EP2812629B1 - Projecteur à réflecteur - Google Patents

Projecteur à réflecteur Download PDF

Info

Publication number
EP2812629B1
EP2812629B1 EP13706910.0A EP13706910A EP2812629B1 EP 2812629 B1 EP2812629 B1 EP 2812629B1 EP 13706910 A EP13706910 A EP 13706910A EP 2812629 B1 EP2812629 B1 EP 2812629B1
Authority
EP
European Patent Office
Prior art keywords
reflector
concave mirror
aperture
emitter
focal point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13706910.0A
Other languages
German (de)
English (en)
Other versions
EP2812629A1 (fr
Inventor
Jan Schulz
Peter ROHDE
Michael Potthoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfred-Wegener-Institut Helmholtz-Zentrum fur Pol
Original Assignee
Alfred Wegener Insitut fuer Polar und Meeresforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfred Wegener Insitut fuer Polar und Meeresforschung filed Critical Alfred Wegener Insitut fuer Polar und Meeresforschung
Publication of EP2812629A1 publication Critical patent/EP2812629A1/fr
Application granted granted Critical
Publication of EP2812629B1 publication Critical patent/EP2812629B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • F21V7/0033Combination of two or more reflectors for a single light source with successive reflections from one reflector to the next or following
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/08Optical design with elliptical curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/003Searchlights, i.e. outdoor lighting device producing powerful beam of parallel rays, e.g. for military or attraction purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • F21V31/005Sealing arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/30Elongate light sources, e.g. fluorescent tubes curved
    • F21Y2103/33Elongate light sources, e.g. fluorescent tubes curved annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a reflector emitter, which serves to generate a beam directed in a main emission direction, with a combined reflector.
  • This is composed of two or more mirrored Rotationsellipsoidenabêt and a central concave mirror.
  • Each ellipsoid of revolution is formed of an ellipsoid of revolution cut in a longitudinal plane passing through both foci and in a cross-sectional plane perpendicular thereto between its center and one of its foci.
  • the one focal point is inside and the other focus outside each Rotationsellipsoidenabites.
  • the concave mirror is formed from a hollow body having at least one focal point and cut in a sectional plane.
  • Rotationsellipsoidenabitese and concave mirrors each have an opening which are arranged opposite to each other.
  • the outlying focal points of the Rotationsellipsoidenabête and the focal point of the concave mirror coincide.
  • the ellipsoidal rotation sections are arranged uniformly around the central concave mirror.
  • the reflector radiator comprises an aperture arranged opposite the concave mirror on the side of the ellipsoidal ellipsoidal sections, at least two, each within the ellipsoidal elliptical section lying focal point arranged radiation sources with known radiation characteristics and other internal Veradorungen.
  • Such reflector emitters have a particularly high light output or low losses due to scattering. All rays that emanate from the radiation source and hit the mirrored ellipsoidal section are reflected in the second focal point of the ellipsoid of revolution and thus in the focal point of the concave mirror.
  • the concave mirror reflects the light in a collimated beam in the main emission direction through the aperture. Already with a light source beam collimation can lead to an increase in intensity.
  • the light from a plurality of generally less faint radiation sources can be bundled into a single strong beam. Such arrangements can be used for applications in which a high light output at given radiation angles is advantageous.
  • the US 2005/0094402 A1 discloses a usable as a car headlamp reflector emitter, in which a mirror in the form of a Rotationsellipsoidenabitess with a radiation source in the one existing focal point behind another concave mirror, which is designed as a paraboloid portion, is arranged, that the focal points of the ellipsoidal and Paraboloidenabitess in a common plane lie perpendicular to the center line of the ellipsoidal rotation section.
  • all the rays of the radiation source are reflected by the ellipsoid of revolution in the paraboloid portion, which is formed from a paraboloid of revolution by cutting off its closed end, so that two parallel openings result.
  • Out JP 2003065805 A is a reflector reflector of similar construction with at least two radiation sources, a plurality of the radiation sources associated Rotationsellipsoidenabêten and a central concave mirror is known in which the central concave mirror is formed from a convex paraboloidal section.
  • the opening of the concave mirror away from the aperture is known.
  • difficult reflection conditions result due to the only virtual focal point within the paraboloidal segment.
  • a radiation in the desired main emission is difficult to implement here.
  • the central concave mirror can only be designed as a paraboloid with a single focal point, since, when using an ellipsoidal contour, the rays would diverge from the second virtual focal point into the ellipsoid of revolution.
  • the radiation sources are arranged tilted on a truncated cone and thus to the concave mirror. However, the tilting point away from the virtual focal point of the convex concave mirror, resulting in a dull tilt angle of over 180 °. A tilting of the Rotationsellipsoidenabête or their longitudinal planes with respect to the sectional plane of the paraboloidal concave mirror is not taught.
  • all components of the reflector radiator are shown only individually and schematically, a connecting them housing, which has further Verapatician is not disclosed.
  • the closest to the invention prior art is in the DE 10 2006 044 019 A1 discloses their full disclosure in the present Invention should flow.
  • the known reflector emitter with the features enumerated above, however, are the longitudinal planes of the ellipsoidal elliptical sections and the sectional plane of the central concave mirror in a common ground plane, in which all the focal points of said components are. This results in a rigid constellation between the mentioned components, which does not allow an increase in efficiency by simple means.
  • the curved central concave mirror is formed from any hollow body having concave mirror surfaces with at least one focal point in the sectional plane.
  • the boundary surfaces of the ellipsoidal rotation sections and of the central concave mirror of the known reflector emitter can be mirrored for reflection of unused radiation not radiated into the main emission direction, but not the aperture.
  • the common ground plane can be mirrored. Since, however, this runs parallel to the cross-sectional plane of the aperture, such a mirroring measure does not result in any substantial increase in efficiency, since only a small part of the diverged radiation can be directed onto the aperture.
  • the object of the present invention is therefore to be seen to provide such a development of the known reflector emitter, with the efficiency in the generation of a directed in a main direction of radiation beam can be further increased by simple means.
  • the solution according to the invention for this task can be found in the main claim.
  • Advantageous developments of the reflector radiator according to the invention are shown in the subclaims and are explained in more detail below in connection with the invention.
  • the reflector radiator is inventively characterized in that the longitudinal sectional plane of the ellipsoidal rotation sections and the sectional plane of the concave mirror in dependence on the radiation characteristic of the radiation sources are arranged at the same or different tilt angle between 0 ° and 90 ° in the focal point of the concave mirror to each other. Furthermore, the aperture of a first ring reflector and the concave mirror are surrounded by a second ring reflector adjoining its cutting plane in the direction of the aperture as further inner mirroring. In this case, according to the invention, the course of the walls of the first and second annular reflector is designed so that incident beams are reflected in the main emission direction of the reflector emitter or in the region of the focal point of the concave mirror.
  • each Rotationsellipsoidenabitess invention the environment of the concave mirror is segmented. Each segment comprises an ellipsoidal section of revolution.
  • the tilt angle can be the same for all Rotationsboloidenabitese, in particular if the associated radiation sources have the same emission characteristics. If this is not the case, each rotational ellipsoid section can be tilted at a different tilt angle to the central concave mirror.
  • the tilt angle between the longitudinal sectional planes of the ellipsoidal rotation sections and the sectional plane of the concave mirror is between 20 ° and 45 °. Particularly favorable for the efficiency is a tilt angle between 25 ° and 40 °.
  • the radiation sources may also be arranged inclined and preferably also inclined in the tilted spheroidal ellipsoid sections.
  • the radiation sources depending on the radiation characteristic to the sectional plane of the concave mirror at the same or different inclination angles between 0 ° and 80 °, preferably between 10 ° and 45 °, in particular be inclined by 35 °.
  • the same inclination angle for radiation sources with the same emission characteristic and different inclination angles for radiation sources with different emission characteristics can again be selected.
  • the said preferred tilt and tilt angles apply in particular to light-emitting diodes which are preferably and advantageously used in the invention as radiation sources with a conical emission characteristic of +/- 60 ° from the central emission axis. Otherwise optimal tilt and inclination angles as a function of the known radiation characteristic of the radiation source can be determined by a person skilled in the art by simulation calculations.
  • the radiation sources are tilted in the invention under acute ( ⁇ 90 °) tilt angles to the cutting plane of the concave mirror.
  • the concave mirror can be advantageously and preferably paraboloidally, spherically or ellipsoidally or formed in a linearly extended form thereof.
  • any point within the sphere but off center may be the focal point (rays passing through the center as the focal point will be reflected back).
  • the focal point lies in the plane of intersection of the sphere to form the spherical shell.
  • the curvatures mentioned results in a focal line as the connecting line of the focal points of the basic shape.
  • linearly extended form is understood to mean that shaping when the paraboloidal, spherical or ellipsoidal basic shape is mentally cut open along a central axis and uniformly linear extension pieces are inserted. It results in a trough-shaped form whose curves parabolic, spherical or ellipsoidal.
  • a central concave mirror also with variable eccentricity in the case of paraboloidal or ellipsoidal cross-section
  • Concave mirrors can also be designed to be relatively small in space, since only small portions of the complete paraboloid, sphere or ellipsoid shape are used. Furthermore, it is possible to produce in such a concave mirror by choosing its shape as ellipsoid another focal point, which can then be placed in a convenient location. All light rays from the central concave mirror converge around this point. This is particularly advantageous for lens systems and results in parallel that only a relatively small aperture is needed.
  • the shape of the concave mirror can in turn be selected depending on the emission characteristics of the radiation sources used, but also on the selected tilt and tilt angles.
  • a particularly high yield results if, in the case of an ellipsoidal concave mirror, the second focal point located outside the concave mirror is preferred and advantageous within the aperture or above the aperture outside the reflector radiator.
  • the second focal line lying outside the concave mirror advantageously lies in the aperture, which then likewise has a linearly extended form.
  • An optimal light output also results when the total amount of light emitted is coupled into the main emission direction of the reflector emitter.
  • a central emission axis or, in the case of an extended form thereof, a central emission surface of the concave mirror are aligned in the main emission direction. Further details on the central emission axis or the central emission surfaces of the individual curvature forms can be found in the exemplary embodiments.
  • the main radiation direction of the radiation source is chosen such that it is perpendicular to the plane against which the tilting of the ellipsoid of revolution takes place.
  • mirrored end faces of special shape in the form of the second ring reflector are integrated in the invention in the interior of the reflector radiator, which deflect a portion of these unused beams in the central concave mirror, which then couples these in the main emission.
  • the second ring reflector at least partially has a parabolic or ellipsoidal wall profile, wherein the focal point is in the range of lying within the concave mirror focal point.
  • the wall course at least in sections (in particular in the field of paraboloid or ellipsoidal course) from a plurality of straight, angularly abutting surfaces is composed.
  • the second ring reflector with an at least partially parabolic or ellipsoidal wall profile radiation in particular for a LED beam angle of 65 ° to 70 ° can be used much better. It has already been stated above that adaptations to the emission characteristics of the radiation sources used lead to an optimized luminous efficacy. This also applies to the shaping of the second ring reflector in its course in the radial plane to the main emission direction.
  • the second ring reflector may have a cross-sectional profile having ellipsoidal bulges corresponding to the number of light sources present.
  • the result is a cross-sectional course in the manner of a saublättrigen cloverleaf. Then all the rays divergent from the radiation source are detected even if they deviate from the focal point of the central concave mirror.
  • the embedding of the central concave mirror and the ellipsoidal rotation sections in a housing block creates a complex contouring in the interior of the reflector radiator.
  • the first and second ring reflector need not be additionally installed as separate components, but can preferably and advantageously be formed by mirrored walls in the interior of the reflector radiator. Further Verapayerungen of inner surfaces may be additionally provided. Further details can also be found in the exemplary embodiments.
  • the reflector emitter according to the invention can also be increased in terms of its emission efficiency by constructive optimizations.
  • the aperture is smaller than the rotational ellipse section.
  • the cross section of the aperture at the smallest point may be smaller than half the cross section of the ellipsoid of revolution, measured between the body edges.
  • a sharply focused combined beam in the main emission direction requires only a small aperture to exit.
  • a central concave mirror with an ellipsoidal shape, the second focal point can be placed in the aperture, favors a small aperture.
  • the advantage of a small aperture is the possibility of large-dimensioned ellipsoidal sections, which can thus project a large part of the radiation in the direction of the central concave mirror. This further increases the efficiency and the small blind spot in the center of the projection becomes smaller.
  • the aperture diameter smallest diameter of the paraboloidal first ring reflector
  • the efficiency can be increased even further by the maximum utilization of the central concave mirror (beam path optimization).
  • the efficiency of the claimed reflector radiator also depends on the design of the ellipsoidal rotation sections.
  • a preferred ratio is formed with a model scaling factor of 0 , 5 to 10 and is dependent on the radiation characteristic of the radiation sources, the scaling factor of 2 is preferred.
  • the reflector emitter according to the invention can be used, for example, for signaling systems or for medical luminaires, as headlamps for vehicles or for off-shore systems or generally for underwater use, for example for immersion lamp heads.
  • the reflector emitter according to the invention is designed in several parts, wherein in a three-part design in a shell the Rotationsellipsoidenabête, the aperture and the first ring reflector, in a central part recesses for the radiation sources and the second ring reflector and in a lower part of the concave mirrors are arranged.
  • middle and lower part can be combined to form a common part.
  • the reflector radiator can advantageously and preferably have a cover part with a transparent cover for the aperture.
  • the transparent cover has a beam-modifying optical system, for example a Fresnel structure or plano-convex lenses with a smooth edge or concave-convex glasses.
  • further optical lenses may be provided for additional beam focusing.
  • lid, upper, middle and lower part are pressure-tightly connected to each other, for example by screw with sealing inserts.
  • halogen lamps, fluorescent lamps, UV lamps or light-emitting diodes (LED) can advantageously and preferably be used as radiation sources in the reflector emitter according to the invention.
  • electromagnetic rays mainly light rays
  • Light emitting diodes have a higher light output than incandescent lamps, they are less hot and have a significantly longer life. They may be formed in one or more colors and have a conical radiation characteristic of +/- 60 ° from the central emission axis.
  • the luminance of the LEDs is much lower than that of incandescent lamps, and thus the use of several less faint lamps in a common reflector emitter according to the invention is established. Further details can be found in the embodiments explained below.
  • FIG. 1 shows an overall perspective view of the reflector radiator 01 according to the invention.
  • a cover part 02 an upper part 03, a middle part 04 and a lower part 05 of the reflector radiator 01.
  • five evenly around the central concave mirror arranged round ellipsoidal sections are provided, resulting in the Middle part 04 gives the pentagonal shape.
  • the representation of five Rotationsellipsoidenabêten is only exemplary, equally can also be two, three, four, six, seven to n Rotationsellipsoidenabête be provided, the width thereof decreases.
  • Embodiments with five, six or seven rotational ellipsoid sections are therefore to be preferred.
  • FIG. 2A the reflector emitter 01 is shown from the side.
  • a wavy line in the middle part 04 which is due to the gate, which produces the multi-beam symmetry.
  • FIG. 2B shows a longitudinal section through the reflector emitter 01 along BB according to FIG. 2A , Shown is an axial Hauptabstrahlraum 07 which coincides in the selected embodiment with the central axis of the reflector radiator 01 .
  • Differently oriented main emission directions, which fall through an aperture 08 are also readily realizable.
  • Upper part 03, middle part 04 and lower part 05 together form a combined reflector 09. This consists in the selected embodiment of five Rotationsellipsoidenabête 10, each having an opening 11 .
  • each ellipsoidal section 10 is in FIG Figure 4D demonstrated.
  • the combined reflector 09 consists of a central concave mirror 12 in the lower part 05 of the reflector radiator 01st
  • recesses 13 are shown in the middle part 04 with openings 06 for attachment.
  • a radiation source for example an LED
  • a first ring reflector 15 with a mirrored paraboloid wall profile 34 is arranged around the aperture 09 .
  • a second ring reflector 16 is arranged above the cutting plane 17 of the central concave mirror 12 .
  • the second ring reflector 16 also has an approximately at least partially paraboloidal (or even ellipsoidal) wall profile 34 , the focal point 44 being at the focal point 30 of the Concave mirror 12 or at least in its range.
  • Both the first ring reflector 15 and the second ring reflector 16 are formed in the embodiment shown by mirrored walls 14 in the interior of the reflector radiator 01 .
  • the wall course shown in the embodiment is shown in detail.
  • the course of the wall of the second ring reflector 16 is composed of a plurality of straight surfaces 18 which adjoin one another at obtuse angles (indicated by x °, y °, z °).
  • FIG. 3 is the sectional view according to FIG. 2B of the reflector radiator 01 from cover part 02, upper part 03, middle part 04 and lower part 05 shown.
  • the first ring reflector 15 in the upper part 03 and the second ring reflector 16 in the middle part 04 above the sectional plane 17 of the central concave mirror 12 in the lower part 05 is shown.
  • the central concave mirror 12 has an opening 19 .
  • a transparent cover 45 shown in phantom
  • the transparent cover 45 serves for the pressure seal and, in the selected exemplary embodiment, has a Fresnel structure 46 which additionally collimates the emitted bundled light beam.
  • FIG. 4A shows the upper part 03 of the ring reflector 01 in the side view, the FIG. 4B in the interior.
  • the FIG. 4C shows a view of the upper part 03.
  • the section EE according to FIG. 4C represented by the upper part 03 .
  • the parabola can penetrate into the aperture 08 at different depths.
  • the vertex of the parabola has a distance y from the vertex of the rotary ellipse section 10, so that the parabola has a penetration depth z into the aperture 08.
  • Each rotational ellipsoid section 10 is formed from an ellipsoid of revolution 23 which is cut in a longitudinal section plane 26 extending through both focal points 24 , 25 and in a cross-sectional plane 28 extending perpendicularly between its center 27 and one of its focal points 24, 25 (preferably 25 ).
  • the rotary ellipse section 10 has a large radius R1 and a small radius R2 . Between the center 27 and one of the focal points 24, 25 is the distance v.
  • the longitudinal sectional plane 26 is inclined to the cutting plane 17 by n ° in the acute tilt angle 29 .
  • the focal point 25 of the rotary ellipse section 10 is at the same time the focal point 30 of the central concave mirror 12.
  • the FIG. 5A shows the middle part 04 of the reflector emitter 01 in the interior view. To recognize five recesses 13 , each with two openings 06 for fixing the radiation sources.
  • the FIG. 5B shows the section JJ according to FIG. 5A ,
  • the recesses 13 and thus the LEDs (or other radiation sources) are m ° at an acute angle of inclination 31 in the focal point 30 of the central concave mirror 12 with respect to the cutting plane 17 (which is identical to the lower edge 32 of the central part 04 after assembly all parts) inclined.
  • the focal point 30 is removed by the distance s from a central arrangement of the LED in the recesses 13 .
  • the distance from the recess 13 to the tip of the LED measures the distance t .
  • FIG. 6A shows an interior view of the lower part 05 of the reflector radiator 01 with the central concave mirror 12th This can be made spherical, paraboloidal or ellipsoidal in cross-section.
  • FIG. 6B is a spherical concave mirror 12 with the radius R and the cutting plane 17 at R / 2 in section GG according to FIG. 6A shown.
  • the central emission axis 33 of the spherical concave mirror 12 extends through the focal point 30 of the circle 35 and is perpendicular to the section plane 17 through the circle 35.
  • the focal point 30 is at R / 2 . It can be between 0 and R and is defined as the intersection of the cutting plane 17 with the radius R.
  • FIG. 6C shows the section with a paraboloidal concave mirror 12.
  • the cutting plane 17 has the distance u from the vertex of the parabola 36. At the same time u is the distance to the focal point 30.
  • the central emission axis 33 of the paraboloidal concave mirror 12 extends through the selected focal point 30 (intersection sectional plane 17th with radius R , for example at R / 2 ) and is perpendicular to the cutting plane 17th
  • the FIG. 6D shows the section with an ellipsoidal concave mirror 12.
  • the ellipse 37 has the large radius R1 and the small radius R2 .
  • the distance of the center point 38 from the cutting plane 17 measures the distance q.
  • the central emission axis 33 extends through the center 38 and is perpendicular to the section plane 17 and extends through the two foci 30, 39 of the ellipse 37.
  • the central emission axis 33 is generally connected to the main emission direction 07 (cf. FIG. 2B ) , but special applications may require angle deviations (cf. FIG. 2B ).
  • the concave mirror 12 which can be embodied in various cross-sectional shapes is always shown in the exemplary embodiments with a circular cross-section in the other plane. Likewise, however, solid shapes of the different cross sections in the other plane are possible.
  • the respective one-dimensional emission axis through the focal point is then expanded only to the two-dimensional emission surface with the same orientation with a corresponding focal line.
  • At the reflection ratios in the reflector emitter 01 nothing changes.
  • Extracted forms of the central concave mirror are particularly advantageous in the case of a larger number of radiation sources and therefore of ellipsoidal rotation sections for reasons of arrangement (compare also those closest to the invention DE 10 2006 044 019 B4 ).
  • FIG. 7 is the beam path in the reflector emitter 01 according to the invention with tilted by the tilt angle 29 Rotationsellipsoidenabroughen 10, first ring reflector 15 and second ring reflector 16 at the section BB according to FIG. 2B shown. It can clearly be seen that no light beam emanating from the radiation source 40 leaves the reflector emitter 01 directly through the aperture 08 , so that in particular otherwise unused, diffuse marginal rays in the main emission direction 07 (cf. FIG. 2B ) are coupled. In a first emission angle region 41 , the rays are guided by the associated ellipsoidal rotation section 10 into the central concave mirror 12 and from there through the focal point 30 through the aperture 08 .
  • a second emission angle range 42 the rays are guided by the first ring reflector 15 through the aperture 08 .
  • a third emission angle range 43 the rays are guided by the second ring reflector 16 into the central concave mirror 12 and from there through the aperture 08 .
  • the emission area of the radiation source 40 is utilized to at least 80%. The remaining 20% are directed as diffuse radiation through the aperture 08 and do not necessarily contribute to the main emission direction 07 .
  • the data apply to a radiation source 40 with an ideal hemispherical radiation below 180 °.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (17)

  1. Émetteur à réflecteurs (01) servant à générer un faisceau dirigé dans une direction de rayonnement principale (07), avec
    • Un réflecteur combiné (09), composé
    • de deux ou plusieurs sections ellipsoïdales de révolution formant miroir (10), présentant chacune un orifice (11) et chacune composée d'un ellipsoïde de révolution (23) coupé dans un plan longitudinal (26) traversant les deux points focaux (24, 25) et perpendiculairement à cela dans un plan transversal (28) passant entre son centre (27) et l'un de ses points focaux (24, 25),
    • l'un des deux points focaux (24) étant situé à l'intérieur, et l'autre point focal (25) à l'extérieur de chaque section ellipsoïdale de révolution (10), et
    • d'un miroir concave central (12) présentant un orifice (19) et composé d'un corps creux (35, 36, 37) coupé dans un plan de coupe (17) et présentant au moins un point focal (30),
    • l'orifice (11) des sections ellipsoïdales de révolution (10) et l'orifice (19) du miroir concave (12) étant disposés dans des directions opposées l'une à l'autre,
    • les points focaux (25) situés à l'extérieur des sections ellipsoïdales de révolution (10) et le point focal (30) du miroir concave (12) coïncidant, et
    • les sections ellipsoïdales de révolution (10) étant disposées de manière à être uniformément réparties autour du miroir concave (12),
    • Une ouverture (08) disposée en face du miroir concave (12) du côté des sections ellipsoïdales de révolution (10),
    • Au moins deux sources de rayonnement (40) avec caractéristiques de rayonnement connues, chacune disposée dans le point focal (24) situé à l'intérieur de la section ellipsoïdale de révolution (10), et avec
    • Des couches intérieures réfléchissantes supplémentaires,
    caractérisé en ce que
    • en fonction des caractéristiques de rayonnement des sources de rayonnement (40), les plans de coupe longitudinale (26) des sections ellipsoïdales de révolution (10) et le plan de coupe (17) du miroir concave (12) sont disposés l'un par rapport à l'autre dans des angles de basculement identiques ou différents (29) compris entre 0° et 90° dans le point focal (30) du miroir concave (12),
    et en ce que
    • l'ouverture (08) est entourée d'un premier réflecteur annulaire (15), et le miroir concave (12) est entouré d'un second réflecteur annulaire (16) rattaché à son plan de coupe (17) en direction de l'ouverture (08), comme couches intérieures réfléchissantes supplémentaires,
    • le tracé de la paroi (34) du premier et du second réflecteur annulaire (15, 16) étant conçu de manière à ce que les rayons incidents soient renvoyés dans la direction de rayonnement principale (07) de l'émetteur à réflecteurs (01) ou dans la zone du point focal (30) du miroir concave (12).
  2. Émetteur à réflecteurs (01) selon la revendication 1,
    caractérisé en ce que
    l'angle de basculement (29) entre les plans de coupe longitudinale (26) des sections ellipsoïdales de révolution (10) et le plan de coupe (17) du miroir concave (12) est compris entre 20° et 45°, de préférence entre 25° et 40°.
  3. Émetteur à réflecteurs (01) selon la revendication 1 ou 2,
    caractérisé en ce que
    en fonction des caractéristiques de rayonnement, les sources de rayonnement (40) sont inclinées vers le plan de coupe (17) du miroir concave (12) dans des angles d'inclinaison (31) identiques ou différents compris entre 0° et 80°, de préférence entre 10° et 45°, en particulier de près de 35°.
  4. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    le miroir concave (12) a une forme sphérique (35), le point focal (30) étant situé dans le plan de coupe (17), paraboloïdale (36) ou ellipsoïdale (37) ou une conception linéairement allongée de l'une de ces formes, un axe focal servant de ligne de liaison entre les points focaux (30) étant formé dans le cas d'une conception linéairement allongée.
  5. Émetteur à réflecteurs (01) selon la revendication 4,
    caractérisé en ce que
    en cas de miroir concave (12) sphérique (35), paraboloïdal (36) ou ellipsoïdal (37), un axe de rayonnement central (33) ou, en cas de forme allongée, une surface de rayonnement centrale du miroir concave (12) pointe dans la direction de rayonnement principale (07).
  6. Émetteur à réflecteurs (01) selon la revendication 4 ou 5,
    caractérisé en ce que
    en cas de miroir concave (12) ellipsoïdal (37), un point focal (39) situé à l'extérieur du miroir concave (12) ou, dans le cas de la conception linéairement allongée de celui-ci, l'axe focal se trouvant en dehors du miroir concave (12) est situé à l'intérieur de l'ouverture (08) ou au-dessus de l'ouverture (08) à l'extérieur de l'émetteur à réflecteurs (01).
  7. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    au moins le premier réflecteur annulaire (15) présente un tracé de paroi paraboloïdal (34), le point focal (22) étant situé dans l'ouverture (08).
  8. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    le second réflecteur annulaire (16) présente un tracé de paroi au moins partiellement paraboloïdal ou ellipsoïdal (34), le point focal (44) étant situé dans la zone du point focal (30) du miroir concave (12).
  9. Émetteur à réflecteurs (01) selon la revendication 8,
    caractérisé en ce que
    le tracé de paroi (34) du second réflecteur annulaire (16) est composé au moins partiellement de plusieurs surfaces rectilignes contiguës les unes aux autres et formant plusieurs angles (18).
  10. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    le premier et le second réflecteur annulaire (15, 16) sont formés par des parois réfléchissantes (14) à l'intérieur de l'émetteur à réflecteurs (01).
  11. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'ouverture (08) est plus petite que la section ellipsoïdale de révolution (10).
  12. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'émetteur à réflecteurs (01) est réalisé en plusieurs parties, la version à trois parties étant composée d'une partie supérieure (03) comprenant les sections ellipsoïdales de révolution (10), l'ouverture (08) et le premier réflecteur annulaire (15), d'une partie centrale (04) comprenant des évidements (13) pour les sources de rayonnement (40) et le second réflecteur annulaire (16), et d'une partie inférieure (05) comprenant le miroir concave (12).
  13. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'émetteur à réflecteurs (01) présente une partie protectrice (02) composée d'un couvercle transparent (45) pour l'ouverture (08).
  14. Émetteur à réflecteurs (01) selon la revendication 13,
    caractérisé en ce que
    le couvercle transparent (45) présente une optique modifiant le faisceau, par exemple une structure de Fresnel (46).
  15. Émetteur à réflecteurs (01) selon les revendications 12, 13 et 14,
    caractérisé en ce que
    le couvercle transparent (45), la partie protectrice ainsi que les parties supérieure, centrale et inférieure (02, 03, 04, 05) sont reliés de manière étanche à la pression avec l'espace intérieur de l'émetteur à réflecteurs (01).
  16. Émetteur à réflecteurs (01) selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    les sources de rayonnement (40) sont formées par des lampes halogène, des lampes fluorescentes, des lampes UV ou des diodes électroluminescentes.
  17. Émetteur à réflecteurs (01) selon la revendication 16,
    caractérisé en ce que
    les diodes électroluminescentes en tant que sources de rayonnement (40) sont monochromes ou de plusieurs couleurs et présentent des caractéristiques de rayonnement coniques de +/- 60° partant de leur axe de rayonnement central.
EP13706910.0A 2012-02-10 2013-01-19 Projecteur à réflecteur Not-in-force EP2812629B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012003071.1A DE102012003071B4 (de) 2012-02-10 2012-02-10 Reflektorstrahler
PCT/DE2013/000044 WO2013117178A1 (fr) 2012-02-10 2013-01-19 Projecteur à réflecteur

Publications (2)

Publication Number Publication Date
EP2812629A1 EP2812629A1 (fr) 2014-12-17
EP2812629B1 true EP2812629B1 (fr) 2015-12-30

Family

ID=47757254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13706910.0A Not-in-force EP2812629B1 (fr) 2012-02-10 2013-01-19 Projecteur à réflecteur

Country Status (3)

Country Link
EP (1) EP2812629B1 (fr)
DE (1) DE102012003071B4 (fr)
WO (1) WO2013117178A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431868A1 (fr) * 2017-07-21 2019-01-23 Philips Lighting Holding B.V. Dispositif d'éclairage catadioptrique
CN113725343A (zh) * 2021-09-01 2021-11-30 深圳市佑明光电有限公司 一种高效深紫外led光源封装结构及其封装方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1935729A (en) * 1931-03-27 1933-11-21 Gen Electric Beacon or searchlight
JPH1164795A (ja) * 1997-08-25 1999-03-05 Hitachi Ltd 照明装置及びこの照明装置を用いた投写型表示装置
US7513630B2 (en) * 2000-03-27 2009-04-07 Wavien, Inc. Compact dual ellipsoidal reflector (DER) system having two molded ellipsoidal modules such that a radiation receiving module reflects a portion of rays to an opening in the other module
FR2826098B1 (fr) 2001-06-14 2003-12-26 Valeo Vision Dispositif d'eclairage ou de signalisation, notamment pour vehicule, comportant plusieurs sources lumineuses
FR2861831B1 (fr) 2003-10-31 2006-01-20 Valeo Vision Module d'eclairage pour projecteur de vehicule
JP2006164858A (ja) * 2004-12-09 2006-06-22 Koito Mfg Co Ltd 車両用照明灯具
DE202005009814U1 (de) * 2005-06-19 2005-10-20 Stiftung Alfred-Wegener-Institut Für Polar- Und Meeresforschung Reflektorleuchte
DE102006044019B4 (de) 2006-09-15 2011-12-29 Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung Stiftung des öffentlichen Rechts Reflektorstrahler
DE102008006249B4 (de) * 2008-01-25 2011-04-28 Lanz, Rüdiger Motorisch beweglicher, kopfbewegter Scheinwerfer
JP4582190B2 (ja) * 2008-05-14 2010-11-17 市光工業株式会社 車両用灯具
EP2863117B1 (fr) * 2009-11-09 2016-07-13 LG Innotek Co., Ltd. Dispositif d'éclairage

Also Published As

Publication number Publication date
WO2013117178A1 (fr) 2013-08-15
DE102012003071B4 (de) 2014-11-20
EP2812629A1 (fr) 2014-12-17
DE102012003071A1 (de) 2013-08-14

Similar Documents

Publication Publication Date Title
DE4342928C2 (de) Relflektoranordnung mit einer darin angeordneten Lichtquelle für eine Fahrzeugleuchte
EP1864053B1 (fr) Phare de vehicule
DE10234110B4 (de) Leuchte für Fahrzeuge, insbesondere Kraftfahrzeuge
DE10158336A1 (de) Leuchte für Fahrzeuge
DE102008036845B4 (de) Beleuchtungsvorrichtung
WO2006136388A2 (fr) Phare
EP1077344A2 (fr) Lampe
DE102006034324B4 (de) Reflektor mit Prismenstruktur
DE102012214138A1 (de) Lichtmodul
EP2812629B1 (fr) Projecteur à réflecteur
DE69933183T2 (de) Operationsleuchte
DE602004012797T2 (de) Beleuchtungs- oder Signalisierungssystem für Fahrzeuge
DE6920060U (de) Leuchte, insbesondere rueck-oder sicherungsleuchte
DE3150195A1 (de) "reflektorlampe"
EP1132680A1 (fr) Luminaire avec rayonnement non homogène de lumière
DE19834195C2 (de) Außenleuchte mit einer Reflektoranordnung
WO2019149893A1 (fr) Dispositif de génération de lumiere
DE102012209013B4 (de) Optisches Element und ein Leuchtmodul
DE19938734A1 (de) Fahrzeugleuchte
EP1363068A2 (fr) Lampe pour véhicule avec source lumineuse et réflecteur tubulaire ou en forme de coupole
DE10020348B4 (de) Reflektor für elektromagnetische Strahlen
EP0836046B1 (fr) Dispositif d'éclairage extérieur à éclairage indirect
DE202016104672U1 (de) Kraftfahrzeugleuchte mit einem linienförmige Facetten aufweisenden Reflektor
DE102009058308B4 (de) Reflektor für Leuchten mit Ellipsoid-Facetten
EP1900998B1 (fr) Réflecteur doté d'une structure émettant de la lumière

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: POTTHOFF, MICHAEL

Inventor name: SCHULZ, JAN

Inventor name: ROHDE, PETER

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROHDE, PETER

Inventor name: SCHULZ, JAN

Inventor name: POTTHOFF, MICHAEL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUER POL

INTG Intention to grant announced

Effective date: 20151005

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 767661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001708

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013001708

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160119

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160119

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

RIC2 Information provided on ipc code assigned after grant

Ipc: F21V 7/09 20060101ALI20130826BHEP

Ipc: F21S 8/00 20060101ALI20130826BHEP

Ipc: F21V 31/00 20060101ALI20130826BHEP

Ipc: F21V 7/00 20060101AFI20130826BHEP

Ipc: F21V 7/06 20060101ALI20130826BHEP

Ipc: F21Y 101/02 20000101ALI20130826BHEP

Ipc: F21V 7/08 20060101ALI20130826BHEP

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 767661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180119