EP2818726B1 - Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege - Google Patents

Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege Download PDF

Info

Publication number
EP2818726B1
EP2818726B1 EP13174144.9A EP13174144A EP2818726B1 EP 2818726 B1 EP2818726 B1 EP 2818726B1 EP 13174144 A EP13174144 A EP 13174144A EP 2818726 B1 EP2818726 B1 EP 2818726B1
Authority
EP
European Patent Office
Prior art keywords
impeller
pump assembly
pressure
force
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13174144.9A
Other languages
English (en)
French (fr)
Other versions
EP2818726A1 (de
Inventor
Thomas Blad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Priority to EP13174144.9A priority Critical patent/EP2818726B1/de
Priority to PCT/EP2014/063371 priority patent/WO2014207031A1/de
Priority to US14/392,325 priority patent/US10539143B2/en
Priority to CN201480047257.0A priority patent/CN105492776B/zh
Publication of EP2818726A1 publication Critical patent/EP2818726A1/de
Application granted granted Critical
Publication of EP2818726B1 publication Critical patent/EP2818726B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/042Axially shiftable rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0016Control, e.g. regulation, of pumps, pumping installations or systems by using valves mixing-reversing- or deviation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0207Pumps

Definitions

  • the invention relates to a pump unit with the features specified in the preamble of claim 1.
  • a centrifugal pump assembly is known in which a rotor shaft is axially displaceable together with the impeller, so that the impeller can be moved to a position in which its peripheral outlet openings are closed. In this way, the pump unit can take over a valve function and block a flow passage.
  • a pump unit with two wheels which are driven by a common shaft. These wheels can be moved by axial movement of the shaft between two outlet channels in the axial direction, so that the wheels depending on the axial position of the shaft either water from a primary circuit in a secondary circuit and back or only separately promote in the primary circuit and the secondary circuit.
  • a hydraulically or pneumatically actuated arranged outside the pump unit lifting device is provided for axial displacement of the shaft while a hydraulically or pneumatically actuated arranged outside the pump unit lifting device is provided.
  • Such has the disadvantage that the shaft must be led out of the interior of the pump housing, so that a sealed passage must be provided.
  • DE 2 107 000 discloses a heating circulating pump with an impeller, which can be brought into axial fluid displacement with two different inputs of Ummélzpumpenaggregates in fluid communication.
  • the impeller is designed so that it is always pressed by the output side fluid pressure in one of its two possible positions.
  • an electromagnetic coil is provided, which generates a magnetic force which is opposite to said hydraulic force and can move the impeller against its hydraulic force to its second position.
  • an additional electric coil in the circulating pump unit is required.
  • the pump unit according to the invention has an electric drive motor, in particular a wet-running electric drive motor, ie a canned motor in which the stator is separated from the rotor space by a split tube.
  • the pump unit is designed as a centrifugal pump unit and has at least one impeller which is rotationally driven by the electric drive motor.
  • the impeller can be connected via a shaft to the rotor of the electric drive motor.
  • rotor and shaft form an integrated component and that the impeller is connected to this component.
  • the impeller may be integrally formed with the rotor and / or the shaft.
  • the impeller is arranged so that it can be moved in the axial direction between at least two positions, ie operating positions in which it can be rotationally driven by the drive motor.
  • the pump unit is designed so that in a first of these two positions, the impeller is arranged so that it is located in a first flow path through the pump unit and promotes fluid during rotation through this first flow path.
  • the second position or operating position is a position in which the Impeller in a second flow path, which runs through the pump unit, is located and during rotation, ie during operation of the pump unit, promotes fluid through this second flow path.
  • the impeller by axially moving the impeller along its rotational or longitudinal axis, it is possible to move the impeller between two operating positions, ie, said first position and said second position, to selectively provide fluid through a first or second flow path depending on the position in which the impeller is located. It is also conceivable that the impeller can assume one or more intermediate positions between said first and second positions in which it promotes fluid proportionally through both of the at least two flow paths.
  • the intended axial movement of the impeller is preferably chosen so large that in each position of the impeller, the cross-sectional area of the inlet opening of the impeller is so large that a certain maximum flow rate is not exceeded.
  • the pump unit is designed so that the inlet opening into the impeller, in particular a radial-side inlet opening in the impeller, as described below, has a surface which has in the range of 50 to 150% of the inner cross-sectional area of the impeller on the suction side. This inner cross-sectional area extends transversely to the longitudinal or rotational axis of the impeller.
  • the pump unit is designed in such a way that, at least in one direction of movement of the impeller, this movement takes place by means of a hydraulic force which itself is caused by the fluid conveyed by the impeller.
  • the pump unit is designed so that the pressure of the fluid conveyed by the impeller acts on a suitable surface such that an axial direction, ie parallel to the axis of rotation of the Impeller directed hydraulic force is generated, which is used to move the impeller axially in this direction.
  • the use of the hydraulic force to move the impeller has the advantage that can be dispensed with external actuators and the force required to move rather by the pump unit, that can be generated by the rotating impeller itself.
  • the entire rotor may be tightly encapsulated inside the can.
  • the pump unit is preferably designed so that the impeller in operation, d. H. when rotationally driven by the drive motor, by at least one hydraulic force generated by the conveyed fluid in at least one of the positions, i. H. in the first or second position.
  • the fluid pressure generated by the impeller can act on a corresponding connected to the impeller or coupled to the power transmission pressure surface, so that a force is exerted on the pressure surface, which presses the impeller in the desired position or holds in this position.
  • the force is preferably directed parallel to the axis of rotation of the impeller. Ie. said pressure surface preferably has an orientation transverse to this axis of rotation or at least one component directed transversely to the axis of rotation.
  • the pump unit is designed so that the impeller in operation by an interaction of at least one of the funded fluid generated hydraulic force, a spring force and / or an axially acting magnetic force in at least one of the positions, ie said first or second position, held is, wherein the magnetic force further preferably acts on a rotor connected to the impeller of the drive motor.
  • the impeller is held by the magnetic force in one of the two said positions, wherein in this state, the magnetic force is greater than an acting in the opposite direction of the impeller hydraulic force.
  • a spring force generated by a spring element act on the impeller so that it is held in one of the positions.
  • the impeller In the second position then acts on the impeller, a hydraulic force, for example in a manner described in the above-oriented pressure surface, which is greater than the magnetic force and / or the spring force, so that the impeller against the magnetic force and / or the spring force in the second position is held.
  • the impeller may be selectively held in the first or second position by interaction of a magnetic force and / or a spring force and a hydraulic force, wherein in one of the positions the hydraulic force and in the other position the magnetic force or spring force is greater.
  • one of the forces In order to achieve a switching between the positions, one of the forces must be correspondingly increased and / or the other force must be reduced accordingly.
  • the hydraulic force is preferably generated by the impeller itself during its rotation, this force will not act at standstill of the pump unit, so that in this state then preferably only a magnetic force and / or a spring force acts on the impeller.
  • the impeller can be moved in the idle state by the magnetic force and / or the spring force in a predetermined one of the two positions, so that the impeller is always in a defined one of the two possible positions at rest of the pump unit. Ie. When starting, the pump set always starts from a defined position.
  • the pump unit can also be designed such that by the energization of the drive motor, an axially acting magnetic force is generated, which can be generated for example by interaction between the rotor and the stator of the drive motor.
  • a magnetic force can also move the impeller from a rest position, which represents a first position, in the axial direction to a second position. In the first position, the impeller can then be held, for example, by a magnetic force and / or a spring force.
  • magnetic axial force can optionally be supported with a suitable embodiment of the pump unit by the above-described hydraulic axial force which is generated by the impeller itself.
  • the impeller is preferably connected to a rotor of the electric drive motor and at least one magnetic force, in particular the magnetic force described above, which acts on the impeller in the axial direction, preferably results from a magnetic interaction between the rotor and a surrounding stator, in particular one axial offset between rotor and stator.
  • a magnetic interaction between the rotor and a surrounding stator in particular one axial offset between rotor and stator.
  • the rotor is formed as a permanent magnet rotor and located in a stator having iron elements and coils, the rotor tends to magnetically center in the axial direction inside the iron part of the stator. If the rotor is moved out of this centered position in the axial direction, this results in an axial magnetic restoring force acting against this movement.
  • the pump unit can be designed so that when operating the pump the impeller in the axial direction, a pressure of the pumped fluid at least in certain operating states acts such that a hydraulic force is generated on the impeller, which moves the impeller with the rotor in the axial direction against the resulting magnetic restoring force from the centered position in the stator.
  • a pressure of the pumped fluid at least in certain operating states acts such that a hydraulic force is generated on the impeller, which moves the impeller with the rotor in the axial direction against the resulting magnetic restoring force from the centered position in the stator.
  • a magnetic actuating and / or holding force which acts on the rotor and thus the impeller in the axial direction can be generated without additional magnetic elements or other holding or actuating elements would be required in the pump unit.
  • a spring force generated by a spring element can be used to hold the impeller in a desired position.
  • the pump unit could also be designed so that a spring force and a magnetic force in the manner described above hold the impeller in one of the positions.
  • the pump unit is designed so that the impeller is arranged in its first position such that it promotes in a first outlet channel and the impeller is arranged in its second position such that it conveys into a second outlet channel.
  • the impeller when moved between the first and second positions, is moved between the two said exit channels, preferably remaining in communication with one and the same inlet channel in both positions. Ie.
  • the switching between two flow paths takes place in that the output, in which promotes the impeller, is changed by axial movement of the impeller.
  • the impeller is arranged in its first position such that it is connected at its suction side with a first inlet channel, and the impeller is arranged in its second position such that it is connected at its suction side with a second inlet channel.
  • the impeller remains in both positions in fluid-conducting connection with the same outlet channel. Ie. the impeller conveys into the same outlet passage in both positions but sucks in the first position through a different entrance passage than in the second position. In this way, in this embodiment, a switching between the two flow paths is achieved in that the impeller is brought into fluid communication with two different inlet channels.
  • both embodiments can be combined with each other, d. H. upon movement of the impeller both the connection to the inlet channel and the connection to the outlet channel can be changed. For example, it is possible to switch the subsidy between two separate circuits.
  • the pump unit is designed such that the hydraulic force can be generated by a specific operating mode of the drive motor, namely by a speed change.
  • a specific operating mode of the drive motor namely by a speed change.
  • the speed of the output side pressure of the fluid can be increased so that the pressure acting on the above-mentioned pressure surface increased so much that a counteracting force, in particular the magnetic force described above, is overcome and then the impeller in another Position is shifted in the axial direction.
  • a valve could be opened by speed and pressure increase, whereby a pressure surface is acted upon by the hydraulic pressure.
  • the pump unit is designed in such a way that the hydraulic force, by means of which the impeller is axially displaced, is generated by different degrees of acceleration of the drive motor.
  • Different strong accelerations of the drive motor lead to a different pressure build-up in the subsequent to the pump assembly line systems, so act on the impeller itself or with the impeller, for example via the rotor shaft connected or force transmitting coupled pressure surfaces, different pressures.
  • two opposing pressure surfaces, for. B. on opposite axial sides of the impeller may be provided, which are both acted upon by the impeller generated by the fluid pressure, but via a subsequent conduit system.
  • the impeller can be moved by the higher hydraulic force in the appropriate direction.
  • appropriate design of the pump unit can then be prevented that on the other side of the displacement counteracting force is generated. This can be done, for example, by closing a flow path or by counteracting an interaction or assistance by a magnetic force as described above.
  • the pump unit is designed as a bistable system, in which the impeller in operation by the acting hydraulic and / or magnetic forces and / or spring forces, in particular by those as described above, each held stable in its first and second positions becomes. This means that once the impeller has reached one of the two positions during operation, it remains in this position during operation. To move to the other position is either an external force to apply or to change the operating state of the pump unit so that a switching force is generated, which shifts the impeller in the respective other position.
  • the pump unit can be designed so that it can cause a movement of the impeller from one to the other position only when starting, ie when accelerating the drive motor from a standstill.
  • the pump unit may be configured so that the idle wheel is held in one of the positions by a magnetic force and / or a spring force.
  • the pump unit can be designed so that due to the flow resistance of the subsequent piping systems or hydraulic components, a pressure acting on a pressure surface, which is used to generate power in the axial direction, pressure builds up at different rates. Now if there are two opposite pressure surfaces and both with the same hydraulic Force are applied, there is no force which acts in the axial direction of the impeller and this could move, for example, against a magnetic force or spring force.
  • the impeller is located in its first position axially closer to the stator of the drive motor than in its second position. Ie. it is moved from its first position in the axial direction away from the stator to the second position.
  • the pump unit is configured so that in the first position of the impeller acting in the direction of the first position hydraulic force on a suction side axial end side of the impeller or a pressure element or a pressure surface, which is coupled to transmit force to the impeller acts. Ie. the hydraulic force in the first position causes the impeller to be pushed to the first position. The fluid pressure acts on the said axial end face of the impeller or a pressure element.
  • the pump unit may preferably be designed such that in the first position of the impeller acts in the direction of the first position magnetic force and / or spring force on the impeller.
  • This may, for example, be a magnetic force which, as described above, consists of an axial offset between Rotor and stator results, ie when the rotor with the impeller is moved out of this position, creates a magnetic restoring force between the rotor and stator, which pushes or pulls the rotor in the first position.
  • a spring element for generating a spring force could be present.
  • Such a magnetic force and / or spring force can serve, in particular, to hold the impeller in the first position when the pump unit is stationary, so that the impeller always starts from the first position.
  • the pump unit is designed such that at least in the second position of the impeller acting in the direction of the second position hydraulic force on a pressure side axial end side of the impeller or a second position facing away from a pressure element or one of the second position facing away pressure surface acts, which is coupled with the impeller force-transmitting.
  • This hydraulic force can then be used to hold in operation the impeller in the second position, in particular against a magnetic force and / or spring force, as described above.
  • the pump unit is designed such that in the second position of the impeller, a suction-side axial end face of the impeller or the end face of a coupled to the impeller pressure element is depressurized.
  • the axial end face of the impeller on the suction side is pressure-relieved, in particular, when the low output pressure of the fluid flowing back into the circuit to the pump unit is present here.
  • the pressure reduction or pressure loss can occur, for example, in a downstream of the pump unit downstream piping system.
  • the line systems connected to the flow paths have different throttle properties, so that when starting the Impeller of the pressure build-up in these systems runs at different speeds, so that the axial displacement of the impeller can be achieved by different strong accelerations.
  • At least one connecting channel may be present in the pump unit, which connects a downstream of the impeller pressure range or pressure channel with a side facing away from the pressure region of the impeller or a coupled to the impeller for power transmission pressure element to a hydraulic pressure from the output side of the impeller to transmit to the side facing away from the printing area of the impeller or the pressure element.
  • a hydraulic force can be generated, which presses the impeller in one of the positions, in particular the first position, or holds in this.
  • a control element for example a switchable valve or a throttle point, be arranged to control the flow through the connecting channel.
  • the pressure build-up on the connected side of the impeller or the pressure element can be prevented or delayed to prevent the axial displacement of the impeller and, for example, to move the impeller to the second position by pressing on the opposite side of the impeller or the pressure element is first built up a higher pressure.
  • a receiving space in which a closed suction-side axial end face of the impeller or a pressure element coupled to the impeller, such as a control disk, enters at least one position of the impeller and which is designed such that it preferably via a Throttle is acted upon by a hydraulic pressure generated by the impeller for generating a hydraulic force.
  • the throttle point can be formed by a gap between a peripheral wall of the receiving space and the outer periphery of the axial end face of the impeller or the pressure element.
  • a damping effect on entry of the end face or of the pressure element into the receiving space can be achieved via this gap or throttle point.
  • the invention is in addition to the pump unit described above, a heating system with such a pump unit.
  • the pump unit acts in the heating system, which in the sense of this invention, an air conditioner is to be understood as heating circulation pump unit to circulate the heat carrier in the heating system, in particular water.
  • the heating system according to the invention has at least two system parts, of which a first part of the system is connected to the first flow path of the pump unit and the second part of the system to the second flow path of the pump unit.
  • the system parts may be heat exchangers and piping systems, which in each case form a circuit with the flow paths of the pump unit. Ie.
  • the first flow path of the pump unit lies in a fluid circuit through the first part of the plant and the second flow path of the pump unit is in a fluid circuit through the second part of the system, so that the impeller in its first position promotes fluid through the first part of the system and in its second position fluid through the second part of the system.
  • the impeller in its first position promotes fluid through the first part of the system and in its second position fluid through the second part of the system.
  • the two parts of the system are at least two consumers or at least two heat sources.
  • two consumers can be two different heating circuits of a heating system which heat different parts of the building.
  • a different heat sources for example, a conventional, heated with fossil fuels boiler and a solar thermal system can serve.
  • the two flow paths through the pump unit are then each connected to one of the heat sources or a consumer via corresponding piping systems, so that the heating medium or fluid, especially water is conveyed through these equipment parts, depending on whether the impeller in the first or the second position located.
  • the first part of the plant is a space heating circuit and the second part of the plant is a heat exchanger for domestic water heating.
  • a heat generator in the form of a fossil-heated boiler is usually provided, which has a primary heat exchanger in which a heating medium, in particular water, is heated. This is then optionally by the radiator in the rooms to be heated, ie by a space heating circuit, or by a heat exchanger for Warming of service water.
  • a circulation pump is usually provided and the switching between the space heating circuit and the heat exchanger for domestic water heating is effected by a 3/2-way valve.
  • the circulation pump is replaced by a pump unit, as described above, can be dispensed with in such a system on the 3/2-way valve, since the switching between domestic water heating and space heating can then be done by axial displacement of the impeller in the pump unit.
  • the impeller conveys through the first flow path in the pump unit and thus through a connected first part of the installation, namely the space heating circuit.
  • the impeller When the impeller is in its second position, it promotes the heating medium through the second flow path and thus through the connected to this heat exchanger for domestic water heating.
  • the construction of a heating system can be significantly simplified as can be dispensed with an additional valve and the switching between the heating circuits ideally can be done solely by targeted control of the drive motor of the pump unit, for example by changing the speed or change the acceleration when starting.
  • the heating system is configured such that at a branch point between the first and second abutment part prevailing hydraulic pressure in at least one of the positions of the impeller causes a hydraulic force that holds the impeller in this position.
  • the plant is preferably designed so that this hydraulic pressure is transmitted through that part of the plant through which no flow takes place in this position of the impeller.
  • the unused plant part can be used as a control line for controlling or holding pressurization of the impeller.
  • the prevailing at the branch point Pressure used to hold the impeller in one of its positions or move it to the desired position.
  • the invention further relates to a boiler for a heating system, as described above.
  • the boiler preferably has a pump unit as described above. Further, it has a primary heat exchanger in which the heating fluid is heated, for example by a burner for fossil fuels, preferably gas. Furthermore, it is provided with a secondary heat exchanger for domestic water heating and at least one connection for a space heating circuit. This connection for the space heating circuit has at least one connection for the trace and a connection for the return of the space heating circuit.
  • the secondary heat exchanger and the connection for the space heating circuit, d. H. in particular its trace, are connected via a branch point with the primary heat exchanger. Ie.
  • the boiler is designed so that at the branch point prevailing hydraulic pressure in at least one of the positions of the impeller of the pump unit in this causes a hydraulic force which holds the impeller in this position.
  • the hydraulic pressure at the branch point is used to control or hold the impeller in a desired position.
  • the impeller described below can be used in particular in a centrifugal pump unit, as described above, but could also be used independently in another centrifugal pump unit.
  • the impeller has at least one outlet opening and an inlet opening.
  • Essential feature of the invention is that the inlet opening not sondem axial side is located in a peripheral portion of the impeller, that is open to the outer circumference and the radial side.
  • Such an impeller allows the valve function described above, but could not only be used to close the flow path, but also, for example, to change or switch by axial displacement between two possible flow paths or to cause a mixing function.
  • this impeller has a closed suction-side axial end face, on which the peripheral portion adjoins the inlet opening.
  • the fluid to be delivered flows essentially not in the axial direction but in the radial direction through the inlet opening into the impeller.
  • the closed axial end side on the suction side of the impeller can simultaneously take over the function of a control disk by different hydraulic pressures acting on both sides of this end face, ie once on the inside of the impeller and once on the opposite outside of the impeller. These hydraulic forces can be used for axial positioning or displacement of the impeller, depending on which side of the impeller, a larger force acts.
  • the closed axial end face may be formed in one piece or in one piece with the other parts of the impeller.
  • this closed side in the form of a separate disc, which is fixed directly on a shaft of the rotor, as well as the impeller.
  • a disk can be arranged axially spaced from the impeller, so that a gap remains between the disk and the suction-side axial end of the impeller, which forms the annular radial-side inlet opening.
  • the inlet opening is formed as a extending over the entire circumference of the impeller annular opening.
  • the opening optionally webs may be formed in the axial direction, which interconnect the peripheral edges which define the opening, in order to stabilize the structure of the impeller.
  • a closed axial end face of the impeller may be connected to the remaining parts of the impeller via the shaft or a connecting element in the interior of the impeller to ensure a connection across the annular opening.
  • the described opening preferably has a surface which corresponds to 50 to 150% of the cross-sectional area in the interior of the impeller in this area, this cross-sectional area extending transversely to the longitudinal or rotational axis of the impeller.
  • the opening of the impeller is preferably chosen so large that no high flow velocities occur in this area.
  • the impeller has on its suction side an elongated cylindrical portion of constant cross section, which preferably has an outer surface which corresponds to a size of 50 to 150% of an inner cross section (transverse to the longitudinal axis of the impeller) in the interior of this section.
  • this cylindrical portion the above-described annular or radially opened opening, which forms the inlet opening of the impeller, are located.
  • the cylindrical portion of the impeller permits axial movement of the impeller in a pump set as described above, the inlet portion or inlet opening being sufficiently sealed to the outside in each position of the impeller can be used to separate the pressure and the suction side of the impeller in each position from each other.
  • FIGS. 1 and 2 schematically a pump unit 2 is shown, which is integrated in a heating system 4, for example, a compact heating system.
  • the heating system 4 has a first part of the plant, which is formed by a space heating circuit 6.
  • a second system part or heating circuit is formed by a heat exchanger 8 for heating domestic water.
  • the first heating circuit through the space heating circuit 6 and the heating circuit through the heat exchanger 8 branch at a branch point 10 which is located downstream of a primary heat exchanger 12.
  • the primary heat exchanger 12 may be arranged for example in a gas or oil boiler and is used to heat the heating medium, in particular water, in the heating system 4, which downstream then through the heat exchanger 8 for the domestic water heating, which forms a secondary heat exchanger 8, and / or the space heating circuit 6 flows.
  • the fluid which forms the heating medium promoted by the pump unit 2 through the primary heat exchanger 12 and the heating circuits.
  • the pump unit 2 is a centrifugal pump unit, which has an electric drive motor 14, which via a shaft 16 drives a rotationally fixed on this and fixed in the axial direction impeller 18.
  • the shaft 16 is preferably made of ceramic and processed over its entire length in bearing quality.
  • the impeller is preferably made of plastic.
  • the drive motor 14 is designed as a wet-running electric motor, which has a can 20, which fluid-tightly separates the stator 22 from the rotor space in which the rotor 24 is arranged.
  • the rotor 24 is preferably designed as a permanent magnet rotor and also fixed axially fixed and rotationally fixed to the shaft 16. Possibly.
  • the rotor 24 could be integrally formed with the shaft 16.
  • the stator 22, which is shown here only schematically, can usually be formed from an iron part with stator coils arranged therein.
  • the shaft 16 is axially displaceable with the rotor 24 and the impeller 18 in the axial direction X in their bearings 26. Thereby, the impeller 18 is between a first position, which in Fig. 1 is shown, and a second position, which in Fig. 2 shown is movable. In his first position, which in Fig. 1 is shown, the impeller 18 is located closer to the stator 22 than in its second position, which in Fig. 2 is shown.
  • the impeller 18 has in a known manner radially outwardly directed outlet openings 28, which are open to a surrounding outlet channel 30 out.
  • the outlet channel 30 is in this example with the Entrance side of the primary heat exchanger 12 connected. Ie. the fluid exiting from the impeller 18 is conveyed through the outlet channel 30 to the primary heat exchanger 12.
  • the suction port 32 is optionally in fluid communication with a first inlet channel 34 or a second inlet channel 36. Ie. in the first in Fig. 1 shown position of the impeller 18 sucks this via its suction port 32 fluid from the first inlet channel 34 at.
  • This first inlet channel 34 connects downstream to the space heating circuit 6 and thus forms part of a first flow path for the heating medium through this space heating circuit 6.
  • Axially spaced from the suction port 32 is attached to the shaft 16, a pressure element in the form of a control disk 38.
  • This is so of the suction port 32 in the axial direction spaced, that between the control disk 38 and the peripheral edge of the suction mouth 32, a circumferential gap 39 is formed, which in the first position, the first inlet channel 34 and in the second position of the impeller opposite the second inlet channel 36.
  • the control disc 38 closes with a peripheral wall 37, the second inlet channel 36, so that in this position substantially no fluid from the second inlet channel 36 can flow into the suction port 32 and so in the first in Fig. 1 shown position substantially no fluid or heating medium is conveyed through the secondary heat exchanger 8.
  • a peripheral wall of the impeller 16 closes the first inlet channel 34, so that the impeller 32 substantially no fluid from the first inlet channel 34 sucks and thus substantially no fluid or heating medium is conveyed through the space heating circuit 6.
  • the peripheral wall of the impeller 18 and the control disk 38 thus simultaneously have the function of valve elements.
  • the axial displacement of the shaft 16 is achieved with the impeller 18 without additional actuators alone by the operation of the electric drive motor 14.
  • the impeller 18 in the in Fig. 1 shown first position ie in his case closest to this Stator 22 located position.
  • this is achieved by magnetic restoring forces M in the electric drive motor 14, which act in the axial direction X.
  • the rotor 24 is centered relative to the stator 22 in the axial direction, ie, the axial center S of the stator is congruent with the axial center R of the rotor.
  • a hydraulic force F 2 acts on a pressure-side pressure disk 44 of the impeller 18 during operation of the pump assembly.
  • the size of the control writing 38 in relation to the surface of the rear cover plate 44 and the design of the drive motor 14 can be achieved between the hydraulic forces F 1 and F 2 and the magnetic restoring force M, such an interaction that the magnetic restoring force M and hydraulic axial force F 1 are greater than the hydraulic force F 2 .
  • a seal 52 may be arranged, which prevents the pressure-side cover plate 44 is acted upon by the pressure prevailing in the outlet passage 30 p 1 .
  • F 2 substantially eliminates the previously described hydraulic force F 2 , so that the impeller 18 by the hydraulic force F 1 in the in FIGS. 1 and 3 shown first position can be held. This can be additionally supported by the magnetic restoring force M.
  • the space in the interior of the seal 52 could also be provided with a lower pressure from inside the impeller 18 via an optional, in Fig. 3 dashed line aperture 54 in the pressure-side cover plate 44 are acted upon. Instead of an opening 54, a plurality of apertures 54 could also be provided.
  • a plurality of apertures 54 could also be provided.
  • the control disk 38 is arranged so that it dips in the direction away from the drive motor 14 with axial displacement of the rotor 24 with the impeller 18 in a receiving space 43.
  • the receiving space 43 has in a plane transverse to the longitudinal or rotational axis X has a circular cross-section whose inner diameter is slightly larger than the outer diameter of the control disk 38.
  • the receiving space 43 is cup-shaped and open only on its side facing the impeller 18 side. In the in Fig. 1 shown first position of the impeller 18, the control disk 38 is just outside the receiving space 43, so that the first side 40 of the control disk 38, which faces away from the impeller, extends substantially in a plane with the peripheral edge at the axial end of the receiving space 43.
  • annular gap 45 is formed between this peripheral edge and the control disk 38.
  • This forms a throttle for the fluid in the second inlet channel 36, so that in the receiving space 43, a slower pressure build-up than in the inlet channel 36 takes place.
  • a state is reached at fast start, in which at the first first side facing away from the impeller 18 of the control disk 38 initially substantially no pressure, while at the opposite the impeller 18 and the suction mouth 32 facing the second side 42 of the control disk 38 itself builds up a pressure which causes a force F 3 in the axial direction, which is greater than the described magnetic restoring force M and thus the rotor 18 from the in Fig. 1 shown first position in the in Fig. 2 moved shown second position.
  • connection channel 46 opens at the peripheral wall of the receiving space 23 in a region which in the second Position of the peripheral wall 37 of the control disk 38 is covered and thus closed. Via the connecting channel 46, a rapid build-up of pressure in the receiving space 43 is achieved during slow starting of the drive motor 14, so that there quickly a hydraulic force F 1 is built up, which supports the magnetic force M to hold the impeller 18 in the first position shown. In order to achieve that to move the impeller 18 in the in Fig.
  • a hydraulic force F 3 can be constructed, which acts on the second, the impeller side facing the control disk 38, 46 is disposed in the connecting channel 46, a control element 48 for controlling the flow through the connecting channel 46, which as a simple throttle or can be designed as a switchable valve.
  • the connecting channel 46 is particularly advantageous when the hydraulic resistance in the heating part before the consumer, ie in particular in the primary heat exchanger 12, is very large.
  • the consumers form the space heating circuit 6 and the secondary heat exchanger 8. If the hydraulic resistance in this heating part is very large, the pressure p 2 at the branch point 10 becomes too low to exert a suitable hydraulic force F 1 on the impeller.
  • control element 48 is designed as a switchable valve, then the connecting channel 46 can be closed, so that no hydraulic pressure F 1 can build up in the receiving space 43 and initially a hydraulic force F 3 builds up over the first inlet channel 34 second side 42 of the control disk 38 acts. This hydraulic force F 3 then leads to the axial displacement of the impeller 18 from the in Fig. 1 shown position in the Fig. 2 shown position, in which case additionally the control disk 38 with its peripheral wall 37 closes the connecting channel 36. If the control 48 is designed as a throttle, it can be ensured by a suitable design of the throttle, that at a fast start of the drive motor from the in Fig.
  • control disk 38 may be an integral part of the impeller 18.
  • an impeller 18 is provided which has a closed suction-side axial end face. This is formed by the control disk 38.
  • the impeller then has a circumferential suction or inlet opening, which is formed by the gap 39.
  • the gap 39 preferably has a surface which is 50 to 150% of the cross-sectional area in the interior of the impeller 18 in the region of the gap 39. This inner cross-sectional area extends transversely to the longitudinal axis X. In this way, a sufficiently large flow cross-section is ensured in the region of the gap 39.
  • impeller 18 in the region of the gap 39 has a cylindrical extension of constant cross section, which allows the axial displacement of the gap 39 between the inlet channels 34 and 36.
  • the control disk 38 may be connected to the remaining parts of the impeller 18 via suitable webs or connecting elements in the interior or else, as shown here, by the shaft 16.
  • the described magnetic restoring force M could also be assisted or replaced by a spring force. So could for example, in the receiving space 43, a compression spring are arranged which exerts a compressive force generated in the axial direction X on the axial end face of the shaft 16, which the shaft 16 with the rotor 24 and the impeller 18 in the in FIGS. 1 and 3 shown first position presses.
  • control disk 38 could be designed as a fixed, ie not together with the shaft 16 rotating component and the shaft could only come with its front side on the control disk 38 slidably to the plant. Thus, the control disk 38 could still exert a directed in the direction of the hydraulic force F 1 axial force on the shaft. By appropriate positive engagement, the control disk 38 could also transmit a hydraulic force F 3 in the axial direction of the shaft 16, without having to rotate together with this.
  • the impeller 18 could possibly take intermediate positions, whereby a mixing function could be realized. So could such a pump unit, for example, as a mixer, for. B. for a floor heating circuit, act. Then, for example, the first inlet channel 34 would be connected to the heating water inlet, while the second inlet channel 36 would be connected to the return from the underfloor heating circuit and the outlet channel 30 would be connected to the inlet side of the underfloor heating circuit.
  • such a pump unit instead of optionally two different heating circuits to operate as parts of a heating system, could also be used so that it optionally fluid from two different heat sources or heat generators, such as a fossil-fired boiler and a solar thermal Facility promotes.
  • two different heat sources instead of the space heating circuit 6 and the secondary heat exchanger 8, for example, two different heat sources could be connected to the pump unit 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft ein Pumpenaggregat mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.
    Aus DE 101 15 989 A1 ist ein Kreiselpumpenaggregat bekannt, bei welchem eine Rotorwelle gemeinsam mit dem Laufrad axial verschiebbar ist, sodass das Laufrad in eine Position bewegt werden kann, in welcher seine umfänglichen Austrittsöffnungen verschlossen sind. Auf diese Weise kann das Pumpenaggregat eine Ventilfunktion übernehmen und einen Strömungsdurchgang versperren.
  • Aus DE 30 02 210 A1 ist darüber hinaus ein Pumpenaggregat mit zwei Laufrädern bekannt, welche über eine gemeinsame Welle angetrieben werden. Diese Laufräder lassen sich durch axiale Bewegung der Welle jeweils zwischen zwei Austrittskanälen in axialer Richtung verschieben, sodass die Laufräder je nach axialer Stellung der Welle entweder Wasser aus einem Primärkreislauf in einen Sekundärkreislauf und zurück oder aber lediglich getrennt im Primärkreislauf und im Sekundärkreislauf fördern. Zur axialen Verschiebung der Welle ist dabei eine hydraulisch oder pneumatisch zu betätigende außerhalb des Pumpenaggregates angeordnete Hubvorrichtung vorgesehen. Eine solche hat den Nachteil, dass die Welle aus dem Inneren des Pumpengehäuses hinausgeführt werden muss, sodass eine gedichtete Durchführung vorgesehen werden muss.
  • DE 2 107 000 offenbart eine Heizungsumwälzpumpe mit einem Laufrad, welches durch axiale Verschiebung wahlweise mit zwei verschiedenen Eingängen des Umwälzpumpenaggregates in fluidleitende Verbindung bringbar ist. Das Laufrad ist so gestaltet, dass es durch den ausgangsseitigen Fluiddruck stets in eine seiner zwei möglichen Positionen gedrückt wird. Um es aus dieser ersten Position in die zweite mögliche Position zu bewegen, ist eine elektromagnetische Spule vorgesehen, welche eine magnetische Kraft erzeugt, welche der genannten hydraulischen Kraft entgegengesetzt ist und das Laufrad entgegen der hydraulischen Kraft in seine zweite Position bewegen kann. Um ein Umschalten des Laufrades zwischen den zwei möglichen Strömungswegen zu ermöglichen, ist so eine zusätzliche elektrische Spule in dem Umwälzpumpenaggregat erforderlich.
  • Es ist Aufgabe der Erfindung, ein verbessertes Pumpenaggregat sowie eine Heizungsanlage mit einem solchen Pumpenaggregat zu schaffen, welche es bei vereinfachtem Aufbau des Pumpenaggregates ermöglichen, ein Fluid durch wahlweise zumindest zwei Strömungswege zu fördern.
  • Diese Aufgabe wird gelöst durch ein Pumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen sowie durch eine Heizungsanlage mit den in Anspruch 15 angegebenen Merkmalen und ein Heizkessel mit den in Anspruch 19 angegebenen Merkmalen. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
  • Das erfindungsgemäße Pumpenaggregat weist einen elektrischen Antriebsmotor auf, insbesondere einen nasslaufenden elektrischen Antriebsmotor, d. h. einen Spaltrohrmotor, bei welchem der Stator vom Rotorraum durch ein Spaltrohr getrennt ist. Das Pumpenaggregat ist als Kreiselpumpenaggregat ausgebildet und weist zumindest ein Laufrad auf, welches durch den elektrischen Antriebsmotor drehend angetrieben wird. Dazu kann das Laufrad über eine Welle mit dem Rotor des elektrischen Antriebsmotors verbunden sein. Es ist jedoch auch möglich, dass Rotor und Welle ein integriertes Bauteil bilden und dass das Laufrad mit diesem Bauteil verbunden ist. Auch kann das Laufrad integral mit dem Rotor und/oder der Welle ausgebildet sein.
  • Das Laufrad ist so angeordnet bzw. gelagert, dass es in axialer Richtung zwischen zumindest zwei Positionen, d. h. Betriebspositionen, in denen es von dem Antriebsmotor drehend angetrieben werden kann, bewegbar ist. Dabei ist das Pumpenaggregat so ausgebildet, dass in einer ersten dieser beiden Positionen das Laufrad so angeordnet ist, dass es in einem ersten Strömungsweg durch das Pumpenaggregat gelegen ist und bei Rotation Fluid durch diesen ersten Strömungsweg fördert. Die zweite Position bzw. Betriebsposition ist eine Position, in welcher das Laufrad in einem zweiten Strömungsweg, welcher durch das Pumpenaggregat verläuft, gelegen ist und bei Rotation, d. h. im Betrieb des Pumpenaggregates, Fluid durch diesen zweiten Strömungsweg fördert. Das bedeutet, dass es durch axiale Bewegung des Laufrades entlang seiner Dreh- bzw. Längsachse möglich ist, das Laufrad zwischen zwei Betriebspositionen, d. h. der genannten ersten Position und der genannten zweiten Position zu bewegen, um wahlweise Fluid durch einen ersten oder durch einen zweiten Strömungsweg zu fördern, je nachdem in welcher Position das Laufrad gelegen ist. Es ist auch denkbar, dass das Laufrad eine oder mehrere Zwischenpositionen zwischen der genannten ersten und der genannten zweiten Position einnehmen kann, in welcher es Fluid anteilig durch beide der zumindest zwei Strömungswege fördert.
  • Die vorgesehene Axialbewegung des Laufrades ist vorzugsweise so groß gewählt, dass in jeder Position des Laufrades die Querschnittsfläche der Eintrittsöffnung des Laufrades so groß ist, dass eine bestimmte maximale Strömungsgeschwindigkeit nicht überstiegen wird. Vorzugsweise ist das Pumpenaggregat so ausgebildet, dass die Eintrittsöffnung in das Laufrad, insbesondere eine radialseitige Eintrittsöffnung in das Laufrad, wie sie unten beschrieben wird, eine Fläche aufweist, welche im Bereich von 50 bis 150 % der inneren Querschnittsfläche des Laufrades an dessen Saugseite aufweist. Diese innere Querschnittsfläche erstreckt sich quer zur Längs- bzw. Drehachse des Laufrades.
  • Erfindungsgemäß ist das Pumpenaggregat dabei so ausgestaltet, dass zumindest in einer Bewegungsrichtung des Laufrades diese Bewegung durch eine hydraulische Kraft erfolgt, welche von dem Fluid, welches durch das Laufrad gefördert wird, selber hervorgerufen wird. D. h. das Pumpenaggregat ist so ausgebildet, dass der Druck des von dem Laufrad geförderten Fluids so auf eine geeignete Fläche wirkt, dass an dieser Fläche eine in axialer Richtung, d. h. parallel zur Drehachse des Laufrades gerichtete hydraulische Kraft erzeugt wird, welche dazu genutzt wird, das Laufrad in dieser Richtung axial zu verschieben. Die Verwendung der hydraulischen Kraft zum Verschieben des Laufrades hat den Vorteil, dass auf externe Betätigungsvorrichtungen verzichtet werden kann und die zum Verschieben erforderliche Kraft vielmehr durch das Pumpenaggregat, d. h. durch das rotierende Laufrad selbst erzeugt werden kann. Dies hat den besonderen Vorteil, dass es nicht erforderlich ist, die Welle oder den Rotor aus dem gedichteten Innenraum des Pumpenaggregates nach außen zu führen, um dort mit einer Betätigungseinrichtung zur axialen Verschiebung gekoppelt zu werden. Bevorzugt kann so wie bei üblichen Spaltrohrmotoren der gesamte Rotor dicht gekapselt im Inneren des Spaltrohres angeordnet sein.
  • Darüber hinaus ist das Pumpenaggregat vorzugsweise so ausgestaltet, dass das Laufrad im Betrieb, d. h. wenn es von dem Antriebsmotor drehend angetrieben wird, durch zumindest eine von dem geförderten Fluid erzeugte hydraulische Kraft in zumindest einer der Positionen, d. h. in der ersten oder der zweiten Position, gehalten wird. Hierzu kann der von dem Laufrad erzeugte Fluiddruck auf eine entsprechende mit dem Laufrad verbundene oder zur Kraftübertragung gekoppelte Druckfläche wirken, sodass auf die Druckfläche eine Kraft ausgeübt wird, welche das Laufrad in die gewünschte Position drückt bzw. in dieser Position hält. Die Kraft ist vorzugsweise parallel zur Drehachse des Laufrades gerichtet. D. h. die genannte Druckfläche weist bevorzugt eine Ausrichtung quer zu dieser Drehachse oder zumindest eine quer zu der Drehachse gerichtete Komponente auf.
  • Weiter bevorzugt ist das Pumpenaggregat so ausgestaltet, dass das Laufrad im Betrieb durch eine Wechselwirkung zumindest einer von den geförderten Fluid erzeugten hydraulischen Kraft, einer Federkraft und/oder einer axial wirkenden magnetischen Kraft in zumindest einer der Positionen, d. h. der genannten ersten oder zweiten Position, gehalten wird, wobei die magnetische Kraft weiter bevorzugt auf einen mit dem Laufrad verbundenen Rotor des Antriebsmotors wirkt. Besonders bevorzugt wird das Laufrad durch die magnetische Kraft in einer der zwei genannten Positionen gehalten, wobei in diesem Zustand die magnetische Kraft größer ist als eine in entgegengesetzter Richtung auf das Laufrad wirkende hydraulische Kraft. Alternativ oder zusätzlich kann zu der magnetischen Kraft eine von einem Federelement erzeugte Federkraft so auf das Laufrad wirken, dass es in einer der Positionen gehalten wird. In der zweiten Position wirkt dann auf das Laufrad eine hydraulische Kraft, beispielsweise auf eine in der oben beschriebenen Weise ausgerichtete Druckfläche, welche größer als die magnetische Kraft und/oder die Federkraft ist, sodass das Laufrad gegen die magnetische Kraft und/oder die Federkraft in der zweiten Position gehalten wird. D. h. das Laufrad kann durch Wechselwirkung einer magnetischen Kraft und/oder einer Federkraft und einer hydraulischen Kraft wahlweise in der ersten oder der zweiten Position gehalten werden, wobei in einer der Positionen die hydraulische Kraft und in der anderen Position die magnetische Kraft bzw. Federkraft größer ist. Um ein Umschalten zwischen den Positionen zu erreichen, muss entsprechend eine der Kräfte erhöht und/oder die andere Kraft entsprechend verringert werden. Da die hydraulische Kraft vorzugsweise von dem Laufrad bei dessen Rotation selber erzeugt wird, wird diese Kraft beim Stillstand des Pumpenaggregates nicht wirken, sodass in diesem Zustand dann vorzugsweise nur eine magnetische Kraft und/oder eine Federkraft auf das Laufrad wirkt. Auf diese Weise kann das Laufrad im Ruhezustand durch die magnetische Kraft und/oder die Federkraft in eine vorbestimmte der zwei Positionen bewegt werden, sodass sich das Laufrad im Ruhezustand des Pumpenaggregates stets in einer definierten der zwei möglichen Positionen befindet. D. h. beim Anlaufen startet das Pumpenaggregat stets ausgehend von einer definierten Position.
  • Gemäß einer weiteren bevorzugten Ausführungsform kann das Pumpenaggregat auch derart ausgestaltet sein, dass durch die Bestromung des Antriebsmotors eine axial wirkende magnetische Kraft erzeugt wird, welche beispielsweise durch Wechselwirkung zwischen Rotor und Stator des Antriebsmotors erzeugt werden kann. Eine solche magnetische Kraft kann auch das Laufrad aus einer Ruhelage, welche eine erste Position darstellt, in Axialrichtung in eine zweite Position bewegen. In der ersten Position kann das Laufrad dann beispielsweise auch durch eine magnetische Kraft und/oder eine Federkraft gehalten werden. Eine solche beim Betrieb des Antriebsmotors auftretende magnetische Axialkraft kann gegebenenfalls bei geeigneter Ausgestaltung des Pumpenaggregates durch die vorangehend beschriebene hydraulische Axialkraft, welche von dem Laufrad selber erzeugt wird, unterstützt werden.
  • Das Laufrad ist vorzugsweise mit einem Rotor des elektrischen Antriebsmotors verbunden und zumindest eine magnetische Kraft, insbesondere die vorangehend beschriebene magnetische Kraft, welche in axialer Richtung auf das Laufrad wirkt, resultiert bevorzugt aus einer magnetischen Wechselwirkung zwischen dem Rotor und einem umgebenden Stator, insbesondere aus einem axialen Versatz zwischen Rotor und Stator. Beispielsweise wenn der Rotor als Permanentmagnetrotor ausgebildet ist und in einem Eisenelemente und Spulen aufweisenden Stator gelegen ist, ist der Rotor bestrebt, sich in axialer Richtung magnetisch im Inneren des Eisenteils des Stators zu zentrieren. Wird der Rotor aus dieser zentrierten Lage in axialer Richtung heraus bewegt, ergibt sich eine entgegen dieser Bewegung wirkende axiale magnetische Rückstellkraft. Diese kann als magnetische Kraft in axialer Richtung zur Bewegung des Rotors und eines damit verbundenen Laufrades zwischen den zwei genannten Positionen und/oder zum Halten des Laufrades in einer dieser Positionen verwendet werden. So kann das Pumpenaggregat so ausgestaltet sein, dass beim Betrieb der Pumpe auf das Laufrad in axialer Richtung ein Druck des geförderten Fluids zumindest in bestimmten Betriebszuständen derart wirkt, dass eine hydraulische Kraft auf das Laufrad erzeugt wird, welche das Laufrad mit dem Rotor in axialer Richtung entgegen der entstehenden magnetischen Rückstellkraft aus der zentrierten Lage im Stator herausbewegt. Wenn die hydraulische Kraft wieder wegfällt, wird durch die genannte magnetische Rückstellkraft der Rotor mit dem Laufrad wieder in axialer Richtung in seine Ausgangslage zurückbewegt. D. h. hier kann eine magnetische Betätigungs- und/oder Haltekraft, welche auf den Rotor und damit das Laufrad in axialer Richtung wirkt, erzeugt werden, ohne dass zusätzliche magnetische Elemente oder andere Halte- oder Betätigungselemente im Pumpenaggregat erforderlich wären. Anstelle der beschriebenen magnetischen Rückstellkraft kann auch eine von einem Federelement erzeugte Federkraft Verwendung finden, um das Laufrad in einer gewünschten Position zu halten. Es könnte das Pumpenaggregat auch so ausgestaltet sein, dass eine Federkraft und eine magnetische Kraft in der vorangehend beschriebenen Weise das Laufrad in einer der Positionen halten.
  • Weiter bevorzugt ist das Pumpenaggregat so ausgebildet, dass das Laufrad in seiner ersten Position derart angeordnet ist, dass es in einen ersten Austrittskanal fördert und das Laufrad in seiner zweiten Position derart angeordnet ist, dass es in einen zweiten Austrittskanal fördert. D. h. das Laufrad wird, wenn es zwischen der ersten und der zweiten Position bewegt wird, zwischen den zwei genannten Austrittskanälen bewegt, wobei es bevorzugt in beiden Positionen mit ein und demselben Einlasskanal in Verbindung bleibt. D. h. hier erfolgt das Umschalten zwischen zwei Strömungswegen dadurch, dass der Ausgang, in welchen das Laufrad fördert, durch axiale Bewegung des Laufrades geändert wird.
  • Umgekehrt oder zusätzlich ist es gemäß einer weiteren möglichen Ausführungsform der Erfindung möglich, dass das Laufrad in seiner ersten Position derart angeordnet ist, dass es an seiner Saugseite mit einem ersten Einlasskanal verbunden ist, und das Laufrad in seiner zweiten Position derart angeordnet ist, dass es an seiner Saugseite mit einem zweiten Einlasskanal verbunden ist. Gemäß bevorzugter Ausgestaltung verbleibt dabei das Laufrad in beiden Positionen in fluidleitender Verbindung mit demselben Auslasskanal. D. h. das Laufrad fördert in beiden Positionen in denselben Auslass- bzw. Austrittskanal, saugt jedoch in der ersten Position durch einen anderen Eintrittskanal an als in der zweiten Position. Auf diese Weise wird bei dieser Ausführungsform ein Umschalten zwischen den zwei Strömungswegen dadurch erreicht, dass das Laufrad in fluidleitende Verbindung mit zwei unterschiedlichen Eintrittskanälen gebracht wird.
  • Es ist zu verstehen, dass auch beide Ausführungsformen miteinander kombiniert werden können, d. h. bei Bewegung des Laufrades sowohl die Verbindung zum Eintrittskanal als auch die Verbindung zum Austrittkanal geändert werden kann. So ist beispielsweise ein Umschalten der Förderung zwischen zwei getrennten Kreisen möglich.
  • Erfindungsgemäß ist das Pumpenaggregat derart ausgestaltet, dass die hydraulische Kraft durch eine bestimmte Betriebsart des Antriebsmotors, nämlich durch eine Drehzahländerung erzeugbar ist. So kann beispielsweise durch Erhöhung der Drehzahl der ausgangsseitige Druck des Fluids so erhöht werden, dass sich der auf die oben genannte Druckfläche wirkende Druck soweit erhöht, dass eine entgegenwirkende Kraft, insbesondere die oben beschriebene magnetische Kraft, überwunden wird und dann das Laufrad in eine andere Position in axialer Richtung verschoben wird. So lässt sich durch Drehzahländerung des Pumpenaggregates der Förderweg durch das Pumpenaggregat ändern, indem sich aufgrund der sich ändernden Fluiddrücke das Laufrad axial verschiebt. Auch könnte durch Drehzahl- und Druckerhöhung ein Ventil geöffnet werden, wodurch eine Druckfläche mit dem hydraulischen Druck beaufschlagt wird.
  • Erfindungsgemäß ist das Pumpenaggregat dazu derart ausgestaltet, dass die hydraulische Kraft, durch welche das Laufrad axial verschoben wird, durch unterschiedlich starke Beschleunigungen des Antriebsmotors erzeugt wird. Unterschiedlich starke Beschleunigungen des Antriebsmotors führen zu einem unterschiedlichem Druckaufbau in sich an das Pumpenaggregat anschließenden Leitungssystemen, sodass auf das Laufrad selber oder mit dem Laufrad, beispielsweise über die Rotorwelle verbundene oder kraftübertragend gekoppelte Druckflächen, unterschiedliche Drücke wirken. So können beispielsweise zwei entgegengesetzte Druckflächen, z. B. an entgegengesetzten axialen Seiten des Laufrades, vorgesehen sein, welche beide mit von dem Laufrad erzeugtem Fluiddruck, jedoch über ein sich anschließendes Leitungssystem, beaufschlagt sind. Je nachdem, an welcher der beiden Druckflächen sich zuerst ein höherer Druck aufbaut, kann dann das Laufrad durch die höhere hydraulische Kraft in die entsprechende Richtung verschoben werden. Durch entsprechende Ausgestaltung des Pumpenaggregates kann dann verhindert werden, dass an der anderen Seite eine der Verschiebung entgegenwirkende Kraft erzeugt wird. Dies kann beispielsweise dadurch geschehen, dass ein Strömungsweg verschlossen wird oder aber dass eine Wechselwirkung bzw. Unterstützung durch eine magnetische Kraft, wie sie oben beschrieben wurde, dem entgegenwirkt.
  • Wenn das Umschalten zwischen den zwei Strömungswegen durch Verschieben des Laufrades durch verschiedene Betriebszustände des Antriebsmotors erreicht wird, werden diese Betriebszustände den Strömungswegen vorzugsweise so zugeordnet, dass für den Fall, dass einer der Betriebszustände einen schlechteren Wirkungsgrad bieten sollte, dieser Betriebszustand demjenigen Strömungsweg zugeordnet wird, welcher seltener genutzt wird. Dies könnte beispielsweise der Strömungsweg sein, durch welchen Heizmedium in einen Wärmetauscher zur Brauchwassererwärmung geleitet wird, da in Heizungsanlagen die Brauchwassererwärmung üblicherweise seltener gefordert ist als die Erwärmung von angeschlossenen Raumheizungskreisen.
  • Besonders bevorzugt ist das Pumpenaggregat als ein bistabiles System ausgebildet, in welchem das Laufrad im Betrieb durch die wirkenden hydraulischen und/oder magnetischen Kräfte und/oder Federkräfte, insbesondere durch solche, wie sie vorangehend beschrieben wurden, jeweils in seiner ersten und zweiten Position stabil gehalten wird. Das bedeutet, dass wenn das Laufrad im Betrieb einmal eine der beiden Positionen erreicht hat, verbleibt es im Betrieb in dieser Position. Zur Bewegung in die andere Position ist entweder eine externe Kraft aufzubringen oder der Betriebszustand des Pumpenaggregates so zu ändern, dass eine Umschaltkraft erzeugt wird, welche das Laufrad in die jeweilige andere Position verschiebt. Besonders bevorzugt kann das Pumpenaggregat so ausgebildet sein, dass es lediglich beim Anfahren, d. h. beim Beschleunigen des Antriebsmotors aus dem Stillstand, eine Bewegung des Laufrades von einer in die andere Position bewirken kann. So kann das Pumpenaggregat, wie oben beschrieben, so ausgebildet sein, dass das Laufrad im Ruhezustand in einer der Positionen durch eine magnetische Kraft und/oder eine Federkraft gehalten wird. Ferner kann das Pumpenaggregat so ausgebildet sein, dass sich aufgrund der Strömungswiderstände der sich anschließenden Leitungssysteme oder hydraulischen Komponenten ein auf eine Druckfläche, welche zur Krafterzeugung in axialer Richtung genutzt wird, wirkender Druck unterschiedlich schnell aufbaut. Wenn nun zwei entgegengesetzte Druckflächen vorhanden sind und beide mit derselben hydraulischen Kraft beaufschlagt werden, gibt es keine Kraft, welche in axialer Richtung auf das Laufrad wirkt und dieses beispielsweise gegen eine magnetische Kraft oder Federkraft verschieben könnte. Wenn jedoch beispielsweise durch besonders schnelles Beschleunigen des Laufrades sich an einer der Druckflächen schneller ein Druck aufbaut als an der anderen, entsteht eine resultierende Axialkraft, welche zur Verschiebung des Laufrades in die andere Position genutzt werden kann. Bei dem genannten bistabilen Aufbau verbleibt das Laufrad dann im Betrieb in dieser Position. Dies kann beispielsweise durch eine Ventilfunktion eines sich mit dem Laufrad bewegenden Elementes erreicht werden, durch welches verhindert wird, dass die entgegengesetzte Druckfläche mit Druck beaufschlagt wird.
  • Bevorzugt ist das Laufrad in seiner ersten Position axial näher zum Stator des Antriebsmotors gelegen als in seiner zweiten Position. D. h. es wird aus seiner ersten Position in axialer Richtung vom Stator weg in die zweite Position verschoben.
  • Weiter bevorzugt ist das Pumpenaggregat so ausgestaltet, dass in der ersten Position des Laufrades eine in Richtung der ersten Position wirkende hydraulische Kraft auf eine saugseitige axiale Stirnseite des Laufrades oder eines Druckelementes bzw. eine Druckfläche, welche kraftübertragend mit dem Laufrad gekoppelt ist, wirkt. D. h. die hydraulische Kraft bewirkt in der ersten Position, dass das Laufrad in die erste Position gedrückt wird. Der Fluiddruck wirkt dazu auf die genannte axiale Stirnseite des Laufrades oder eines Druckelementes.
  • Das Pumpenaggregat kann darüber hinaus bevorzugt derart ausgestaltet sein, dass in der ersten Position des Laufrades eine in Richtung der ersten Position wirkende magnetische Kraft und/oder Federkraft auf das Laufrad wirkt. Dies kann beispielsweise eine magnetische Kraft sein, welche, wie oben beschrieben, aus einem axialen Versatz zwischen Rotor und Stator resultiert, d. h. wenn der Rotor mit dem Laufrad aus dieser Position herausbewegt wird, entsteht zwischen Rotor und Stator eine magnetische Rückstellkraft, welche den Rotor in die erste Position drückt oder zieht. Alternativ oder zusätzlich könnte ein Federelement zum Erzeugen einer Federkraft vorhanden sein. Eine solche magnetische Kraft und/oder Federkraft kann insbesondere dazu dienen, das Laufrad im Stillstand des Pumpenaggregates definiert in der ersten Position zu halten, sodass das Laufrad stets aus der ersten Position heraus anläuft.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist das Pumpenaggregat derart ausgestaltet, dass zumindest in der zweiten Position des Laufrades eine in Richtung der zweiten Position wirkende hydraulische Kraft auf eine druckseitige axiale Stirnseite des Laufrades oder eine der zweiten Position abgewandten Seite eines Druckelementes bzw. eine der zweiten Position abgewandten Druckfläche wirkt, welche mit dem Laufrad kraftübertragend gekoppelt ist. Diese hydraulische Kraft kann dann dazu genutzt werden, im Betrieb das Laufrad in der zweiten Position zu halten, insbesondere entgegen einer magnetischen Kraft und/oder Federkraft, wie sie vorangehend beschrieben wurde.
  • Ferner ist es bevorzugt, dass das Pumpenaggregat so ausgestaltet ist, dass in der zweiten Position des Laufrades eine saugseitige axiale Stirnseite des Laufrades oder die Stirnseite eines mit dem Laufrad gekoppelten Druckelementes druckentlastet ist. Die axiale Stirnseite des Laufrades an der Saugseite ist insbesondere dann druckentlastet, wenn hier der niedrige Ausgangsdruck des im Kreislauf zu dem Pumpenaggregat zurückfließenden Fluids anliegt. Der Druckabbau bzw. Druckverlust kann beispielsweise in einem sich stromabwärts an das Pumpenaggregat anschließenden Rohrleitungssystem auftreten. Besonders bevorzugt weisen die an die Strömungswege angeschlossenen Leitungssysteme unterschiedliche Drosseleigenschaften auf, sodass beim Anlaufen des Laufrades der Druckaufbau in diesen Systemen unterschiedlich schnell verläuft, sodass durch unterschiedlich starke Beschleunigungen die axiale Verschiebung des Laufrades erreicht werden kann. Bei langsamer Beschleunigung kann ein gleichmäßigerer Druckaufbau in beiden Strömungswegen erreicht werden, während bei starker Beschleunigung ein schneller Druckaufbau insbesondere in dem Strömungsweg mit der geringeren Drosselwirkung erreicht wird. Anstatt hier den Rückfluss durch die Strömungswege zur Steuerung der hydraulischen Kräfte zu verwenden, ist es auch möglich, in dem Pumpenaggregat eine oder mehrere entsprechende Steuerleitungen mit gegebenenfalls Drosselelementen vorzusehen.
  • So kann vorzugsweise zumindest ein Verbindungskanal in dem Pumpenaggregat vorhanden sein, welcher einen stromabwärts des Laufrades gelegenen Druckbereich bzw. Druckkanal mit einer dem Druckbereich abgewandten Seite des Laufrades oder eines mit dem Laufrad zur Kraftübertragung gekoppelten Druckelementes verbindet, um einen hydraulischen Druck von der Ausgangsseite des Laufrades zu der dem Druckbereich abgewandten Seite des Laufrades bzw. des Druckelementes zu übertragen. So kann eine hydraulische Kraft erzeugt werden, welche das Laufrad in eine der Positionen, insbesondere die erste Position, drückt oder in dieser hält. Bevorzugt kann in dem Verbindungskanal ein Steuerelement, beispielsweise ein schaltbares Ventil oder eine Drosselstelle, zur Steuerung des Durchflusses durch den Verbindungskanal angeordnet sein. Durch ein solches Element kann der Druckaufbau an der verbundenen Seite des Laufrades bzw. des Druckelementes verhindert oder verzögert werden, um die axiale Verschiebung des Laufrades zu verhindern und beispielsweise das Laufrad in die zweite Position zu bewegen, indem an der entgegengesetzten Seite des Laufrades bzw. des Druckelementes zuerst ein höherer Druck aufgebaut wird.
  • Ferner ist es bevorzugt, dass ein Aufnahmeraum vorhanden ist, in welchen eine geschlossene saugseitige axiale Stirnseite des Laufrades oder ein mit dem Laufrad gekoppeltes Druckelement, wie eine Steuerscheibe, in zumindest einer Position des Laufrades eintritt und welcher derart ausgebildet ist, dass er vorzugsweise über eine Drosselstelle mit einem von dem Laufrad erzeugten hydraulischen Druck zum Erzeugen einer hydraulischen Kraft beaufschlagbar ist. Die Drosselstelle kann dabei durch einen Spalt zwischen einer Umfangswandung des Aufnahmeraums und dem Außenumfang der axialen Stirnseite des Laufrades oder des Druckelementes gebildet werden. Über diesen Spalt bzw. diese Drosselstelle kann darüber hinaus eine Dämpfungswirkung beim Eintreten der Stirnseite oder des Druckelementes in den Aufnahmeraum erreicht werden. Durch den hydraulischen Druck, welcher in den Aufnahmeraum geleitet wird und die angrenzende geschlossene Stirnseite des Laufrades oder die Stirnseite eines mit dem Laufrad gekoppelten Druckelementes beaufschlagt, kann das Laufrad in eine dem Aufnahmeraum abgewandte Position gedrückt und gegebenenfalls in dieser gehalten werden.
  • Gegenstand der Erfindung ist neben dem vorangehend beschriebenen Pumpenaggregat auch eine Heizungsanlage mit einem solchen Pumpenaggregat. D. h. das Pumpenaggregat wirkt in der Heizungsanlage, unter welcher im Sinne diese Erfindung auch eine Klimaanlage zu verstehen ist, als Heizungsumwälzpumpenaggregat, um den Wärmeträger in der Heizungsanlage, insbesondere Wasser umzuwälzen. Die erfindungsgemäße Heizungsanlage weist dabei zumindest zwei Anlagenteile auf, von welchen ein erster Anlagenteil mit dem ersten Strömungsweg des Pumpenaggregates und der zweite Anlagenteil mit dem zweiten Strömungsweg des Pumpenaggregates verbunden ist. Bei den Anlagenteilen kann es sich um Wärmetauscher und Rohleitungssysteme handeln, welch jeweils mit den Strömungswegen des Pumpenaggregates einen Kreislauf bilden. D. h. der erste Strömungsweg des Pumpenaggregates liegt in einem Fluidkreislauf durch den ersten Anlagenteil und der zweite Strömungsweg des Pumpenaggregates liegt in einem Fluidkreislauf durch den zweiten Anlagenteil, sodass das Laufrad in seiner ersten Position Fluid durch den ersten Anlagenteil und in seiner zweiten Position Fluid durch den zweiten Anlagenteil fördert. So können durch Verlagerung des Laufrades von der ersten in die zweite Position unterschiedliche Anlagenteile eines Heizungssystems mit Heiz- oder Kühlmedium versorgt werden.
  • Bevorzugt handelt es sich bei den zwei Anlagenteilen um zumindest zwei Verbraucher oder zumindest zwei Wärmequellen. Zwei Verbraucher können beispielsweise zwei unterschiedliche Heizkreise einer Heizungsanlage, welche unterschiedliche Gebäudeteile beheizen, sein. Als verschiedene Wärmequellen können beispielsweise ein konventioneller, mit fossilen Brennstoffen beheizter Heizkessel und eine solarthermische Anlage dienen. Die beiden Strömungswege durch das Pumpenaggregat sind dann jeweils mit einer der Wärmequellen bzw. einem Verbraucher über entsprechende Rohrleitungssysteme verbunden, sodass das Heizmedium bzw. Fluid, insbesondere Wasser durch diese Anlagenteile gefördert wird, je nachdem ob sich das Laufrad in der ersten oder der zweiten Position befindet.
  • Besonders bevorzugt ist der erste Anlagenteil ein Raumheizungskreis und der zweite Anlagenteil ist ein Wärmetauscher zur Brauchwassererwärmung. Eine solche Konfiguration findet sich beispielsweise bei Kompaktheizungsanlagen, welche zur Beheizung von Wohnungen und beispielsweise Einfamilienhäusern verwendet werden. Bei diesen ist üblicherweise ein Wärmeerzeuger in Form eines fossil beheizten Heizkessels vorgesehen, welcher einen Primärwärmetauscher aufweist, in welchem ein Heizmedium, insbesondere Wasser, erwärmt wird. Dieses wird dann wahlweise durch die Heizkörper in den zu erwärmenden Räumen, d. h. durch einen Raumheizungskreis, oder durch einen Wärmetauscher zur Erwärmung von Brauchwasser geleitet. Hierzu ist in der Regel eine Umwälzpumpe vorgesehen und das Umschalten zwischen dem Raumheizungskreis und dem Wärmetauscher für die Brauchwassererwärmung erfolgt durch ein 3/2-Wegeventil. Wenn die Umwälzpumpe durch ein Pumpenaggregat, wie es vorangehend beschrieben wurde, ersetzt wird, kann in einer solchen Anlage auf das 3/2-Wegeventil verzichtet werden, da das Umschalten zwischen Brauchwassererwärmung und Raumheizung dann durch axiales Verschieben des Laufrades in dem Pumpenaggregat erfolgen kann. So fördert das Laufrad, wenn es sich in seiner ersten Position befindet, durch den ersten Strömungsweg in dem Pumpenaggregat und damit durch einen angeschlossenen ersten Anlagenteil, nämlich den Raumheizungskreis. Wenn sich das Laufrad in seiner zweiten Position befindet, fördert es das Heizmedium durch den zweiten Strömungsweg und damit durch den an diesen angeschlossenen Wärmetauscher zur Brauchwassererwärmung. So kann der Aufbau einer Heizungsanlage deutlich vereinfacht werden, da auf ein zusätzliches Ventil verzichtet werden kann und das Umschalten zwischen den Heizkreisen idealerweise allein durch gezielte Ansteuerung des Antriebsmotors des Pumpenaggregates erfolgen kann, beispielsweise durch Drehzahländerung oder Änderung der Beschleunigung beim Anfahren.
  • Weiter bevorzugt ist die Heizungsanlage derart ausgestaltet, dass ein an einem Abzweigpunkt zwischen dem ersten und dem zweiten Anlageteil herrschender hydraulischer Druck in zumindest einer der Positionen des Laufrades eine hydraulische Kraft bewirkt, welche das Laufrad in dieser Position hält. Dabei ist die Anlage bevorzugt so ausgebildet, dass dieser hydraulische Druck durch denjenigen Anlagenteil übertragen wird, durch welchen in dieser Position des Laufrades keine Strömung erfolgt. So kann im Wesentlichen der ungenutzte Anlagenteil als Steuerleitung zur steuernden bzw. haltenden Druckbeaufschlagung des Laufrades verwendet werden. D. h. hier wird der am Abzweigpunkt herrschende Druck dazu benutzt, das Laufrad in einer seiner Positionen zu halten bzw. in die gewünschte Position zu bewegen.
  • Gegenstand der Erfindung ist darüber hinaus ein Heizkessel für eine Heizungsanlage, wie sie vorangehend beschrieben wurde. Der Heizkessel weist bevorzugt ein Pumpenaggregat, wie es oben beschrieben wurde, auf. Ferner weist er einen Primärwärmetauscher, in welchem das Heizfluid beispielsweise durch einen Brenner für fossile Brennstoffe, vorzugsweise Gas, beheizt wird, auf. Ferner ist er mit einem Sekundärwärmetauscher zur Brauchwassererwärmung sowie zumindest einem Anschluss für einen Raumheizungskreis versehen. Dieser Anschluss für den Raumheizungskreis weist zumindest eine Verbindung für den Hinlauf und eine Verbindung für den Rücklauf des Raumheizungskreises auf. Der Sekundärwärmetauscher und der Anschluss für den Raumheizungskreis, d. h. insbesondere dessen Hinlauf, sind über einen Abzweigpunkt mit dem Primärwärmetauscher verbunden. D. h. stromabwärts des Primärwärmetauschers verzweigt an dem Abzweigpunkt der Kreislauf zu dem Anschluss für den Raumheizungskreis und zu dem Sekundärwärmetauscher. Der Heizkessel ist so ausgebildet, dass ein an dem Abzweigpunkt herrschender hydraulischer Druck in zumindest einer der Positionen des Laufrades des Pumpenaggregates in diesem eine hydraulische Kraft bewirkt, welche das Laufrad in dieser Position hält. So wird, wie vorangehend anhand der Heizungsanlage beschrieben wurde, der hydraulische Druck im Abzweigpunkt zur Steuerung bzw. zum Halten des Laufrades in einer gewünschten Position genutzt.
  • Das nachfolgend beschriebene Laufrad kann insbesondere in einem Kreiselpumpenaggregat, wie es vorangehend beschrieben wurde, Verwendung finden, könnte jedoch auch unabhängig in einem anderen Kreiselpumpenaggregat eingesetzt werden. Das Laufrad weist zumindest eine Austrittsöffnung und eine Eintrittsöffnung auf. Erfindungswesentliches Merkmal ist, dass die Eintrittsöffnung nicht axialseitig sondem in einem Umfangsabschnitt des Laufrades gelegen ist, d. h. zum Außenumfang bzw. radialseitig geöffnet ist. Ein solches Laufrad ermöglicht die oben beschriebene Ventilfunktion, könnte jedoch nicht nur zum Verschließen des Strömungsweges eingesetzt werden, sondern beispielsweise auch dazu, durch axiale Verschiebung zwischen zwei möglichen Strömungswegen zu wechseln bzw. umzuschalten oder eine Mischfunktion zu bewirken.
  • Besonders bevorzugt weist dieses Laufrad eine geschlossene saugseitige axiale Stirnseite auf, an welche der Umfangsabschnitt mit der Eintrittsöffnung angrenzt. D. h. das zu fördernde Fluid strömt im Wesentlichen nicht in axialer Richtung sondern in radialer Richtung durch die Eintrittsöffnung in das Laufrad ein. Die geschlossene axialseitige Stirnseite an der Saugseite des Laufrades kann gleichzeitig die Funktion einer Steuerscheibe übernehmen, indem unterschiedliche hydraulische Drücke auf beiden Seiten dieser Stirnseite wirken, d. h. einmal an der Innenseite des Laufrades und einmal an der abgewandten Außenseite des Laufrades. Diese hydraulischen Kräfte können zur axialen Positionierung bzw. Verschiebung des Laufrades genutzt werden, je nachdem an welcher Seite des Laufrades eine größere Kraft wirkt. Die geschlossene axiale Stirnseite kann einstückig bzw. einteilig mit den weiteren Teilen des Laufrades ausgebildet sein. Es ist jedoch auch möglich, diese geschlossene Seite in Form einer separaten Scheibe auszubilden, welche direkt auf einer Welle des Rotors, wie auch das Laufrad fixiert wird. Eine solche Scheibe kann axial beabstandet zu dem Laufrad angeordnet werden, sodass zwischen der Scheibe und dem saugseitigen Axialende des Laufrades ein Spalt verbleibt, welcher die ringförmige radialseitige Eintrittsöffnung bildet. So kann mit einem herkömmlichen Laufrad mit axialer Eintrittsöffnung und einem zusätzlichen Element, nämlich der Scheibe, ein erfindungsgemäßes Laufrad geschaffen werden, welches eine zum Außenumfang geöffnete Eintrittsöffnung aufweist.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist die Eintrittsöffnung als eine sich über den gesamten Umfang des Laufrades erstreckende ringförmige Öffnung ausgebildet. Dabei können in der Öffnung gegebenenfalls Stege in axialer Richtung ausgebildet sein, welche die Umfangskanten, welche die Öffnung begrenzen, miteinander verbinden, um die Struktur des Laufrades zu stabilisieren. Alternativ oder zusätzlich kann beispielsweise auch eine geschlossene axiale Stirnseite des Laufrades mit den übrigen Teilen des Laufrades über die Welle oder ein Verbindungselement im Inneren des Laufrades verbunden sein, um eine Verbindung über die ringförmige Öffnung hinweg zu gewährleisten. Die beschriebene Öffnung weist vorzugsweise eine Fläche auf, welche 50 bis 150 % der Querschnittsfläche im Inneren des Laufrades in diesem Bereich entspricht, wobei diese Querschnittsfläche sich quer zur Längs- bzw. Drehachse des Laufrades erstreckt. Die Öffnung des Laufrades ist vorzugsweise so groß gewählt, dass keine zu hohen Strömungsgeschwindigkeiten in diesem Bereich auftreten.
  • Weiter bevorzugt weist das Laufrad an seiner Saugseite einen verlängerten zylindrischen Abschnitt mit konstantem Querschnitt auf, welcher vorzugsweise eine Außenfläche aufweist, welche einer Größe von 50 bis 150 % eines Innenquerschnittes (quer zur Längsachse des Laufrades) im Inneren dieses Abschnittes entspricht. In diesem zylindrischen Abschnitt kann die vorangehend beschriebene ringförmige oder radial geöffnete Öffnung, welche die Eintrittsöffnung des Laufrades bildet, liegen. Der zylindrische Abschnitt des Laufrades ermöglicht eine Axialbewegung des Laufrades in einem Pumpenaggregat, wie dies vorangehend beschrieben wurde, wobei der Eintrittsbereich bzw. die Eintrittsöffnung in jeder Position des Laufrades ausreichend nach außen abgedichtet werden kann, um die Druck- und die Saugseite des Laufrades in jeder Position voneinander zu trennen.
  • Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
  • Fig. 1
    schematisch ein erfindungsgemäßes Pumpenaggregat mit einer angeschlossenen Heizungsanlage, wobei sich das Laufrad des Pumpenaggregates in einer ersten Position befindet,
    Fig. 2
    schematisch ein erfindungsgemäßes Pumpenaggregat gemäß Fig. 1, bei welchem sich das Laufrad in einer zweiten Position befindet und
    Fig. 3
    schematisch ein erfindungsgemäßes Pumpenaggregat mit einer angeschlossenen Heizungsanlage gemäß einer zweiten Ausführungsform der Erfindung, wobei sich das Laufrad in einer ersten Position befindet.
  • In den Figuren 1 und 2 ist schematisch ein Pumpenaggregat 2 dargestellt, welches in eine Heizungsanlage 4 integriert ist, beispielsweise eine Kompaktheizungsanlage. Die Heizungsanlage 4 weist einen ersten Anlagenteil auf, welcher von einem Raumheizungskreis 6 gebildet wird. Ein zweiter Anlagenteil bzw. Heizkreis wird von einem Wärmetauscher 8 zur Erwärmung von Brauchwasser gebildet. Der erste Heizkreis durch den Raumheizungskreis 6 und der Heizkreis durch den Wärmetauscher 8 verzweigen an einem Abzweigpunkt 10, welcher stromabwärts eines Primärwärmetauschers 12 gelegen ist. Der Primärwärmetauscher 12 kann beispielsweise in einem Gas- oder Ölheizkessel angeordnet sein und dient der Erwärmung des Heizmediums, insbesondere Wassers, in der Heizungsanlage 4, welches stromabwärts dann durch den Wärmetauscher 8 für die Brauchwassererwärmung, welcher einen Sekundärwärmetauscher 8 bildet, und/oder den Raumheizungskreis 6 fließt. Dabei wird das Fluid, welches das Heizmedium bildet, von dem Pumpenaggregat 2 durch den Primärwärmetauscher 12 und die Heizkreise gefördert.
  • Das Pumpenaggregat 2 ist ein Kreiselpumpenaggregat, welches einen elektrischen Antriebsmotor 14 aufweist, welcher über eine Welle 16 ein auf dieser drehfest und in axialer Richtung fest angeordnetes Laufrad 18 antreibt. Die Welle 16 ist vorzugsweise aus Keramik gefertigt und über ihre gesamte Länge in Lagerqualität bearbeitet. Das Laufrad ist vorzugsweise aus Kunststoff gefertigt. Der Antriebsmotor 14 ist als nasslaufender Elektromotor ausgebildet, welcher ein Spaltrohr 20 aufweist, welches den Stator 22 von dem Rotorraum, in welchem der Rotor 24 angeordnet ist, fluiddicht trennt. Der Rotor 24 ist vorzugsweise als Permanentmagnetrotor ausgebildet und ebenfalls axial fest und drehfest an der Welle 16 fixiert. Ggf. könnte der Rotor 24 einstückig mit der Welle 16 ausgebildet sein. Der Stator 22, welcher hier nur schematisch gezeigt ist, kann in üblicherweise aus einem Eisenteil mit darin angeordneten Statorspulen ausgebildet sein.
  • Die Welle 16 ist mit dem Rotor 24 und dem Laufrad 18 in axialer Richtung X in ihren Lagern 26 axial verschiebbar. Dadurch ist das Laufrad 18 zwischen einer ersten Position, welche in Fig. 1 gezeigt ist, und einer zweiten Position, welche in Fig. 2 gezeigt ist, bewegbar. In seiner ersten Position, welche in Fig. 1 gezeigt ist, ist das Laufrad 18 näher zu dem Stator 22 hin gelegen als in seiner zweiten Position, welche in Fig. 2 gezeigt ist.
  • Das Laufrad 18 weist in bekannter Weise radial nach außen gerichtete Austrittsöffnungen 28 auf, welche zu einem umgebenden Austrittskanal 30 hin geöffnet sind. Der Austrittskanal 30 ist in diesem Beispiel mit der Eintrittsseite des Primärwärmetauschers 12 verbunden. D. h. das aus dem Laufrad 18 umfangsseitig austretende Fluid wird durch den Austrittskanal 30 zu dem Primärwärmetauscher 12 hin gefördert.
  • Ferner weist das Laufrad 18 an einer den Austrittsöffnungen 28 entgegengesetzen axialen Stirnseite einen axial gerichteten Saugmund 32 auf. Der Saugmund 32 ist je nach axialer Position des Laufrades 18 wahlweise mit einem ersten Einlasskanal 34 oder einem zweiten Einlasskanal 36 in fluidleitender Verbindung. D. h. in der ersten in Fig. 1 gezeigten Position des Laufrades 18 saugt dieses über seinen Saugmund 32 Fluid aus dem ersten Einlasskanal 34 an. Dieser erste Einlasskanal 34 schließt sich stromabwärts an den Raumheizungskreis6 an und bildet somit einen Teil eines ersten Strömungsweges für das Heizmedium durch diesen Raumheizungskreis 6. Wenn sich das Laufrad 18 in der in Fig. 1 gezeigten ersten Position befindet, wird das Fluid so von dem Laufrad 18 durch den Austrittskanal 30, den Primärwärmetauscher 12 über den Abzweigpunkt 10 durch den Raumheizungskreis 6 zur Brauchwassererwärmung und zurück in den ersten Einlasskanal 34 und von dort in den Saugmund 32 gefördert.
  • Wenn sich das Laufrad 18 in seiner axial verschobenen zweiten Position befindet, welche in Fig. 2 gezeigt ist, ist der Saugmund 32 zu dem zweiten Einlasskanal 36 geöffnet, welcher mit der Ausgangsseite des Sekundärwärmetauschers 8 für die Brauchwassererwärmung verbunden ist. In dieser Position wird bei Antrieb des Laufrades 18 Fluid von dem Laufrad 18 durch den Austrittskanal 30, den Primärwärmetauscher 12, über den Abzweigpunkt 10, durch den Sekundärwärmetauscher 8 und von dort zurück in den zweiten Einlasskanal 36 gefördert, aus welchem der Saugmund 32 das Fluid ansaugt.
  • Axial beabstandet von dem Saugmund 32 ist an der Welle 16 ein Druckelement in Form einer Steuerscheibe 38 befestigt. Diese ist derart von dem Saugmund 32 in axialer Richtung beabstandet, dass zwischen der Steuerscheibe 38 und der Umfangskante des Saugmundes 32 ein umfänglicher Spalt 39 gebildet wird, welcher in der ersten Position dem ersten Einlasskanal 34 und in der zweiten Position des Laufrades dem zweiten Einlasskanal 36 gegenüberliegt. In der ersten Position, welche in Fig. 1 gezeigt ist, verschließt die Steuerscheibe 38 mit einer Umfangswand 37den zweiten Einlasskanal 36, sodass in dieser Stellung im Wesentlichen kein Fluid aus dem zweiten Einlasskanal 36 in den Saugmund 32 strömen kann und so in der ersten in Fig. 1 gezeigten Position im Wesentlichen kein Fluid bzw. Heizmedium durch den Sekundärwärmetauscher 8 gefördert wird. In der in Fig. 2 gezeigten zweiten Position verschließt eine Umfangswandung des Laufrades 16 den ersten Einlasskanal 34, sodass das Laufrad 32 im Wesentlichen kein Fluid aus dem ersten Einlasskanal 34 ansaugt und so im Wesentlichen kein Fluid bzw. Heizmedium durch den Raumheizungskreis 6 gefördert wird. Die Umfangswandung des Laufrades 18 und die Steuerscheibe 38 haben somit gleichzeitig die Funktion von Ventilelementen.
  • So kann durch die axiale Verschiebung des Laufrades 16 eine Umschaltfunktion zwischen dem Raumheizungskreis 6 und dem Sekundärwärmetauscher 8 zur Brauchwassererwärmung erreicht werden, welche üblicherweise in Heizungsanlagen von einem 3/2-Wegeventil übernommen wird, auf welches somit verzichtet werden kann. Anstelle eines solchen Ventils ist eine einfache Verzweigung an dem Abzweigpunkt 10 ausreichend. Auf diese Weise wird der Aufbau der Heizungsanlage vereinfacht.
  • Erfindungsgemäß wird das axiale Verschieben der Welle 16 mit dem Laufrad 18 ohne zusätzliche Betätigungselemente allein durch die Betriebsweise des elektrischen Antriebsmotors 14 erreicht. In der Ruhelage des Pumpenaggregates befindet sich das Laufrad 18 in der in Fig. 1 gezeigten ersten Position, d. h. in seiner in diesem Fall am nächsten zum Stator 22 gelegenen Position. In diesem Beispiel wird dies durch magnetische Rückstellkräfte M im elektrischen Antriebsmotor 14, welche in axialer Richtung X wirken, erreicht. Wie in Fig. 1 zu sehen ist, ist der Rotor 24 gegenüber dem Stator 22 in axialer Richtung zentriert, d. h. die axiale Mitte S des Stators ist deckungsgleich mit der axialen Mitte R des Rotors. In der in Fig. 2 gezeigten axial verschobenen Position ist der Rotor 24 gegenüber dem Stator 22 in axialer Richtung X um ein Maß a, welches zum Verschieben des Laufrades 18 in die gezeigte zweite Position erforderlich ist, verschoben. D. h. hier ist die axiale Mitte R des Rotors um das Maß a gegenüber der axialen Mitte S des Stators axial versetzt. Der als Permanentmagnetrotor ausgebildete Rotor 24 ist jedoch aufgrund seiner permanentmagnetischen Kräfte bestrebt, sich in axialer Richtung gegenüber dem Stator 22 zu zentrieren. Dies bewirkt eine axiale Rückstellkraft M, d. h. eine axial wirkende magnetische Kraft, welche den Rotor 24 sowie die Welle 16 mit dem Laufrad 18 in die in Fig. 1 gezeigte erste Position zieht und in dieser in Ruhelage hält.
  • Wenn ausgehend von dieser Ruhelage der Antriebsmotor 14 mit einer geringen Beschleunigung angefahren wird, d. h. die Drehzahl im zeitlichen Verlauf langsam, d. h. über eine flache Rampe, gesteigert wird, führt dies zu einem langsamen Druckaufbau in dem Austrittskanal 30 und den sich daran stromabwärts anschließenden Strömungswegen. Dabei herrscht in dem Austrittskanal 30 ein Druck p1. Stromabwärts des Primärwärmetauschers 12 herrscht an dem Abzweigpunkt 10 ein aufgrund des Druckverlustes im Primärwärmetauscher 12 geringerer Druck p2. Aufgrund des Druckverlustes im Raumheizungskreis 6 fällt der Druck in dem Heizkreis durch den Raumheizungskreis 6 im weiteren Verlauf auf den in dem ersten Einlasskanal 34 herrschenden Druck p3 ab, wobei der Druck p3 den eingangsseitigen Druck am Laufrad 18 bildet. Da in diesem Zustand im Wesentlichen keine Fluidströmung durch den Sekundärwärmetauscher 8 erfolgt, baut sich in diesem im Wesentlichen ebenfalls der Druck p2 auf, sodass bei langsamen Druckaufbau schließlich in dem zweiten Einlasskanal 36 sowie an der dem Laufrad 18 abgewandten Seite 40 der Steuerscheibe 38 ebenfalls der Druck p2 herrscht. Dies bedeutet an der saugseitigen, dem Laufrad abgewandten Seite 40 der Steuerscheibe 38 herrscht ein höherer Druck p2 als in dem ersten Einlasskanal 34, d. h. als der saugseitige Druck des Laufrades 18. Dadurch wird eine zusätzliche hydraulische Axialkraft F1 auf die Steuerscheibe 38 erzeugt, welche die Steuerscheibe 38 gemeinsam mit der Welle 16 und dem Rotor 24 sowie dem Laufrad 18 in die in Fig. 1 gezeigte erste Position drückt und in dieser hält. Gleichzeitig wirkt im Betrieb des Pumpenaggregates auf eine druckseitige Druckscheibe 44 des Laufrades 18 eine hydraulische Kraft F2. Durch Anpassung der Größe der Steuerschreibe 38 im Verhältnis zur Fläche der rückseitigen Deckscheibe 44 und der Gestaltung des Antriebsmotors 14 kann dabei zwischen den hydraulischen Kräften F1 und F2 sowie der magnetischen Rückstellkraft M eine solche Wechselwirkung erreicht werden, dass die magnetische Rückstellkraft M und die hydraulische Axialkraft F1 größer als die hydraulische Kraft F2 sind. So halten in diesem Betriebszustand, d. h. wenn das Laufrad 18 durch Antrieb des Antriebsmotors 14 rotiert, die auftretende hydraulische Kraft F1, welche auf die Seite 40 der Steuerscheibe 38 drückt, sowie die beschriebene magnetische Rückstellkraft M zwischen Stator 22 und Rotor 24 das Laufrad 18 im Betrieb in dieser ersten Position.
  • Gemäß einer alternativen Ausführungsform, welche in Fig. 3 gezeigt ist, kann zwischen der druckseitigen Deckscheibe 44 des Laufrades 18 und einer angrenzenden Wandung 50 eine Dichtung 52 angeordnet sein, welche verhindert, dass die druckseitige Deckscheibe 44 mit dem im Austrittskanal 30 herrschenden Druck p1 beaufschlagt wird. Somit entfällt im Wesentlichen die vorangehend beschriebene hydraulische Kraft F2, sodass das Laufrad 18 durch die hydraulische Kraft F1 in der in Figuren 1 und 3 gezeigten ersten Position gehalten werden kann. Dies kann zusätzlich durch die magnetische Rückstellkraft M unterstützt werden.
  • Der Raum im Inneren der Dichtung 52 könnte darüber hinaus mit einem geringeren Druck aus dem Inneren des Laufrades 18 über eine optional vorgesehene, in Fig. 3 gestrichelt gezeichnete Durchbrechung 54 in der druckseitigen Deckscheibe 44 beaufschlagt werden. Anstelle einer Durchbrechung 54 könnten auch mehrere Durchbrechungen 54 vorgesehen sein. Bezüglich der weiteren Merkmale der zweiten Ausführungsform gemäß Fig. 3 wird auf die vorangehende Beschreibung sowie die nachfolgende Beschreibung anhand der Figuren 1 und 2 verwiesen. Im Übrigen erfolgt die axiale Verschiebung des Laufrades auch bei dem in Fig. 3 gezeigten Beispiel in der vorangehend und nachfolgend erläuterten Weise.
  • Wenn ausgehend vom Stillstand, in welchem sich der Rotor 18 in der in Fig. 1 gezeigten Position befindet, der elektrische Antriebsmotor 14 stark beschleunigt wird, d. h. die Drehzahl im zeitlichen Verlauf schnell mit einer steilen Rampe erhöht wird, führt dies zu einem schnellen Druckaufbau in dem ersten Heizkreis durch den Raumheizungskreis 6. Wenn dieser Kreis einen geringeren Strömungswiderstand als der Sekundärwärmetauscher 8 aufweist, was in derartigen Heizungsanlagen in der Regel der Fall ist, wird bei schnellem Anfahren in dem zweiten Einlasskanal 36 anfangs noch ein geringerer Druck herrschen als in dem ersten Einlasskanal 34.
  • Die Steuerscheibe 38 ist so angeordnet, dass sie in der vom Antriebsmotor 14 abgewandten Richtung bei axialer Verschiebung des Rotors 24 mit dem Laufrad 18 in einen Aufnahmeraum 43 eintaucht. Der Aufnahmeraum 43 weist in einer Ebene quer zur Längs- bzw. Drehachse X einen kreisförmigen Querschnitt auf, dessen Innendurchmesser geringfügig größer ist als der Außendurchmesser der Steuerscheibe 38. Ferner ist der Aufnahmeraum 43 topfförmig ausgebildet und lediglich an seiner dem Laufrad 18 zugewandten Seite geöffnet. In der in Fig. 1 gezeigten ersten Position des Laufrades 18 liegt die Steuerscheibe 38 gerade außerhalb des Aufnahmeraumes 43, sodass sich die erste Seite 40 der Steuerscheibe 38, welche dem Laufrad abgewandt ist, im Wesentlichen in einer Ebene mit der Umfangskante am axialen Ende des Aufnahmeraumes 43 erstreckt. So wird zwischen dieser Umfangskante und der Steuerscheibe 38 ein ringförmiger Spalt 45 gebildet. Dieser bildet eine Drossel für das Fluid in dem zweiten Einlasskanal 36, sodass in dem Aufnahmeraum 43 ein langsamerer Druckaufbau als in dem Einlasskanal 36 erfolgt. So wird bei schnellem Anfahren ein Zustand erreicht, bei welchem an der ersten dem Laufrad 18 abgewandten ersten Seite 40 der Steuerscheibe 38 zunächst im Wesentlichen kein Druck anliegt, während an der entgegengesetzten dem Laufrad 18 und dem Saugmund 32 zugewandten zweiten Seite 42 der Steuerscheibe 38 sich ein Druck aufbaut, welcher eine Kraft F3 in axialer Richtung bewirkt, welche größer als die beschriebene magnetische Rückstellkraft M ist und so den Rotor 18 aus der in Fig. 1 gezeigten ersten Position in die in Fig. 2 gezeigte zweite Position bewegt. Zusätzlich wirkt in dieselbe Richtung wie die hydraulische Kraft F3 die hydraulische Kraft F2, welche auf die druckseitige Deckscheibe 44 des Laufrades 18 wirkt. In diesem Zustand herrscht dann in dem ersten Einlasskanal 34 im Wesentlichen derselbe Druck p2 wie an dem Abzweigpunkt 10, da in diesem Zustand im Wesentlichen keine Strömung mehr durch den Sekundärwärmetauscher 6 erfolgt. Durch den Raumheizungskreis 8 hingegen baut sich der Druck ab, sodass dann im zweiten Einlasskanal 36 ein geringerer Druck p3, d. h. der saugseitige Druck des Pumpenaggregates, herrscht. Dieser Druck herrscht dann auch an der dem Laufrad 18 abgewandten Seite 40 der Steuerscheibe 38, sodass auf diese keine Kräfte wirken, welche bestrebt wären, die Welle 16 mit dem Laufrad 18 axial zu bewegen. Schließlich herrschen in diesem Zustand dann an beiden Seiten 40 und 42 der Steuerscheibe 38 dieselben Drücke, nämlich der Druck p3. Allerdings wirkt an der Druckseite des Laufrades 18, d. h. auf die druckseitige Deckscheibe 44 des Laufrades 18 der Druck p1, welcher das Laufrad 18 in diesem Betriebszustand durch die resultierende hydraulische Kraft F2 entgegen der auftretenden magnetischen Rückstellkraft M, welche zwischen Rotor 24 und Stator 22 wirkt, in der in Fig. 2 gezeigten zweiten Position hält.
  • Insgesamt wird so ein bistabiles System geschaffen, in welchem in dem ersten Betriebszustand, in welchem sich das Laufrad 18 in der in Fig. 1 gezeigten ersten Position befindet, dieses durch die herrschenden magnetischen und hydraulischen Kräfte stabil in dieser ersten Position gehalten wird. Wird jedoch durch schnelles Anfahren des Antriebsmotor erreicht, dass sich das Laufrad gleich zu Beginn in seine zweite Position verlagert, welche in Fig. 2 gezeigt ist, wird hier ein zweiter stabiler Zustand erreicht, in welchem das Laufrad dann, solange der Antriebsmotor angetrieben wird, in dieser zweiten Position verbleibt. Beim Anhalten des Antriebsmotors wird der Rotor 24 durch die magnetische Rückstellkraft M, welche aus dem axialen Versatz von Stator 22 und Rotor 24 herrührt, selbsttätig wieder in die erste Position zurück bewegt.
  • Es ist zu erkennen, dass somit ein Umschalten zwischen den zwei Strömungswegen, nämlich einmal dem Strömungsweg über den ersten Einlasskanal 34 und einmal den zweiten Strömungsweg über den zweiten Einlasskanal 36, allein durch die Betriebsweise des Antriebsmotors, nämlich durch das Anfahrverhalten des Antriebsmotors 14, erreicht werden kann, ohne dass zusätzliche Betätigungselemente oder Bauteile zum axialen Verschieben des Laufrades 18 erforderlich wären.
  • Bei dem hier gezeigten Beispiel resultiert dieses Verhalten aus den unterschiedlichen Strömungswiderständen des Sekundärwärmetauschers 8 und des Raumheizungskreises 6. Es ist zu verstehen, dass ein gleicher Effekt auch durch einen zusätzlichen Verbindungskanal 46 erreicht werden könnte, wie er in Figuren 1 und 2 gestrichelt als Option eingezeichnet ist. Der Verbindungskanal 46 mündet an der Umfangswandung des Aufnahmeraumes 23 in einen Bereich, welcher in der zweiten Position von der Umfangswand 37 der Steuerscheibe 38 überdeckt und somit verschlossen wird. Über den Verbindungskanal 46 wird beim langsamen Anfahren des Antriebsmotors 14 ein schneller Druckaufbau in dem Aufnahmeraum 43 erreicht, sodass dort schnell eine hydraulische Kraft F1 aufgebaut wird, welche die magnetische Kraft M unterstützt, um das Laufrad 18 in der gezeigten ersten Position zu halten. Um zu erreichen, dass zum Verschieben des Laufrades 18 in die in Fig. 2 gezeigte zweite Position eine hydraulische Kraft F3 aufgebaut werden kann, welche auf die zweite, dem Laufrad zugewandte Seite 42 der Steuerscheibe 38 wirkt, ist in dem Verbindungskanal 46 ein Steuerelement 48 zur Steuerung des Durchflusses durch den Verbindungskanal 46 angeordnet, welches als einfache Drossel oder als ein schaltbares Ventil ausgebildet sein kann.
  • Der Verbindungskanal 46 ist insbesondere dann vorteilhaft, wenn der hydraulische Widerstand in dem Heizungsteil vor dem Verbraucher, d. h. insbesondere im Primärwärmetauscher 12, sehr groß ist. Die Verbraucher bilden in diesem Ausführungsbeispiel dabei der Raumheizungskreis 6 und der Sekundärwärmetauscher 8. Wenn der hydraulische Widerstand in diesem Heizungsteil sehr groß ist, wird der Druck p2 am Abzweigpunkt 10 zu gering, um eine geeignete hydraulische Kraft F1 auf das Laufrad auszuüben.
  • Wenn das Steuerelement 48 als schaltbares Ventil ausgebildet ist, kann so der Verbindungskanal 46 geschlossen werden, sodass sich in dem Aufnahmeraum 43 kein hydraulischer Druck F1 aufbauen kann und so sich zunächst über den ersten Einlasskanal 34 eine hydraulische Kraft F3 aufbaut, welche auf die zweite Seite 42 der Steuerscheibe 38 wirkt. Diese hydraulische Kraft F3 führt dann zu der axialen Verschiebung des Laufrades 18 aus der in Fig. 1 gezeigten Position in die in Fig. 2 gezeigte Position, wobei dann zusätzlich die Steuerscheibe 38 mit ihrer Umfangswandung 37 den Verbindungskanal 36 verschließt. Wenn das Steuerelement 48 als Drossel ausgebildet ist, kann durch geeignete Auslegung der Drossel sichergestellt werden, dass bei einem schnellen Anfahren des Antriebsmotors aus der in Fig. 1 gezeigten ersten Position sich über den Raumheizungskreis 6 in dem ersten Einlasskanal 34 schneller ein Druck p3 aufbaut als über den Verbindungskanal 46 ein Druck p2 in dem Aufnahmeraum 43. So wird die hydraulische Kraft F3, welche auf die zweite Seite der Steuerscheibe 38 wirkt, schneller ansteigen und zu der gewünschten axialen Verschiebung der Steuerscheibe 38 gemeinsam mit der Welle 16 und dem Laufrad 18 führen. Anstatt ein separates Steuerelement in Form einer Drossel vorzusehen, kann auch der Querschnitt des Verbindungskanales 46 so dimensioniert werden, dass ein identischer Effekt erzielt wird.
  • Beim axialen Verschieben der Steuerscheibe 38 von der in Fig. 1 gezeigten ersten Position in die in Fig. 2 gezeigte zweite Position, bei welchem die Steuerscheibe 38 in den Aufnahmeraum 43 eintritt, bewirkt der Spalt 45 am Außenumfang der Steuerscheibe 38 dabei eine Dämpfung, da das in dem Aufnahmeraum 43 befindliche Fluid durch diesen Spalt aus dem Aufnahmeraum austreten muss.
  • Anstelle des Umschaltens durch unterschiedliche Beschleunigungen des Antriebsmotors könnte ein solches Umschalten bei entsprechender konstruktiver Ausgestaltung auch allein durch die Drehzahländerung des Antriebsmotors 14 erfolgen. Wenn das Laufrad 18 beispielsweise so angeordnet würde, dass die druckseitige Deckscheibe 44 an einer Dichtung anläge und die druckseitige Deckscheibe 44 gezielt mit Druck beaufschlagt werden könnte, könnte auch durch diese Druckbeaufschlagung eine axiale Verschiebung des Laufrades 18 erreicht werden. Die Druckbeaufschlagung könnte beispielsweise über ein Ventil erfolgen, welches bei einem bestimmten Druck im Austrittskanal 30, welcher bei Erreichen einer bestimmten Drehzahl des Antriebsmotors 14 erzielt wird, öffnet, um dann die druckseitige Deckscheibe 44 mit Druck zu beaufschlagen.
  • In den gezeigten Ausführungsbeispielen gemäß Figuren 1 bis 3 kann die Steuerscheibe 38 integraler Bestandteil des Laufrades 18 sein. So wird ein Laufrad 18 geschaffen, welches eine geschlossene saugseitige axiale Stirnseite aufweist. Diese wird durch die Steuerscheibe 38 gebildet. Das Laufrad hat dann eine umfängliche Saug- bzw. Eintrittsöffnung, welche durch den Spalt 39 gebildet wird. Der Spalt 39 weist dabei bevorzugt eine Fläche auf, welche 50 bis 150 % der Querschnittsfläche im Inneren des Laufrades 18 im Bereich des Spaltes 39 beträgt. Diese innere Querschnittsfläche erstreckt sich quer zur Längsachse X. Auf diese Weise wird im Bereich des Spaltes 39 ein ausreichend großer Strömungsquerschnitt sichergestellt. Darüber hinaus ist zu erkennen, dass ein solches Laufrad 18 im Bereich des Spaltes 39 eine zylindrische Verlängerung von konstantem Querschnitt aufweist, welche die axiale Verschiebung des Spaltes 39 zwischen den Einlasskanälen 34 und 36 ermöglicht. Die Steuerscheibe 38 kann mit den übrigen Teilen des Laufrades 18 über geeignete Stege oder Verbindungselemente im Inneren oder aber, wie hier gezeigt, durch die Welle 16 verbunden sein.
  • Zum Halten des Laufrades in den beschriebenen Positionen, insbesondere in der in Figuren 1 und 3 gezeigten ersten Position, kann darüber hinaus eine entsprechende Drehzahlregelung des Antriebsmotors 14 erfolgen, durch welche sichergestellt wird, dass ein bestimmter Durchfluss bzw. eine bestimmte Förderleistung nicht überschritten wird, bei welcher die hydraulische Kraft F2 so weit ansteigen würde, dass es zu einer Axialverschiebung des Laufrades 18 kommt, welche in dieser Situation unerwünscht ist.
  • Die beschriebene magnetische Rückstellkraft M könnte darüber hinaus durch eine Federkraft unterstützt oder auch ersetzt werden. So könnte beispielsweise in dem Aufnahmeraum 43 eine Druckfeder angeordnet werden, welche eine in axiale Richtung X erzeugte Druckkraft auf das axiale Stirnende der Welle 16 ausübt, welche die Welle 16 mit dem Rotor 24 und dem Laufrad 18 in die in Figuren 1 und 3 gezeigte erste Position drückt.
  • Schließlich könnte auch die Steuerscheibe 38 als feststehendes, d. h. nicht gemeinsam mit der Welle 16 rotierendes Bauteil ausgebildet sein und die Welle könnte lediglich mit ihrer Stirnseite an der Steuerscheibe 38 gleitend zur Anlage kommen. So könnte die Steuerscheibe 38 dennoch eine in Richtung der hydraulischen Kraft F1 gerichtete Axialkraft auf die Welle ausüben. Durch entsprechenden formschlüssigen Eingriff könnte die Steuerscheibe 38 darüber hinaus auch eine hydraulische Kraft F3 in axialer Richtung auf die Welle 16 übertragen, ohne gemeinsam mit dieser rotieren zu müssen.
  • Ferner ist zu verstehen, dass auch mehr als die zwei gezeigten möglichen Betriebspositionen des Laufrades 18 realisiert werden könnten. Insbesondere könnten das Laufrad 18 ggf. auch Zwischenpositionen einnehmen, wodurch eine Mischfunktion realisiert werden könnte. So könnte ein solches Pumpenaggregat beispielsweise als Mischer, z. B. für einen Fußbodenheizungskreis, fungieren. Dann würde beispielsweise der erste Einlasskanal 34 mit dem Heizwasserzulauf verbunden, während der zweite Einlasskanal 36 mit dem Rücklauf aus dem Fußbodenheizungskreis verbunden wird und der Austrittskanal 30 mit der Eintrittsseite des Fußbodenheizungskreises verbunden wird. Durch axiale Verschiebung des Laufrades 18 könnte dann eine Mischfunktion erreicht werden, da je nach Position mehr oder weniger Fluid aus dem Heizwasserzulauf gefördert wird und ein entsprechend kleinerer oder höherer Anteil von Fluid aus dem Rücklauf des Fußbodenheizkreises gefördert wird. Eine solche definierte Verschiebung des Laufrades 18 auch in Zwischenpositionen kann durch Drehzahländerung des Antriebsmotors mit damit einhergehender Druckänderung oder durch zusätzliche Stellelemente bewirkt werden. Beispielsweise könnte der Stator 22 in axialer Richtung X verschoben werden, um das axiale Zentrum S des Stators zu bewegen und damit gleichzeitig den Rotor 24 entsprechend mit zu verschieben, welcher, wie oben beschrieben, bestrebt ist, sich im Stator 22 in axialer Richtung zu zentrieren.
  • Darüber hinaus könnte ein solches Pumpenaggregat, wie es vorangehend beschrieben wurde, anstatt wahlweise zwei verschiedene Heizkreise als Anlagenteile einer Heizungsanlage zu bedienen, auch so verwendet werden, dass es wahlweise Fluid aus zwei verschiedenen Wärmequellen bzw. Wärmeerzeugern, beispielsweise einem fossil beheizten Heizkessel und einer solarthermischen Anlage fördert. In einem solchen Fall könnten anstatt des Raumheizungskreises 6 und des Sekundärwärmetauschers 8 beispielsweise zwei verschiedene Wärmequellen mit dem Pumpenaggregat 2 verbunden werden.
  • Bezugszeichenliste
  • 2
    - Pumpenaggregat
    4
    - Heizungsanlage
    6
    - Wärmetauscher bzw. Sekundärwärmetauscher
    8
    - Raumheizungskreis
    10
    - Abzweigpunkt
    12
    - Primärwärmetauscher
    14
    - Antriebsmotor
    16
    - Welle
    18
    - Laufrad
    20
    - Spaltrohr
    22
    - Stator
    24
    - Rotor
    26
    - Lager
    28
    - Austrittsöffnungen
    30
    - Austrittskanal
    32
    - Saugmund
    34
    - erster Einlasskanal
    36
    - zweiter Einlasskanal
    37
    - Umfangswand
    38
    - Steuerscheibe
    39
    - Spalt
    40
    - erste Seite der Steuerscheibe
    42
    - zweite Seite der Steuerscheibe
    43
    - Aufnahmeraum
    44
    - druckseitige Deckscheibe
    45
    - Spalt
    46
    - Verbindungskanal
    48
    - Steuerelement
    50
    - Wandung
    52
    - Dichtung
    54
    - Durchbrechung
    p1
    - Druck im Austrittskanal
    p2
    - Druck am Abzweigpunkt
    p3
    - Druck im Einlasskanal
    a
    - axiale Verschiebung
    X
    - Längsachse
    M
    - magnetische Rückstellkraft
    F1
    - hydraulische Axialkraft
    F2
    - hydraulische Kraft

Claims (19)

  1. Pumpenaggregat (2) mit einem elektrischen Antriebsmotor (14) und zumindest einem von diesem angetrieben Laufrad (18), wobei das Laufrad (18) in axialer Richtung (X) zwischen zumindest einer ersten und einer zweiten Position bewegbar ist, wobei
    das Laufrad (18) in seiner ersten axialen Position in einem ersten Strömungsweg durch das Pumpenaggregat (2) gelegen ist und ein Fluid durch diesen ersten Strömungsweg fördert,
    das Laufrad (18) in seiner zweiten Position in einem zweiten Strömungsweg durch das Pumpenaggregat (2) gelegen ist und ein Fluid durch diesen zweiten Strömungsweg fördert, und
    das Pumpenaggregat (2) derart ausgestaltet ist, dass eine Bewegung des Laufrades (18) zwischen der ersten und der zweiten Position zumindest in einer Richtung durch eine auf das Laufrad (18) wirkende, von dem geförderten Fluid erzeugte hydraulische Kraft erfolgt, dadurch gekennzeichnet, dass das Pumpenaggregat (2) derart ausgestaltet ist, dass die hydraulische Kraft durch unterschiedlich starke Beschleunigungen des Antriebsmotors (14) erzeugbar ist.
  2. Pumpenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass das Pumpenaggregat (2) so ausgestattet ist, dass das Laufrad (18) im Betrieb durch zumindest eine von dem geförderten Fluid erzeugte hydraulische Kraft in zumindest einer der Positionen gehalten wird.
  3. Pumpenaggregat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Pumpenaggregat (2) so ausgestaltet ist, dass
    das Laufrad (18) im Betrieb durch eine Wechselwirkung zumindest einer von dem geförderten Fluid erzeugten hydraulischen Kraft, einer Federkraft und/oder einer axial wirkenden magnetischen Kraft in zumindest einer der Positionen gehalten wird, wobei die magnetische Kraft vorzugsweise auf einen mit dem Laufrad (18) verbundenen Rotor (24) des Antriebsmotors (14) wirkt.
  4. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Laufrad (18) mit einem Rotor (24) des elektrischen Antriebsmotors (14) verbunden ist und zumindest eine magnetische Kraft, welche in axialer Richtung (X) auf das Laufrad (18) wirkt, aus einer magnetischen Wechselwirkung zwischen dem Rotor (24) und einem umgebenden Stator (22), insbesondere aus einem axialen Versatz (a) zwischen Rotor (24) und Stator (22), resultiert.
  5. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Laufrad (18) in seiner ersten Position derart angeordnet ist, dass es in einen ersten Austrittskanal fördert, und das Laufrad (18) in seiner zweiten Position derart angeordnet ist, dass es in einen zweiten Austrittskanal fördert.
  6. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Laufrad (18) in seiner ersten Position derart angeordnet ist, dass es an seiner Saugseite (32) mit einem ersten Einlasskanal (34) verbunden ist, und das Laufrad (18) in seiner zweiten Position derart angeordnet ist, dass es an seiner Saugseite (32) mit einem zweiten Einlasskanal (36) verbunden ist.
  7. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es als ein bistabiles System ausgebildet ist, in welchem das Laufrad (18) im Betrieb durch die wirkenden hydraulischen und/oder magnetischen Kräfte jeweils in seiner ersten oder zweiten Position stabil gehalten wird.
  8. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Laufrad (18) in seiner ersten Position axial näher zu dem Stator (22) des Antriebsmotors (14) gelegen ist als in seiner zweiten Position.
  9. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Pumpenaggregat (2) derart ausgestaltet ist, dass in der ersten Position des Laufrades (18) eine in Richtung der ersten Position wirkende hydraulische Kraft auf eine saugseitige axiale Stirnseite des Laufrades (18) oder eines Druckelementes (38), welches kraftübertragend mit dem Laufrad (18) gekoppelt ist, wirkt.
  10. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Pumpenaggregat (2) derart ausgestaltet ist, dass in der ersten Position des Laufrades (18) eine in Richtung der ersten Position wirkende magnetische Kraft auf das Laufrad wirkt.
  11. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Pumpenaggregat (2) derart ausgestaltet ist, dass zumindest in der zweiten Position des Laufrades (18) eine in Richtung der zweiten Position wirkende hydraulische Kraft auf eine druckseitige axiale Stirnseite (44) des Laufrades (18) wirkt.
  12. Pumpenaggregat nach Anspruch 11, dadurch gekennzeichnet, dass das Pumpenaggregat (2) derart ausgestaltet ist, dass in der zweiten Position des Laufrades (18) eine saugseitige axiale Stirnseite des Laufrades oder eines mit dem Laufrad (18) gekoppelten Druckelementes (38) druckentlastet ist.
  13. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Verbindungskanal (46) vorhanden ist, welcher einen stromabwärts des Laufrades (18) gelegenen Druckbereich (30) mit einer dem Druckbereich abgewandten Seite (40) des Laufrades (18) oder eines mit dem Laufrad (18) gekoppelten Druckelement (38) zur Übertragung eines hydraulischen Druckes verbindet, wobei in dem Verbindungskanal (46) vorzugsweise ein Steuerelement (48) zur Steuerung des Durchflusses durch den Verbindungskanal (46) angeordnet ist.
  14. Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Aufnahmeraum (43) vorhanden ist, in welchen eine geschlossene saugseitige axiale Stirnseite des Laufrades (18) oder ein mit dem Laufrad (18) gekoppeltes Druckelement (38) in zumindest einer Position des Laufrades (18) eintritt und welcher derart ausgebildet ist, dass er, vorzugsweise über eine Drosselstelle, mit einem von dem Laufrad (18) erzeugten hydraulischen Druck (p2) zum Erzeugen einer hydraulischen Kraft beaufschlagbar ist.
  15. Heizungsanlage mit einem Pumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizungsanlage zumindest zwei Anlagenteile (6, 8) aufweist, von welchen ein erster Anlagenteil (6) mit dem ersten Strömungsweg des Pumpenaggregates (2) und ein zweiter Anlagenteil (8) mit dem zweiten Strömungsweg des Pumpenaggregates (2) verbunden ist.
  16. Heizungsanlage nach Anspruch 15, dadurch gekennzeichnet, dass die zumindest zwei Anlagenteile (6, 8) zumindest zwei Verbraucher oder zumindest zwei Wärmequellen sind.
  17. Heizungsanlage mit nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass der erste Anlagenteil ein Wärmetauscher (6) zur Brauchwassererwärmung ist und der zweite Anlagenteil ein Raumheizungskreis (8) ist.
  18. Heizungsanlage nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die Heizungsanlage derart ausgestaltet ist, dass ein an einem Abzweigpunkt (10) zwischen dem ersten und dem zweiten Anlagenteil herrschender hydraulischer Druck in zumindest einer der Positionen des Laufrades (18) eine hydraulische Kraft bewirkt, welche das Laufrad (18) in dieser Position hält.
  19. Heizkessel mit einem Pumpenaggregat nach einem der vorangehenden Ansprüche 1 bis 14, gekennzeichnet durch einen Primärwärmetauscher (12), einen Sekundärwärmetauscher (6) zur Brauchwassererwärmung sowie zumindest einen Anschluss für einen Raumheizungskreis (8), wobei der Sekundärwärmetauscher (6) und der Anschluss für den Raumheizungskreis (8) über einen Abzweigpunkt (10) mit dem Primärwärmetauscher verbunden sind und ein an dem Abzweigpunkt (10) herrschender hydraulischer Druck in zumindest einer der Positionen des Laufrades (18) eine hydraulische Kraft bewirkt, welche das Laufrad (18) in dieser Position hält.
EP13174144.9A 2013-06-27 2013-06-27 Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege Active EP2818726B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13174144.9A EP2818726B1 (de) 2013-06-27 2013-06-27 Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege
PCT/EP2014/063371 WO2014207031A1 (de) 2013-06-27 2014-06-25 Kreiselpumpe mit axial verschiebbarem laufrad zur förderung unterschiedlicher strömungswege
US14/392,325 US10539143B2 (en) 2013-06-27 2014-06-25 Centrifugal pump having axially moveable impeller wheel for conveying different flow paths
CN201480047257.0A CN105492776B (zh) 2013-06-27 2014-06-25 用于供应不同流动路径并具有可轴向移动的叶轮的离心泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13174144.9A EP2818726B1 (de) 2013-06-27 2013-06-27 Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege

Publications (2)

Publication Number Publication Date
EP2818726A1 EP2818726A1 (de) 2014-12-31
EP2818726B1 true EP2818726B1 (de) 2017-08-23

Family

ID=48803380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13174144.9A Active EP2818726B1 (de) 2013-06-27 2013-06-27 Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege

Country Status (4)

Country Link
US (1) US10539143B2 (de)
EP (1) EP2818726B1 (de)
CN (1) CN105492776B (de)
WO (1) WO2014207031A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487837B2 (en) * 2015-01-22 2019-11-26 Litens Automotive Partnership Multi-stage impeller assembly for pump
DE102015100929A1 (de) * 2015-01-22 2016-08-11 Ari-Armaturen Albert Richter Gmbh & Co Kg Stellventil
CN105952684B (zh) * 2016-06-17 2018-08-21 四川五洲仁信科技有限公司 新能源汽车电子水泵、控制***及方法
EP3376037B1 (de) * 2017-03-14 2021-01-27 Grundfos Holding A/S Kreiselpumpenaggregat
EP3376049A1 (de) * 2017-03-14 2018-09-19 Grundfos Holding A/S Pumpenaggregat
EP3376038B1 (de) * 2017-03-14 2021-07-28 Grundfos Holding A/S Pumpenaggregat
EP4123176A4 (de) * 2020-03-20 2024-02-07 CH Creative Co., Ltd. Verstellpumpe, antriebsvorrichtung aus der pumpe und antriebsverfahren für die antriebsvorrichtung
CN112502998B (zh) * 2020-12-01 2022-08-05 石家庄栾兴泵业有限公司 一种低噪节能的双壳渣浆泵

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2265806A (en) * 1939-05-15 1941-12-09 Goldschmied Livio Pump
US2660366A (en) * 1950-05-03 1953-11-24 Klein Harold Compressor surge inhibitor
GB941107A (en) * 1961-06-14 1963-11-06 Regulator A G Combined distribution valve and pump
DE2107000A1 (de) * 1971-02-13 1972-08-24 Loewe Pumpenfabrik Gmbh Kreiselpumpe, insbes. Heizungsumwälzpumpe
US3723019A (en) * 1971-05-21 1973-03-27 Worthington Corp Means to overcome low flow problems of inducers in centrifugal pumps
DE3002210C2 (de) 1980-01-22 1982-02-18 Herbert 7853 Steinen Hüttlin Pumpe oder Gebläse, insbesondere für Heizungs- und Klimaanlagen
DE4020120A1 (de) * 1990-06-25 1991-01-31 Klaus Prof Dr Ing Affeld Medizinische vorrichtung zur erzeugung eines alternierenden volumenstroms fuer den antrieb von implantierbaren blutpumpen
DE19523661A1 (de) * 1995-06-29 1997-01-02 Mayer Helmut Turborotor
DE10006396A1 (de) * 1999-05-06 2000-11-09 Eberspaecher J Gmbh & Co Heizsystem, insbesondere für Kraftfahrzeuge
CZ296955B6 (cs) 1999-05-06 2006-08-16 J. Eberspächer Gmbh & Co. Vytápecí systém, zejména pro automobily
DE10115989A1 (de) 2000-04-04 2001-12-13 Bernhard Stadler Radial-Strömungsmaschine, insbesondere Umwälzpumpe
JP4645210B2 (ja) * 2005-02-03 2011-03-09 トヨタ自動車株式会社 ポンプ装置、冷却システムおよび燃料電池システム
DE102009011946A1 (de) * 2009-03-10 2010-09-16 Wilo Se Elektromotor zum Betätigen eines Ventils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105492776B (zh) 2018-01-19
EP2818726A1 (de) 2014-12-31
WO2014207031A1 (de) 2014-12-31
CN105492776A (zh) 2016-04-13
US20160273543A1 (en) 2016-09-22
US10539143B2 (en) 2020-01-21

Similar Documents

Publication Publication Date Title
EP2818726B1 (de) Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege
EP3156659B1 (de) Pumpenaggregat und hydraulisches system
EP3371461B1 (de) Kühlmittelpumpe für eine verbrennungskraftmaschine
WO2018167043A1 (de) Pumpenaggregat
EP3371463B1 (de) Regelanordnung für eine mechanisch regelbare kühlmittelpumpe einer verbrennungskraftmaschine
EP3540233A1 (de) Kreiselpumpenaggregat mit drehbarem ventilelement
EP3267042B1 (de) Pumpenaggregat
DE102016223019A1 (de) Betätigungsvorrichtung zum Betätigen eines Schaltelements eines Getriebes
DE102020207028A1 (de) Pumpeneinheit
EP3376037B1 (de) Kreiselpumpenaggregat
EP3371465B1 (de) Kühlmittelpumpe für eine verbrennungskraftmaschine
EP2818725B1 (de) Kreiselpumpe mit axial verschiebbarem, schliessbarem Laufrad
EP1404986B1 (de) Verfahren zur beschleunigten entleerung eines hydrodynamischen retarders und hydrodynamischer retarder
DE102007030281A1 (de) Hydrodynamische Kupplung
DE102007026141A1 (de) Drehmomentübertragungseinrichtung
EP3376051B1 (de) Pumpenaggregat
WO2017028854A1 (de) Kupplungseinrichtung für hybridantrieb
EP3150924B1 (de) Hydraulisches system
EP2173591B1 (de) Hydrodynamischer retarder mit tangentialem zu- und abströmprinzip
EP3376050A1 (de) Kreiselpumpenaggregat
DE102017223576A1 (de) Kühlmittelpumpe zum Fördern eines Kühlmittels
DE102016206967A1 (de) Getriebe für ein Kraftfahrzeug
EP2020517A2 (de) Kupplungsanordnung
DE102015207851A1 (de) Steuerungsverfahren und damit betriebener hydrodynamischer Retarder
DE102021103890A1 (de) Axialflussmaschine mit Kühleinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150610

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 13/06 20060101ALI20170215BHEP

Ipc: F04D 29/042 20060101AFI20170215BHEP

Ipc: F04D 29/041 20060101ALI20170215BHEP

Ipc: F04D 15/00 20060101ALI20170215BHEP

Ipc: F04D 1/00 20060101ALI20170215BHEP

INTG Intention to grant announced

Effective date: 20170301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 921657

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008124

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170823

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008124

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 921657

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220623

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220621

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013008124

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220630

Year of fee payment: 10

Ref country code: DE

Payment date: 20220624

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013008124

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630