 .
  • the adjustment of microwave heating system 10 can be undertaken when, for example, the magnitude of the difference is at least about 5 percent, at least about 10 percent, or at least about 20 percent of the value of the target value and/or determined value for the specific microwave system parameter. In one embodiment, at least a portion of the above-described method can be carried out using an automatic control system.
  • the basic steps of the above-described control method 1500 can be utilized by microwave heating system 10 to ensure safety and/or regulatory compliance of the articles (e.g ., food and/or medical fluids or equipment) being heated therein.
  • the one or more microwave system parameters may be selected from the group consisting of minimum net power discharged, maximum speed of conveyance system, and minimum temperature and/or minimum flow rate of the water within the microwave heating chamber.
  • the one or more actions taken to adjust the operation of microwave heating system 10 can include, but are not limited to, stopping the conveyance system, turning off one or more generators, removing, isolating, and re-running or disposing of one or more articles exposed to undesirable conditions, and combinations thereof.
  • the temperature of the water in the microwave chamber can be at least about 121°C, at least about 122°C, at least about 123°C and/or not more than about 130°C, not more than about 128°C, or not more than about 126°C, while the flow rate can be at least about 15 gallons per minute (gpm), at least about 30 gpm, or at least about 50 gpm.
  • the speed of the conveyance system in one embodiment, can be controlled to a speed of at least about 5 feet per second (fps), at least about 7 fps, or at least about 10 fps, while the net power discharged can be at least about 75 kW, at least about 100 kW, or at least about 150 kW.
  • the one or more actions taken to adjust the operation of microwave heating system 10 can include, but are not limited to, stopping the conveyance system, turning off one or more generators, removing, isolating, and re-running or disposing of one or more articles exposed to undesirable conditions, and combinations thereof.
  • one or more of the target values for at least one of the microwave system parameters discussed above can be determined prior to heating the articles in microwave system 10. Determination of the magnitude of these target values may be accomplished by first creating a prescribed heating profile for the specific type of article to be heated using a small-scale microwave system. For example, in one embodiment, one or more articles of a specific type (e.g ., particular foodstuffs, medical devices, or medical fluids) are first be loaded into a microwave chamber of a small-scale microwave heating system.
  • a specific type e.g ., particular foodstuffs, medical devices, or medical fluids
  • the articles loaded into the small-scale heating chamber can be of a single type such that the resultant prescribed heating determined can be specifically applied to that type of article in a larger-scale heating system.
  • the article can be a specific type and/or size of packaged food (e.g ., an 8-oz MRE package of meat) or can be a packaged medical fluid (e.g ., saline) or specific types and/or packages of medical or dental equipment.
  • the prescribed heating profile can include at least one target value for one or more microwave system parameters including, but not limited to, net power discharged, sequential distribution of microwave power (i.e ., specifics regarding timing, location, and amount of microwave energy discharged), temperature and/or flow rate of the fluid (e.g ., water) in the microwave chamber, and/or residence time of the article within the microwave chamber.
  • the prescribed heating profile can also include target or minimum values for one or more parameters (e.g., temperature, flow rate of fluid, pressure, and article residence time) related to thermalization, holding, and/or quench zones 16, 20, 22 of microwave heating system 10.
  • the small-scale microwave heating system can be a batch or semi-batch system and/or can comprise a liquid-filled microwave chamber having a total internal volume of less than 100 cubic feet, less than 50 cubic feet, or less than 30 cubic feet.
  • the large-scale microwave system can be a continuous or semi-continuous process at least partially carried out in a pressurized or liquid filled microwave chamber having a total internal volume of at least about 100 cubic feet, at least about 250 cubic feet, or at least about 500 cubic feet.
  • target values for one or more parameters described above can be determined and used in the comparison step 1520 of method 1500 shown in FIG. 16 . Thereafter and based on the difference, one or more of the actions listed above may be taken to ensure consistent heating of the final product.
  • net power discharged refers to the difference between the forward and reflected power within a waveguide or launcher.
  • forward power refers to power propagating in an intended direction from the generator to a load
  • reflected power refers to power propagating in a non-intended direction, usually from the load back into a waveguide or launcher and toward the generator.
  • a first and second value for net power discharged can be determined using two independent pairs of directional couplers.
  • Each pair of directional couplers can include one coupler for measuring forward power and another for measuring reflected power and one or more devices or systems for calculating the difference to thereby provide respective first and second values for net power discharged.
  • at least one of the net power values can be used to adjust or control the output of the microwave generator, while the other can be used as a backup or validation of the other.
  • the first and second values for net power can be compared to determine a difference, as illustrated by block 1630, and, based on the difference, an action can be taken to adjust the operation of the microwave heating system, as depicted by block 1640.
  • the action can be taken when the difference exceeds a predetermined value, such as, for example, a value that is at least about 1 percent, at least about 2 percent, or at least about 5 percent of the first and/or second net power values determined previously.
  • action can be taken when the difference is at least about 1 percent, at least about 2 percent, or at least about 3 percent of the lowest of first and second net power values.
  • action may also be taken if one of first or second net power values falls below a predetermined minimum and/or exceeds a predetermined maximum.
  • the action may include, but is not limited to, shutting down a generator or conveyance system, increasing or decreasing generator output, and/or removing, isolating, and disposing or re-running one or more articles that were disposed within the microwave heating chamber when the difference exceeded the predetermined value.
  • Microwave heating systems of the present invention can be commercial-scale heating systems capable of processing a large volume of articles in a relatively short time.
  • microwave heating systems as described herein can be configured to achieve an overall production rate of at least about 15 packages per minute per convey line, at least about 20 packages per minute per convey line, at least about 25 packages per minute per convey line, or at least about 30 packages per minute per convey line, which far exceeds rates achievable by other microwave systems.
  • packages per minute refers to the total number of whey gel-filled 8-oz MRE (meals ready to eat) packages able to be processed by a given microwave heating system, according to the following procedure:
  • An 8-oz MRE package filled with whey gel pudding commercially available from Ameriqual Group LLC (Evansville, IN, USA) is connected to a plurality of temperature probes positioned in the pudding at five equidistant locations spaced along each of the x-, y-, and z- axes, originating from the geometrical center of the package, as shown in FIG. 18 .
  • the package is then placed in a microwave heating system being evaluated and is heated until each of the probes registers a temperature above a specified minimum temperature (e.g., 120°C for sterilization systems).
  • a specified minimum temperature e.g. 120°C for sterilization systems.
  • the time required to achieve such a temperature profile, as well as physical and dimensional information about the heating system, can then be used to calculate an overall production rate in packages per minute.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)

Claims (14)

  1. Système à micro-ondes (10) pour chauffer une pluralité d'articles, ledit système comprenant:
    une chambre à micro-ondes (620) configurée pour recevoir lesdits articles ;
    un système de transport (110) pour transporter lesdits articles à travers ladite chambre à micro-ondes (620) le long d'un axe de transport (642) ; et
    un premier émetteur de micro-ondes (622a) configuré pour propager de l'énergie de micro-ondes dans ladite chambre à micro-ondes (620) le long d'un premier axe d'émission central (660a)
    caractérisé en ce que
    un premier angle d'inclinaison d'émission d'au moins 2° et inférieur à 15° est défini entre ledit premier axe d'émission central (660a) et un plan perpendiculaire audit axe de transport (66a).
  2. Système (10) selon la revendication 1, comprenant en outre un second émetteur de micro-ondes (622b) configuré pour propager de l'énergie de micro-ondes dans ladite chambre à micro-ondes (620) le long d'un second axe d'émission central (660b), dans lequel un second angle d'inclinaison d'émission d'au moins 2° est défini entre ledit second axe d'émission central (660b) et un plan perpendiculaire audit axe de transport (662).
  3. Système (10) selon la revendication 2, dans lequel lesdits premier et second axes d'émission centraux (660a, 660b) sont sensiblement parallèles l'un par rapport à l'autre.
  4. Système (10) selon la revendication 2 ou la revendication 3, dans lequel lesdits premier et second émetteurs de micro-ondes (622a, 622b) sont positionnés sur des côtés opposés de ladite chambre à micro-ondes (620).
  5. Système (10) selon la revendication 4, dans lequel lesdits premier et second émetteurs de micro-ondes (622a, 622b) sont positionnés l'un en face l'autre.
  6. Système (10) selon la revendication 2 ou la revendication 3, dans lequel lesdits premier et second émetteurs de micro-ondes (622a, 622b) sont positionnés sur le même côté de ladite chambre à micro-ondes (620).
  7. Système (10) selon l'une quelconque des revendications 1 à 6, comprenant en outre au moins un générateur de micro-ondes (512) pour générer de l'énergie de micro-ondes ayant une longueur d'onde λ, dans lequel ledit premier émetteur de micro-ondes (622a) définit au moins une ouverture d'émission (624) pour décharger de l'énergie de micro-ondes dans ladite chambre à micro-ondes (620), dans lequel ladite ouverture d'émission (624) a une largeur (w1) et une profondeur (d1), dans lequel w1 est supérieure à d1, où d1 est inférieure à 0,625 λ.
  8. Système (10) selon la revendication 7, dans lequel ladite ouverture d'émission (624) est allongée dans la direction d'extension dudit axe de transport (642).
  9. Système (10) selon la revendication 7 ou la revendication 8, dans lequel ledit premier émetteur de micro-ondes (622a) comprend une entrée (936) et deux ouvertures d'émission ou plus (938a, 938b, 938c) pour décharger de l'énergie de micro-ondes dans ladite chambre à micro-ondes (620), dans lequel chacune desdites deux ouvertures d'émission ou plus (938a, 938b, 938c) a une profondeur inférieure à 0,625 λ.
  10. Système (10) selon l'une quelconque des revendications 7 à 9, comprenant en outre au moins une fenêtre sensiblement transparente aux micro-ondes (526) placée entre ladite chambre à micro-ondes (620) et ladite ouverture d'émission (624).
  11. Système (10) selon l'une quelconque des revendications 1 à 10, comprenant en outre une zone de thermalisation (12) située en amont de ladite chambre à micro-ondes (620), ladite zone de thermalisation (12) étant configurée pour ajuster la température desdits articles à une température sensiblement uniforme avant l'introduction desdits articles dans ladite chambre à micro-ondes (620).
  12. Système (10) selon l'une quelconque des revendications 1 à 11, dans lequel ladite chambre à micro-ondes (620) est une chambre pressurisée configurée pour fonctionner avec une pression d'au moins 15 psig.
  13. Système (10) selon l'une quelconque des revendications 1 à 12, dans lequel ledit système à micro-ondes (10) est configuré pour la stérilisation et la pasteurisation de produits alimentaires, de fluides médicaux et/ou d'instruments médicaux et dans lequel ladite chambre à micro-ondes (620) est remplie de liquide.
  14. Système (10) selon l'une quelconque des revendications 1 à 13, dans lequel ledit système à micro-ondes (10) est configuré pour stériliser lesdits produits alimentaires emballés à un rythme équivalent à au moins 150 emballages par minute.
EP13760361.9A 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés Active EP2826337B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14188868.5A EP2866517B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP14188871.9A EP2866518B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP17158472.5A EP3300456B1 (fr) 2012-03-14 2013-03-13 Procédé de chauffage par micro-ondes améliore

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201261610756P 2012-03-14 2012-03-14
US201261610821P 2012-03-14 2012-03-14
US201261610739P 2012-03-14 2012-03-14
US201261610729P 2012-03-14 2012-03-14
US201261610708P 2012-03-14 2012-03-14
US201261610787P 2012-03-14 2012-03-14
US201261610776P 2012-03-14 2012-03-14
US201261610745P 2012-03-14 2012-03-14
US201261610767P 2012-03-14 2012-03-14
US201261610830P 2012-03-14 2012-03-14
US201261610794P 2012-03-14 2012-03-14
PCT/US2013/030844 WO2013138455A1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation

Related Child Applications (6)

Application Number Title Priority Date Filing Date
EP14188868.5A Division EP2866517B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP14188868.5A Division-Into EP2866517B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP14188871.9A Division-Into EP2866518B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP14188871.9A Division EP2866518B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP17158472.5A Division EP3300456B1 (fr) 2012-03-14 2013-03-13 Procédé de chauffage par micro-ondes améliore
EP17158472.5A Division-Into EP3300456B1 (fr) 2012-03-14 2013-03-13 Procédé de chauffage par micro-ondes améliore

Publications (3)

Publication Number Publication Date
EP2826337A1 EP2826337A1 (fr) 2015-01-21
EP2826337A4 EP2826337A4 (fr) 2016-01-06
EP2826337B1 true EP2826337B1 (fr) 2017-04-19

Family

ID=49161759

Family Applications (4)

Application Number Title Priority Date Filing Date
EP13760361.9A Active EP2826337B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés
EP14188868.5A Active EP2866517B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP17158472.5A Active EP3300456B1 (fr) 2012-03-14 2013-03-13 Procédé de chauffage par micro-ondes améliore
EP14188871.9A Active EP2866518B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP14188868.5A Active EP2866517B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation
EP17158472.5A Active EP3300456B1 (fr) 2012-03-14 2013-03-13 Procédé de chauffage par micro-ondes améliore
EP14188871.9A Active EP2866518B1 (fr) 2012-03-14 2013-03-13 Systèmes de chauffage à micro-ondes améliorés et leurs procédés d'utilisation

Country Status (10)

Country Link
EP (4) EP2826337B1 (fr)
JP (2) JP6215294B2 (fr)
KR (1) KR102060424B1 (fr)
CN (2) CN104782226B (fr)
AU (3) AU2013232141B2 (fr)
CA (2) CA2867301C (fr)
ES (4) ES2812788T3 (fr)
IL (1) IL234581B (fr)
MX (1) MX342586B (fr)
WO (1) WO2013138455A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141083B1 (fr) * 2014-05-07 2020-09-09 Washington State University Stérilisation ou pasteurisation par micro-ondes
US11229095B2 (en) 2014-12-17 2022-01-18 Campbell Soup Company Electromagnetic wave food processing system and methods
CN106488602A (zh) * 2015-08-28 2017-03-08 合默麟开发股份有限公司 微波加热***
EP3280224A1 (fr) 2016-08-05 2018-02-07 NXP USA, Inc. Appareil et procédés de détection d'achèvement de l'opération de dégivrage
EP3280225B1 (fr) 2016-08-05 2020-10-07 NXP USA, Inc. Appareil de dégivrage avec réseau d'adaptation inductif localisé et leurs procédés de fonctionnement
AU2017379798A1 (en) * 2016-12-19 2019-07-25 915 Labs, LLC Microwave-assisted sterilization and pasteurization of liquid and semi-liquid materials
CA3056407A1 (fr) * 2017-03-15 2018-09-20 915 Labs, LLC Systeme de chauffage par micro-ondes a passages multiples
CN110771261B (zh) * 2017-04-17 2023-02-17 915 实验室公司 使用协同包装、载体和发射器配置的微波辅助的消毒和巴氏灭菌***
ES2844648T3 (es) * 2017-08-23 2021-07-22 Vorwerk Co Interholding Dispositivo de alimentación de microondas en un horno de microondas
US11083053B2 (en) 2017-10-19 2021-08-03 915 Labs, Inc. Heating system with enhanced temperature control
US10917948B2 (en) 2017-11-07 2021-02-09 Nxp Usa, Inc. Apparatus and methods for defrosting operations in an RF heating system
US10771036B2 (en) 2017-11-17 2020-09-08 Nxp Usa, Inc. RF heating system with phase detection for impedance network tuning
EP3503679B1 (fr) 2017-12-20 2022-07-20 NXP USA, Inc. Dispositif de dégivrage et ses procédés d'utilisation
CN112042267B (zh) * 2018-03-01 2023-06-20 915 实验室公司 用于控制微波加热***的方法
EP3547801B1 (fr) 2018-03-29 2022-06-08 NXP USA, Inc. Dispositif de dégivrage et ses procédés d'utilisation
US10952289B2 (en) 2018-09-10 2021-03-16 Nxp Usa, Inc. Defrosting apparatus with mass estimation and methods of operation thereof
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof
US11166352B2 (en) 2018-12-19 2021-11-02 Nxp Usa, Inc. Method for performing a defrosting operation using a defrosting apparatus
US11039511B2 (en) 2018-12-21 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with two-factor mass estimation and methods of operation thereof

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500752A (en) * 1946-06-01 1950-03-14 Gen Electric High-frequency dielectric heating in a resonant chamber
FR1473832A (fr) * 1963-09-09 1967-03-24 Atlas Werke Ag Dispositif générateur de chaleur à partir d'énergie de micro-ondes, notamment pour la décongélation de produits alimentaires
DE1565266A1 (de) * 1965-06-18 1970-02-05 Fried. Krupp Gmbh, 4300 Essen Querstrahler
US3564458A (en) * 1969-10-28 1971-02-16 Canadian Patents Dev Branched waveguide transitions with mode filters
SE352229B (fr) * 1970-09-08 1972-12-27 Alfa Laval Ab
GB1582832A (en) * 1976-04-08 1981-01-14 Unilever Ltd Methods and apparatus for the microwave heating of foods
US4168418A (en) * 1977-09-07 1979-09-18 Bird Leslie L Rendering of material such as meat
SE441640B (sv) * 1980-01-03 1985-10-21 Stiftelsen Inst Mikrovags Forfarande och anordning for uppvermning medelst mikrovagsenergi
NZ206150A (en) * 1983-11-04 1987-06-30 Nz Government Food processor; screw conveyor pitch wider in microwave chamber than preheating chamber
EP0287760A1 (fr) * 1987-04-15 1988-10-26 HERMANN BERSTORFF Maschinenbau GmbH Dispositif pour le chauffage, la pasteurisation ou la stérilisation uniforme et rapide de vivres ou similaires
FR2645391B1 (fr) * 1989-04-04 1992-03-13 Marzat Claude Applicateur micro-ondes alimente sous incidence de brewster
US5228947A (en) * 1990-07-23 1993-07-20 Trus Joist Macmillan, A Limited Partnership Microwave curing system
WO1997016984A1 (fr) * 1995-11-10 1997-05-15 Kabushiki Kaisha Kumeta Seisakusyo Sterilisateur a hyperfrequences
US6153868A (en) * 1996-01-19 2000-11-28 Groupe Danone Microwave application device, particularly for baking products on a metal carrier
MXPA02008211A (es) * 2000-02-25 2004-06-18 Personal Chemistry I Uppsala Aparato de calentamiento de microondas.
WO2001091237A1 (fr) * 2000-05-19 2001-11-29 Industrial Microwave Systems, Inc. Chambre d'exposition plane en cascade
JP2003106773A (ja) * 2001-09-26 2003-04-09 Micro Denshi Kk マイクロ波連続加熱装置
JP4036052B2 (ja) * 2002-07-30 2008-01-23 松下電器産業株式会社 マイクロ波加熱装置
ITTV20020120A1 (it) * 2002-10-18 2004-04-19 S M C Srl Tunnel per il condizionamento di prodotti alimentari
DE10260743B4 (de) * 2002-12-23 2008-05-15 Outokumpu Oyj Verfahren und Anlage zum thermischen Behandeln von körnigen Feststoffen in einem Wirbelbett
US20050123435A1 (en) * 2003-08-13 2005-06-09 Mars Incorporated Method and apparatus for continuous processing of packaged products
WO2005023013A2 (fr) * 2003-09-08 2005-03-17 Washington State University Research Foundation Dispositif et procede pour le chauffage d'objets par hyperfrequences
WO2006073909A2 (fr) * 2005-01-03 2006-07-13 Mackay Jeffrey H Tunnel pour le conditionnement de produits, en particulier la sterilisation d'aliments dans des contenants preemballes
US20070068939A1 (en) * 2005-09-23 2007-03-29 The Ferrite Company, Inc. Apparatus and Method for Microwave Heating Using Metallic Conveyor Belt
JP4630189B2 (ja) * 2005-12-21 2011-02-09 山本ビニター株式会社 高周波解凍装置および解凍方法
CN101026264A (zh) * 2007-03-09 2007-08-29 电子科技大学 喇叭馈源
CN101282600B (zh) * 2007-04-06 2010-09-15 财团法人食品工业发展研究所 连续式微波加热装置
BRPI0701638B1 (pt) * 2007-04-24 2016-10-11 Petróleo Brasileiro S A Petrobras reator e sistema para hidroprocessamento assistido por microondas
CN101970197A (zh) * 2007-11-29 2011-02-09 陶氏环球技术公司 控制并优化塑料板材微波加热的方法
FI122203B (fi) * 2008-09-11 2011-10-14 Raute Oyj Aaltojohtoelementti
FI122204B (fi) * 2008-09-11 2011-10-14 Raute Oyj Laite tasomaisten tuotteiden mikroaaltolämmitystä varten
US8586899B2 (en) * 2008-11-24 2013-11-19 Jeffrey H. Mackay Apparatus and method for mass sterilization and pasteurization of food products
CN101448348B (zh) * 2008-11-27 2011-06-15 电子科技大学 一种螺旋喇叭状微波馈能天线及其阵列微波加热装置
JP2010139217A (ja) * 2008-12-15 2010-06-24 Yamamoto Vinita Co Ltd 加熱方法および加熱装置
JP2010166863A (ja) * 2009-01-23 2010-08-05 Kansai Electric Power Co Inc:The 真空解凍装置及び真空解凍方法
JP2011021210A (ja) * 2009-07-13 2011-02-03 Shimadzu Corp Ecrプラズマ源およびecrプラズマ装置
CA2778570C (fr) * 2009-10-23 2017-04-04 Advanced Microwave Technologies Ltd Appareil permettant de traiter un fluide par rayonnement micro-ondes
FR2954461A1 (fr) * 2009-12-21 2011-06-24 Techdiss Technologies S L Dispositif de traitement thermique en continu par microondes de produits, notamment alimentaires

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6215294B2 (ja) 2017-10-18
ES2812788T3 (es) 2021-03-18
EP3300456A1 (fr) 2018-03-28
AU2017201477A1 (en) 2017-03-23
ES2623907T3 (es) 2017-07-12
EP2866517B1 (fr) 2016-06-22
JP6553141B2 (ja) 2019-07-31
AU2017201469A1 (en) 2017-03-23
CN109068430A (zh) 2018-12-21
EP3300456B1 (fr) 2020-05-06
IL234581B (en) 2020-06-30
MX2014011079A (es) 2015-04-08
ES2623852T3 (es) 2017-07-12
CA3130845A1 (fr) 2013-09-19
JP2015529930A (ja) 2015-10-08
CN104782226B (zh) 2018-06-19
EP2866518A1 (fr) 2015-04-29
KR20140141653A (ko) 2014-12-10
EP2826337A4 (fr) 2016-01-06
MX342586B (es) 2016-10-04
CA2867301A1 (fr) 2013-09-19
EP2826337A1 (fr) 2015-01-21
KR102060424B1 (ko) 2020-02-17
ES2592710T3 (es) 2016-12-01
CA2867301C (fr) 2021-11-02
AU2013232141B2 (en) 2016-12-08
AU2013232141A1 (en) 2014-10-30
CA3130845C (fr) 2023-10-24
AU2017201477B2 (en) 2019-01-31
JP2018037411A (ja) 2018-03-08
WO2013138455A1 (fr) 2013-09-19
CN109068430B (zh) 2022-05-24
AU2017201469B2 (en) 2019-01-31
EP2866517A1 (fr) 2015-04-29
EP2866518B1 (fr) 2017-04-19
CN104782226A (zh) 2015-07-15

Similar Documents

Publication Publication Date Title
AU2017201477B2 (en) Enhanced microwave heating systems and methods of using the same
US10798790B2 (en) Enhanced microwave system utilizing tilted launchers
EP2826338B1 (fr) Système de chauffage à micro-ondes multiligne présentant une conception de lancement optimisé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MICROWAVE MATERIALS TECHNOLOGIES, INC.

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151204

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/78 20060101ALI20151130BHEP

Ipc: H05B 6/70 20060101AFI20151130BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013020051

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0006640000

Ipc: H05B0006700000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/78 20060101ALI20161007BHEP

Ipc: H05B 6/70 20060101AFI20161007BHEP

INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 887044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013020051

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2623852

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170712

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013020051

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180313

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 887044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20200325

Year of fee payment: 8

Ref country code: AT

Payment date: 20200319

Year of fee payment: 8

Ref country code: IE

Payment date: 20200327

Year of fee payment: 8

Ref country code: SE

Payment date: 20200327

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200318

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200401

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 887044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210314

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220322

Year of fee payment: 10

Ref country code: BE

Payment date: 20220328

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220401

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230327

Year of fee payment: 11

Ref country code: DE

Payment date: 20230329

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230401

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230313

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240507