EP2791512B1 - Water lifting system and method having such a system - Google Patents

Water lifting system and method having such a system Download PDF

Info

Publication number
EP2791512B1
EP2791512B1 EP12794267.0A EP12794267A EP2791512B1 EP 2791512 B1 EP2791512 B1 EP 2791512B1 EP 12794267 A EP12794267 A EP 12794267A EP 2791512 B1 EP2791512 B1 EP 2791512B1
Authority
EP
European Patent Office
Prior art keywords
pump
volume flow
line
water
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12794267.0A
Other languages
German (de)
French (fr)
Other versions
EP2791512A1 (en
Inventor
Thomas Heng
Benedikt Freienstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB SE and Co KGaA filed Critical KSB SE and Co KGaA
Publication of EP2791512A1 publication Critical patent/EP2791512A1/en
Application granted granted Critical
Publication of EP2791512B1 publication Critical patent/EP2791512B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C29/00Fire-fighting vessels or like floating structures
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • A62C3/10Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles in ships
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/28Accessories for delivery devices, e.g. supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/04Units comprising pumps and their driving means the pump being fluid driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • F04D13/14Combinations of two or more pumps the pumps being all of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/04Priming; Preventing vapour lock using priming pumps; using booster pumps to prevent vapour-lock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86035Combined with fluid receiver
    • Y10T137/86067Fluid sump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86131Plural
    • Y10T137/86139Serial
    • Y10T137/86147With single motive input

Definitions

  • the invention relates to an offshore installation, such as oil and / or gas production platforms, or ships or the like with a water lifting system, in particular a fire extinguishing system, with a pump having a suction opening and an outflow opening, a pump turbine unit having a pump unit and a turbine unit, pump unit and turbine unit each have a suction or inlet opening and an outflow opening, and a line connecting the outflow opening of the pump unit of the pump turbine unit and the suction opening of the pump and carrying a volume flow, the volume flow comprising a first partial volume flow and a second partial volume flow, one of which the first partial volume flow line is connected to at least one water extraction point and a line carrying the second partial volume flow is connected to the inlet opening of the turbine unit of the pump-turbine unit, as well as a method with a such system.
  • the US 2,710,579 discloses a device for lifting liquids from boreholes and deep wells with a machine unit arranged therein, which comprises a turbine and a centrifugal pump arranged below and driven by the turbine.
  • the centrifugal pump is connected to a main pump, which supplies the turbine with part of the pumped liquid and a water withdrawal point with the other part.
  • the disadvantage here is that the system cannot be started up safely.
  • the US 4,786,239 discloses an offshore system with a drainage pump that can be driven in a hydraulic circuit via a hydraulic pump and a hydraulic motor.
  • the dewatering pump can be driven by a pump and a water motor, the outflow opening of the dewatering pump not being connected to the suction opening of the pump.
  • the object of the invention is to provide a reliable, space-saving, less expensive to assemble and at the same time with less losses water lifting system and a method for operating such a water lifting system.
  • the object is achieved in that a water supply accommodated in a container for starting the system is provided on the offshore installation, the line carrying the volume flow being connected to an inlet opening of the container, which increases the operational safety when starting the water lifting system.
  • the pump-turbine unit needs to be connected with only two lines that lead from the platform or from the ship into the sea.
  • a hydraulic circuit operated with a fluid, in particular hydraulic oil, for driving the pump-turbine assembly, a tank filled with the fluid and a cooling device with heat exchangers or the like for cooling the fluid can be dispensed with.
  • the turbine unit has an outflow opening which is connected to a water reservoir or opens into the water reservoir.
  • an outlet opening of the container is connected to the suction opening of the pump.
  • the line carrying the volume flow can be connected to the outlet opening of the container.
  • the outlet opening of the pump is expediently connected to the at least one water extraction point via the line carrying the first partial volume flow.
  • the line carrying the second partial volume flow is connected to the inlet opening of the turbine unit of the pump-turbine unit.
  • the outflow opening of the pump unit is connected to a suction opening of a further pump device, preferably a high-pressure pump.
  • a further advantageous embodiment is obtained when the outflow opening of the further pump is connected to the inlet opening of the turbine unit of the pump-turbine unit via the line carrying the second partial volume flow.
  • an electric motor is expediently attached to the pump turbine unit.
  • the object of the invention is further achieved in that in a method for operating the offshore installation with the water lifting system, a water supply for starting the system is accommodated in a container and the line carrying the volume flow is connected to an inlet opening of the container.
  • the Fig.1 schematically shows an offshore installation 1 in the embodiment of an oil and / or gas production platform with a pump 3, preferably a centrifugal pump, arranged on the offshore installation 1 and driven by a motor 2, and one having a pump unit 4 and a turbine unit 5 Pump turbine unit 6, which is located in the sea.
  • Pump unit 4 and turbine unit 5 can be designed as separate units or as units housed in a housing.
  • the pump unit 4 comprises, for example, a centrifugal pump designed as an underwater pump
  • the turbine unit 5 comprises an underwater pump operated as a turbine, preferably a multi-stage underwater pump or a multi-stage centrifugal pump.
  • the two components are preferably arranged on a shaft and / or coupled to one another via a gear.
  • the pump unit 4 has a suction opening, not shown in any more detail, which lies below sea level, preferably in an area with little swell.
  • An outflow opening of the pump unit 4 is connected to a suction opening of the pump 3 via a first line 7, preferably a pipe or a hose which carries a volume flow Q S.
  • a second line 8 leads from an outflow opening of the pump 3 to an inlet opening of a first distribution device 9.
  • a first outlet opening of the distribution device 9 is via a third line 10 carrying a first partial volume flow Q F with at least one on the offshore installation 1 arranged in the Drawings not shown water tapping point, in particular fire extinguishing device, for example sprinkler system, hydrant or the like, connected.
  • a second outlet opening of the distribution device 9 is connected via a fourth line 11 carrying a second partial volume flow Q T to an inlet opening of the turbine unit 5 of the pump-turbine unit 6.
  • the volume flow Q S thus comprises a first partial volume flow Q F and a second partial volume flow Q T , a line 10 carrying the first partial volume flow Q F with at least one water extraction point and a line 11 carrying the second partial volume flow Q T with the inlet opening of the turbine unit 5 of the pump -Turbine unit 6 is connected.
  • the turbine unit 5 in turn has an outflow opening which opens into a water reservoir, in particular the sea or is at least connected to the water reservoir, which is below the water level and via which the water conveyed to the turbine unit 5 is expelled into the water reservoir.
  • the motor 2 which is preferably designed as an internal combustion engine or turbine, drives the pump 3, which is located on the platform.
  • the pump-turbine unit 6, which is located under water, is driven via the second volume flow Q T which is led through the line 11.
  • the pump turbine unit 6 serves as a backing pump to the pump 3 and ensures that the water level is raised to the level of the pump 3.
  • the pump 3 Used as an extinguishing pump, in the event of a fire, the pump 3 must have the first partial volume flow Q F , which is conducted via line 10 and required for fire-fighting, the required pressure head H D, and the second partial volume flow Q T , which drives the turbine, and which is conducted via line 11 put.
  • the second partial volume flow Q T is significantly lower than the first partial volume flow Q F for fire fighting.
  • the pump unit 4 must provide the suction head H S and the two partial volume flows Q F and Q T.
  • the turbine unit 5 must therefore process a second partial volume flow Q T and the pressure head H D plus the suction head H S.
  • a multi-stage submersible pump operated as a turbine is particularly suitable for this purpose, which can convert the high pressure into a rotary movement for driving the pump unit 4.
  • Centrifugal pumps designed as single-stage spiral casing pumps are particularly suitable as pump unit 4 and overcome suction head H S with high volume flow Q S or partial volume flows Q F and Q T forming volume flow Q S , for example for fire fighting.
  • a first partial volume flow Q F of the volume flow Q S removed from the water reservoir and conveyed via the line 7 becomes at least one water extraction point by means of the line 10 carrying the first partial volume flow Q F and the second partial volume flow Q T by means of the second partial volume flow Q T Line 11 promoted back to the water reservoir.
  • a water supply is additionally provided on the platform, the water supply being accommodated in a container 12.
  • the line 7 carrying the volume flow Q S is connected to an inlet opening of the container 12.
  • the outflow opening of the pump unit 4 of the pump turbine unit 6 is connected directly via the line 7 carrying the volume flow Q S to the inlet opening at the top of the container 12, the container 12 being connected to the in the Fig. 2 shown embodiment is designed as a closed pressure vessel.
  • a vent valve 13 can be arranged on the top of the container 12 or alternatively on one of the walls, in an area which is above the water level.
  • An outlet opening of the container 12 is connected to the suction opening of the pump 3.
  • the outlet opening at the bottom of the container 12 is connected via a fifth line 7a to an input of a first fitting 14, which can be closed off the line 7a, for example a valve or a slide.
  • the outlet of the valve 14 is connected via a sixth line 7b to the suction opening of the pump 3 driven by the motor 2.
  • the outflow opening of the pump 3 is connected via the line 10 carrying the first partial volume flow Q F to the at least one water extraction point and via the line 11 carrying the second partial volume flow Q T to the inlet opening of the turbine unit 5 of the pump turbine unit 6.
  • the line 8 leads from the outflow opening of the pump 3 to the inlet opening of the distribution device 9.
  • the first outlet opening of the distribution device 9 is connected to an inlet of a second fitting 15 by means of a seventh line 10a carrying the first partial volume flow Q F. Via the line 10 carrying the first partial volume flow Q F , the outlet of the fitting 15 is fluidly connected to the at least one water withdrawal point, not shown.
  • the second outlet opening of the distribution device 9 is connected via the line 11 carrying the second partial volume flow Q T to the inlet opening of the turbine unit 5 of the pump-turbine unit 6.
  • the valve 14 on the tank 12 is opened and the pump 3 started.
  • the vent valve 13 attached to the container 12 allows air to flow into the container 12.
  • the valve 15 is initially closed when the pump 3 starts up, so the water flows via the lines 8 and 11 and the turbine unit 5 into the sea and drives the pump-turbine unit 6.
  • the pump unit 4 of the pump-turbine unit 6 thereby sucks in sea water and conveys it into the container 12.
  • the valve 15 is opened and the vent valve 13 closed.
  • the vent valve 13 must be designed such that it prevents a vacuum in the container 12 when the pump 3 starts up and closes the container 12 in a pressure-tight manner when the pressure rises during the operation of the system.
  • vent valve 13 can be omitted. To do this, ensure that the water level in the tank 12 is not above the level in the pump 3. So that the water cannot flow out of the container 12 through the pump 3 and the turbine unit 5 into the open or sea. This ensures that there is enough water to restart the system after a standstill.
  • FIG Fig. 3 Another embodiment for starting up the system is shown in FIG Fig. 3 shown.
  • a second distribution device 16 is provided, the inlet opening of which leads via the volume flow Q S Line 7 is connected to the outflow opening of the pump unit 4 of the pump turbine unit 6.
  • One of the outlet openings of the distribution device 16 is connected to an inlet of a third fitting 17 via an eighth line 7c.
  • An outlet of the fitting 17 is fluidly connected to the inlet opening of the container 12 by a ninth line 7d.
  • the line 7 carrying the volume flow Q S is connected to the outlet opening of the container 12.
  • the entrance opening is provided on one of the walls of the container 12, in an area which is below the water level.
  • the container 12 shown here is a container that is completely or partially open on its upper side or a container with an opening that connects the interior of the container 12 to the external environment.
  • the outlet opening at the bottom of the container 12 is connected to the inlet of the fitting 14 via the line 7a.
  • the outlet of the fitting 14 is connected via line 7b to a first inlet opening of a third distribution device 18.
  • An outlet opening of the distribution device 18 is fluidically connected to the suction opening of the pump 3 via a tenth line 7e.
  • a second entrance opening the distribution device 18 is connected by means of an eleventh line 7f to an outlet opening of a fourth fitting 19, the inlet opening of which is in turn connected to an outlet opening of the distribution device 16 via a twelfth line 7g.
  • the distribution device 16 is connected to the distribution device 18 via a wiring harness that includes the wires 7a, 7b, 7c and 7d and a wiring harness that includes the wires 7f and 7g.
  • a ventilation line 7h is provided, which is connected to a ventilation valve 20.
  • the discharge opening of the pump 3 is connected in the same way as in Fig. 2 described.
  • the fittings 15, 17, 19 must first be closed and the fitting 14 and vent valve 20 must be opened or opened.
  • the closed fitting 17 prevents the water from escaping from the container 12 due to the level differences between the container 12 and the pump unit 4.
  • the water flows into the pump 3 via the lines 7a, 7b and 7e and from there via the lines 8 and 11 and the turbine unit 5 into the sea.
  • the pump unit 4 of the pump turbine unit 6 conveys water into the line 7 until the air present in it can escape from the vent valve 20.
  • the vent valve 20 is closed and the fitting 17 is opened.
  • the water conveyed by the pump unit 4 is conveyed into the container 12 via the lines 7, 7c and 7d.
  • the fittings 14 and 17 are closed and the fittings 15 and 19 are opened.
  • the fitting 14 prevents the water from escaping from the container 12 and the fitting 19 enables the pump 3 to be fed by the pump unit 4 of the pump-turbine assembly 6.
  • the valve 17 is designed as a check valve, for example as a check valve, can in the Fig. 3 shown, with an outlet opening of the distribution device 16 fluidly connected vent line 7h and the vent valve 20 are dispensed with.
  • the valve 17 designed as a check valve prevents the water from escaping due to level differences of container 12 and the pump unit 4 of the pump turbine unit 6, and also allows the air in the system to escape through the open container 12.
  • the fittings 15 and 19 are closed.
  • the valve 14 is opened and the lines 7a, 7b and 7e flow the water from the container 12 into the pump 3 connected to the distribution device 18 and from there via lines 8 and 11 and the turbine unit 5 into the sea.
  • the pump unit 4 of the pump turbine unit 6 conveys the water removed from the sea via the lines 7, 7c and 7d into the container 12.
  • valve 14 When the container 12 has reached its defined filling level for restarting the system, the valve 14 is closed in order to Leave water in the tank 12 and the fittings 15 and 19 opened to feed the pump 3 via the pump unit 4 and the lines 7, 7g, 7f and 7e with the water taken from the sea by the pump unit 4 and one or more water withdrawal points to supply with the required amount of water.
  • the structure is simplified to the extent that here too in the Fig. 3 Components shown fitting 17, vent line 7h and vent valve 20 can be omitted.
  • the line 7c is connected at one end to an outlet opening of the distribution device 16 and ends at the other end in an area above the water level of the container 12.
  • the lines 7a, 7b, 7e, 7f and 7g and the fitting 19 are connected analogously to FIG that in the Fig. 3 illustrated embodiment.
  • the fittings 15 and 19 are closed and the fitting 14 is open.
  • the water flows via the lines 7a, 7b and 7e from the container 12 into the pump 3 connected to the distribution device 18 and from there via the Lines 8 and 11 and the turbine unit 5 into the sea.
  • the pump unit 4 of the pump turbine unit 6 conveys water via the lines 7 and 7c into the container 12 until it has reached the defined fill level for restarting the system.
  • the valve 14 is then closed so that water can no longer be conveyed from the container.
  • the fittings 15 and 19 are opened in order to feed the pump 3 via the pump unit 4, the lines 7, 7g, 7f and 7e with the water removed from the sea by the pump unit 4, so that the required first partial volume flow Q F at the water withdrawal points ready.
  • the 3 to 5 are shown with a container 12 open on its top, which, alternatively, according to FIG Fig. 1 , can be designed as a closed container.
  • the Fig. 6 shows a further embodiment.
  • the outflow opening of the pump unit 4 is connected to a suction opening of a pump device 21, preferably a high-pressure pump.
  • the outflow opening of the pump unit 4 of the pump turbine unit 6 is connected via the line 7 carrying the volume flow Q S to the inlet opening of the distribution device 18.
  • the first outlet opening of the distribution device 18 leads via the line 7e to the suction opening of the pump 3.
  • the outflow opening of the pump 3 is connected to the at least one water extraction point via the line 10 carrying the first partial volume flow Q F.
  • the second outlet opening of the distribution device 18 is connected to a suction opening of the pump device 21 via a thirteenth line 11a.
  • An outflow opening of the pump device 21 is connected via the line 11 carrying the second partial volume flow Q T to the inlet opening of the turbine unit 5 of the pump-turbine unit 6. While in the 1 to 5 the outflow opening of the pump 3 is connected via the distribution device 9, ie indirectly, to the inlet opening of the turbine unit 5, in this embodiment the outflow opening of the pump device is connected directly to the turbine unit.
  • the feed water for the pump device 21 is thus withdrawn as a partial volume flow of the pump unit 4 of the pump turbine unit 6.
  • the pump device 21 generally has a smaller delivery rate than the pump 3 and promotes the second partial volume flow Q T for driving the turbine unit 5
  • Pump device 21 is preferably driven by means of the existing motor 2. Alternatively, another drive device for the pump device 21 can also be provided.
  • the pump device 21 installed in line 11 and driven by motor 2 is provided on the platform.
  • the outflow opening of the pump unit 4 is connected to the inlet opening of the distribution device 18 via the line 7 carrying the volume flow Q S.
  • the first outlet opening of the distribution device 18 is connected via the line 10 carrying the first partial volume flow Q F to the at least one water extraction point, not shown.
  • the second outlet opening of the distribution device 18 is connected to the suction opening of the pump device 21 via the line 11a carrying the second partial volume flow Q T.
  • the pump device 21 on the platform thus receives its feed water from the pump unit 4 of the pump turbine unit 6.
  • the pump unit 4 of the pump turbine unit 6 takes on the task of in the 1 to 6 Pump 3 shown and thus provides the required first partial volume flow Q F for the at least one water extraction point, for example for fire fighting, the required pressure head H D plus the suction head H S and the second partial volume flow Q T for supplying the pump turbine unit 6.
  • the design of the water lifting system according to the Figures 6 and 7 with a water supply essentially corresponds to that of 1 to 5 described possibilities and shown in the corresponding figures.
  • the container 12 is placed on the offshore installation 1, an outlet opening of the container 12 being connected to the suction opening of the pump 3 and / or the suction opening of the pump device 21 and an inlet opening of the container 12 being connected to the outlet opening of the pump unit 4 of the pump turbine unit 6 ,
  • the pump turbine unit 6 Since the pump turbine unit 6 remains permanently in the sea water with a high salt content, it must be protected against the rotor sticking.
  • an electric motor 22 are attached to the pump-turbine unit 6, which rotates it at regular intervals. A slow rotational movement is sufficient without the pump unit 4 conveying water.
  • An electric motor with a high number of poles is advantageously used. This avoids the use of a gearbox.
  • the electric motor must also be designed for the speeds in operation of the pump turbine unit 6. Alternatively, the entire system could be started up at regular intervals. This could check the function and prevent the unit from jamming.
  • the Figures 1 to 8 schematically show an offshore plant on the basis of which structure and functioning of the water lifting system were discussed.
  • the water lifting system according to the invention can also be used on a ship or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Description

Die Erfindung betrifft eine Offshore-Anlage, wie Öl- und/oder Gasförderplattformen, oder Schiffe oder dergleichen mit einem Wasserhebesystem, insbesondere Feuerlöschanlage, mit einer eine Ansaugöffnung und eine Ausströmöffnung aufweisenden Pumpe, einem eine Pumpeneinheit und eine Turbineneinheit aufweisenden Pumpen-Turbinenaggregat, wobei Pumpeneinheit und Turbineneinheit jeweils eine Ansaug- oder Eingangsöffnung und eine Ausströmöffnung aufweisen, und einer die Ausströmöffnung der Pumpeneinheit des Pumpen-Turbinenaggregats und die Ansaugöffnung der Pumpe verbindenden und einen Volumenstrom führenden Leitung, wobei der Volumenstrom einen ersten Teilvolumenstrom und einen zweiten Teilvolumenstrom umfasst, wobei eine den ersten Teilvolumenstrom führende Leitung mit wenigstens einer Wasserentnahmestelle und eine den zweiten Teilvolumenstrom führende Leitung mit der Eingangsöffnung der Turbineneinheit des Pumpen-Turbinenaggregats verbunden ist, sowie ein Verfahren mit einem solchen System.The invention relates to an offshore installation, such as oil and / or gas production platforms, or ships or the like with a water lifting system, in particular a fire extinguishing system, with a pump having a suction opening and an outflow opening, a pump turbine unit having a pump unit and a turbine unit, pump unit and turbine unit each have a suction or inlet opening and an outflow opening, and a line connecting the outflow opening of the pump unit of the pump turbine unit and the suction opening of the pump and carrying a volume flow, the volume flow comprising a first partial volume flow and a second partial volume flow, one of which the first partial volume flow line is connected to at least one water extraction point and a line carrying the second partial volume flow is connected to the inlet opening of the turbine unit of the pump-turbine unit, as well as a method with a such system.

Aus der DE 643 151 A ist eine Einrichtung zum Anlassen von Pumpen für Feuerlösch- und ähnliche Zwecke bekannt, bei denen es große Saughöhen zu überwinden gilt. Da die für die Feuerlöschzwecke verwendete Pumpe bei großen Saughöhen das benötigte Wasser alleine nicht ansaugen kann, ist die Pumpe über eine Leitung mit einer in einem Löschbecken oder dergleichen angeordneten Hilfspumpe verbunden, die durch eine Flüssigkeits- oder Luftturbine angetrieben wird, deren Treibmittel von einer besonderen Treibmittelpumpe geliefert wird. Über zwei Leitungen ist die Turbine mit der Treibmittelpumpe verbunden. Nachteilig dabei ist, dass Vorkehrungen getroffen werden müssen, die mögliche Leckageverluste im Treibmittelkreis wieder ausgleichen können. Da das Treibmittel in einem geschlossenen Kreislauf von der Treibmittelpumpe zur Turbine und wieder zurück gepumpt wird, wird das Treibmittel ständig weiter erwärmt und muss gekühlt werden, da sonst Teile der Anlage schaden nehmen können.From the DE 643 151 A a device for starting pumps for fire-fighting and similar purposes is known, in which large suction heights have to be overcome. Since the pump used for fire extinguishing purposes alone cannot suck in the required water at high suction heights, the pump is connected via a line to an auxiliary pump arranged in an extinguishing basin or the like, which is driven by a liquid or air turbine, the propellant of which is driven by a special one Propellant pump is supplied. The turbine is connected to the propellant pump via two lines. The disadvantage here is that precautions must be taken can compensate for any leakage losses in the blowing agent circuit. Since the propellant is pumped in a closed circuit from the propellant pump to the turbine and back again, the propellant is continuously heated and has to be cooled, otherwise parts of the system can be damaged.

Die US 2,710,579 offenbart eine Vorrichtung zum Heben von Flüssigkeiten aus Bohrlöchern und Tiefbrunnen mit einer darin angeordneten Maschineneinheit, die eine Turbine und eine unterhalb der Turbine angeordnete und durch diese angetrieben Kreiselpumpe umfasst. Die Kreiselpumpe ist mit einer Hauptpumpe verbunden, die mit einen Teil der geförderten Flüssigkeit die Turbine und mit dem anderen Teil eine Wasserentnahmestelle versorgt. Von Nachteil ist dabei, dass ein sicheres Anfahren der Anlage nicht gewährleistet ist.The US 2,710,579 discloses a device for lifting liquids from boreholes and deep wells with a machine unit arranged therein, which comprises a turbine and a centrifugal pump arranged below and driven by the turbine. The centrifugal pump is connected to a main pump, which supplies the turbine with part of the pumped liquid and a water withdrawal point with the other part. The disadvantage here is that the system cannot be started up safely.

Eine weitere Vorrichtung zum Heben von Flüssigkeiten mit einer Turbine und einer durch diese angetrieben Kreiselpumpe sowie einer Hauptpumpe wird in der US2,516,822 offenbart. Die US 4,215,976 zeigt eine Vorrichtung zum Heben von Flüssigkeiten mit einer Turbinen-Impellerpumpe sowie einer Hauptpumpe und einer weiteren Pumpe, die der Turbinen-Impellerpumpe Schmiermittel zuführt. Eine derartige Anordnung ist aufwendig und teuer.Another device for lifting liquids with a turbine and a centrifugal pump driven by this and a main pump is in the US2,516,822 disclosed. The US 4,215,976 shows a device for lifting liquids with a turbine impeller pump and a main pump and another pump that supplies lubricant to the turbine impeller pump. Such an arrangement is complex and expensive.

In der US 3,299,815 wird ein mehrstufiges, mittels Turbinen angetriebenes Druckerhöhungspumpensystem in einem Behälter offenbart, wobei die Pumpen-Turbineneinheiten übereinander angeordnet sind und mittels Ventilen in Abhängikeit des Füllstandes der in dem Behälter befindlichen Flüssigkeit zu- oder abgeschaltet werden können. Ein sicheres Anfahren des Systems bei einer großen zu überbrückenden Förderhöhe ist nicht gewährleistet.In the US 3,299,815 discloses a multi-stage, turbine-driven booster pump system in a container, the pump-turbine units being arranged one above the other and being able to be switched on or off by means of valves depending on the level of the liquid in the container. A safe start-up of the system with a large delivery head to be bridged is not guaranteed.

Die US 4,786,239 offenbart eine Offshore-Anlage mit einer Entwässerungspumpe, die über eine Hydraulikpumpe und einen Hydraulikmotor in einem Hydraulikkreislauf angetrieben werden kann. Alternativ kann die Entwässerungspumpe über eine Pumpe und einem Wassermotor angetrieben werden, wobei die Ausströmöffnung der Entwässerungspumpe nicht mit der Ansaugöffnung der Pumpe verbunden ist.The US 4,786,239 discloses an offshore system with a drainage pump that can be driven in a hydraulic circuit via a hydraulic pump and a hydraulic motor. alternative the dewatering pump can be driven by a pump and a water motor, the outflow opening of the dewatering pump not being connected to the suction opening of the pump.

Die Aufgabe der Erfindung besteht darin, ein zuverlässiges, Bauraum sparendes, mit weniger Aufwand zu montierendes und gleichzeitig mit weniger Verlusten behaftetes Wasserhebesystem und ein Verfahren zum Betreiben eines derartigen Wasserhebesystems zu schaffen.The object of the invention is to provide a reliable, space-saving, less expensive to assemble and at the same time with less losses water lifting system and a method for operating such a water lifting system.

Die Aufgabe wird dadurch gelöst, dass auf der Offshore-Anlage ein in einem Behälter untergebrachter Wasservorrat zum Anfahren des Systems vorgesehen ist, wobei die den Volumenstrom führende Leitung mit einer Eingangsöffnung des Behälters verbunden ist, wodurch die Betriebssicherheit beim Anfahren des Wasserhebesystems erhöht wird.The object is achieved in that a water supply accommodated in a container for starting the system is provided on the offshore installation, the line carrying the volume flow being connected to an inlet opening of the container, which increases the operational safety when starting the water lifting system.

Dadurch braucht das Pumpen-Turbinenaggregat mit nur zwei Leitungen verbunden zu werden, die von der Plattform oder vom Schiff ins Meer führen. Zudem kann auf einen mit einem Fluid, insbesondere Hydrauliköl, betriebenen Hydraulikkreis zum Antreiben des Pumpen-Turbinenaggregats, einen mit dem Fluid gefüllten Tank und eine Kühlvorrichtung mit Wärmetauschern oder dergleichen zum Kühlen des Fluids verzichtet werden.As a result, the pump-turbine unit needs to be connected with only two lines that lead from the platform or from the ship into the sea. In addition, a hydraulic circuit operated with a fluid, in particular hydraulic oil, for driving the pump-turbine assembly, a tank filled with the fluid and a cooling device with heat exchangers or the like for cooling the fluid can be dispensed with.

Nach einer Ausgestaltung weist die Turbineneinheit eine Ausströmöffnung auf, die mit einem Wasserreservoir verbunden ist oder in das Wasserreservoir mündet.According to one embodiment, the turbine unit has an outflow opening which is connected to a water reservoir or opens into the water reservoir.

Erfindungsgemäß ist eine Ausgangsöffnung des Behälters mit der Ansaugöffnung der Pumpe verbunden.According to the invention, an outlet opening of the container is connected to the suction opening of the pump.

Ferner kann die den Volumenstrom führende Leitung mit der Ausgangsöffnung des Behälters verbunden sein.Furthermore, the line carrying the volume flow can be connected to the outlet opening of the container.

Zweckmäßigerweise ist die Ausströmöffnung der Pumpe über die den ersten Teilvolumenstrom führende Leitung mit der wenigstens einen Wasserentnahmestelle verbunden.The outlet opening of the pump is expediently connected to the at least one water extraction point via the line carrying the first partial volume flow.

Nach einer weiteren Ausgestaltung ist vorgesehen, dass über die den zweiten Teilvolumenstrom führende Leitung mit der Eingangsöffnung der Turbineneinheit des Pumpen-Turbinenaggregats verbunden ist.According to a further embodiment, it is provided that the line carrying the second partial volume flow is connected to the inlet opening of the turbine unit of the pump-turbine unit.

Bei einer alternativen Ausführungsform ist die Ausströmöffnung der Pumpeneinheit mit einer Ansaugöffnung einer weiteren Pumpeinrichtung, vorzugsweise eine Hochdruckpumpe, verbunden.In an alternative embodiment, the outflow opening of the pump unit is connected to a suction opening of a further pump device, preferably a high-pressure pump.

Eine weitere vorteilhafte Ausgestaltung ergibt sich, wenn die Ausströmöffnung der weiteren Pumpe über die den zweiten Teilvolumenstrom führende Leitung mit der Eingangsöffnung der Turbineneinheit des Pumpen-Turbinenaggregats verbunden ist. Um das dauerhaft im salzhaltigen Meerwasser verweilende Pumpen-Turbinenaggregat gegen Festsetzen und Blockade zu schützen, ist zweckmäßigerweise ein Elektromotor an das Pumpen-Turbinenaggregat angebracht.A further advantageous embodiment is obtained when the outflow opening of the further pump is connected to the inlet opening of the turbine unit of the pump-turbine unit via the line carrying the second partial volume flow. In order to protect the pump turbine unit which remains permanently in the saline sea water against seizing and blockage, an electric motor is expediently attached to the pump turbine unit.

Die Aufgabe der Erfindung wird ferner dadurch gelöst, dass bei einem Verfahren zum Betreiben der Offshore-Anlage mit dem Wasserhebesystem ein Wasservorrat zum Anfahren des Systems in einem Behälter untergebracht wird und die den Volumenstrom führende Leitung mit einer Eingangsöffnung des Behälters verbunden wird.The object of the invention is further achieved in that in a method for operating the offshore installation with the water lifting system, a water supply for starting the system is accommodated in a container and the line carrying the volume flow is connected to an inlet opening of the container.

Anhand von Ausführungsbeispielen wird die Erfindung näher erläutert. Es zeigen die

Fig. 1
die schematische Darstellung einer Offshore-Plattform mit einer Wasserhebeeinrichtung mit einer Pumpe und einem Pumpen-Turbinenaggregat, die
Fig. 2
eine Offshore-Plattform gemäß der Erfindung mit einer Wasserhebeeinrichtung gemäß der Fig. 1 mit einem geschlossenen Druckbehälter für einen Wasservorrat, die
Fig. 3
eine Offshore-Plattform und Wasserhebeeinrichtung gemäß der Erfindung mit einem offenen Behälter für einen Wasservorrat, die
Fig. 4
eine Offshore-Plattform gemäß der Erfindung mit einer weiteren Ausführungsform der Wasserhebeeinrichtung gemäß der Fig. 3, die
Fig. 5
eine Offshore-Plattform gemäß der Erfindung mit einer weiteren Ausführungsform der Wasserhebeeinrichtung gemäß der Fig. 3, die
Fig. 6
eine Offshore-Plattform gemäß der Fig. 1 mit Wasserhebeeinrichtung mit einer Pumpe, einem Pumpen-Turbinenaggregat und einer zusätzlichen Pumpeinrichtung, die
Fig. 7
eine Offshore-Plattform und Wasserhebeeinrichtung mit einer Pumpeinrichtung und einem Pumpen-Turbinenaggregat und die
Fig. 8
eine Offshore-Plattform und Wasserhebeeinrichtung gemäß der Fig. 1 mit einem an dem Pumpen-Turbinenaggregat 6 angeordneten Motor.
The invention is explained in more detail using exemplary embodiments. They show
Fig. 1
the schematic representation of an offshore platform with a water lifting device with a pump and a pump turbine unit, the
Fig. 2
an offshore platform according to the invention with a water lifting device according to the Fig. 1 with a closed pressure vessel for a water supply, the
Fig. 3
an offshore platform and water lifting device according to the invention with an open container for a water supply, the
Fig. 4
an offshore platform according to the invention with a further embodiment of the water lifting device according to the Fig. 3 , the
Fig. 5
an offshore platform according to the invention with a further embodiment of the water lifting device according to the Fig. 3 , the
Fig. 6
an offshore platform according to the Fig. 1 with water lifting device with a pump, a pump turbine unit and an additional pump device, the
Fig. 7
an offshore platform and water lifting device with a pumping device and a pump turbine unit and the
Fig. 8
an offshore platform and water lifting device according to the Fig. 1 with a motor arranged on the pump turbine unit 6.

Die Fig.1 zeigt schematisch eine Offshore-Anlage 1 in der Ausführungsform einer Öl- und/oder Gasförderplattform mit einer auf der Offshore-Anlage 1 angeordneten und über einen Motor 2 angetriebenen Pumpe 3, vorzugsweise eine Kreiselpumpe, und einem, eine Pumpeneinheit 4 und eine Turbineneinheit 5 aufweisendes Pumpen-Turbinenaggregat 6, das sich im Meer befindet. Pumpeneinheit 4 und Turbineneinheit 5 können als getrennte Einheiten oder als in einem Gehäuse untergebrachte Einheiten ausgebildet sein. Die Pumpeneinheit 4 umfasst beispielsweise eine als Unterwasserpumpe ausgebildete Kreiselpumpe, und die Turbineneinheit 5 eine als Turbine betriebene Unterwasserpumpe, vorzugsweise eine mehrstufige Unterwasserpumpe bzw. eine mehrstufige Kreiselpumpe. Die beiden Komponenten sind vorzugsweise auf einer Welle angeordnet und/oder über ein Getriebe miteinander gekoppelt.The Fig.1 schematically shows an offshore installation 1 in the embodiment of an oil and / or gas production platform with a pump 3, preferably a centrifugal pump, arranged on the offshore installation 1 and driven by a motor 2, and one having a pump unit 4 and a turbine unit 5 Pump turbine unit 6, which is located in the sea. Pump unit 4 and turbine unit 5 can be designed as separate units or as units housed in a housing. The pump unit 4 comprises, for example, a centrifugal pump designed as an underwater pump, and the turbine unit 5 comprises an underwater pump operated as a turbine, preferably a multi-stage underwater pump or a multi-stage centrifugal pump. The two components are preferably arranged on a shaft and / or coupled to one another via a gear.

Die Pumpeneinheit 4 weist eine nicht näher dargestellte Ansaugöffnung auf, die unterhalb des Meeresspiegels, vorzugsweise in einem Bereich mit wenig Wellengang, liegt. Eine Ausströmöffnung der Pumpeneinheit 4 ist über eine erste Leitung 7, vorzugsweise ein Rohr oder ein Schlauch, die einen Volumenstrom QS führt, mit einer Ansaugöffnung der Pumpe 3 verbunden. Eine zweite Leitung 8 führt von einer Ausströmöffnung der Pumpe 3 zu einer Eingangsöffnung einer ersten Verteilungseinrichtung 9. Eine erste Ausgangsöffnung der Verteilungseinrichtung 9 ist über eine einen ersten Teilvolumenstrom QF führende dritte Leitung 10 mit wenigstens einer auf der Offshore-Anlage 1 angeordneten, in den Zeichnungen nicht dargestellten Wasserentnahmestelle, insbesondere Feuerlöschvorrichtung, beispielsweise Sprinkleranlage, Hydrant oder dergleichen, verbunden. Eine zweite Ausgangsöffnung der Verteilungseinrichtung 9 ist über eine einen zweiten Teilvolumenstrom QT führende vierte Leitung 11 an eine Eingangsöffnung der Turbineneinheit 5 des Pumpen-Turbinenaggregats 6 angeschlossen. Somit umfasst der Volumenstrom QS einen ersten Teilvolumenstrom QF und einen zweiten Teilvolumenstrom QT, wobei eine den ersten Teilvolumenstrom QF führende Leitung 10 mit wenigstens einer Wasserentnahmestelle und eine den zweiten Teilvolumenstrom QT führende Leitung 11 mit der Eingangsöffnung der Turbineneinheit 5 des Pumpen-Turbinenaggregats 6 verbunden ist. Die Turbineneinheit 5 weist wiederum eine in ein Wasserreservoir, insbesondere Meer, mündende oder wenigstens mit dem Wasserreservoir verbundene Ausströmöffnung auf, die unterhalb des Wasserspiegels liegt und über die das zur Turbineneinheit 5 geförderte Wasser ins Wasserreservoir ausgestoßen wird.The pump unit 4 has a suction opening, not shown in any more detail, which lies below sea level, preferably in an area with little swell. An outflow opening of the pump unit 4 is connected to a suction opening of the pump 3 via a first line 7, preferably a pipe or a hose which carries a volume flow Q S. A second line 8 leads from an outflow opening of the pump 3 to an inlet opening of a first distribution device 9. A first outlet opening of the distribution device 9 is via a third line 10 carrying a first partial volume flow Q F with at least one on the offshore installation 1 arranged in the Drawings not shown water tapping point, in particular fire extinguishing device, for example sprinkler system, hydrant or the like, connected. A second outlet opening of the distribution device 9 is connected via a fourth line 11 carrying a second partial volume flow Q T to an inlet opening of the turbine unit 5 of the pump-turbine unit 6. The volume flow Q S thus comprises a first partial volume flow Q F and a second partial volume flow Q T , a line 10 carrying the first partial volume flow Q F with at least one water extraction point and a line 11 carrying the second partial volume flow Q T with the inlet opening of the turbine unit 5 of the pump -Turbine unit 6 is connected. The turbine unit 5 in turn has an outflow opening which opens into a water reservoir, in particular the sea or is at least connected to the water reservoir, which is below the water level and via which the water conveyed to the turbine unit 5 is expelled into the water reservoir.

Der vorzugsweise als Verbrennungsmotor oder Turbine ausgebildete Motor 2 treibt die Pumpe 3 an, welche sich auf der Plattform befindet. Über den durch die Leitung 11 geführten zweiten Volumenstrom QT wird das unter Wasser befindliche Pumpen-Turbinenaggregat 6 angetrieben. Das Pumpen-Turbinenaggregat 6 dient als Vorpumpe zur Pumpe 3 und stellt die Anhebung des Wasserstandes auf das Niveau der Pumpe 3 sicher.The motor 2, which is preferably designed as an internal combustion engine or turbine, drives the pump 3, which is located on the platform. The pump-turbine unit 6, which is located under water, is driven via the second volume flow Q T which is led through the line 11. The pump turbine unit 6 serves as a backing pump to the pump 3 and ensures that the water level is raised to the level of the pump 3.

Als Löschpumpe verwendet, muss bei einem Brand die Pumpe 3 den über die Leitung 10 geführten und zur Brandbekämpfung benötigten ersten Teilvolumenstrom QF, die benötigte Druckhöhe HD sowie den über die Leitung 11 geführten zweiten Teilvolumenstrom QT, welcher die Turbine antreibt, zur Verfügung stellen. Dabei ist der zweite Teilvolumenstrom QT wesentlich geringer als der erste Teilvolumenstrom QF zur Brandbekämpfung. Die Pumpeneinheit 4 muss die Saughöhe HS sowie die beiden Teilvolumenströme QF und QT erbringen.Used as an extinguishing pump, in the event of a fire, the pump 3 must have the first partial volume flow Q F , which is conducted via line 10 and required for fire-fighting, the required pressure head H D, and the second partial volume flow Q T , which drives the turbine, and which is conducted via line 11 put. The second partial volume flow Q T is significantly lower than the first partial volume flow Q F for fire fighting. The pump unit 4 must provide the suction head H S and the two partial volume flows Q F and Q T.

Die Turbineneinheit 5 muss demnach einen zweiten Teilvolumenstrom QT sowie die Druckhöhe HD plus die Saughöhe HS verarbeiten. Dazu ist, wie vorstehend erwähnt, insbesondere eine als Turbine betriebene mehrstufige Unterwasserpumpe geeignet, die den hohen Druck in eine Drehbewegung zum Antrieb der Pumpeneinheit 4 umwandeln kann. Als Pumpeneinheit 4 eignen sich besonders gut als einstufige Spiralgehäusepumpen gestaltete Kreiselpumpen, welche die Saughöhe HS mit dem hohen Volumenstrom QS bzw. den den Volumenstrom QS bildenden Teilvolumenströmen QF und QT, beispielsweise zur Brandbekämpfung, überwinden.The turbine unit 5 must therefore process a second partial volume flow Q T and the pressure head H D plus the suction head H S. As mentioned above, a multi-stage submersible pump operated as a turbine is particularly suitable for this purpose, which can convert the high pressure into a rotary movement for driving the pump unit 4. Centrifugal pumps designed as single-stage spiral casing pumps are particularly suitable as pump unit 4 and overcome suction head H S with high volume flow Q S or partial volume flows Q F and Q T forming volume flow Q S , for example for fire fighting.

Somit wird also ein erster Teilvolumenstrom QF des aus dem Wasserreservoir entnommenen und über die Leitung 7 geförderten Volumenstroms QS mittels der den ersten Teilvolumenstrom QF führenden Leitung 10 zu wenigstens einer Wasserentnahmestelle und der zweite Teilvolumenstrom QT mittels der den zweiten Teilvolumenstrom QT führenden Leitung 11 zurück zum Wasserreservoir gefördert.Thus, a first partial volume flow Q F of the volume flow Q S removed from the water reservoir and conveyed via the line 7 becomes at least one water extraction point by means of the line 10 carrying the first partial volume flow Q F and the second partial volume flow Q T by means of the second partial volume flow Q T Line 11 promoted back to the water reservoir.

Die in der Fig. 2 dargestellte Ausführungsform entspricht weitgehend dem in der Fig. 1 gezeigten Ausführungsbeispiel. Um die Betriebssicherheit des Systems weiter zu erhöhen, ist auf der Plattform zusätzlich ein Wasservorrat vorgesehen, wobei der Wasservorrat in einem Behälter 12 untergebracht ist. Die den Volumenstrom QS führende Leitung 7 ist mit einer Eingangsöffnung des Behälters 12 verbunden. Die Ausströmöffnung der Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 ist direkt über die den Volumenstrom QS führende Leitung 7 an die Eingangsöffnung an der Oberseite des Behälters 12 angeschlossen, wobei der Behälter 12 bei dem in der Fig. 2 gezeigten Ausführungsbeispiel als geschlossener Druckbehälter ausgebildet ist. Bei Bedarf kann an der Oberseite des Behälters 12 oder alternativ an einer der Wände, in einem Bereich, der über dem Wasserpegel liegt, ein Entlüftungsventil 13 angeordnet sein. Eine Ausgangsöffnung des Behälters 12 ist mit der Ansaugöffnung der Pumpe 3 verbunden. Dazu ist die Ausgangsöffnung am Boden des Behälters 12 über eine fünfte Leitung 7a an einen Eingang einer die Leitung 7a verschließbaren ersten Armatur 14, beispielsweise ein Ventil oder ein Schieber, angeschlossen. Der Ausgang der Armatur 14 ist über eine sechste Leitung 7b an die Ansaugöffnung der mittels des Motors 2 angetriebenen Pumpe 3 angeschlossen. Die Ausströmöffnung der Pumpe 3 ist über die den ersten Teilvolumenstrom QF führende Leitung 10 mit der wenigstens einen Wasserentnahmestelle und über die den zweiten Teilvolumenstrom QT führende Leitung 11 mit der Eingangsöffnung der Turbineneinheit 5 des Pumpen-Turbinenaggregats 6 verbunden. Die Leitung 8 führt von der Ausströmöffnung der Pumpe 3 zu der Eingangsöffnung der Verteilungseinrichtung 9. Die erste Ausgangsöffnung der Verteilungseinrichtung 9 ist mittels einer den ersten Teilvolumenstrom QF führenden siebten Leitung 10a an einen Eingang einer zweiten Armatur 15 angeschlossen. Über die den ersten Teilvolumenstrom QF führende Leitung 10 ist der Ausgang der Armatur 15 mit der wenigstens einen nicht dargestellten Wasserentnahmestelle fluidisch verbunden. Die zweite Ausgangsöffnung der Verteilungseinrichtung 9 ist über die den zweiten Teilvolumenstrom QT führende Leitung 11 an die Eingangsöffnung der Turbineneinheit 5 des Pumpen-Turbinenaggregats 6 angeschlossen.The in the Fig. 2 illustrated embodiment largely corresponds to that in the Fig. 1 shown embodiment. In order to further increase the operational safety of the system, a water supply is additionally provided on the platform, the water supply being accommodated in a container 12. The line 7 carrying the volume flow Q S is connected to an inlet opening of the container 12. The outflow opening of the pump unit 4 of the pump turbine unit 6 is connected directly via the line 7 carrying the volume flow Q S to the inlet opening at the top of the container 12, the container 12 being connected to the in the Fig. 2 shown embodiment is designed as a closed pressure vessel. If required, a vent valve 13 can be arranged on the top of the container 12 or alternatively on one of the walls, in an area which is above the water level. An outlet opening of the container 12 is connected to the suction opening of the pump 3. For this purpose, the outlet opening at the bottom of the container 12 is connected via a fifth line 7a to an input of a first fitting 14, which can be closed off the line 7a, for example a valve or a slide. The outlet of the valve 14 is connected via a sixth line 7b to the suction opening of the pump 3 driven by the motor 2. The outflow opening of the pump 3 is connected via the line 10 carrying the first partial volume flow Q F to the at least one water extraction point and via the line 11 carrying the second partial volume flow Q T to the inlet opening of the turbine unit 5 of the pump turbine unit 6. The line 8 leads from the outflow opening of the pump 3 to the inlet opening of the distribution device 9. The first outlet opening of the distribution device 9 is connected to an inlet of a second fitting 15 by means of a seventh line 10a carrying the first partial volume flow Q F. Via the line 10 carrying the first partial volume flow Q F , the outlet of the fitting 15 is fluidly connected to the at least one water withdrawal point, not shown. The second outlet opening of the distribution device 9 is connected via the line 11 carrying the second partial volume flow Q T to the inlet opening of the turbine unit 5 of the pump-turbine unit 6.

Zum Anfahren des Systems wird am Behälter 12 die Armatur 14 geöffnet und die Pumpe 3 angefahren. Das am Behälter 12 angebrachte Entlüftungsventil 13 lässt Luft in den Behälter 12 strömen. Somit kann das Wasser aus dem Behälter 12 über die Leitungen 7a und 7b in die Pumpe 3 strömen. Die Armatur 15 ist beim Anfahren der Pumpe 3 zunächst geschlossen, so strömt das Wasser über die Leitungen 8 und 11 und die Turbineneinheit 5 ins Meer und treibt dabei das Pumpen-Turbinenaggregat 6 an. Die Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 saugt dadurch Meerwasser an und fördert es in den Behälter 12. Hat der Behälter 12 das benötigte Füllniveau zum erneuten Anfahren des Systems mittels der Speisung durch die Turbineneinheit 5 erreicht, wird die Armatur 15 geöffnet und das Entlüftungsventil 13 geschlossen. An der bzw. den Wasserentnahmestellen steht nun die maximale von der Pumpeneinheit 4 und der Pumpe 3 geförderte Wassermenge zur Verfügung. Das Entlüftungsventil 13 muss so ausgeführt sein, dass es beim Anfahren der Pumpe 3 ein Vakuum im Behälter 12 verhindert und bei Druckanstieg während des Betriebes des Systems den Behälter 12 druckdicht verschließt.To start the system, the valve 14 on the tank 12 is opened and the pump 3 started. The vent valve 13 attached to the container 12 allows air to flow into the container 12. Thus, the water from the tank 12 can flow into the pump 3 via the lines 7a and 7b. The valve 15 is initially closed when the pump 3 starts up, so the water flows via the lines 8 and 11 and the turbine unit 5 into the sea and drives the pump-turbine unit 6. The pump unit 4 of the pump-turbine unit 6 thereby sucks in sea water and conveys it into the container 12. When the container 12 has reached the required filling level for restarting the system by means of the feed from the turbine unit 5, the valve 15 is opened and the vent valve 13 closed. On the or the Water withdrawal points, the maximum amount of water delivered by the pump unit 4 and the pump 3 is now available. The vent valve 13 must be designed such that it prevents a vacuum in the container 12 when the pump 3 starts up and closes the container 12 in a pressure-tight manner when the pressure rises during the operation of the system.

Alternativ kann das Entlüftungsventil 13 weggelassen werden. Dazu ist sicherzustellen, dass das Wasserniveau im Behälter 12 nicht über dem Niveau in der Pumpe 3 liegt. Damit kann das Wasser nicht aus dem Behälter 12 durch die Pumpe 3 und die Turbineneinheit 5 ins Freie bzw. Meer strömen. Somit ist sichergestellt, dass genug Wasser zum wiederholten Anfahren des Systems nach einem Stillstand vorhanden ist.Alternatively, the vent valve 13 can be omitted. To do this, ensure that the water level in the tank 12 is not above the level in the pump 3. So that the water cannot flow out of the container 12 through the pump 3 and the turbine unit 5 into the open or sea. This ensures that there is enough water to restart the system after a standstill.

Eine weitere Ausführungsform zum Anfahren des Systems ist in der Fig. 3 dargestellt. Zusätzlich zur Verteilungseinrichtung 9, welche die Pumpe 3 über die Leitungen 8 und 10 mit den Wasserentnahmestellen und über die Leitung 11 mit der Turbineneinheit 5 der Pumpen-Turbinenaggregat 6 verbindet, ist eine zweite Verteilungseinrichtung 16 vorgesehen, deren Eingangsöffnung über die den Volumenstrom QS führende Leitung 7 an die Ausströmöffnung der Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 angeschlossen ist. Über eine achte Leitung 7c ist einer der Ausgangsöffnungen der Verteilungseinrichtung 16 mit einem Eingang einer dritten Armatur 17 verbunden. Ein Ausgang der Armatur 17 ist mit einer neunten Leitung 7d mit der Eingangsöffnung des Behälters 12 fluidisch verbunden. Dadurch ist die den Volumenstrom QS führende Leitung 7 mit der Ausgangsöffnung des Behälters 12 verbunden. Die Eingangsöffnung ist an einer der Wände des Behälters 12, in einem Bereich der sich unterhalb des Wasserpegels befindet, vorgesehen. Bei dem hier gezeigten Behälter 12 handelt es sich um einen an seiner Oberseite ganz oder teilweise offenen Behälter oder um einen Behälter mit einer Öffnung, die das Innere des Behälters 12 mit der äußeren Umgebung verbindet. Die Ausgangsöffnung am Boden des Behälters 12 ist über die Leitung 7a mit dem Eingang der Armatur 14 verbunden. Der Ausgang der Armatur 14 ist über die Leitung 7b an eine erste Eingangsöffnung einer dritten Verteilungseinrichtung 18 angeschlossen. Eine Ausgangsöffnung der Verteilungseinrichtung 18 ist mit der Ansaugöffnung der Pumpe 3 über eine zehnte Leitung 7e strömungstechnisch verbunden. Eine zweite Eingangsöffnung der Verteilungseinrichtung 18 ist mittels einer elften Leitung 7f an eine Ausgangsöffnung einer vierten Armatur 19 angeschlossen, deren Eingangsöffnung wiederum über eine zwölfte Leitung 7g mit einer Ausgangsöffnung der Verteilungseinrichtung 16 verbunden ist. Somit ist die Verteilungseinrichtung 16 mit der Verteilungseinrichtung 18 über einen Leitungsstrang, der die Leitungen 7a, 7b, 7c und 7d umfasst, und einen Leitungsstrang, der die Leitungen 7f und 7g umfasst, verbunden. An einem weiteren Ausgang der Verteilungseinrichtung 16 ist eine Entlüftungsleitung 7h vorgesehen, die an ein Entlüftungsventil 20 angeschlossen ist. Das Anschließen der Ausströmöffnung der Pumpe 3 erfolgt auf die gleiche Weise, wie bei Fig. 2 beschrieben.Another embodiment for starting up the system is shown in FIG Fig. 3 shown. In addition to the distribution device 9, which connects the pump 3 via the lines 8 and 10 to the water tapping points and via the line 11 to the turbine unit 5 of the pump-turbine unit 6, a second distribution device 16 is provided, the inlet opening of which leads via the volume flow Q S Line 7 is connected to the outflow opening of the pump unit 4 of the pump turbine unit 6. One of the outlet openings of the distribution device 16 is connected to an inlet of a third fitting 17 via an eighth line 7c. An outlet of the fitting 17 is fluidly connected to the inlet opening of the container 12 by a ninth line 7d. As a result, the line 7 carrying the volume flow Q S is connected to the outlet opening of the container 12. The entrance opening is provided on one of the walls of the container 12, in an area which is below the water level. The container 12 shown here is a container that is completely or partially open on its upper side or a container with an opening that connects the interior of the container 12 to the external environment. The outlet opening at the bottom of the container 12 is connected to the inlet of the fitting 14 via the line 7a. The outlet of the fitting 14 is connected via line 7b to a first inlet opening of a third distribution device 18. An outlet opening of the distribution device 18 is fluidically connected to the suction opening of the pump 3 via a tenth line 7e. A second entrance opening the distribution device 18 is connected by means of an eleventh line 7f to an outlet opening of a fourth fitting 19, the inlet opening of which is in turn connected to an outlet opening of the distribution device 16 via a twelfth line 7g. Thus, the distribution device 16 is connected to the distribution device 18 via a wiring harness that includes the wires 7a, 7b, 7c and 7d and a wiring harness that includes the wires 7f and 7g. At a further outlet of the distribution device 16, a ventilation line 7h is provided, which is connected to a ventilation valve 20. The discharge opening of the pump 3 is connected in the same way as in Fig. 2 described.

Zum Anfahren des Systems mit dem offenen Behälter 12 müssen zunächst die Armaturen 15, 17, 19 geschlossen und Armatur 14 und Entlüftungsventil 20 geöffnet werden bzw. geöffnet sein. Die geschlossene Armatur 17 verhindert ein Entweichen des Wassers aus dem Behälter 12, bedingt durch Niveauunterschiede von Behälter 12 und der Pumpeneinheit 4. Über die Leitungen 7a, 7b und 7e strömt das Wasser in die Pumpe 3 und von dort über die Leitungen 8 und 11 sowie die Turbineneinheit 5 ins Meer. Die Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 fördert Wasser in die Leitung 7 bis die in dieser vorhandene Luft aus dem Entlüftungsventil 20 entweichen kann. Sobald an dem Entlüftungsventil 20 Wasser angelangt, wird das Entlüftungsventil 20 geschlossen und die Armatur 17 geöffnet. Das von der Pumpeneinheit 4 geförderte Wasser wird über die Leitungen 7, 7c und 7d in den Behälter 12 gefördert. Hat der Behälter 12 das definierte Füllniveau zum erneuten Anfahren des Systems erreicht, werden die Armaturen 14 und 17 geschlossen und die Armaturen 15 und 19 werden geöffnet. Die Armatur 14 verhindert das Entweichen des Wassers aus dem Behälter 12 und die Armatur 19 ermöglicht das Speisen der Pumpe 3 durch die Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6.To start up the system with the open container 12, the fittings 15, 17, 19 must first be closed and the fitting 14 and vent valve 20 must be opened or opened. The closed fitting 17 prevents the water from escaping from the container 12 due to the level differences between the container 12 and the pump unit 4. The water flows into the pump 3 via the lines 7a, 7b and 7e and from there via the lines 8 and 11 and the turbine unit 5 into the sea. The pump unit 4 of the pump turbine unit 6 conveys water into the line 7 until the air present in it can escape from the vent valve 20. As soon as water arrives at the vent valve 20, the vent valve 20 is closed and the fitting 17 is opened. The water conveyed by the pump unit 4 is conveyed into the container 12 via the lines 7, 7c and 7d. When the container 12 has reached the defined filling level for restarting the system, the fittings 14 and 17 are closed and the fittings 15 and 19 are opened. The fitting 14 prevents the water from escaping from the container 12 and the fitting 19 enables the pump 3 to be fed by the pump unit 4 of the pump-turbine assembly 6.

Wird, wie in der Fig. 4 gezeigt, die Armatur 17 als Rückschlagventil, beispielsweise als eine Rückschlagklappe, ausgebildet, kann auf die in der Fig. 3 gezeigte, mit einer Ausgangsöffnung der Verteilungseinrichtung 16 fluidisch verbundene Entlüftungsleitung 7h und das Entlüftungsventil 20 verzichtet werden. Die als Rückschlagventil ausgebildete Armatur 17 verhindert ein Entweichen des Wassers, bedingt durch Niveauunterschiede von Behälter 12 und der Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6, und lässt zudem die sich im System befindliche Luft über den offenen Behälter 12 entweichen.Will, as in the Fig. 4 shown, the valve 17 is designed as a check valve, for example as a check valve, can in the Fig. 3 shown, with an outlet opening of the distribution device 16 fluidly connected vent line 7h and the vent valve 20 are dispensed with. The valve 17 designed as a check valve prevents the water from escaping due to level differences of container 12 and the pump unit 4 of the pump turbine unit 6, and also allows the air in the system to escape through the open container 12.

Zum Anfahren des Systems, das heißt, wenn die Pumpe 3 gestartet wird, sind die Armaturen 15 und 19 geschlossen. Die Armatur 14 wird geöffnet und über die Leitungen 7a, 7b und 7e strömt das Wasser aus dem Behälter 12 in die an die Verteilungseinrichtung 18 angeschlossene Pumpe 3 und von dort über die Leitungen 8 und 11 sowie die Turbineneinheit 5 ins Meer. Die Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 fördert das dem Meer entnommene Wasser über die Leitungen 7, 7c und 7d in den Behälter 12. Hat der Behälter 12 sein definiertes Füllniveau zum erneuten Anfahren des Systems wieder erreicht, wird die Armatur 14 geschlossen, um das Wasser im Behälter 12 zu belassen und die Armaturen 15 und 19 geöffnet, um die Pumpe 3 über die Pumpeneinheit 4 und die Leitungen 7, 7g, 7f und 7e mit dem von der Pumpeneinheit 4 aus dem Meer entnommenen Wasser zu speisen und eine oder mehrere Wasserentnahmestellen mit der geforderten Wassermenge zu versorgen.To start the system, that is, when the pump 3 is started, the fittings 15 and 19 are closed. The valve 14 is opened and the lines 7a, 7b and 7e flow the water from the container 12 into the pump 3 connected to the distribution device 18 and from there via lines 8 and 11 and the turbine unit 5 into the sea. The pump unit 4 of the pump turbine unit 6 conveys the water removed from the sea via the lines 7, 7c and 7d into the container 12. When the container 12 has reached its defined filling level for restarting the system, the valve 14 is closed in order to Leave water in the tank 12 and the fittings 15 and 19 opened to feed the pump 3 via the pump unit 4 and the lines 7, 7g, 7f and 7e with the water taken from the sea by the pump unit 4 and one or more water withdrawal points to supply with the required amount of water.

Erfolgt, wie in der Fig. 5 gezeigt, der Zulauf in den an der Oberseite ganz oder teilweise offenen Behälter 12 in einem Bereich oberhalb des Wasserpegels, wird sichergestellt, dass die sich im System befindliche Luft entweichen und trotz der gegebenen NiveauUnterschiede kein Wasser aus dem Behälter 12 durch die Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6, bedingt durch die Niveauunterschiede entweichen kann. Der Aufbau vereinfacht sich dahingehend, dass auch hier auf die in der Fig. 3 gezeigten Bauteile Armatur 17, Entlüftungsleitung 7h und Entlüftungsventil 20 verzichtet werden kann. Die Leitung 7c ist mit einem Ende an eine Ausgangsöffnung der Verteilungseinrichtung 16 angeschlossen und endet mit dem anderen Ende in einem Bereich oberhalb des Wasserpegels des Behälters 12. Der Anschluss der Leitungen 7a, 7b, 7e, 7f und 7g sowie der Armatur 19 erfolgt analog zu dem in der Fig. 3 dargestellten Ausführungsbeispiel.Takes place as in the Fig. 5 shown, the inflow into the tank 12, which is completely or partially open at the top, in an area above the water level, ensures that the air in the system escapes and, despite the given level differences, no water from the tank 12 through the pump unit 4 of the pump -Turbine unit 6, due to the level differences can escape. The structure is simplified to the extent that here too in the Fig. 3 Components shown fitting 17, vent line 7h and vent valve 20 can be omitted. The line 7c is connected at one end to an outlet opening of the distribution device 16 and ends at the other end in an area above the water level of the container 12. The lines 7a, 7b, 7e, 7f and 7g and the fitting 19 are connected analogously to FIG that in the Fig. 3 illustrated embodiment.

Beim Anfahren der Pumpe 3 sind die Armaturen 15 und 19 geschlossen und die Armatur 14 geöffnet. Über die Leitungen 7a, 7b und 7e strömt das Wasser aus dem Behälter 12 in die mit der Verteilungseinrichtung 18 verbundene Pumpe 3 und von dort über die Leitungen 8 und 11 sowie die Turbineneinheit 5 ins Meer. Die Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 fördert Wasser über die Leitungen 7 und 7c in den Behälter 12, bis dieser den definierten Füllstand zum erneuten Anfahren des Systems erreicht hat. Danach wird die Armatur 14 geschlossen, damit kein Wasser mehr aus dem Behälter gefördert werden kann. Die Armaturen 15 und 19 werden geöffnet, um die Pumpe 3 über die Pumpeneinheit 4, die Leitungen 7, 7g, 7f und 7e mit dem von der Pumpeneinheit 4 aus dem Meer entnommenen Wasser zu speisen, damit an den Wasserentnahmestellen der erforderliche erste Teilvolumenstrom QF bereitsteht.
Die Fig. 3 bis 5 sind mit einem an seiner Oberseite offenen Behälter 12 dargestellt, der alternativ, gemäß Fig. 1, als geschlossener Behälter ausgebildet sein kann.
When the pump 3 starts up, the fittings 15 and 19 are closed and the fitting 14 is open. The water flows via the lines 7a, 7b and 7e from the container 12 into the pump 3 connected to the distribution device 18 and from there via the Lines 8 and 11 and the turbine unit 5 into the sea. The pump unit 4 of the pump turbine unit 6 conveys water via the lines 7 and 7c into the container 12 until it has reached the defined fill level for restarting the system. The valve 14 is then closed so that water can no longer be conveyed from the container. The fittings 15 and 19 are opened in order to feed the pump 3 via the pump unit 4, the lines 7, 7g, 7f and 7e with the water removed from the sea by the pump unit 4, so that the required first partial volume flow Q F at the water withdrawal points ready.
The 3 to 5 are shown with a container 12 open on its top, which, alternatively, according to FIG Fig. 1 , can be designed as a closed container.

Die Fig. 6 zeigt ein weiteres Ausführungsbeispiel. Die Ausströmöffnung der Pumpeneinheit 4 ist mit einer Ansaugöffnung einer Pumpeinrichtung 21, vorzugsweise eine Hochdruckpumpe, verbunden. Die Ausströmöffnung der Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 ist dabei über die den Volumenstrom QS führende Leitung 7 an die Eingangsöffnung der Verteilungseinrichtung 18 angeschlossen. Die erste Ausgangsöffnung der Verteilungseinrichtung 18 führt über die Leitung 7e zur Ansaugöffnung der Pumpe 3. Die Ausströmöffnung der Pumpe 3 ist über die den ersten Teilvolumenstrom QF führende Leitung 10 an die wenigstens eine Wasserentnahmestelle angeschlossen. Die zweite Ausgangsöffnung der Verteilungseinrichtung 18 ist über eine dreizehnte Leitung 11a an eine Ansaugöffnung der Pumpeinrichtung 21 angeschlossen. Eine Ausströmöffnung der Pumpeinrichtung 21 ist über die den zweiten Teilvolumenstrom QT führende Leitung 11 mit der Eingangsöffnung der Turbineneinheit 5 des Pumpen-Turbinenaggregats 6 verbunden. Während in den Fig. 1 bis 5 die Ausströmöffnung der Pumpe 3 über die Verteilungseinrichtung 9, also indirekt, mit der Eingangsöffnung der Turbineneinheit 5 verbunden ist, ist in diesem Ausführungsbeispiel die Ausströmöffnung der Pumpeinrichtung direkt mit der Turbineneinheit verbunden. Das Speisewasser für die Pumpeinrichtung 21 wird somit als Teilvolumenstrom der Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 entnommen. Die Pumpeinrichtung 21 weist in der Regel eine geringere Fördermenge als die Pumpe 3 auf und fördert den zweiten Teilvolumenstrom QT für den Antrieb der Turbineneinheit 5. Die Pumpeinrichtung 21 wird vorzugsweise mittels des vorhandenen Motors 2 angetrieben. Alternativ kann auch eine andere Antriebseinrichtung für die Pumpeinrichtung 21 vorgesehen sein.The Fig. 6 shows a further embodiment. The outflow opening of the pump unit 4 is connected to a suction opening of a pump device 21, preferably a high-pressure pump. The outflow opening of the pump unit 4 of the pump turbine unit 6 is connected via the line 7 carrying the volume flow Q S to the inlet opening of the distribution device 18. The first outlet opening of the distribution device 18 leads via the line 7e to the suction opening of the pump 3. The outflow opening of the pump 3 is connected to the at least one water extraction point via the line 10 carrying the first partial volume flow Q F. The second outlet opening of the distribution device 18 is connected to a suction opening of the pump device 21 via a thirteenth line 11a. An outflow opening of the pump device 21 is connected via the line 11 carrying the second partial volume flow Q T to the inlet opening of the turbine unit 5 of the pump-turbine unit 6. While in the 1 to 5 the outflow opening of the pump 3 is connected via the distribution device 9, ie indirectly, to the inlet opening of the turbine unit 5, in this embodiment the outflow opening of the pump device is connected directly to the turbine unit. The feed water for the pump device 21 is thus withdrawn as a partial volume flow of the pump unit 4 of the pump turbine unit 6. The pump device 21 generally has a smaller delivery rate than the pump 3 and promotes the second partial volume flow Q T for driving the turbine unit 5 Pump device 21 is preferably driven by means of the existing motor 2. Alternatively, another drive device for the pump device 21 can also be provided.

Bei der in der Fig. 7 dargestellten Ausführungsform ist auf der Plattform nur die in der Leitung 11 eingebaute und durch den Motor 2 angetriebene Pumpeinrichtung 21 vorgesehen. Die Ausströmöffnung der Pumpeneinheit 4 ist über die den Volumenstrom QS führende Leitung 7 an die Eingangsöffnung der Verteilungseinrichtung 18 angeschlossen. Die erste Ausgangsöffnung der Verteilungseinrichtung 18 ist über die den ersten Teilvolumenstrom QF führende Leitung 10 an die wenigstens eine nicht dargestellte Wasserentnahmestelle angeschlossen. Die zweite Ausgangsöffnung der Verteilungseinrichtung 18 ist über die den zweiten Teilvolumenstrom QT führende Leitung 11a an die Ansaugöffnung der Pumpeinrichtung 21 angeschlossen. Die Pumpeinrichtung 21 auf der Plattform erhält somit ihr Speisewasser von der Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6. Über die den zweiten Teilvolumenstrom QT führende Leitung 11 ist die Ausströmöffnung der Pumpeinrichtung 21 mit der Ansaugöffnung der Turbineneinheit 5 des unter dem Meeresspiegel angeordneten Pumpen-Turbinenaggregats 6 strömungstechnisch verbunden. Die Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 übernimmt dabei die Aufgabe der in den Fig. 1 bis 6 dargestellten Pumpe 3 und stellt damit den benötigten ersten Teilvolumenstrom QF für die wenigstens eine Wasserentnahmestelle, beispielsweise für die Brandbekämpfung, die benötigte Druckhöhe HD plus die Saughöhe HS sowie den zweiten Teilvolumenstrom QT zur Speisung des Pumpen-Turbinenaggregats 6 zur Verfügung.
Die Ausgestaltung des Wasserhebesystems gemäß den Figuren 6 und 7 mit einem Wasservorrat entspricht im Wesentlichen den zu den Fig. 1 bis 5 beschriebenen und in den entsprechenden Figuren dargestellten Möglichkeiten. Der Behälter 12 ist auf der Offshore-Anlage 1 platziert, wobei eine Ausgangsöffnung des Behälters 12 mit der Ansaugöffnung der Pumpe 3 und /oder der Ansaugöffnung der Pumpeinrichtung 21 und eine Eingangsöffnung Behälters 12 mit der Ausströmöffnung der Pumpeneinheit 4 des Pumpen-Turbinenaggregats 6 verbunden ist.
At the in the Fig. 7 In the embodiment shown, only the pump device 21 installed in line 11 and driven by motor 2 is provided on the platform. The outflow opening of the pump unit 4 is connected to the inlet opening of the distribution device 18 via the line 7 carrying the volume flow Q S. The first outlet opening of the distribution device 18 is connected via the line 10 carrying the first partial volume flow Q F to the at least one water extraction point, not shown. The second outlet opening of the distribution device 18 is connected to the suction opening of the pump device 21 via the line 11a carrying the second partial volume flow Q T. The pump device 21 on the platform thus receives its feed water from the pump unit 4 of the pump turbine unit 6. Via the line 11 carrying the second partial volume flow Q T , the outflow opening of the pump device 21 with the suction opening of the turbine unit 5 of the pump turbine unit arranged below sea level 6 fluidically connected. The pump unit 4 of the pump turbine unit 6 takes on the task of in the 1 to 6 Pump 3 shown and thus provides the required first partial volume flow Q F for the at least one water extraction point, for example for fire fighting, the required pressure head H D plus the suction head H S and the second partial volume flow Q T for supplying the pump turbine unit 6.
The design of the water lifting system according to the Figures 6 and 7 with a water supply essentially corresponds to that of 1 to 5 described possibilities and shown in the corresponding figures. The container 12 is placed on the offshore installation 1, an outlet opening of the container 12 being connected to the suction opening of the pump 3 and / or the suction opening of the pump device 21 and an inlet opening of the container 12 being connected to the outlet opening of the pump unit 4 of the pump turbine unit 6 ,

Da das Pumpen-Turbinenaggregat 6 dauerhaft im Meerwasser mit hohem Salzgehalt verweilt, muss es gegen Festsetzen des Rotors geschützt werden. Dazu kann beispielsweise, wie in der Fig. 8 dargestellt, ein Elektromotor 22 an das Pumpen-Turbinenaggregat 6 angebracht werden, der dieses in regelmäßigen Abständen rotieren lässt. Dabei genügt eine langsame Rotationsbewegung ohne dass das die Pumpeneinheit 4 Wasser fördert. Vorteilhafterweise kommt ein Elektromotor mit hoher Polzahl zum Einsatz. Dadurch wird der Einsatz eines Getriebes vermieden. Der Elektromotor muss zudem auf die Drehzahlen im Betrieb des Pumpen-Turbinenaggregats 6 ausgelegt sein. Alternativ dazu könnte auch das gesamte System in regelmäßigen Abständen angefahren werden. So könnte die Funktion überprüft und das Festsetzen des Aggregats verhindert werden.
Die Figuren 1 bis 8 zeigen schematisch eine Offshore-Anlage anhand welcher Aufbau und Funktionsweise des Wasserhebesystems erörtert wurden. Alternativ kann das erfindungsgemäße Wasserhebesystem ebenfalls auf einem Schiff oder ähnlichem seinen Einsatz finden. Bezugszeichenliste 1 Offshore-Anlage 21 Pumpeinrichtung 2 Motor 22 Elektromotor 3 Pumpe 4 Pumpeneinheit QS Volumenstrom 5 Turbineneinheit QF erster Teilvolumenstrom 6 Pumpen-Turbinenaggregat QT zweiter Teilvolumenstrom 7 Leitung HS Saughöhe 7a Leitung Hgeo geodätische Höhe 7b Leitung 7c Leitung 7d Leitung 7e Leitung 7f Leitung 7g Leitung 7h Entlüftungsleitung 8 Leitung 9 Verteilungseinrichtung 10 Leitung 10a Leitung 11 Leitung 11a Leitung 12 Behälter 13 Entlüftungsventil 14 Armatur 15 Armatur 16 Verteilungseinrichtung 17 Armatur 18 Verteilungseinrichtung 19 Armatur 20 Entlüftungsventil
Since the pump turbine unit 6 remains permanently in the sea water with a high salt content, it must be protected against the rotor sticking. For example, as in the Fig. 8 shown, an electric motor 22 are attached to the pump-turbine unit 6, which rotates it at regular intervals. A slow rotational movement is sufficient without the pump unit 4 conveying water. An electric motor with a high number of poles is advantageously used. This avoids the use of a gearbox. The electric motor must also be designed for the speeds in operation of the pump turbine unit 6. Alternatively, the entire system could be started up at regular intervals. This could check the function and prevent the unit from jamming.
The Figures 1 to 8 schematically show an offshore plant on the basis of which structure and functioning of the water lifting system were discussed. Alternatively, the water lifting system according to the invention can also be used on a ship or the like. LIST OF REFERENCE NUMBERS 1 Offshore installation 21 pumping device 2 engine 22 electric motor 3 pump 4 pump unit Q S flow 5 turbine unit Q F first partial volume flow 6 Pump Turbine Generator Q T second partial volume flow 7 management H S Suction 7a management H geo geodetic height 7b management 7c management 7d management 7e management 7f management 7g management 7h vent line 8th management 9 distribution facility 10 management 10a management 11 management 11a management 12 container 13 vent valve 14 fitting 15 fitting 16 distribution facility 17 fitting 18 distribution facility 19 fitting 20 vent valve

Claims (9)

  1. Offshore installation, such as oil and/or gas production platforms, or ships or the like, having a water-lifting system, in particular fire-extinguishing system, having a pump which has an intake opening and an outflow opening, having a pump-turbine assembly which has a pump unit and a turbine unit, wherein the pump unit and the turbine unit each have an intake or inlet opening and an outflow opening, and having a line which connects the outflow opening of the pump unit of the pump-turbine assembly and the intake opening of the pump and which guides a volume flow, wherein the volume flow (QS) comprises a first partial volume flow (QF) and a second partial volume flow (QT), wherein a line (10) guiding the first partial volume flow (QF) is connected to at least one water extraction point and a line (11) guiding the second partial volume flow (QT) is connected to the inlet opening of the turbine unit (5) of the pump-turbine assembly (6),
    characterized in that,
    on the offshore installation (1), a water supply which is accommodated in a container (12) and which serves for starting the system is provided, wherein the line (7) guiding the volume flow (QS) is connected to an inlet opening of the container (12).
  2. Offshore installation according to Claim 1, characterized in that the outflow opening of the turbine unit (5) is connected to a water reservoir or opens into the water reservoir.
  3. Offshore installation according to either of Claims 1 and 2, characterized in that an outlet opening of the container (12) is connected to the intake opening of the pump (3).
  4. Offshore installation according to one of Claims 1 to 3, characterized in that the line (7) guiding the volume flow (QS) is connected to the outlet opening of the container (12).
  5. Offshore installation according to one of Claims 1 to 4, characterized in that the outflow opening of the pump (3) is connected to the at least one water extraction point via the line (10) guiding the first partial volume flow (QF).
  6. Offshore installation according to one of Claims 1 to 5, characterized in that the outflow opening of the pump unit (4) is connected to an intake opening of a further pump device (21).
  7. Offshore installation according to one of Claims 1 to 4, characterized in that an outflow opening of the further pump (21) is connected to the inlet opening of the turbine unit (5) of the pump-turbine assembly (6) via the line (11) guiding the second partial volume stream (QT).
  8. Offshore installation according to one of Claims 1 to 7, characterized in that an electric motor (22) is mounted on the pump-turbine assembly (6).
  9. Method for operating an offshore installation having a water-lifting system according to one of Claims 1 to 8, wherein the first partial volume flow (QF) of the volume flow (QS) extracted from the water reservoir and conveyed via the line (7) is conveyed to at least one water extraction point by means of the line (10) guiding the first partial volume flow (QF), and the second partial volume flow (QT) is conveyed back to the water reservoir by means of the line (11) guiding the second partial volume flow (QT), characterized in that a water supply for starting the system is accommodated in a container (12) and the line (7) guiding the volume flow (QS) is connected to an inlet opening of the container (12) .
EP12794267.0A 2011-12-12 2012-11-22 Water lifting system and method having such a system Active EP2791512B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110088246 DE102011088246A1 (en) 2011-12-12 2011-12-12 Water lifting system and method with such a system
PCT/EP2012/073301 WO2013087387A1 (en) 2011-12-12 2012-11-22 Water lifting system and method having such a system

Publications (2)

Publication Number Publication Date
EP2791512A1 EP2791512A1 (en) 2014-10-22
EP2791512B1 true EP2791512B1 (en) 2020-01-01

Family

ID=47263310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12794267.0A Active EP2791512B1 (en) 2011-12-12 2012-11-22 Water lifting system and method having such a system

Country Status (9)

Country Link
US (1) US20140299196A1 (en)
EP (1) EP2791512B1 (en)
CN (1) CN104126073A (en)
AR (1) AR090042A1 (en)
BR (1) BR112014014171B1 (en)
DE (1) DE102011088246A1 (en)
IN (1) IN2014KN01226A (en)
MX (1) MX2014006340A (en)
WO (1) WO2013087387A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015411542A1 (en) 2015-10-08 2018-05-10 Energy Harvest As Liquid lifting device
FI127486B (en) * 2017-02-15 2018-07-13 Rolls Royce Oy Ab A fire extinguisher and a seagoing vessel
WO2019220456A1 (en) 2018-05-17 2019-11-21 Parmar Ukalal Devjibhai Submersible water lifting assembly and automatic fire fighting system for unmanned platforms having said system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE624310A (en) *
DE643151C (en) 1937-03-30 Mario Tamini Device for starting and overcoming large suction heights on portable pumps for fire extinguishing and similar purposes
US1982841A (en) * 1932-02-22 1934-12-04 Tamini Mario Priming mechanism for portable pumps
US2516822A (en) * 1946-01-18 1950-07-25 W S Darley & Company Combined turbine and centrifugal booster pump
US2428256A (en) * 1946-03-13 1947-09-30 W S Darley & Company Pumping apparatus
US2710579A (en) * 1949-04-28 1955-06-14 Kriegbaum Otto Deep-well pumps
BE537941A (en) * 1954-05-06 1959-07-03 P Bungartz CENTRIFUGAL PUMP WITH VERTICAL SHAFT IMMERSED IN THE LIQUID TO BE PUMPED.
BE545097A (en) * 1955-02-18 1959-10-09 Diebold & Cie PUMPING SYSTEM AND ITS STARTING DEVICE.
DE1045809B (en) * 1955-12-24 1958-12-04 Dipl Berging Otto Vedder Arrangement for lifting a liquid above greater heights
US3299815A (en) * 1965-06-17 1967-01-24 Worthington Corp Multistage, turbine driven booster pump system
US4003678A (en) * 1975-02-10 1977-01-18 E M C Energies, Inc. Fluid operated well turbopump
US4067665A (en) * 1975-06-16 1978-01-10 Schwartzman Everett H Turbine booster pump system
US4215976A (en) * 1978-05-10 1980-08-05 Worthington Pump, Inc. Turbine-impeller pump for use in geothermal energy recovery systems
US4786239A (en) * 1983-06-15 1988-11-22 Hale Fire Pump Company Pumping system selectably operable as a fire pump or a hydraulic pump
GB2220710A (en) * 1988-05-19 1990-01-17 Atomic Energy Authority Uk Fluidic pumps
US5558502A (en) * 1993-12-24 1996-09-24 Pacific Machinery & Engineering Co., Ltd. Turbo pump and supply system with the pump
CA110124S (en) * 2005-02-17 2006-06-19 Scott Paper Ltd Paper towel
US7566208B2 (en) * 2005-11-08 2009-07-28 Schlumberger Technology Corporation Non-electric drive mechanism for a submersible pump
CN2844483Y (en) * 2005-11-14 2006-12-06 杨瑞平 Full-automatic water elevator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140299196A1 (en) 2014-10-09
AR090042A1 (en) 2014-10-15
BR112014014171B1 (en) 2021-04-13
EP2791512A1 (en) 2014-10-22
DE102011088246A1 (en) 2013-06-13
CN104126073A (en) 2014-10-29
MX2014006340A (en) 2014-06-23
IN2014KN01226A (en) 2015-10-16
BR112014014171A2 (en) 2017-06-13
WO2013087387A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
EP2246562B1 (en) Gearbox for a wind turbine
EP2791512B1 (en) Water lifting system and method having such a system
WO2014187648A1 (en) Multistage self-suctioning centrifugal pump unit
EP2694804B1 (en) Method and device for quick oil change of drives in wind turbines
DE1803293C3 (en)
EP1999376A1 (en) Method for operating a compressor unit and associated compressor unit
DE69806865T2 (en) PUMPING SYSTEM FOR A TWO-PHASE LIQUID / GAS OUTLET
WO2012117095A1 (en) Oil supply system and method for supplying oil for a turboprop engine
CH627528A5 (en) OIL PUMP, ESPECIALLY LUBRICATING OIL PUMP FOR TURBO MACHINES.
EP2738031A1 (en) Tank system for a motor vehicle
DE4432224A1 (en) Method to improve suction efficiency of flow demand pump
DE102015209573A1 (en) Lubricating device and method for lubricating a transmission for a wind turbine
EP3673178B1 (en) Pipe axial pump
AT521042B1 (en) Method and device for increasing the discharge capacity of a gravity pipe
DE19625992C1 (en) Emptying ship's tank filled with oil or chemicals
WO2004072484A1 (en) Device for transporting fluids
EP1159553B1 (en) Hydraulic drive
DE968315C (en) Pumping system
AT139011B (en) Device for starting mobile pumps designed for different suction heights.
DE102018216092A1 (en) pump assembly
DE19901729A1 (en) Centrifugal pump for feeding liquids containing solids, e.g. slurry
DE1426877A1 (en) Lubricating oil supply system for steam or gas turbine units
DE1528872A1 (en) Method and device for operating a machine set consisting of a pump, drive motor and turbine
DE8124528U1 (en) CENTRIFUGAL SUBMERSIBLE PUMP
DE2251844B2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KSB SE & CO. KGAA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180903

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 1/06 20060101AFI20190404BHEP

Ipc: A62C 29/00 20060101ALI20190404BHEP

Ipc: A62C 3/10 20060101ALI20190404BHEP

Ipc: F04D 9/04 20060101ALI20190404BHEP

Ipc: F04D 13/04 20060101ALI20190404BHEP

INTG Intention to grant announced

Effective date: 20190418

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190806

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1220094

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015676

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015676

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201122

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1220094

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231123

Year of fee payment: 12