EP2795204B1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
EP2795204B1
EP2795204B1 EP12824900.0A EP12824900A EP2795204B1 EP 2795204 B1 EP2795204 B1 EP 2795204B1 EP 12824900 A EP12824900 A EP 12824900A EP 2795204 B1 EP2795204 B1 EP 2795204B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
compressor
pressure
discharge device
refrigerant discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12824900.0A
Other languages
German (de)
French (fr)
Other versions
EP2795204A2 (en
Inventor
Arno Görlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bock GmbH
Original Assignee
GEA Bock GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201110122248 external-priority patent/DE102011122248A1/en
Priority claimed from DE102012005297A external-priority patent/DE102012005297A1/en
Application filed by GEA Bock GmbH filed Critical GEA Bock GmbH
Publication of EP2795204A2 publication Critical patent/EP2795204A2/en
Application granted granted Critical
Publication of EP2795204B1 publication Critical patent/EP2795204B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B23/00Pumping installations or systems
    • F04B23/04Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/11Reducing heat transfers

Definitions

  • the invention relates to a compressor according to the preamble of claim 1 and a refrigeration system according to claim 15.
  • Compressors as they are known from the preamble of claim 1, have a drive device and a compression device.
  • the drive device is often an electric motor, for example.
  • the compression device is designed in one or more stages, which means that the compressor, for example, in a first stage compresses refrigerant from a low pressure (suction pressure) to an intermediate pressure, the refrigerant at intermediate pressure then being fed to a second stage in which it is applied to a High pressure (final pressure) is compressed.
  • Such or similar compressors are for example from the JP 2002 106 989 A , of the U.S. 3,913,346 A , of the WO 2011/049 767 A2 , of the EP 1 562 012 A1 , of the US 2011/203304 A1 , as well as the DE 10 2005 009 173 A1 known.
  • a compressor has a compressor housing, a drive device and a compression device with one or more compression stages for compressing a refrigerant.
  • the compressor also has at least one refrigerant supply device for supplying refrigerant to the compression device and at least one refrigerant discharge device for discharging refrigerant from the compression device, at least one section of the refrigerant supply device being arranged thermally separated from the refrigerant discharge device or the refrigerant discharge devices.
  • Such a construction ensures that there is no excessive heat transfer from the compressed refrigerant to be discharged, which has been heated by a preceding compression process, to the refrigerant flowing through a section of the supply device.
  • such a construction largely prevents the heat transfer from a compressed refrigerant, which is heated by the compression process, to an uncompressed refrigerant.
  • the entire devices ie the devices over their entire extent, are completely thermally separated from one another, which leads to a minimal heat transfer.
  • compressors that have several refrigerant supply devices, i.e. for example multi-stage compressors
  • at least sections of all refrigerant supply devices for supplying refrigerant to the compression device from one, several or preferably all of the existing refrigerant discharge devices (for example device for discharging under an intermediate pressure or under high pressure) are preferred or final compression pressure standing refrigerant) arranged thermally separated. This reduces the heat transfer for all refrigerant supply devices, i.e. for example for the supplies to all stages of the compressor.
  • compressors that have a plurality of refrigerant supply devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant supply devices are each thermally separated from one another at least over sections of the same.
  • the refrigerant to be supplied to a compression stage is provided for cooling, for example, a drive device of the compressor, thermal decoupling from the other or the other refrigerant supply devices is often desired.
  • thermal decoupling from the other or the other refrigerant supply devices is often desired.
  • such a construction should always be considered when the corresponding refrigerant supply devices carry refrigerants of different temperatures.
  • compressors that have several refrigerant discharge devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant discharge devices are thermally separated from one another at least over sections of the same.
  • the respective refrigerant discharge devices carry refrigerants at different temperatures.
  • a two-stage compressor is conceivable for this case, in which the refrigerant at the outlet of one compression stage can possibly have a temperature that is different from that at the outlet of the other compression stage (s).
  • a transfer of heat to the colder refrigerant, which is discharged from the first compression stage, can thus be prevented. This contributes to increasing the efficiency of the system.
  • a compressor according to the invention in which at least sections of one or more refrigerant supply device (s) are thermally separated or decoupled from one or more of the one or more refrigerant discharge device (s) present in the compressor enables an increase in the efficiency of the compressor.
  • An optional further (additional) thermal separation between the refrigerant supply devices and from the refrigerant discharge devices, as well as the refrigerant discharge devices from one another, can further improve the efficiency of the respective compressor designs, especially in the case of temperature differences in the individual devices.
  • Thermally separated in the context of the present application means thermally not coupled or thermally relatively weakly coupled, ie provided with the lowest possible heat transfer. This can be achieved, for example, by spacing corresponding components and / or designing them as separate components. It is also an alternative to separate the individual sections from one another with an insulating material. This can also be used when several of the supply devices and the discharge devices for refrigerant are to be designed as an integral component.
  • the entire component is made of a material with a low thermal conductivity, preferably lower than the thermal conductivity of C-45 steel, further preferably lower than a thermal conductivity of 20 W / mK, in particular preferably lower than a thermal conductivity of 10 W. / mK to produce. Wall thicknesses of a few mm are effective.
  • two-component structures with, for example, insulating layers, in which case the components are again spaced apart from one another by the insulating layer.
  • Possibilities for minimizing the heat transfer are therefore avoiding contact surfaces, minimizing existing or required surfaces, choosing a less conductive material for required surfaces, in particular contact surfaces, and thermal insulation of surfaces, in particular contact surfaces, using appropriate materials or substances (solid-state insulation , Gas insulation, if necessary insulation by liquid) and / or by a corresponding spacing from one another.
  • a compressor according to the invention is explained in the following description of the figures using the example of a multistage radial piston compressor, the construction according to the invention can be applied to any single-stage and multistage compressor regardless of its compression principle.
  • radial piston compressors axial piston compressors, scroll compressors, screw compressors, turbo compressors, rotary compressors, etc. may be mentioned as examples.
  • the illustrated first embodiment of a compressor according to the invention is a radial piston compressor 10 which has a drive device or drive unit in the form of an electric motor 12 and a compression device or compression unit 14. Both the electric motor and the compression unit 14 are arranged in a compressor housing 15, which is composed of two parts, namely a motor housing 15-1 and a pressure cover 15-2.
  • the motor housing 15-1 is connected to the pressure cover 15-2 in a gas-tight manner.
  • the two housing components are welded to one another, other thermal connection methods such as brazing etc. or other suitable gas-tight connection methods such as flanging, gluing etc. also being conceivable.
  • the compression unit 14 has six pistons 18 which extend away from a central axis 16 in the radial direction and which are arranged in corresponding cylinders or cylinder bores 19 such that they can be displaced back and forth in the radial direction.
  • the drive of the compression unit 14 takes place via a drive shaft 16 which is connected to the electric motor 12 in a rotationally fixed manner and which is in operative engagement with the piston 18 via an eccentric mechanism and a connecting rod.
  • any number of pistons other than six is conceivable.
  • the number of pistons is determined on the basis of the desired specifications and the desired area of application.
  • the functioning of the compression process itself is possible both for the radial piston compressor described here and for all others Compressor types are well known and will not be further described here.
  • the compressor 10 is a two-stage compressor, the compression unit 14 of which is designed to compress refrigerant in two stages.
  • the compressor 10 is supplied with refrigerant for a first compression stage 14-1 via a low-pressure refrigerant supply device 20 which limits a low-pressure volume of the compressor 10 (suction volume) and is compressed in this to a predetermined intermediate pressure.
  • a low-pressure refrigerant supply device 20 which limits a low-pressure volume of the compressor 10 (suction volume) and is compressed in this to a predetermined intermediate pressure.
  • the compressor according to the invention can of course alternatively also be designed as a single-stage compressor and also as a different type of compressor (scroll compressor, etc., in a single-stage and multi-stage design).
  • a reciprocating piston compressor is used because it can be used advantageously because of, among other things, its high degree of tightness, which is due to the use of cylinders (good sealing via the piston rings). Furthermore, the areas around the cylinder, that is, for example, some heavily loaded areas, are only thermally loaded during the compression moment, i.e. when the cylinder is filled with refrigerant and the piston is approaching top dead center (due to the heating caused by the compression of the refrigerant caused). Afterwards, cooling takes place immediately, for example by inflowing refrigerant, so that the material load is kept as low as possible.
  • the low-pressure refrigerant supply device 20 has a plurality of subregions. This is a first low-pressure refrigerant supply device sub-area 20-1 formed and defined by a tubular wall or a pipe, which extends outside the compressor housing 15 from the compressor housing 15 to a low-pressure connection 22, one in turn through a tubular wall or . By a pipe formed and defined second low-pressure refrigerant supply device sub-area 20-2, which extends within the compressor housing 15 from the compressor housing 15 to the compression unit 14, and a third, formed in the compression unit 14 low-pressure refrigerant supply device sub-area 20-3 on.
  • the subregions are each formed by separate components which are each connected in a gas-tight manner at the ends to a corresponding end of one of the other components. It should be noted at this point that the entire low-pressure refrigerant supply device 20 can alternatively be formed in one piece or can have one of three different numbers of components. The extent of the above-mentioned sub-areas does not have to coincide with the extent of the components.
  • the refrigerant After being fed to the first compression stage 14-1, which is formed by four of the six cylinders, the refrigerant is compressed to an intermediate pressure in the first compression stage.
  • the refrigerant After compression by the first compression stage 14-1, the refrigerant is ejected into an intermediate-pressure refrigerant discharge device 24, which in turn has three sub-areas: a first intermediate-pressure refrigerant discharge device sub-area 24-1, which is again delimited by a tubular wall or a pipe extends outside the compressor housing 15 from the compressor housing 15 to a first intermediate pressure connection 26; a second intermediate-pressure refrigerant discharge device sub-area 24-2, likewise bounded by a tubular wall or pipe, which extends within the compressor housing 15 from the compressor housing 15 to the compression unit 14, and a third intermediate-pressure refrigerant discharge device sub-area 24-3, which is formed in the compression unit 14 and serves to connect the second intermediate-pressure refrigerant discharge device section 24-2 to the cylinders, more precisely, to the outlets of the
  • the intermediate pressure refrigerant discharge device sub-areas are in turn connected in a gastight manner to the first intermediate pressure connection 26 and the cylinders of the first compression stage 14-1 in a gas-tight manner analogous to the low pressure sub-areas at respective ends and at corresponding other ends.
  • the statements for the low-pressure feed device 20 also apply analogously with regard to the number of components.
  • the intermediate pressure refrigerant is led out of the compressor via the intermediate pressure refrigerant discharge device 24 and made available at the first intermediate pressure connection 26 for transfer to an intermediate cooler 28 (see FIG Fig. 2 ).
  • the compressor 10 is connected via the first intermediate pressure connection 26 by means of a first pipe 30 to the intermediate cooler, in which the intermediate pressure refrigerant is cooled.
  • the cooled, intermediate-pressure refrigerant is then supplied via a second intermediate-pressure connection connected to the second pipe 32 34 brought into an intermediate pressure refrigerant supply device 36 of the compressor 10.
  • the intermediate pressure refrigerant supply device 36 has two sub-areas connected to one another in a gas-tight manner: a first intermediate-pressure refrigerant supply device sub-area 36-1, which is again tubular and which is arranged between the compressor housing 15 and the second intermediate pressure connection 34 and is connected to it in a gas-tight manner, a tubular second intermediate-pressure refrigerant supply device sub-area 36-2, which extends from the compressor housing 15 in a 90 ° curve towards the electric motor 12 and ends in the area of the electric motor 12.
  • the electric motor 12 is cooled by the cooled refrigerant at intermediate pressure.
  • a third intermediate-pressure refrigerant supply device sub-area 36-3 arranged in the compression unit 14 After flowing through and cooling the engine, the cooled refrigerant is then supplied to a second compression stage 14-2 consisting of two cylinders, in which it is fed to one high pressure (high pressure) is compressed.
  • the cylinders of the second compression stage 14-2 are connected in a gas-tight manner on an inlet side to the third intermediate-pressure refrigerant supply device section 36-3.
  • the intermediate-pressure refrigerant supply device 36 can also consist of any number of components that do not have to match the corresponding subregions.
  • the high-pressure refrigerant discharge device 38 has five high-pressure refrigerant discharge device subareas, each connected to one another in a gas-tight manner: a first tubular high-pressure refrigerant discharge device subarea 38-1, which extends outside the compressor housing 15 from the compressor housing 15 to a high-pressure connection 40; a likewise tubular second high-pressure refrigerant discharge device sub-area 38-2, which extends within the compressor housing 15 from the compressor housing 15 to a third high-pressure refrigerant discharge device sub-area 38-3; the third high-pressure refrigerant discharge device section 38-3, which is roughly cuboid, that is, is designed with a rectangular cross-section and serves to dampen pulsations in the high-pressure volume 38; a fourth high pressure refrigerant discharge device section 38-4 extending from the third high pressure
  • the refrigerant is in the exemplary refrigeration system of Fig. 2 is fed via a third pipe 42 to a gas cooler 43 in which it is cooled.
  • the cooled refrigerant which is at high pressure, then flows via a fourth pipe 44 into a first expansion element 46, where it is expanded to a mean pressure which does not have to correspond to the intermediate pressure.
  • the refrigerant then flows via a fifth pipe 48 into a collector 50, from where it flows via a sixth pipe 52 into a second expansion element 54, in which it is expanded to low pressure (suction pressure), and then via a seventh pipe 56 to an evaporator 58 arrives.
  • the refrigerant then flows from the evaporator 58 via a further, eighth pipe 60 to the compressor 10, more precisely to the low-pressure connection 22 of the compressor 10.
  • each refrigerant supply device 20, 36 is arranged to be thermally separated from the refrigerant discharge devices. It is in the present Embodiment here to sections which begin at respective connections for the refrigerant (low pressure connection 22, second intermediate pressure connection 34) and in the case of the low pressure refrigerant supply device comprises the first low pressure refrigerant supply device sub-area 20-1 and the second low pressure refrigerant supply device sub-area 20-2 . In the case of the intermediate-pressure refrigerant supply device 36, the first and the second intermediate-pressure refrigerant supply device sub-regions 36-1 and 36-2 are included.
  • intermediate-pressure refrigerant discharge device 24 and the high-pressure refrigerant discharge device 38 are also thermally separated from one another.
  • the corresponding section comprises the first and second intermediate-pressure refrigerant discharge device subareas 24-1 and 24-2, and in the high-pressure refrigerant discharge device 38 the first to fourth high-pressure refrigerant discharge device subareas 38-1 to 38-4 .
  • the respective sections which are arranged thermally separated from one another, are arranged at a distance from one another and thermally separated or decoupled from one another by the respective ambient atmosphere (in the compressor refrigerant, either under intermediate pressure or under suction pressure, outside the compressor ambient atmosphere).
  • FIG. 2 a corresponding pressure-enthalpy diagram for the refrigeration system is shown, with the states marked with single-digit numbers in the pressure-enthalpy diagram occurring at the single-digit points in the system in circles.
  • the states in the respective pressure-enthalpy diagrams are analogous Figures 3 to 7 marked. In the following, reference is no longer made to this individually, but rather, as already explained, it is assumed that the respective in the Figures 3 to 7
  • the pressure-enthalpy diagrams shown represent the states in the refrigeration systems shown in the same figure.
  • the states identified by a number are in each case at the point of the refrigeration system provided with a number in a circle.
  • FIG. 3 a further exemplary refrigeration system is shown, which has a second possible embodiment of a compressor according to the invention.
  • the compressor 110 is again designed in two stages, and essentially corresponds to the compressor 10 of FIG first described embodiment according to Fig. 1 . At this point, the differences to the compressor 10 are above all in accordance with Fig. 1 described.
  • the compressor 110 has two compression stages 114-1 and 114-2.
  • the first compression stage 114-1 compresses a main coolant flow at low pressure (suction pressure), which is made available to the compressor 110 via a low-pressure connection 122 and a low-pressure volume that corresponds in structure and function to that of the first embodiment will, at high pressure.
  • the second compression stage 114-2 is arranged, which also compresses the intermediate pressure refrigerant of a secondary coolant flow to high pressure.
  • the intermediate pressure refrigerant is supplied to the compressor 110 via an intermediate pressure connection 134, which corresponds to the second intermediate pressure connection 34 of the first embodiment, and an associated intermediate pressure volume, which corresponds in structure and function to the second intermediate pressure volume of the first embodiment.
  • the intermediate pressure refrigerant is used to cool the electric motor of the compressor.
  • the cylinders (cylinder outlets) of both compression stages 114-1 and 114-2 are connected to a common high-pressure sub-volume 138-5, which is the fifth high-pressure sub-volume 38-5 of the first embodiment, which is only connected to the Cylidern (cylinder outlets) of the second compression stage 14-2 is connected, replaced;
  • the remaining partial volumes of the high pressure volume of the second embodiment are designed analogously to those of the first embodiment;
  • a high pressure connection 140 corresponding to the first embodiment is also provided.
  • the first intermediate pressure volume 24 via which the refrigerant compressed in the first compression stage 14-1 of the compressor according to the first embodiment was supplied to the intercooler without replacement is thus omitted.
  • the refrigerant flows from the high-pressure connection 140 (again via pipelines in each case) to a gas cooler 143, which corresponds to the gas cooler 43 in terms of structure and functionality and is cooled there.
  • the refrigerant flow is then divided into the main flow H and the secondary flow N, the secondary flow passing through a first expansion element 146-1, where it is expanded to the intermediate pressure of the compressor.
  • the secondary stream N is then fed to a heat exchanger 162.
  • the main stream H initially does not pass through an expansion device but is fed directly to the heat exchanger 162, so that the main stream H is further cooled by the secondary stream N.
  • the secondary flow is then led to the second compression stage 114-2, more precisely to the intermediate pressure connection 134, while the main flow H passes through an expansion element 146-2, which expands the refrigerant of the main flow or the main flow to a mean pressure that is different from the intermediate pressure can.
  • an expansion element 146-2 which expands the refrigerant of the main flow or the main flow to a mean pressure that is different from the intermediate pressure can.
  • the rotor of the electric motor 12 functions as an oil separator.
  • the compressor housing 15 consists of two parts that are thermally connected to one another in a non-removable manner after the drive device and the compression unit have been introduced. This leads to a high level of stability of the compressor, since loosening of connections, for example due to vibrations, is unlikely.
  • more than two parts can also be used to form the housing 15, which, in spite of a higher number of parts and slightly higher manufacturing costs, may increase the ease of assembly and thus ensure cost savings elsewhere.
  • a third refrigeration system based on the compressor 10, which is a modification of the in Fig. 2 refrigeration system shown is in Fig. 4 shown.
  • the third refrigeration system has a connecting line in the form of a pipe 64 between the collector 50 and the pipe 32, which is arranged between the intercooler 28 and the second intermediate pressure connection 34. This creates a secondary refrigerant flow from collector 50 to the second Compression level 14-2 allows.
  • FIG Fig. 5 Another (fourth) refrigeration system based on the compressor 10 is shown in FIG Fig. 5 shown.
  • the intercooler 28 and the pipelines assigned to it are omitted, but otherwise the fourth refrigeration system is identical to the third refrigeration system according to FIG Fig. 4 .
  • FIG. 6 A fifth, in Fig. 6
  • the refrigeration system shown is based on the refrigeration system of Figure 2 (two-stage compressor with serially arranged compression stages), whereby the refrigerant flow after the gas cooler 43 (analogous to the refrigeration system, which in Fig. 3 is shown) divided into a main flow H and a secondary flow N, the secondary flow passing through a first expansion element 46-1, where it is expanded to the intermediate pressure of the compressor.
  • the secondary stream N is then fed to a heat exchanger 62.
  • the main stream H initially does not run through an expansion element but is fed directly to the heat exchanger 62, so that the main stream H is further cooled by the secondary stream N.
  • the secondary flow is then led to the second compression stage 14-2, more precisely to the intermediate pressure connection 34, while the main flow H passes through an internal heat exchanger 66 and then an expansion element 54, the refrigerant of the main flow H then passes via the evaporator 58, another collector 68 and the internal heat exchanger 66 back to the low pressure connection of the compressor 10.
  • FIG. 7 Finally, another (sixth) refrigeration system is shown, which has a compressor 110 (ie a compressor with parallel compression stages 114-1 and 114-2). In contrast to the refrigeration system according to Fig. 3 however, the sixth refrigeration system does not have a heat exchanger which transfers heat from a main refrigerant flow to a secondary refrigerant flow. The total refrigerant flow passes through, similar to the refrigeration system Fig. 5 an expansion element 146 and then passes into a separator or collector 150.
  • a compressor 110 ie a compressor with parallel compression stages 114-1 and 114-2
  • the sixth refrigeration system does not have a heat exchanger which transfers heat from a main refrigerant flow to a secondary refrigerant flow.
  • the total refrigerant flow passes through, similar to the refrigeration system Fig. 5 an expansion element 146 and then passes into a separator or collector 150.
  • a connection in the form of a pipe 164 extends from the collector 150 to the inlet of the compression stage 114-2, whereby a secondary flow N is fed to the compression stage 114-2, whereas a main flow H is supplied is fed to the expansion element 154 and via the evaporator 58 arranged thereafter to the first compression stage 114-1.
  • a compressor 10 is a compressor 10 with an eccentric mechanism.
  • the corresponding engine will be discussed in more detail, although this is an example of a compressor according to the invention, which by no means has to be a reciprocating compressor, but may also be a scroll compressor, a screw compressor or any other known type of compressor.
  • the drive unit described below is an advantageous variant.
  • the compressor 10 (which can also be used as the compressor 110) has six pistons 18 which are arranged in corresponding cylinder bores or cylinder sleeves 216 such that they can be moved back and forth in a radial direction.
  • the cylinder bores or cylinder liners 216 themselves are designed as corresponding recesses in a cylinder block 218.
  • the pistons 18 are designed to be movable to and fro in the radial direction.
  • the compressor 10 serves to compress R744 (CO 2 ) as a refrigerant. It should be noted, however, that any other refrigerant (for example R134a, etc.) can also be used.
  • the compressor 10 has the drive device in the form of the drive shaft 16 (cf. for example FIG Fig. 9 ), by means of which the drive of the compressor 10 takes place.
  • the drive shaft 16 is coupled to the electric motor 12, but in alternative embodiments it can also be coupled to a corresponding belt drive device or some other device.
  • the axial extent of the drive shaft 16 can also be significantly shorter than in the embodiment shown in the figures, in which the drive shaft 24 is in operative engagement with the electric motor and extends through it.
  • the drive device in the form of the drive shaft 16 is in operative engagement with an eccentric 228. More precisely, the drive shaft 16 is formed eccentrically in a corresponding region (eccentric section of the drive shaft 16).
  • the eccentric 228 is thus formed integrally and in one piece with and on the drive shaft 16.
  • the eccentric 228 can also be designed as a separate component and attached to the drive shaft 16, in particular articulated or supported accordingly.
  • the eccentric 228, cut perpendicular to the axial direction, has a circular cross section and radially outwardly directed eccentric surfaces 230 which are arranged in a region of an eccentric active section 232.
  • the eccentric active section 232 serves to drive the pistons 18 and is in operative engagement therewith via a connecting rod 234 assigned to each piston 18.
  • the connecting rods 234 are articulated to the piston 18 by means of connecting rod eyes 236, which are formed on the sides of the connecting rods 234 facing the pistons 18.
  • the connecting rods 234 On the side facing the eccentric 228, the connecting rods 234 have an active connecting rod section 238 which is used for operative engagement with the eccentric 228.
  • the eccentric 228 is in active engagement with the connecting rod active sections 238 via a bearing in the form of a needle bearing 240, which is arranged (fitted) on the eccentric active section 232 (circular cross section) and there on the eccentric surface 230.
  • a needle bearing 240 As an alternative to the needle bearing 240, other bearings, in particular plain bearings or roller bearings in any possible design, are conceivable.
  • the bearing 240 ensures a low-friction transfer and a conversion of the movement (rotary movement) of the eccentric 228 into a movement in the radial direction of a connecting rod active section receptacle 242, which is in operative engagement with the bearing by means of a corresponding fit.
  • the corresponding movement in the radial direction is then correspondingly applied to the connecting rods 234 and the pistons 18 articulated thereon transfer.
  • the connecting rod active sections 238 corresponding to the circular outer circumference of the bearing 240 which are configured in the manner of a segment of a circle on their side facing the bearing 240, have for this purpose a widened extension in the axial direction at their end facing the bearing, so that they can be expanded by means of two, im Cross-section of L-shaped shells 244, which form the connecting rod active section receptacle 242, are securely arranged on the bearing 240.
  • the connecting rod active sections of all connecting rods 234 are arranged on a circular path around the eccentric 228 and thus also around the eccentric active section 232, which is concentric therewith.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

Die Erfindung betrifft einen Verdichter gemäß dem Oberbegriff des Patentanspruchs 1, sowie eine Kälteanlage gemäß Anspruch 15.The invention relates to a compressor according to the preamble of claim 1 and a refrigeration system according to claim 15.

Verdichter, wie sie aus dem Oberbegriff des Patentanspruchs 1 bekannt sind, weisen eine Antriebsvorrichtung und eine Verdichtungsvorrichtung auf. Die Antriebsvorrichtung ist beispielsweise oftmals ein Elektromotor. Die Verdichtungsvorrichtung ist ein- oder mehrstufig ausgelegt, was bedeutet, dass der Verdichter beispielsweise in einer ersten Stufe Kältemittel von einem Niederdruck (Saugdruck) auf einen Zwischendruck verdichtet, wobei das auf Zwischendruck befindliche Kältemittel dann einer zweiten Stufe zugeführt wird, in der es auf einen Hochdruck (Enddruck) verdichtet wird. Derartige oder auch ähnliche Verdichter sind beispielsweise aus der JP 2002 106 989 A , der US 3 913 346 A , der WO 2011/049 767 A2 , der EP 1 562 012 A1 , der US 2011/203304 A1 , sowie der DE 10 2005 009 173 A1 bekannt.Compressors, as they are known from the preamble of claim 1, have a drive device and a compression device. The drive device is often an electric motor, for example. The compression device is designed in one or more stages, which means that the compressor, for example, in a first stage compresses refrigerant from a low pressure (suction pressure) to an intermediate pressure, the refrigerant at intermediate pressure then being fed to a second stage in which it is applied to a High pressure (final pressure) is compressed. Such or similar compressors are for example from the JP 2002 106 989 A , of the U.S. 3,913,346 A , of the WO 2011/049 767 A2 , of the EP 1 562 012 A1 , of the US 2011/203304 A1 , as well as the DE 10 2005 009 173 A1 known.

Häufig ist jedoch der Wirkungsgrad zweistufiger Verdichter nicht optimal. Diese Tatsache gewinnt zusehends an Bedeutung wenn "neue, natürliche" Kältemittel, also beispielsweise R744 (CO2) zur Verwendung gelangen sollen, welche besondere Anforderungen an die Bedingungen des Verdichtungsvorgangs stellen.However, the efficiency of two-stage compressors is often not optimal. This fact becomes increasingly important when "new, natural" refrigerants, for example R744 (CO 2 ), are to be used, which place special demands on the conditions of the compression process.

Ausgehend vom vorstehend diskutierten Stand der Technik ist es demnach Aufgabe der vorliegenden Erfindung, einen Verdichter anzugeben, der im Vergleich zu den Verdichtern gemäß dem Stand der Technik einen erhöhten Wirkungsgrad aufweist bzw. energetisch für einen Betrieb mit allen gängigen Kältemitteln geeignet ist. Weiterhin ist es eine Aufgabe der vorliegenden Erfindung, eine entsprechend ausgelegte Kälteanlage anzugebenOn the basis of the prior art discussed above, it is accordingly the object of the present invention to specify a compressor which, compared to the compressors according to the prior art, has an increased degree of efficiency or, in terms of energy, for one Operation with all common refrigerants is suitable. Furthermore, it is an object of the present invention to specify a correspondingly designed refrigeration system

Diese Aufgabe wird erfindungsgemäß durch einen Verdichter gemäß dem Patentanspruch 1, sowie eine Kälteanlage gemäß Anspruch 15 gelöst.This object is achieved according to the invention by a compressor according to patent claim 1 and a refrigeration system according to claim 15.

Erfindungsgemäß weist ein Verdichter ein Verdichtergehäuse, eine Antriebsvorrichtung und eine Verdichtungsvorrichtung mit einer oder mehreren Verdichtungsstufen zum Verdichten eines Kältemittels auf. Der Verdichter weist weiterhin wenigstens eine Kältemittelzuführvorrichtung zum Zuführen von Kältemittel zu der Verdichtungsvorrichtung und wenigstens eine Kältemittelabführvorrichtung zum Abführen von Kältemittel von der Verdichtungsvorrichtung auf, wobei wenigstens ein Abschnitt der Kältemittelzuführvorrichtung thermisch getrennt von der Kältemittelabführvorrichtung oder den Kältemittelabführvorrichtungen angeordnet ist.According to the invention, a compressor has a compressor housing, a drive device and a compression device with one or more compression stages for compressing a refrigerant. The compressor also has at least one refrigerant supply device for supplying refrigerant to the compression device and at least one refrigerant discharge device for discharging refrigerant from the compression device, at least one section of the refrigerant supply device being arranged thermally separated from the refrigerant discharge device or the refrigerant discharge devices.

Durch eine derartige Konstruktion wird erreicht, dass kein zu großer Wärmeübergang von abzuführendem, verdichtetem Kältemittel, welches durch einen vorangehenden Verdichtungsvorgang erwärmt wurde, auf das einen Abschnitt der Zuführvorrichtung durchströmende Kältemittel stattfindet. In anderen Worten gesagt wird durch eine derartige Konstruktion der Wärmeübertrag von einem verdichteten und durch den Verdichtungsvorgang erwärmten Kältemittel auf ein unverdichtetes Kältemittel weitestgehend verhindert. Je besser die jeweiligen Abschnitte der Kältemittelzuführvorrichtung(en) von denjenigen der entsprechenden Kältemittelabführvorrichtung(en) thermisch getrennt bzw. entkoppelt sind, umso geringer ist der Wärmeübertrag. Idealerweise sind nicht nur Abschnitte, sondern jeweils die gesamten Vorrichtungen, d.h. die Vorrichtungen über ihre gesamte Erstreckung hin vollständig thermisch voneinander getrennt, was zu einem minimalen Wärmeübertrag führt. Es sei jedoch an dieser Stelle darauf hingewiesen, dass einzelne Berührpunkte oder Berührbereiche (Wärmeübertragungsflächen) der jeweiligen Vorrichtungen konstruktiv nahezu unumgänglich sind, die hierüber übertragenen Wärmemengen jedoch relativ gering sind und somit geduldet werden können. Hinsichtlich der Größe der Berührbereiche (Wärmeübertragungsflächen) kann im Einzelfall das jeweilige wirtschaftlichste Konzept, das sowohl die Herstellungskosten als auch die Betriebskosten berücksichtigt, gewählt werden. Es sei an dieser Stelle ferner erwähnt, dass beispielsweise auch durch eine möglichst kleine Ausgestaltung der Flächen der Kältemittelabführvorrichtung(en) ein minimaler Wärmeaustausch mit der Umgebung der Kältemittelabführvorrichtung(en) erreicht werden kann.Such a construction ensures that there is no excessive heat transfer from the compressed refrigerant to be discharged, which has been heated by a preceding compression process, to the refrigerant flowing through a section of the supply device. In other words, such a construction largely prevents the heat transfer from a compressed refrigerant, which is heated by the compression process, to an uncompressed refrigerant. The better the respective sections of the refrigerant supply device (s) are thermally separated or decoupled from those of the corresponding refrigerant discharge device (s), the lower the heat transfer. Ideally, not only sections but in each case the entire devices, ie the devices over their entire extent, are completely thermally separated from one another, which leads to a minimal heat transfer. However, it should be pointed out at this point that individual points of contact or areas of contact (heat transfer surfaces) of the respective devices are structurally almost inevitable, but the amounts of heat transferred via this are relatively small and can therefore be tolerated. With regard to the size of the contact areas (heat transfer surfaces), the most economical concept in each case, which takes into account both the manufacturing costs and the operating costs, can be selected. It should also be mentioned at this point that, for example, by designing the surfaces of the refrigerant discharge device (s) as small as possible a minimal heat exchange with the environment of the refrigerant discharge device (s) can be achieved.

Bevorzugt sind bei Verdichtern, die mehrere Kältemittelzuführvorrichtungen aufweisen, also beispielsweise bei mehrstufigen Verdichtern, wenigstens Abschnitte von allen Kältemittelzuführvorrichtungen zum Zuführen von Kältemittel zu der Verdichtungsvorrichtung von einer, mehreren oder vorzugsweise allen der vorhandenen Kältemittelabführvorrichtungen (beispielsweise Vorrichtung zum Abführen von unter einem Zwischendruck oder unter Hochdruck bzw. Verdichtungsenddruck stehendem Kältemittel) thermisch getrennt angeordnet. Dadurch wird der Wärmeübertrag für sämtliche Kältemittelzuführvorrichtungen, d.h. beispielsweise für die Zuführungen aller Stufen des Verdichters verringert.In the case of compressors that have several refrigerant supply devices, i.e. for example multi-stage compressors, at least sections of all refrigerant supply devices for supplying refrigerant to the compression device from one, several or preferably all of the existing refrigerant discharge devices (for example device for discharging under an intermediate pressure or under high pressure) are preferred or final compression pressure standing refrigerant) arranged thermally separated. This reduces the heat transfer for all refrigerant supply devices, i.e. for example for the supplies to all stages of the compressor.

In einer weiteren bevorzugten Ausführungsform sind bei Verdichtern, die mehrere Kältemittelzuführvorrichtungen aufweisen, also beispielsweise bei mehrstufigen Verdichtern, wenigstens zwei oder mehrere der Kältemittelzuführvorrichtungen jeweils zumindest über Abschnitte derselben hinweg thermisch voneinander getrennt. Insbesondere dann, wenn das einer Verdichtungsstufe zuzuführende Kältemittel zur Kühlung beispielsweise einer Antriebsvorrichtung des Verdichters vorgesehen ist, ist oftmals eine thermische Entkoppelung von der anderen oder den anderen Kältemittelzuführvorrichtungen erwünscht. Allgemein kann man festhalten, dass eine solche Konstruktion immer dann in Betracht gezogen werden sollte, wenn die entsprechenden Kältemittelzuführvorrichtungen Kältemittel unterschiedlicher Temperatur führen.In a further preferred embodiment, in compressors that have a plurality of refrigerant supply devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant supply devices are each thermally separated from one another at least over sections of the same. In particular, when the refrigerant to be supplied to a compression stage is provided for cooling, for example, a drive device of the compressor, thermal decoupling from the other or the other refrigerant supply devices is often desired. In general, it can be stated that such a construction should always be considered when the corresponding refrigerant supply devices carry refrigerants of different temperatures.

In einer weiteren bevorzugten Ausführungsform sind bei Verdichtern, die mehrere Kältemittelabführvorrichtungen aufweisen, also beispielsweise bei mehrstufigen Verdichtern, wenigstens zwei oder mehrere der Kältemittelabführvorrichtungen untereinander jeweils zumindest über Abschnitte derselben hinweg thermisch getrennt. Dies ist beispielsweise dann von Vorteil, wenn die jeweiligen Kältemittelabführvorrichtungen Kältemittel mit unterschiedlicher Temperatur führen. Denkbar ist für diesen Fall beispielsweise ein zweistufiger Verdichter, in dem das Kältemittel am Ausgang einer Verdichtungsstufe ggf. eine Temperatur aufweisen kann, die von derjenigen am Ausgang der anderen Verdichtungsstufe(n) unterschiedlich ist. Ein Wärmeübertrag auf das kältere Kältemittel, das aus der ersten Verdichtungsstufe abgeführt wird, kann damit verhindert werden. Dies trägt zur Effizienzsteigerung der Anlage bei.In a further preferred embodiment, in compressors that have several refrigerant discharge devices, that is to say for example in the case of multi-stage compressors, at least two or more of the refrigerant discharge devices are thermally separated from one another at least over sections of the same. This is advantageous, for example, when the respective refrigerant discharge devices carry refrigerants at different temperatures. For example, a two-stage compressor is conceivable for this case, in which the refrigerant at the outlet of one compression stage can possibly have a temperature that is different from that at the outlet of the other compression stage (s). A transfer of heat to the colder refrigerant, which is discharged from the first compression stage, can thus be prevented. This contributes to increasing the efficiency of the system.

Zusammenfassend kann festgehalten werden, dass ein erfindungsgemäßer Verdichter, in dem wenigstens Abschnitte einer oder mehrerer Kältemittelzuführvorrichtung(en) thermisch von einer oder mehreren der einen oder mehreren im Verdichter vorhandenen Kältemittelabführvorrichtung(en) getrennt oder entkoppelt sind eine Steigerung des Wirkungsgrades des Verdichters ermöglicht. Durch eine optionale weitere (zusätzliche) thermische Trennung zwischen den Kältemittelzuführvorrichtungen untereinander und gegenüber den Kältemittelabführvorrichtungen, sowie der Kältemittelabführvorrichtungen untereinander kann auf jeweilige Verdichterkonstruktionen, insbesondere im Fall von in den einzelnen Vorrichtungen herrschenden Temperaturunterschieden eine weitere Verbesserung des Wirkungsgrads erreicht werden.In summary, it can be stated that a compressor according to the invention in which at least sections of one or more refrigerant supply device (s) are thermally separated or decoupled from one or more of the one or more refrigerant discharge device (s) present in the compressor enables an increase in the efficiency of the compressor. An optional further (additional) thermal separation between the refrigerant supply devices and from the refrigerant discharge devices, as well as the refrigerant discharge devices from one another, can further improve the efficiency of the respective compressor designs, especially in the case of temperature differences in the individual devices.

An dieser Stelle sei die Definition für den Wortlaut "thermisch getrennt", wie er in der vorliegenden Anmeldung Verwendung findet, näher erläutert. Thermisch getrennt im Sinne der vorliegenden Anmeldung bedeutet thermisch nicht oder thermisch relativ schwach gekoppelt, d.h. mit einem möglichst geringen Wärmeübergang versehen. Dies kann beispielsweise durch eine Beabstandung entsprechender Komponenten und/oder eine Ausbildung als separate Bauteile erreicht werden. Eine Alternative ist es auch, die einzelnen Abschnitte durch ein Isoliermaterial voneinander zu trennen. Dies ist auch dann anwendbar, wenn mehrere der Zuführvorrichtungen und der Abführvorrichtungen für Kältemittel als ein integrales Bauteil ausgebildet werden sollen. Es ist vorstellbar, das gesamte Bauteil aus einem Material mit einer geringen Wärmeleitfähigkeit, vorzugsweise geringer als die thermische Leitfähigkeit von C-45 Stahl, weiterhin vorzugsweise geringer als eine thermische Leitfähigkeit von 20 W/mK, insbesondere vorzugsweise geringer als eine thermische Leitfähigkeit von 10 W/mK herzustellen. Dabei sind schon Wandstärken von wenigen mm wirkungsvoll. Alternativ wäre es auch denkbar, zweikomponentige Aufbauten mit beispielsweise Isolierschichten anzuwenden, wobei in diesem Fall die Bauteile durch die Isolierschicht wiederum voneinander beabstandet sind. Möglichkeiten zum Minimieren des Wärmeübergangs sind demnach eine Vermeidung von Kontaktflächen, eine Minimierung von vorhandenen bzw. erforderlichen Flächen, die Wahl eines wenig leitfähigen Materials für erforderliche Flächen, insbesondere Kontaktflächen, und die thermische Isolation von Flächen, insbesondere Kontaktflächen durch entsprechende Materialien oder Stoffe (Festkörperisolierung, Gasisolierung, ggf. Isolierung durch Flüssigkeit) und/oder durch eine entsprechende Beabstandung zueinander.At this point, the definition of the wording "thermally separated" as it is used in the present application is explained in more detail. Thermally separated in the context of the present application means thermally not coupled or thermally relatively weakly coupled, ie provided with the lowest possible heat transfer. This can be achieved, for example, by spacing corresponding components and / or designing them as separate components. It is also an alternative to separate the individual sections from one another with an insulating material. This can also be used when several of the supply devices and the discharge devices for refrigerant are to be designed as an integral component. It is conceivable that the entire component is made of a material with a low thermal conductivity, preferably lower than the thermal conductivity of C-45 steel, further preferably lower than a thermal conductivity of 20 W / mK, in particular preferably lower than a thermal conductivity of 10 W. / mK to produce. Wall thicknesses of a few mm are effective. Alternatively, it would also be conceivable to use two-component structures with, for example, insulating layers, in which case the components are again spaced apart from one another by the insulating layer. Possibilities for minimizing the heat transfer are therefore avoiding contact surfaces, minimizing existing or required surfaces, choosing a less conductive material for required surfaces, in particular contact surfaces, and thermal insulation of surfaces, in particular contact surfaces, using appropriate materials or substances (solid-state insulation , Gas insulation, if necessary insulation by liquid) and / or by a corresponding spacing from one another.

Obwohl in der folgenden Figurenbeschreibung ein erfindungsgemäßer Verdichter am Beispiel eines mehrstufigen Radialkolbenverdichters erläutert wird, ist die erfindungsgemäße Konstruktion auf jeden beliebigen einstufigen und mehrstufigen Verdichter unabhängig von dessen Verdichtungsprinzip anwendbar. Neben Radialkolbenverdichtern seien beispielhaft Axialkolbenverdichter, Scroll-Verdichter, Schraubenverdichter, Turboverdichter, Rotationsverdichter etc. genannt.Although a compressor according to the invention is explained in the following description of the figures using the example of a multistage radial piston compressor, the construction according to the invention can be applied to any single-stage and multistage compressor regardless of its compression principle. In addition to radial piston compressors, axial piston compressors, scroll compressors, screw compressors, turbo compressors, rotary compressors, etc. may be mentioned as examples.

Weitere Merkmale der Erfindung sind in den Unteransprüchen angegeben.Further features of the invention are specified in the subclaims.

Die Erfindung wird im Folgenden mit Bezug auf die beiliegenden Zeichnungen anhand von bevorzugten Ausführungsformen beispielhaft beschrieben. In den Zeichnungen zeigen:

  • Fig. 1 eine erste mögliche Ausführungsform eines erfindungsgemäßen Verdichters;
  • Fig. 2 eine schematische Darstellung einer Kälteanlage, welche einen Verdichter gemäß der ersten möglichen Ausführungsform aufweist, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm; und
  • Fig. 3 eine schematische Darstellung einer Kälteanlage, welche einen Verdichter gemäß einer zweiten möglichen erfindungsgemäßen Ausführungsform, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm aufweist;
  • Fig. 4 eine weitere schematische Darstellung einer (dritten) Kälteanlage, welche eine abgewandelte Kälteanlage der Fig. 2, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm darstellt;
  • Fig. 5 eine schematische Darstellung einer (vierten) Kälteanlage, welche wiederum eine Abwandlung der Kälteanlage gemäß Fig. 2 ist, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm;
  • Fig. 6 eine schematische Darstellung einer (fünften) Kälteanlage, welche wiederum eine Abwandlung der Kälteanlage gemäß Fig. 2 ist, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm;
  • Fig. 7 eine sechste Kälteanlage in einer schematischen Darstellung, welche eine Abwandlung der Anlage gemäß Fig. 3 darstellt, sowie ein hierfür gültiges Enthalpie-Druck-Diagramm; und
  • Fig. 8 eine Ansicht eines Triebwerks des Verdichters gemäß der ersten Ausführungsform, geschnitten senkrecht zur axialen Richtung; und
  • Fig. 9 eine weitere Schnittdarstellung des Verdichters gemäß Fig. 8, geschnitten parallel zu der axialen Richtung;
The invention is described below by way of example with reference to the accompanying drawings on the basis of preferred embodiments. In the drawings show:
  • Fig. 1 a first possible embodiment of a compressor according to the invention;
  • Fig. 2 a schematic representation of a refrigeration system which has a compressor according to the first possible embodiment, as well as a valid enthalpy-pressure diagram; and
  • Fig. 3 a schematic representation of a refrigeration system, which has a compressor according to a second possible embodiment according to the invention, as well as a valid enthalpy-pressure diagram;
  • Fig. 4 a further schematic representation of a (third) refrigeration system, which is a modified refrigeration system of Fig. 2 , as well as a valid enthalpy-pressure diagram;
  • Fig. 5 a schematic representation of a (fourth) refrigeration system, which in turn is a modification of the refrigeration system according to FIG Fig. 2 is, as well as a valid enthalpy-pressure diagram;
  • Fig. 6 a schematic representation of a (fifth) refrigeration system, which in turn is a modification of the refrigeration system according to FIG Fig. 2 is, as well as a valid enthalpy-pressure diagram;
  • Fig. 7 a sixth refrigeration system in a schematic representation, which shows a modification of the system according to Fig. 3 represents, as well as a valid enthalpy-pressure diagram; and
  • Fig. 8 a view of an engine of the compressor according to the first embodiment, cut perpendicular to the axial direction; and
  • Fig. 9 a further sectional view of the compressor according to Fig. 8 , cut parallel to the axial direction;

Bei der in Fig. 1 dargestellten ersten Ausführungsform eines erfindungsgemäßen Verdichters handelt es sich um einen Radialkolbenverdichter 10, welcher eine Antriebsvorrichtung bzw. Antriebseinheit in Form eines Elektromotors 12, sowie eine Verdichtungsvorrichtung bzw. Verdichtungseinheit 14 aufweist. Sowohl der Elektromotor als auch die Verdichtungseinheit 14 sind in einem Verdichtergehäuse 15 angeordnet, welches sich aus zwei Teilen, nämlich einem Motorgehäuse 15-1 und einem Druckdeckel 15-2 zusammensetzt. Das Motorgehäuse 15-1 ist mit dem Druckdeckel 15-2 gasdicht verbunden. Es handelt sich demnach um einen Verdichter einer hermetischen Bauart, kurz gesagt um einen hermetischen Verdichter. In der vorliegenden Ausführungsform sind die beiden Gehäusebauteile miteinander verschweißt, wobei auch andere thermische Verbindungsverfahren, wie beispielsweise Hartlöten etc. oder auch andere geeignete gasdichte Verbindungsverfahren, wie Bördeln, Kleben etc. denkbar sind.At the in Fig. 1 The illustrated first embodiment of a compressor according to the invention is a radial piston compressor 10 which has a drive device or drive unit in the form of an electric motor 12 and a compression device or compression unit 14. Both the electric motor and the compression unit 14 are arranged in a compressor housing 15, which is composed of two parts, namely a motor housing 15-1 and a pressure cover 15-2. The motor housing 15-1 is connected to the pressure cover 15-2 in a gas-tight manner. It is therefore a compressor of a hermetic type, in short a hermetic compressor. In the present embodiment, the two housing components are welded to one another, other thermal connection methods such as brazing etc. or other suitable gas-tight connection methods such as flanging, gluing etc. also being conceivable.

Die Verdichtungseinheit 14 weist in der hier beschriebenen Ausführungsform sechs sich von einer Mittelachse 16 in radialer Richtung wegerstreckende Kolben 18 auf, welche in korrespondierenden Zylindern bzw. Zylinderbohrungen 19 in radialer Richtung hin-und her- verschiebbar angeordnet sind. Der Antrieb der Verdichtungseinheit 14 erfolgt über eine mit dem Elektromotor 12 drehfest verbundene Antriebswelle 16, die mit den Kolben 18 über einen Exzenter-Mechanismus und Pleuel in Wirkeingriff steht. In alternativen Ausführungsformen ist jede von sechs abweichende Anzahl von Kolben denkbar. Die Anzahl der Kolben wird aufgrund der erwünschten Spezifikationen und des gewünschten Einsatzgebiets festgelegt. Die Funktionsweise des Verdichtungsvorgangs selbst ist sowohl für den hier beschriebenen Radialkolbenverdichter als auch für sämtliche andere mögliche Verdichterbauarten wohlbekannt und sei an dieser Stelle nicht weiter beschrieben.In the embodiment described here, the compression unit 14 has six pistons 18 which extend away from a central axis 16 in the radial direction and which are arranged in corresponding cylinders or cylinder bores 19 such that they can be displaced back and forth in the radial direction. The drive of the compression unit 14 takes place via a drive shaft 16 which is connected to the electric motor 12 in a rotationally fixed manner and which is in operative engagement with the piston 18 via an eccentric mechanism and a connecting rod. In alternative embodiments, any number of pistons other than six is conceivable. The number of pistons is determined on the basis of the desired specifications and the desired area of application. The functioning of the compression process itself is possible both for the radial piston compressor described here and for all others Compressor types are well known and will not be further described here.

Bei dem Verdichter 10 handelt es sich um einen zweistufigen Verdichter, dessen Verdichtungseinheit 14 ausgelegt ist, Kältemittel in zwei Stufen zu verdichten. Dazu wird dem Verdichter 10 über eine Niederdruck-Kältemittelzuführvorrichtung 20, die ein Niederdruckvolumen des Verdichters 10 (Saugvolumen) begrenzt, Kältemittel für eine erste Verdichtungsstufe 14-1 zugeführt und in dieser auf einen vorbestimmten Zwischendruck verdichtet. Es sei an dieser Stelle angemerkt, dass der erfindungsgemäße Verdichter alternativ selbstverständlich auch als ein einstufiger Verdichter sowie auch als ein anderer Verdichter-Typ (Scroll-Verdichter etc., in einstufiger und mehrstufiger Ausführung) ausgelegt sein kann. In der beschriebenen Ausführungsform kommt ein Hubkolbenverdichter zum Einsatz, da dieser unter anderem wegen seiner hohen Dichtigkeit, die durch die Verwendung von Zylindern (gute Abdichtung über die Kolbenringe) bedingt ist, vorteilhaft eingesetzt werden kann. Weiterhin sind die Bereiche um die Zylinder, d.h. beispielsweise z.T. stark belastete Bereiche auch nur im Verdichtungsmoment, d.h. wenn der Zylinder mit Kältemittel gefüllt ist, und der Kolben sich dem oberen Totpunkt nähert, thermisch belastet (durch die Erwärmung, die durch die Verdichtung des Kältemittels verursacht wird). Danach erfolgt umgehend eine Kühlung beispielsweise durch einströmendes Kältemittel, so dass die Materialbelastung möglichst gering gehalten wird.The compressor 10 is a two-stage compressor, the compression unit 14 of which is designed to compress refrigerant in two stages. For this purpose, the compressor 10 is supplied with refrigerant for a first compression stage 14-1 via a low-pressure refrigerant supply device 20 which limits a low-pressure volume of the compressor 10 (suction volume) and is compressed in this to a predetermined intermediate pressure. It should be noted at this point that the compressor according to the invention can of course alternatively also be designed as a single-stage compressor and also as a different type of compressor (scroll compressor, etc., in a single-stage and multi-stage design). In the embodiment described, a reciprocating piston compressor is used because it can be used advantageously because of, among other things, its high degree of tightness, which is due to the use of cylinders (good sealing via the piston rings). Furthermore, the areas around the cylinder, that is, for example, some heavily loaded areas, are only thermally loaded during the compression moment, i.e. when the cylinder is filled with refrigerant and the piston is approaching top dead center (due to the heating caused by the compression of the refrigerant caused). Afterwards, cooling takes place immediately, for example by inflowing refrigerant, so that the material load is kept as low as possible.

Die Niederdruck-Kältemittelzuführvorrichtung 20 weist mehrere Teilbereiche auf. Dabei handelt es sich um einen ersten durch eine röhrenförmige Wandung bzw. durch ein Rohr ausgebildeten und definierten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-1, welcher sich außerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem Niederdruckanschluß 22 erstreckt, einen wiederum durch eine röhrenförmige Wandung bzw. durch ein Rohr ausgebildeten und definierten zweiten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-2, welcher sich innerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu der Verdichtungseinheit 14 hin erstreckt, und einen dritten, in der Verdichtungseinheit 14 ausgebildeten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-3 auf. Die Teilbereiche sind in der beschriebenen Ausführungsform durch jeweils separate Bauteile gebildet, welche an den Enden jeweils mit einem korrespondierenden Ende eines der anderen Bauteile gasdicht verbunden sind. Es sei an dieser Stelle angemerkt, dass die gesamte Niederdruck-Kältemittelzuführvorrichtung 20 alternativ einstückig ausgebildet sein kann oder eine von drei verschiedene Anzahl von Bauteilen aufweisen kann. Die Erstreckung der oben genannten Teilbereiche muss nicht mit der Erstreckung der Bauteile übereinstimmen.The low-pressure refrigerant supply device 20 has a plurality of subregions. This is a first low-pressure refrigerant supply device sub-area 20-1 formed and defined by a tubular wall or a pipe, which extends outside the compressor housing 15 from the compressor housing 15 to a low-pressure connection 22, one in turn through a tubular wall or . By a pipe formed and defined second low-pressure refrigerant supply device sub-area 20-2, which extends within the compressor housing 15 from the compressor housing 15 to the compression unit 14, and a third, formed in the compression unit 14 low-pressure refrigerant supply device sub-area 20-3 on. In the embodiment described, the subregions are each formed by separate components which are each connected in a gas-tight manner at the ends to a corresponding end of one of the other components. It should be noted at this point that the entire low-pressure refrigerant supply device 20 can alternatively be formed in one piece or can have one of three different numbers of components. The extent of the above-mentioned sub-areas does not have to coincide with the extent of the components.

Nach der Zuführung zu der ersten Verdichtungsstufe 14-1, die durch vier der sechs Zylinder gebildet wird, wird das Kältemittel in der ersten Verdichtungsstufe auf einen Zwischendruck verdichtet. Nach der Verdichtung durch die erste Verdichtungsstufe 14-1 wird das Kältemittel in eine Zwischendruck-Kältemittelabführvorrichtung 24 ausgestoßen, welche wiederum drei Teilbereiche aufweist: einen wiederum durch eine röhrenförmige Wandung bzw. ein Rohr begrenzten ersten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-1, welcher sich außerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem ersten Zwischendruckanschluß 26 erstreckt; einen ebenfalls durch eine röhrenförmige Wandung bzw. ein Rohr begrenzten zweiten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-2, welcher sich innerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu der Verdichtungseinheit 14 hin erstreckt, sowie einen dritten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-3, welcher in der Verdichtungseinheit 14 ausgebildet ist und der Verbindung des zweiten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereichs 24-2 mit den Zylindern, genauer gesagt, den Ausgängen der Zylinder der ersten Verdichtungsstufe 14-1 dient. Die Zwischendruck-Kältemittelabführvorrichtungs-Teilbereiche sind wiederum analog zu den Niederdruck- Teilbereichen an jeweiligen Enden miteinander und an entsprechenden anderen Enden mit dem ersten Zwischendruckanschluß 26 und den Zylindern der ersten Verdichtungsstufe 14-1 gasdicht verbunden. Auch hinsichtlich der Anzahl der Bauteile gelten die Ausführungen für die Niederdruck-Zuführvorrichtung 20 analog.After being fed to the first compression stage 14-1, which is formed by four of the six cylinders, the refrigerant is compressed to an intermediate pressure in the first compression stage. After compression by the first compression stage 14-1, the refrigerant is ejected into an intermediate-pressure refrigerant discharge device 24, which in turn has three sub-areas: a first intermediate-pressure refrigerant discharge device sub-area 24-1, which is again delimited by a tubular wall or a pipe extends outside the compressor housing 15 from the compressor housing 15 to a first intermediate pressure connection 26; a second intermediate-pressure refrigerant discharge device sub-area 24-2, likewise bounded by a tubular wall or pipe, which extends within the compressor housing 15 from the compressor housing 15 to the compression unit 14, and a third intermediate-pressure refrigerant discharge device sub-area 24-3, which is formed in the compression unit 14 and serves to connect the second intermediate-pressure refrigerant discharge device section 24-2 to the cylinders, more precisely, to the outlets of the cylinders of the first compression stage 14-1. The intermediate pressure refrigerant discharge device sub-areas are in turn connected in a gastight manner to the first intermediate pressure connection 26 and the cylinders of the first compression stage 14-1 in a gas-tight manner analogous to the low pressure sub-areas at respective ends and at corresponding other ends. The statements for the low-pressure feed device 20 also apply analogously with regard to the number of components.

Über die Zwischendruck-Kältemittelabführvorrichtung 24 wird das auf Zwischendruck befindliche Kältemittel aus dem Verdichter herausgeführt und am ersten Zwischendruckanschluss 26 zur Verbringung zu einem Zwischenkühler 28 bereitgestellt (vgl. hierzu Fig. 2). In einer beispielhaften Kälteanlage, welche in Fig. 2 dargestellt ist und welche einen Verdichter 10 gemäß Fig. 1 aufweist, ist der Verdichter 10 über den ersten Zwischendruckanschluss 26 mittels einer ersten Rohrleitung 30 mit dem Zwischenkühler verbunden, in dem das auf Zwischendruck befindliche Kältemittel gekühlt wird. Über eine weitere, zweite Rohrleitung 32 wird das gekühlte, auf Zwischendruck befindliche Kältemittel dann über einen mit der zweiten Rohrleitung 32 verbundenen zweiten Zwischendruckanschluss 34 in eine Zwischendruck-Kältemittelzuführvorrichtung 36 des Verdichters 10 verbracht.The intermediate pressure refrigerant is led out of the compressor via the intermediate pressure refrigerant discharge device 24 and made available at the first intermediate pressure connection 26 for transfer to an intermediate cooler 28 (see FIG Fig. 2 ). In an exemplary refrigeration system, which is shown in Fig. 2 is shown and which a compressor 10 according to Fig. 1 has, the compressor 10 is connected via the first intermediate pressure connection 26 by means of a first pipe 30 to the intermediate cooler, in which the intermediate pressure refrigerant is cooled. Via a further, second pipe 32, the cooled, intermediate-pressure refrigerant is then supplied via a second intermediate-pressure connection connected to the second pipe 32 34 brought into an intermediate pressure refrigerant supply device 36 of the compressor 10.

Die Zwischendruck-Kältemittelzuführvorrichtung 36 weist in der beschriebenen Ausführungsform zwei gasdicht miteinander verbundene Teilbereiche auf: einen ersten wiederum röhrenförmig ausgebildeten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-1, welcher zwischen dem Verdichtergehäuse 15 und dem zweiten Zwischendruckanschluss 34 angeordnet und mit diesem gasdicht verbunden ist, und einen röhrenförmig ausgebildeten zweiten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-2, welcher sich vom Verdichtergehäuse 15 in einem 90°-Bogen gekrümmt zum Elektromotor 12 hin erstreckt und im Bereich des Elektromotors 12 endet. Dadurch wird in der beschriebenen möglichen Ausführungsform für eine Kühlung des Elektromotors 12 durch das auf Zwischendruck befindliche gekühlte Kältemittel gesorgt. Über einen, in der Verdichtungseinheit 14 angeordneten dritten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-3 wird das auf Zwischendruck befindliche, gekühlte Kältemittel nach dem Durchströmen und Kühlen des Motors dann einer aus zwei Zylindern bestehenden zweiten Verdichtungsstufe 14-2 zugeführt, in der dieses auf einen hohen Druck (Hochdruck) verdichtet wird. Die Zylinder der zweiten Verdichtungsstufe 14-2 sind dazu an einer Einlaßseite gasdicht mit dem dritten Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-3 verbunden. Auch die Zwischendruck-Kältemittelzuführvorrichtung 36 kann aus einer beliebigen Anzahl von Bauteilen bestehen, die nicht mit den entsprechenden Teilbereichen übereinstimmen müssen.In the embodiment described, the intermediate pressure refrigerant supply device 36 has two sub-areas connected to one another in a gas-tight manner: a first intermediate-pressure refrigerant supply device sub-area 36-1, which is again tubular and which is arranged between the compressor housing 15 and the second intermediate pressure connection 34 and is connected to it in a gas-tight manner, a tubular second intermediate-pressure refrigerant supply device sub-area 36-2, which extends from the compressor housing 15 in a 90 ° curve towards the electric motor 12 and ends in the area of the electric motor 12. As a result, in the described possible embodiment, the electric motor 12 is cooled by the cooled refrigerant at intermediate pressure. Via a third intermediate-pressure refrigerant supply device sub-area 36-3 arranged in the compression unit 14, after flowing through and cooling the engine, the cooled refrigerant is then supplied to a second compression stage 14-2 consisting of two cylinders, in which it is fed to one high pressure (high pressure) is compressed. For this purpose, the cylinders of the second compression stage 14-2 are connected in a gas-tight manner on an inlet side to the third intermediate-pressure refrigerant supply device section 36-3. The intermediate-pressure refrigerant supply device 36 can also consist of any number of components that do not have to match the corresponding subregions.

Nach der Verdichtung auf Hochdruck wird das Kältemittel dann aus den Zylindern (Auslässe) der zweiten Verdichtungsstufe 14-2 in eine Hochdruck-Kältemittelabführvorrichtung 38 ausgestossen. Die Hochdruck-Kältemittelabführvorrichtung 38 weist fünf jeweils gasdicht miteinander verbundene Hochdruck-Kältemittelabführvorrichtungs-Teilbereiche auf: einen ersten röhrenförmigen Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-1, welcher sich außerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem Hochdruckanschluß 40 erstreckt; einen ebenfalls röhrenförmig ausgebildeten zweiten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-2, welcher sich innerhalb des Verdichtergehäuses 15 vom Verdichtergehäuse 15 zu einem dritten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-3 hin erstreckt; den dritten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-3, welcher in etwa quaderförmig, d.h. mit einem rechteckigen Querschnitt ausgebildet ist und der Pulsationsdämpfung im Hochdruckvolumen 38 dient; einen vierten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-4, der sich von dem dritten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-3 zu der Verdichtungseinheit 14 hin erstreckt; und einen fünften in der Verdichtungseinheit 14 ausgebildeten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-5, der mit Zylinderausgängen der zweiten Verdichtungsstufe 14-2 verbunden ist und der Abfuhr von Kältemittel auf Hochdruck bzw. Verdichtungsenddruck dient. Wiederum können beliebig viele Bauteile Verwendung finden, die Anzahl der Teilbereiche muss nicht mit derjenigen der Bauteile übereinstimmen und die Teilbereichsgrenzen müssen nicht mit Bauteilgrenzen übereinstimmen, wie dies im übrigen auch für die anderen Zuführ- und Abführvorrichtungen gilt.After compression to high pressure, the refrigerant is then expelled from the cylinders (outlets) of the second compression stage 14 - 2 into a high pressure refrigerant discharge device 38. The high-pressure refrigerant discharge device 38 has five high-pressure refrigerant discharge device subareas, each connected to one another in a gas-tight manner: a first tubular high-pressure refrigerant discharge device subarea 38-1, which extends outside the compressor housing 15 from the compressor housing 15 to a high-pressure connection 40; a likewise tubular second high-pressure refrigerant discharge device sub-area 38-2, which extends within the compressor housing 15 from the compressor housing 15 to a third high-pressure refrigerant discharge device sub-area 38-3; the third high-pressure refrigerant discharge device section 38-3, which is roughly cuboid, that is, is designed with a rectangular cross-section and serves to dampen pulsations in the high-pressure volume 38; a fourth high pressure refrigerant discharge device section 38-4 extending from the third high pressure refrigerant discharge device section 38-3 to the compression unit 14; and a fifth high-pressure refrigerant discharge device sub-area 38-5 formed in the compression unit 14, which is connected to the cylinder outlets of the second compression stage 14-2 and serves to discharge refrigerant to high pressure or compression end pressure. Again, any number of components can be used, the number of subregions does not have to match that of the components and the subregion boundaries do not have to coincide with component boundaries, as is also the case for the other feed and discharge devices.

Vom Hochdruckanschluß 40 wird das Kältemittel in der beispielhaften Kälteanlage der Fig. 2 über eine dritte Rohrleitung 42 einem Gaskühler 43 zugeführt, in dem es gekühlt wird. Danach strömt das auf Hochdruck befindliche, gekühlte Kältemittel über eine vierte Rohrleitung 44 in ein erstes Expansionsorgan 46, wo es auf einen Mitteldruck, der nicht dem Zwischendruck entsprechen muß, entspannt wird. Über eine fünfte Rohrleitung 48 strömt das Kältemittel dann in einen Sammler 50, von wo aus es über eine sechste Rohrleitung 52 in ein zweites Expansionsorgan 54, in dem es auf Niedrigdruck (Saugdruck) entspannt wird, und danach über eine siebte Rohrleitung 56 zu einem Verdampfer 58 gelangt. Vom Verdampfer 58 strömt das Kältemittel dann über eine weitere, achte Rohrleitung 60 zum Verdichter 10, genauer gesagt zum Niederdruckanschluß 22 des Verdichters 10.From the high pressure connection 40, the refrigerant is in the exemplary refrigeration system of Fig. 2 is fed via a third pipe 42 to a gas cooler 43 in which it is cooled. The cooled refrigerant, which is at high pressure, then flows via a fourth pipe 44 into a first expansion element 46, where it is expanded to a mean pressure which does not have to correspond to the intermediate pressure. The refrigerant then flows via a fifth pipe 48 into a collector 50, from where it flows via a sixth pipe 52 into a second expansion element 54, in which it is expanded to low pressure (suction pressure), and then via a seventh pipe 56 to an evaporator 58 arrives. The refrigerant then flows from the evaporator 58 via a further, eighth pipe 60 to the compressor 10, more precisely to the low-pressure connection 22 of the compressor 10.

Für die Verdichtung von Kältemitteln und insbesondere für die Verdichtung von natürlichen Kältemitteln, wie z.B. CO2, welches in der hier beschriebenen Ausführungsform als Kältemittel zum Einsatz kommt, ist es von Bedeutung, dass das (gasförmige) Kältemittel vor Eintritt in die jeweilige Verdichtungsstufe nicht unnötig aufgeheizt wird. Da die zulässige Verdichtungsendtemperatur beschränkt ist, bedeutet jede Aufheizung vor der eigentlichen Verdichtung eine Beschränkung des erreichbaren Verdichtungsverhältnisses und eine Erhöhung des Arbeitsaufwandes pro Masse verdichteten Kältemittels.For the compression of refrigerants and in particular for the compression of natural refrigerants such as CO2, which is used as a refrigerant in the embodiment described here, it is important that the (gaseous) refrigerant is not unnecessarily heated before entering the respective compression stage becomes. Since the permissible final compression temperature is limited, any heating before the actual compression means a limitation of the compression ratio that can be achieved and an increase in the workload per mass of compressed refrigerant.

Deshalb ist ein Abschnitt jeder Kältemittelzuführvorrichtung 20, 36 von den Kältemittelabführvorrichtungen thermisch getrennt angeordnet. Es handelt sich in der vorliegenden Ausführungsform dabei um Abschnitte, welche an jeweiligen Anschlüssen für das Kältemittel (Niederdruckanschluß 22, zweiter Zwischendruckanschluss 34) beginnen und im Falle der Niederdruck-Kältemittelzuführvorrichtung den ersten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-1 und den zweiten Niederdruck-Kältemittelzuführvorrichtungs-Teilbereich 20-2 umfasst. Im Falle der Zwischendruck-Kältemittelzuführvorrichtung 36 sind der erste und der zweite Zwischendruck-Kältemittelzuführvorrichtungs-Teilbereich 36-1 und 36-2 umfasst.Therefore, a portion of each refrigerant supply device 20, 36 is arranged to be thermally separated from the refrigerant discharge devices. It is in the present Embodiment here to sections which begin at respective connections for the refrigerant (low pressure connection 22, second intermediate pressure connection 34) and in the case of the low pressure refrigerant supply device comprises the first low pressure refrigerant supply device sub-area 20-1 and the second low pressure refrigerant supply device sub-area 20-2 . In the case of the intermediate-pressure refrigerant supply device 36, the first and the second intermediate-pressure refrigerant supply device sub-regions 36-1 and 36-2 are included.

Zusätzlich sind auch die Zwischendruck-Kältemittelabführvorrichtung 24 und die Hochdruck-Kältemittelabführvorrichtung 38 thermisch voneinander getrennt. Bei der Zwischendruck-Kältemittelabführvorrichtung 24 umfasst der entsprechende Abschnitt den ersten und den zweiten Zwischendruck-Kältemittelabführvorrichtungs-Teilbereich 24-1 und 24-2, bei der Hochdruck-Kältemittelabführvorrichtung 38 den ersten bis vierten Hochdruck-Kältemittelabführvorrichtungs-Teilbereich 38-1 bis 38-4.In addition, the intermediate-pressure refrigerant discharge device 24 and the high-pressure refrigerant discharge device 38 are also thermally separated from one another. In the intermediate-pressure refrigerant discharge device 24, the corresponding section comprises the first and second intermediate-pressure refrigerant discharge device subareas 24-1 and 24-2, and in the high-pressure refrigerant discharge device 38 the first to fourth high-pressure refrigerant discharge device subareas 38-1 to 38-4 .

Die jeweiligen Abschnitte, die thermisch voneinander getrennt angeordnet sind, sind voneinander beabstandet angeordnet und durch die jeweilige Umgebungsatmosphäre (im Verdichter Kältemittel, entweder unter Zwischendruck oder unter Saugdruck, außerhalb des Verdichters Umgebungsatmosphäre) thermisch voneinander getrennt bzw. entkoppelt.The respective sections, which are arranged thermally separated from one another, are arranged at a distance from one another and thermally separated or decoupled from one another by the respective ambient atmosphere (in the compressor refrigerant, either under intermediate pressure or under suction pressure, outside the compressor ambient atmosphere).

Ferner ist in Fig. 2 ein entsprechendes Druck-Enthalpie-Diagramm für die Kälteanlage dargestellt, wobei die im Druck-Enthalpie-Diagramm mit einstelligen Ziffern bezeicheten Zustände an den in der Anlage in Kreisen befindlichen einziffrig bezeichneten Stellen auftreten. Analog sind die Zustände in den jeweiligen Druck-Enthalpie-Diagrammen der Figuren 3 bis 7 gekennzeichnet. In der Folge wird hierauf nicht mehr einzeln verwiesen, sondern als bereits erläutert vorausgesetzt, dass die jeweiligen in den Figuren 3 bis 7 dargestellten Druck-Enthalpie-Diagramme die Zustände in den jeweils in derselben Figur dargestellten Kälteanlagen repräsentieren. Die mit einer Ziffer bezeichneten Zustände liegen jeweils an den mit einer in einem Kreis befindlichen Ziffer versehenen Stelle der Kälteanlage vor.Furthermore, in Fig. 2 a corresponding pressure-enthalpy diagram for the refrigeration system is shown, with the states marked with single-digit numbers in the pressure-enthalpy diagram occurring at the single-digit points in the system in circles. The states in the respective pressure-enthalpy diagrams are analogous Figures 3 to 7 marked. In the following, reference is no longer made to this individually, but rather, as already explained, it is assumed that the respective in the Figures 3 to 7 The pressure-enthalpy diagrams shown represent the states in the refrigeration systems shown in the same figure. The states identified by a number are in each case at the point of the refrigeration system provided with a number in a circle.

In Fig. 3 ist eine weitere beispielhafte Kälteanlage dargestellt, die eine zweite mögliche Ausführungsform eines erfindungsgemäßen Verdichters aufweist. Der Verdichter 110 ist wiederum zweistufig ausgelegt, und entspricht im Wesentlichen dem Verdichter 10 der ersten beschriebenen Ausführungsform gemäß Fig.1. An dieser Stelle seien vor allem die Unterschiede zum Verdichter 10 gemäß Fig. 1 beschrieben. Der Verdichter 110 weist zwei Verdichtungsstufen 114-1 und 114-2 auf.In Fig. 3 a further exemplary refrigeration system is shown, which has a second possible embodiment of a compressor according to the invention. The compressor 110 is again designed in two stages, and essentially corresponds to the compressor 10 of FIG first described embodiment according to Fig. 1 . At this point, the differences to the compressor 10 are above all in accordance with Fig. 1 described. The compressor 110 has two compression stages 114-1 and 114-2.

Abweichend von der ersten möglichen Ausführungsform verdichtet die erste Verdichtungsstufe 114-1 einen auf Niedrigdruck (Saugdruck) befindlichen Kühlmittel-Hauptstrom, welcher dem Verdichter 110 über einen Niederdruckanschluß 122 und ein Niederdruckvolumen, das in Aufbau und Funktion demjenigen der ersten Ausführungsform entspricht, zur Verfügung gestellt wird, auf Hochdruck. Parallel hierzu ist die zweite Verdichtungsstufe 114-2 angeordnet, die auf Zwischendruck befindliches Kältemittel eines Kühlmittel-Nebenstroms ebenfalls auf Hochdruck verdichtet. Das auf Zwischendruck befindliche Kältemittel wird dem Verdichter 110 über einen Zwischendruckanschluss 134, welcher dem zweiten Zwischendruckanschluss 34 der ersten Ausführungsform entspricht, und ein damit verbundenes Zwischendruck- Volumen, welches in Aufbau und Funktion dem zweiten Zwischendruckvolumen der ersten Ausführungsform entspricht, zugeführt. Auch hier dient das auf Zwischendruck befindliche Kältemittel der Kühlung des Elektromotors des Verdichters.In contrast to the first possible embodiment, the first compression stage 114-1 compresses a main coolant flow at low pressure (suction pressure), which is made available to the compressor 110 via a low-pressure connection 122 and a low-pressure volume that corresponds in structure and function to that of the first embodiment will, at high pressure. In parallel with this, the second compression stage 114-2 is arranged, which also compresses the intermediate pressure refrigerant of a secondary coolant flow to high pressure. The intermediate pressure refrigerant is supplied to the compressor 110 via an intermediate pressure connection 134, which corresponds to the second intermediate pressure connection 34 of the first embodiment, and an associated intermediate pressure volume, which corresponds in structure and function to the second intermediate pressure volume of the first embodiment. Here, too, the intermediate pressure refrigerant is used to cool the electric motor of the compressor.

Im Gegensatz zum Verdichter 10 der ersten Ausführungsform sind beim Verdichter 110 die Zylinder (Zylinderauslässe) beider Verdichtungsstufen 114-1 und 114-2 mit einem gemeinsamen Hochdruckteilvolumen 138-5 verbunden, das das fünfte HochdruckTeilvolumen 38-5 der ersten Ausführungsform, das nur mit den Zylidern (Zylinderauslässen) der zweiten Verdichtungsstufe 14-2 verbunden ist, ersetzt; Die verbleibenden Teilvolumina des Hochdruckvolumens auch der zweiten Ausführungsform sind analog zu denjenigen der ersten Ausführungsform ausgebildet; auch ein zur ersten Ausführungsform korrespondierender Hochdruckanschluss 140 ist vorgesehen.In contrast to the compressor 10 of the first embodiment, in the compressor 110 the cylinders (cylinder outlets) of both compression stages 114-1 and 114-2 are connected to a common high-pressure sub-volume 138-5, which is the fifth high-pressure sub-volume 38-5 of the first embodiment, which is only connected to the Cylidern (cylinder outlets) of the second compression stage 14-2 is connected, replaced; The remaining partial volumes of the high pressure volume of the second embodiment are designed analogously to those of the first embodiment; A high pressure connection 140 corresponding to the first embodiment is also provided.

Beim Verdichter 110 der zweiten Ausführungsform entfällt damit das erste Zwischendruckvolumen 24, über das das in der ersten Verdichtungsstufe 14-1 des Verdichters gemäß der ersten Ausführungsform verdichtetet Kältemittel dem Zwischenkühler zugeführt wurde ersatzlos.In the case of the compressor 110 of the second embodiment, the first intermediate pressure volume 24 via which the refrigerant compressed in the first compression stage 14-1 of the compressor according to the first embodiment was supplied to the intercooler without replacement is thus omitted.

Vom Hochdruckanschluss 140 strömt das Kältemittel (wiederum jeweils über Rohrleitungen) zu einem Gaskühler 143, der in Aufbau und Funktionalität dem Gaskühler 43 entspricht und wird dort abgekühlt. Danach wird der Kältemittelstrom in den Hauptstrom H und den Nebenstrom N aufgeteilt, wobei der Nebenstrom ein erstes Expansionsorgan 146-1 durchläuft, wo er auf den Zwischendruck des Verdichters entspannt wird. Danach wird der Nebenstrom N einem Wärmetauscher 162 zugeführt. Der Hauptstrom H durchläuft zunächst kein Expansionsorgan sondern wird direkt dem Wärmetauscher 162 zugeführt, so dass der Hauptstrom H durch den Nebenstrom N weiter abgekühlt wird.The refrigerant flows from the high-pressure connection 140 (again via pipelines in each case) to a gas cooler 143, which corresponds to the gas cooler 43 in terms of structure and functionality and is cooled there. The refrigerant flow is then divided into the main flow H and the secondary flow N, the secondary flow passing through a first expansion element 146-1, where it is expanded to the intermediate pressure of the compressor. The secondary stream N is then fed to a heat exchanger 162. The main stream H initially does not pass through an expansion device but is fed directly to the heat exchanger 162, so that the main stream H is further cooled by the secondary stream N.

Der Nebenstrom wird dann zu der zweiten Verdichtungsstufe 114-2, genauer gesagt zu dem Zwischendruckanschluss 134 geführt, während der Hauptstrom H ein Expansionsorgan 146-2 durchläuft, das das Kältemittel des Hauptstroms bzw. den Hauptstrom auf einen Mitteldruck entspannt, der vom Zwischendruck unterschiedlich sein kann. Nach Durchlaufen eines Sammlers 150, der in Aufbau und Funktion dem Sammler 50 der ersten Ausführungsform entspricht und eines weiteren Expansionsorgans 154, das in Aufbau und Funktion dem Expansionsorgan 54 der ersten Ausführungsform entspricht, gelangt das Kältemittel des Hauptstroms H dann über den Verdampfer 158 zurück zum Niederdruckanschluss des Verdichters 110.The secondary flow is then led to the second compression stage 114-2, more precisely to the intermediate pressure connection 134, while the main flow H passes through an expansion element 146-2, which expands the refrigerant of the main flow or the main flow to a mean pressure that is different from the intermediate pressure can. After passing through a collector 150, which corresponds in structure and function to the collector 50 of the first embodiment, and a further expansion element 154, which corresponds in structure and function to the expansion element 54 of the first embodiment, the refrigerant of the main flow H then returns to the evaporator 158 Low pressure connection of the compressor 110.

Es sei an dieser Stelle angemerkt, dass in beiden beschriebenen Ausführungsformen eines erfindungsgemäßen Verdichters der Rotor des Elektromotors 12 als Ölabscheider fungiert. In den beschriebenen Ausführungsformen besteht das Verdichtergehäuse 15 aus zwei Teilen, die nach dem Einbringen der Antriebsvorrichtung und der Verdichtungseinheit nicht demontierbar thermisch miteinander verbunden werden.Dies führt zu einer hohen Standfestigkeit des Verdichters, da eine Lockerung von Verbindungen, beispielsweise aufgrund von Vibrationen unwahrscheinlich ist. Alternativ können auch mehr als zwei Teile zur Bildung des Gehäuses 15 dienen, was ggf. trotz einer höheren Teilezahl und geringfügig höheren Herstellungskosten die Montagefreundlichkeit erhöhen und somit an anderer Stelle für Kosteneinsparungen sorgen kann.It should be noted at this point that in both of the described embodiments of a compressor according to the invention, the rotor of the electric motor 12 functions as an oil separator. In the described embodiments, the compressor housing 15 consists of two parts that are thermally connected to one another in a non-removable manner after the drive device and the compression unit have been introduced. This leads to a high level of stability of the compressor, since loosening of connections, for example due to vibrations, is unlikely. Alternatively, more than two parts can also be used to form the housing 15, which, in spite of a higher number of parts and slightly higher manufacturing costs, may increase the ease of assembly and thus ensure cost savings elsewhere.

Eine auf dem Verdichter 10 basierende dritte Kälteanlage, welche eine Abwandlung der in Fig. 2 dargestellten Kälteanlage ist, ist in Fig. 4 dargestellt. Zusätzlich zu den in Fig. 2 vorhandenen Komponenten weist die dritte Kälteanlage eine Verbindungsleitung in Form einer Rohrleitung 64 zwischen dem Sammler 50 und der Rohrleitung 32 auf, welche zwischen dem Zwischenkühler 28 und dem zweiten Zwischendruckanschluß 34 angeordnet ist. Dadurch wird ein Kältemittel-Nebenstrom vom Sammler 50 zu der zweiten Verdichtungsstufe 14-2 ermöglicht.A third refrigeration system based on the compressor 10, which is a modification of the in Fig. 2 refrigeration system shown is in Fig. 4 shown. In addition to the in Fig. 2 existing components, the third refrigeration system has a connecting line in the form of a pipe 64 between the collector 50 and the pipe 32, which is arranged between the intercooler 28 and the second intermediate pressure connection 34. This creates a secondary refrigerant flow from collector 50 to the second Compression level 14-2 allows.

Eine weitere auf dem Verdichter 10 basierende (vierte) Kälteanlage ist in Fig. 5 dargestellt. In dieser Ausführungsform entfällt der Zwischenkühler 28 samt der ihm zugeordneten Rohrleitungen, ansonsten ist die vierte Kälteanlage jedoch identisch zu der dritten Kälteanlage gemäß Fig. 4.Another (fourth) refrigeration system based on the compressor 10 is shown in FIG Fig. 5 shown. In this embodiment, the intercooler 28 and the pipelines assigned to it are omitted, but otherwise the fourth refrigeration system is identical to the third refrigeration system according to FIG Fig. 4 .

Eine fünfte, in Fig. 6 dargestellte Kälteanlage basiert wiederum auf der Kälteanlage der Figur 2 (zweistufiger Verdichter mit seriell angeordneten Verdichtungsstufen), wobei der Kältemittelstrom jedoch nach dem Gaskühler 43 (analog zu der Kälteanlage, welche in Fig. 3 dargestellt ist) in einen Hauptstrom H und einen Nebenstrom N aufgeteilt, wobei der Nebenstrom ein erstes Expansionsorgan 46-1 durchläuft, wo er auf den Zwischendruck des Verdichters entspannt wird. Danach wird der Nebenstrom N einem Wärmetauscher 62 zugeführt. Der Hauptstrom H durchläuft zunächst kein Expansionsorgan sondern wird direkt dem Wärmetauscher 62 zugeführt, so dass der Hauptstrom H durch den Nebenstrom N weiter abgekühlt wird.A fifth, in Fig. 6 The refrigeration system shown is based on the refrigeration system of Figure 2 (two-stage compressor with serially arranged compression stages), whereby the refrigerant flow after the gas cooler 43 (analogous to the refrigeration system, which in Fig. 3 is shown) divided into a main flow H and a secondary flow N, the secondary flow passing through a first expansion element 46-1, where it is expanded to the intermediate pressure of the compressor. The secondary stream N is then fed to a heat exchanger 62. The main stream H initially does not run through an expansion element but is fed directly to the heat exchanger 62, so that the main stream H is further cooled by the secondary stream N.

Der Nebenstrom wird dann zu der zweiten Verdichtungsstufe 14-2, genauer gesagt zu dem Zwischendruckanschluss 34 geführt, während der Hauptstrom H einen internen Wärmetauscher 66 und dann ein Expansionsorgan 54 durchläuft, gelangt das Kältemittel des Hauptstroms H dann über den Verdampfer 58, einen weiteren Sammler 68 und den internen Wärmetauscher 66 zurück zum Niederdruckanschluss des Verdichters 10.The secondary flow is then led to the second compression stage 14-2, more precisely to the intermediate pressure connection 34, while the main flow H passes through an internal heat exchanger 66 and then an expansion element 54, the refrigerant of the main flow H then passes via the evaporator 58, another collector 68 and the internal heat exchanger 66 back to the low pressure connection of the compressor 10.

In Fig. 7 ist letztendlich nochmals eine weitere (sechste) Kälteanlage dargestellt, welche einen Verdichter 110 (d.h. einen Verdichter mit parallelen Verdichtungsstufen 114-1 und 114-2 aufweist). Im Gegensatz zu der Kälteanlage gemäß Fig. 3 weist die sechste Kälteanlage aber keinen Wärmetauscher auf, der Wärme von einem Kältemitte-Hauptstrom auf einen Kältemittel-Nebenstrom überträgt. Der Kältemittelgesamtstrom durchläuft, ähnlich wie bei der Kälteanlage der Fig. 5 ein Expansionsorgan 146 und gelangt danach in einen Abscheider bzw. Sammler 150. Vom Sammler 150 erstreckt sich eine Verbindung in Form einer Rohrleitung 164 zum Eingang der Verdichtungsstufe 114-2, wodurch ein Nebenstrom N der Verdichtungsstufe 114-2 zugeführt wird, wohingegen ein Hauptstrom H dem Expansionsorgan 154 und über den danach angeordneten Verdampfer 58 der ersten Verdichtungsstufe 114-1 zugeführt wird.In Fig. 7 Finally, another (sixth) refrigeration system is shown, which has a compressor 110 (ie a compressor with parallel compression stages 114-1 and 114-2). In contrast to the refrigeration system according to Fig. 3 however, the sixth refrigeration system does not have a heat exchanger which transfers heat from a main refrigerant flow to a secondary refrigerant flow. The total refrigerant flow passes through, similar to the refrigeration system Fig. 5 an expansion element 146 and then passes into a separator or collector 150. A connection in the form of a pipe 164 extends from the collector 150 to the inlet of the compression stage 114-2, whereby a secondary flow N is fed to the compression stage 114-2, whereas a main flow H is supplied is fed to the expansion element 154 and via the evaporator 58 arranged thereafter to the first compression stage 114-1.

Wie bereits obenstehend angedeutet handelt es sich in der beschriebenen ersten Ausführungsform eines Verdichters 10 um einen Verdichter 10 mit einem Exzentermechanismus. In der Folge sei noch etwas näher auf das entsprechende Triebwerk eingegangen, obwohl dieses beispielhaft für einen erfindungsgemäßen Verdichter ist, der keineswegs ein Hubkolbenverichter sein muss, sondern auch ein Scroll-Verdichter, ein Schraubenverdichter oder jede andere bekannte Bauart von Verdichter sein mag. Insbesondere aber für Fälle, in denen Radialkolbenverdichter aufgrund technischer Vorgaben oder aber auch aufgrund von Kundenwünschen und dgl. zum Einsatz kommen sollen bzw. müssen, stellt das nachstehend beschriebene Triebwerk eine vorteilhafte Variante dar.As already indicated above, the described first embodiment of a compressor 10 is a compressor 10 with an eccentric mechanism. In the following, the corresponding engine will be discussed in more detail, although this is an example of a compressor according to the invention, which by no means has to be a reciprocating compressor, but may also be a scroll compressor, a screw compressor or any other known type of compressor. In particular, however, for cases in which radial piston compressors should or must be used due to technical specifications or also due to customer requests and the like, the drive unit described below is an advantageous variant.

Wie Fig. 8 und 9 entnommen werden kann, weist der Verdichter 10 (der auch als der Verdichter 110 Verwendung finden kann) sechs Kolben 18 auf, welche in einer radialen Richtung hin- und herbewegbar in entsprechenden Zylinderbohrungen bzw. Zylinderbuchsen 216 angeordnet sind. Die Zylinderbohrungen bzw. Zylinderbuchsen 216 selbst sind als entsprechende Aussparungen in einem Zylinderblock 218, ausgebildet. Die Kolben 18 sind, wie vorstehend bereits erwähnt ist, in der radialen Richtung hin- und herbewegbar ausgebildet. Bei dieser Hin- und Herbewegung seien in der Folge eine Ausrückbewegung und eine Einrückbewegung unterschieden, wobei die Ausrückbewegung in die radial nach außen gerichtete Richtung (verdeutlicht durch Pfeil 220) und die Einrückbewegung in eine radial nach innen gerichtete Richtung (verdeutlicht durch Pfeil 222) gerichtet ist. Der Verdichter 10 dient, wie bereits vorstehend angedeutet, zum Verdichten von R744 (CO2) als Kältemittel. Es sei jedoch angemerkt, dass auch eine Verwendung jeglichen anderen Kältemittels (beispielsweise R134a, etc.) denkbar ist.How Fig. 8 and 9 can be removed, the compressor 10 (which can also be used as the compressor 110) has six pistons 18 which are arranged in corresponding cylinder bores or cylinder sleeves 216 such that they can be moved back and forth in a radial direction. The cylinder bores or cylinder liners 216 themselves are designed as corresponding recesses in a cylinder block 218. As already mentioned above, the pistons 18 are designed to be movable to and fro in the radial direction. A distinction is made between a disengaging movement and an engaging movement in this to-and-fro movement, the disengaging movement being directed in the radially outward direction (indicated by arrow 220) and the engaging movement in a radially inward direction (indicated by arrow 222) is. As already indicated above, the compressor 10 serves to compress R744 (CO 2 ) as a refrigerant. It should be noted, however, that any other refrigerant (for example R134a, etc.) can also be used.

Ferner weist der Verdichter 10 die Antriebsvorrichtung in Form der Antriebswelle 16 (vgl. hierzu z.B. Fig. 9) auf, mittels welcher der Antrieb des Verdichters 10 erfolgt. Die Antriebswelle 16 ist in der beschriebenen Ausführungsform mit dem Elektromotor 12 gekoppelt, kann jedoch in alternativen Ausführungsformen auch mit einer entsprechenden Riementriebvorrichtung oder einer anderweitigen Vorrichtung gekoppelt sein. An dieser Stelle sei angemerkt, dass die axiale Erstreckung der Antriebswelle 16 je nach vorgesehener Verwendung auch deutlich kürzer sein kann als in der in den Figuren dargestellten Ausführungsform, in welcher die Antriebswelle 24 mit dem Elektromotor in Wirkeingriff steht und sich durch diesen hindurch erstreckt.Furthermore, the compressor 10 has the drive device in the form of the drive shaft 16 (cf. for example FIG Fig. 9 ), by means of which the drive of the compressor 10 takes place. In the embodiment described, the drive shaft 16 is coupled to the electric motor 12, but in alternative embodiments it can also be coupled to a corresponding belt drive device or some other device. At this point it should be noted that, depending on the intended use, the axial extent of the drive shaft 16 can also be significantly shorter than in the embodiment shown in the figures, in which the drive shaft 24 is in operative engagement with the electric motor and extends through it.

Im Rahmen der Aus- und Einrückbewegungen der Kolben wird Kältemittel bei einer Einrückbewegung der Kolben 18 in die Zylinderbohrungen bzw. Zylinderbuchsen 216 eingesaugt, bei einer Durchführung der Ausrückbewegung verdichtet und dann ausgestoßen.During the disengaging and engaging movements of the pistons, refrigerant is sucked into the cylinder bores or cylinder sleeves 216 when the pistons 18 are engaged, compressed when the disengaging movement is carried out and then expelled.

Die Antriebsvorrichtung in Form der Antriebswelle 16 steht mit einem Exzenter 228 in Wirkeingriff. Genauer gesagt ist die Antriebswelle 16 in einem entsprechenden Bereich (Exzenterabschnitt der Antriebswelle 16) exzentrisch ausgebildet. Der Exzenter 228 ist damit integral und einstückig mit und an der Antriebswelle 16 ausgebildet. In alternativen Ausführungsformen kann der Exzenter 228 auch als separates Bauteil ausgebildet und an der Antriebswelle 16 befestigt, insbesondere angelenkt oder entsprechend gelagert sein.The drive device in the form of the drive shaft 16 is in operative engagement with an eccentric 228. More precisely, the drive shaft 16 is formed eccentrically in a corresponding region (eccentric section of the drive shaft 16). The eccentric 228 is thus formed integrally and in one piece with and on the drive shaft 16. In alternative embodiments, the eccentric 228 can also be designed as a separate component and attached to the drive shaft 16, in particular articulated or supported accordingly.

Der Exzenter 228 weist, senkrecht zu der axialen Richtung geschnitten, einen kreisförmigen Querschnitt und radial nach außen gerichtete Exzenter-Flächen 230 auf, die in einem Bereich eines Exzenter-Wirkabschnitts 232 angeordnet sind. Der Exzenter-Wirkabschnitt 232 dient dem Antrieb der Kolben 18 und steht mit diesen jeweils über ein jedem Kolben 18 zugeordnetes Pleuel 234 in Wirkeingriff. Hierzu sind die Pleuel 234 mittels Pleuelaugen 236, die an den den Kolben 18 zugewandten Seiten der Pleuel 234 ausgebildet sind, an den Kolben 18 angelenkt.The eccentric 228, cut perpendicular to the axial direction, has a circular cross section and radially outwardly directed eccentric surfaces 230 which are arranged in a region of an eccentric active section 232. The eccentric active section 232 serves to drive the pistons 18 and is in operative engagement therewith via a connecting rod 234 assigned to each piston 18. For this purpose, the connecting rods 234 are articulated to the piston 18 by means of connecting rod eyes 236, which are formed on the sides of the connecting rods 234 facing the pistons 18.

Auf der dem Exzenter 228 zugewandten Seite weisen die Pleuel 234 einen Pleuel-Wirkabschnitt 238 auf, der dem Wirkeingriff mit dem Exzenter 228 dient. Der Exzenter 228 steht mit den Pleuel-Wirkabschnitten 238 über ein Lager in Form eines Nadellagers 240 in Wirkeingrif, welches am Exzenter-Wirkabschnitt 232 (kreisförmiger Querschnitt) und dort auf der Exzenter-Fäche 230 angeordnet (eingepaßt) ist. Alternativ zum Nadellager 240 sind andere Lager, insbesondere Gleitlager oder Wälzlager in jeglicher möglicher Ausbildung denkbar.On the side facing the eccentric 228, the connecting rods 234 have an active connecting rod section 238 which is used for operative engagement with the eccentric 228. The eccentric 228 is in active engagement with the connecting rod active sections 238 via a bearing in the form of a needle bearing 240, which is arranged (fitted) on the eccentric active section 232 (circular cross section) and there on the eccentric surface 230. As an alternative to the needle bearing 240, other bearings, in particular plain bearings or roller bearings in any possible design, are conceivable.

Das Lager 240 sorgt für einen reibungsarmen Übertrag und eine Umwandlung der Bewegung (Drehbewegung) des Exzenters 228 in eine in radialer Richtung gerichtete Bewegung einer Pleuel-Wirkabschnitt-Aufnahme 242, die mit dem Lager mittels einer entsprechenden Passung in Wirkeingriff steht. Die entsprechende Bewegung in radialer Richtung wird dann entsprechend auf die Pleuel 234 und die daran angelenkten Kolben 18 übertragen. Die zu dem kreisförmigen Außenumfang des Lagers 240 korrespondierend ausgebildeten Pleuel-Wirkabschnitte 238, welche an ihrer dem Lager 240 zugewandten Seite kreissegmentartig ausgebildet sind, weisen hierzu an ihrem dem Lager zugewandten Ende eine in axialer Richtung verbreiterte Ausdehnung auf, so dass sie mittels zweier, im Querschnitt L-förmig ausgebildeter Schalen 244, die die Pleuel-Wirkabschnitt-Aufnahme 242 bilden, sicher am Lager 240 angeordnet sind. Die Pleuel-Wirkabschnitte aller Pleuel 234 sind auf einer Kreisbahn um den Exzenter 228 und damit auch um den Exzenter-Wirkabschnitt 232 angeordnet, welche mit demselben konzentrisch ist.The bearing 240 ensures a low-friction transfer and a conversion of the movement (rotary movement) of the eccentric 228 into a movement in the radial direction of a connecting rod active section receptacle 242, which is in operative engagement with the bearing by means of a corresponding fit. The corresponding movement in the radial direction is then correspondingly applied to the connecting rods 234 and the pistons 18 articulated thereon transfer. The connecting rod active sections 238 corresponding to the circular outer circumference of the bearing 240, which are configured in the manner of a segment of a circle on their side facing the bearing 240, have for this purpose a widened extension in the axial direction at their end facing the bearing, so that they can be expanded by means of two, im Cross-section of L-shaped shells 244, which form the connecting rod active section receptacle 242, are securely arranged on the bearing 240. The connecting rod active sections of all connecting rods 234 are arranged on a circular path around the eccentric 228 and thus also around the eccentric active section 232, which is concentric therewith.

Aufgrund dessen, dass der Pendelpunkt der Vorrichtung aufgrund der Verwendung des Exzenters 228 azentrisch angeordnet ist, kann durch die vorliegende Konstruktion, in der kreissegmentartige Pleuel-Wirkabschnitte238 zum Einsatz kommen und die Pleuel 234 somit in Ihrer Bewegung voneinander entkoppelt sind, im Bereich der jeweiligen Kolben18 eine jeweils unterschiedliche Bewegung erfolgen. Wären die Pleuel 18 starr gekoppelt, so käme es zu einem Fehler in der Hubbewegung und somit zu einem erhöhten Schadraum im Bereich der Kolben 18, die dem Pendelpunkt fern liegen.Due to the fact that the pendulum point of the device is arranged eccentrically due to the use of the eccentric 228, the present construction, in which circular segment-like connecting rod active sections 238 are used and the connecting rods 234 are thus decoupled from one another in their movement, in the area of the respective pistons18 a different movement take place. If the connecting rods 18 were rigidly coupled, there would be an error in the stroke movement and thus an increased dead space in the area of the pistons 18, which are far from the pendulum point.

Obwohl die Erfindung anhand von Ausführungsformen mit festen Merkmalskombinationen beschrieben wird, umfasst sie jedoch auch die denkbaren weiteren vorteilhaften Kombinationen, wie sie durch die Unteransprüche angegeben sind.Although the invention is described on the basis of embodiments with fixed combinations of features, it also encompasses the further conceivable advantageous combinations as indicated by the subclaims.

BezugszeichenlisteList of reference symbols

10, 11010, 110
Verdichtercompressor
1212th
ElektomotorElectric motor
1414th
VerdichtungsvorrichtungCompaction device
14-1, 114-114-1, 114-1
erste Verdichtungsstufefirst compression stage
14-2, 114-214-2, 114-2
zweite Verdichtungsstufesecond compression stage
1616
Antriebswelledrive shaft
1818th
Kolbenpiston
1919th
Zylindercylinder
2020th
Niederdruck-KältemittelzuführvorrichtungLow pressure refrigerant supply device
2222nd
NiederdruckanschlußLow pressure connection
2424
Zwischendruck-KältemittelabführvorrichtungIntermediate pressure refrigerant discharge device
2626th
erster Zwischendruckanschlußfirst intermediate pressure connection
2828
ZwischenkühlerIntercooler
30,3230.32
RohrleitungPipeline
3434
zweiter Zwischendruckanschlußsecond intermediate pressure connection
3636
Zwischendruck-KältemittelzuführvorrichtungIntermediate pressure refrigerant supply device
3838
Hochdruck-KältemittelabführvorrichtungHigh pressure refrigerant discharge device
40, 14040, 140
HochdruckanschlussHigh pressure connection
4242
RohrleitungPipeline
43, 14343, 143
GaskühlerGas cooler
4444
RohrleitungPipeline
46, 14646, 146
ExpansionsorganExpansion device
4848
RohrleitungPipeline
50, 15050, 150
SammlerCollector
5252
RohrleitungPipeline
54, 15454, 154
ExpansionsorganExpansion device
5656
RohrleitungPipeline
58, 15858, 158
VerdampferEvaporator
6060
RohrleitungPipeline
62, 16262, 162
WärmetauscherHeat exchanger
6464
RohrleitungPipeline
6666
interner Wärmetauscherinternal heat exchanger
6868
SammlerCollector
216216
Zylinderbohrungen/ZylinderbuchsenCylinder bores / cylinder liners
218218
ZylinderblockCylinder block
220220
Pfeilarrow
222222
Pfeilarrow
228228
Exzentereccentric
230230
Exzenter-FlächeEccentric surface
232232
Exzenter-WirkabschnittEccentric effective section
234234
PleuelConnecting rod
236236
PleuelaugeConnecting rod eye
238238
Pleuel-WirkabschnittConnecting rod effective section
240240
(Nadel-)Lager(Needle) bearings
242242
Pleuel-Wirkabschnitt-AufnahmeConnecting rod active section recording
244244
SchaleBowl

Claims (16)

  1. A compressor (10, 110), having a compressor housing (15), having a drive device (12) and having a compression device (14) with one or more compression stages (14-1, 14-2) for compressing a refrigerant, wherein the compressor (10, 110) furthermore has one or more refrigerant feed devices (20, 36) for feeding refrigerant to the compression device (14) and one or more refrigerant discharge devices (24, 38) for discharging refrigerant from the compression device (14), wherein
    at least one section of the one refrigerant feed device or at least one section of at least one, in particular each of the multiple refrigerant feed devices (20, 36) is arranged so as to be thermally separate from the one refrigerant discharge device or at least one, in particular each of the multiple refrigerant discharge devices (24, 38) characterized in that
    the high-pressure refrigerant discharge device (38) has five high-pressure refrigerant discharge device sub-regions which are each connected to one another in gas-tight fashion, namely a first, tubular high-pressure refrigerant discharge device sub-region (38-1) which extends outside the compressor housing (15) from the compressor housing (15) to a high-pressure port (40); a second high-pressure refrigerant discharge device sub-region (38-2) which is likewise of tubular form and which extends within the compressor housing (15) from the compressor housing (15) to a third high-pressure refrigerant discharge device sub-region (38-3); the third high-pressure refrigerant discharge device sub-region (38-3) which is of approximately cuboidal form, that is to say has a rectangular cross section, and which serves for pulsation damping in the high-pressure volume; a fourth high-pressure refrigerant discharge device sub-region (38-4) which extends from the third high-pressure refrigerant discharge device sub-region (38-3) to the compression unit (14); and a fifth high-pressure refrigerant discharge device sub-region (38-5) which is formed in the compression unit (14) and which is connected to cylinder outlets of the compression stage (14-2) and which serves for the discharge of refrigerant at high pressure or compression end pressure.
  2. The compressor (10, 110) as claimed in claim 1, characterized in that
    - the compressor has more than one refrigerant feed device,
    - is in particular of multi-stage design, and
    - at least one section of each refrigerant feed device (20, 36) is arranged so as to be thermally separate from the one or more refrigerant discharge devices (24, 38).
  3. The compressor (10, 110) as claimed in claim 1, characterized in that
    - the compressor has more than one refrigerant feed device,
    - is in particular of multi-stage design, and
    - at least one section of each refrigerant feed device (20, 36) is arranged so as to be thermally separate from every other refrigerant feed device (20, 36) that is provided.
  4. The compressor (10, 110) as claimed in in claim 1, characterized in that
    - the compressor has more than one refrigerant discharge device,
    - is in particular of multi-stage design, and
    - at least one section of each refrigerant discharge device (24, 38) is arranged so as to be thermally separate from every other refrigerant discharge device (24, 38) that is provided.
  5. The compressor (10, 110) as claimed in one of the preceding claims,
    characterized in that
    the one or more sections that are arranged so as to be thermally separate from the other refrigerant feed device(s) (20, 36) or refrigerant discharge device(s) (24, 38), or separate from sections thereof, are formed separately from these and/or are arranged so as to have no contact surface or a minimized contact surface with respect to one another and/or so as to be spaced apart from these and/or so as to be separated from these by a thermally insulating material or a material that exhibits low thermal conductivity.
  6. The compressor (10, 110) as claimed in one of the preceding claims,
    characterized in that
    one or more of the sections that are arranged so as to be thermally separate from other refrigerant feed device(s) or refrigerant discharge device(s) (24, 38) extend from the inner side of the compressor housing (15) to the compression device (14) .
  7. The compressor (10, 110) as claimed in one of the preceding claims,
    characterized in that
    one refrigerant feed device (20, 36) opens out in the compressor housing, in particular in the region of or adjacent to the drive device (12).
  8. The compressor (10, 110) as claimed in claim 7,
    characterized in that
    the refrigerant feed device that opens out in the compressor housing (15) is a refrigerant feed device (20, 36) for refrigerant which is at low pressure or for refrigerant which is at an intermediate pressure.
  9. The compressor (10, 110) as claimed in one of the preceding claims,
    characterized in that
    at least one refrigerant discharge device (24, 38), in particular a refrigerant discharge device for refrigerant (24) which is at an intermediate pressure, is provided for connecting to an inlet of a refrigerant intercooler (28) of a refrigeration system or can be in fluid communication with an inlet of a refrigerant intercooler of the compressor (10, 110).
  10. The compressor (10, 110) as claimed in one of claims 7 to 9,
    characterized in that
    the refrigerant feed device (36) that opens out in the compressor housing (15) is provided for connecting to an outlet of a refrigerant intercooler (28) of a refrigeration system or can be in fluid communication with an outlet of a refrigerant intercooler of the compressor (10, 110) .
  11. The compressor (10, 110) as claimed in one of the preceding claims,
    characterized in that
    the drive device has an electric motor (12) with a rotor and a stator, wherein the rotor serves as an oil separator for refrigerant that is supplied thereto.
  12. The compressor (10, 110) as claimed in one of the preceding claims,
    characterized in that
    the compressor (10, 110) is of two-stage design and has a refrigerant feed device (20) for refrigerant at low pressure and a refrigerant feed device (36) for refrigerant at intermediate pressure and a refrigerant discharge device (24) for refrigerant at intermediate pressure and a refrigerant discharge device (38) for refrigerant at high pressure, wherein in each case at least sections, in particular sections arranged within the compressor (10, 110), of each refrigerant feed device (20, 36) and of each refrigerant discharge device (24, 38) are arranged so as to be spaced apart from one another.
  13. The compressor as claimed in one of the preceding claims,
    characterized in that
    the compressor (10, 110) is provided for R744 as refrigerant.
  14. The compressor (10, 110) as claimed in one of the preceding claims,
    characterized in that
    the compressor (10, 110) has at least two housing components (15-1, 15-2) which are connected to one another in gas-tight and non-disassemblable fashion, and/or the compressor (10, 110) is of a hermetic or semi-hermetic type of construction.
  15. A refrigeration system,
    characterized in that
    it has a compressor (10, 110) as claimed in one of the preceding claims.
  16. The refrigeration system as claimed in claim 15,
    characterized in that
    it has an intercooler (28) for cooling refrigerant that is provided by a refrigerant discharge device (24, 38) of the compressor (10, 110).
EP12824900.0A 2011-12-23 2012-12-24 Compressor Active EP2795204B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201110122248 DE102011122248A1 (en) 2011-12-23 2011-12-23 compressor
DE102012005297A DE102012005297A1 (en) 2012-03-19 2012-03-19 Compressor unit, as well as compressors
PCT/EP2012/005379 WO2013091899A2 (en) 2011-12-23 2012-12-24 Compressor

Publications (2)

Publication Number Publication Date
EP2795204A2 EP2795204A2 (en) 2014-10-29
EP2795204B1 true EP2795204B1 (en) 2021-03-10

Family

ID=48669628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12824900.0A Active EP2795204B1 (en) 2011-12-23 2012-12-24 Compressor

Country Status (4)

Country Link
US (1) US20150300337A1 (en)
EP (1) EP2795204B1 (en)
CN (1) CN104114959B (en)
WO (1) WO2013091899A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019185121A1 (en) * 2018-03-27 2019-10-03 Bitzer Kühlmaschinenbau Gmbh Refrigeration system
WO2020025135A1 (en) * 2018-08-01 2020-02-06 Bitzer Kühlmaschinenbau Gmbh Refrigerant circuit

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650018A (en) * 1945-02-23 1953-08-25 Joy Mfg Co Compressor
US3913346A (en) * 1974-05-30 1975-10-21 Dunham Bush Inc Liquid refrigerant injection system for hermetic electric motor driven helical screw compressor
JPS5614877A (en) * 1979-07-13 1981-02-13 Hitachi Ltd Closed type motor compressor
US4487555A (en) * 1981-02-13 1984-12-11 Mitsubishi Denki Kabushiki Kaisha Hermetic motor compressor
IT1191513B (en) * 1986-01-10 1988-03-23 Necchi Spa SILENCER FOR HERMETIC COMPRESSOR
US5330329A (en) * 1993-06-01 1994-07-19 Copeland Corporation Suction conduit assembly mounting
JP3102292B2 (en) * 1995-03-23 2000-10-23 株式会社豊田自動織機製作所 Reciprocating piston compressor
US6584784B2 (en) * 1999-02-05 2003-07-01 Midwest Research Institute Combined refrigeration system with a liquid pre-cooling heat exchanger
KR20010014817A (en) * 1999-07-06 2001-02-26 다카노 야스아키 refrigerant compressor and refrigeration cooling apparatus using the same
JP2002106989A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Two-stage compressor, refrigerating cycle device and refrigerator
TW200406547A (en) * 2002-06-05 2004-05-01 Sanyo Electric Co Internal intermediate pressure multistage compression type rotary compressor, manufacturing method thereof and displacement ratio setting method
US20040234386A1 (en) * 2003-05-19 2004-11-25 Chumley Eugene Karl Discharge muffler having an internal pressure relief valve
JP4020068B2 (en) * 2003-11-17 2007-12-12 株式会社豊田自動織機 Thermal insulation structure in a compressor
TWI325949B (en) * 2004-02-09 2010-06-11 Sanyo Electric Co Refrigerant system
KR100575678B1 (en) * 2004-05-18 2006-05-03 엘지전자 주식회사 Vibration reduction type refrigerator
DE502005003926D1 (en) * 2004-12-22 2008-06-12 Acc Austria Gmbh HERMETIC REFRIGERANT COMPRESSOR
DE102005009173A1 (en) * 2005-02-17 2006-08-24 Bitzer Kühlmaschinenbau Gmbh refrigeration plant
WO2007142619A2 (en) * 2006-06-01 2007-12-13 Carrier Corporation Multi-stage compressor unit for a refrigeration system
CN101576083B (en) * 2008-05-08 2013-07-17 童夏民 Cooling cylinder compression cycle of rotor-type compressor
BRPI0903515A2 (en) * 2009-09-16 2011-05-24 Whirlpool Sa thermal insulation, suitable for insulation of a gas discharge pipe from a refrigeration compressor and process of mounting insulation on the gas discharge pipe
CN102575886B (en) * 2009-10-23 2015-08-19 开利公司 The operation of refrigerant vapor compression system
US20110203304A1 (en) * 2010-02-25 2011-08-25 Mayekawa Mfg, Co., Ltd. Heat pump unit and reciprocating compressor for refrigerant
CN201811498U (en) * 2010-09-29 2011-04-27 中原工学院 Double heat source type multi-compression high temperature heat pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2795204A2 (en) 2014-10-29
WO2013091899A2 (en) 2013-06-27
WO2013091899A3 (en) 2013-10-17
CN104114959B (en) 2021-02-05
CN104114959A (en) 2014-10-22
US20150300337A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
EP3545195B1 (en) Spiral-type positive displacement device, method for operating a positive displacement device, positive displacement spiral, vehicle air-conditioning system, and vehicle
DE4115905C2 (en) Refrigeration circuit arrangement with two compressors driven simultaneously
EP3404264B1 (en) Spiral compressor and its operating method
EP1922485B1 (en) Multi-cylinder, dry-running piston compressor comprising a cooling air flow
EP2806164B1 (en) Scroll compressor and CO2 vehicle air conditioner with a scroll compressor
EP2806165B1 (en) Scroll compressor and CO2 vehicle air conditioner with a scroll compressor
DE202016004933U1 (en) Lubrication system for an electric compressor
EP2795204B1 (en) Compressor
EP1812759B1 (en) Combined piston-expander compressor
DE102014008288A1 (en) Spindle compressors for compression refrigerators
DE112004002958T5 (en) linear compressor
DE102020120772A1 (en) Compressor module
EP2710263A1 (en) Compressor device and cooling device fitted therewith and cooler unit fitted therewith
DE102017102645B4 (en) Refrigerant Scroll Compressor for use inside a heat pump
EP3596309B1 (en) Axial-piston motor and cyclic process device
DE102019208680A1 (en) Displacement machine based on the spiral principle, especially scroll compressors for a vehicle air conditioning system
DE10342421A1 (en) Plunger compressor for refrigerants
DE102008008860A1 (en) Compressor e.g. for compressing cooling agents, has lubrication hole arranged with movable base plate part and which intermittently communicates to lubrication hole of movable pin
WO2001036823A1 (en) Axial piston compressor
WO2022008529A1 (en) Lubricant reservoir, compressor system, and heat pump
DE102020210453A1 (en) Scroll compressor of an electric refrigerant drive
DE102011122248A1 (en) compressor
DE102021102648A1 (en) Piston compressor, in particular for a heat pump
DE202012100995U1 (en) compressor device
DE102011080377A1 (en) Compressor device for e.g. compressor refrigerating machine for refrigerator, has compressor unit for compressing helium, and electrical hydrostatic drive unit magnetically or mechanically coupled with compressor element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140620

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190409

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1370245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016669

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012016669

Country of ref document: DE

Owner name: DANFOSS A/S, DK

Free format text: FORMER OWNER: GEA BOCK GMBH, 72636 FRICKENHAUSEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012016669

Country of ref document: DE

Owner name: BOCK GMBH, DE

Free format text: FORMER OWNER: GEA BOCK GMBH, 72636 FRICKENHAUSEN, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210611

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOCK GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210712

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016669

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

26N No opposition filed

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211224

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1370245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231102

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231108

Year of fee payment: 12

Ref country code: DE

Payment date: 20231031

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012016669

Country of ref document: DE

Owner name: DANFOSS A/S, DK

Free format text: FORMER OWNER: BOCK GMBH, 72636 FRICKENHAUSEN, DE