EP2784600A2 - Procédé de fabrication d'une pièce micro-mécanique essentiellement plane, et pièce micro-mécanique comportant au moins une portion formée d'oxyde de silicium - Google Patents

Procédé de fabrication d'une pièce micro-mécanique essentiellement plane, et pièce micro-mécanique comportant au moins une portion formée d'oxyde de silicium Download PDF

Info

Publication number
EP2784600A2
EP2784600A2 EP14162203.5A EP14162203A EP2784600A2 EP 2784600 A2 EP2784600 A2 EP 2784600A2 EP 14162203 A EP14162203 A EP 14162203A EP 2784600 A2 EP2784600 A2 EP 2784600A2
Authority
EP
European Patent Office
Prior art keywords
channels
walls
micromechanical component
cellular structure
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14162203.5A
Other languages
German (de)
English (en)
Other versions
EP2784600A3 (fr
Inventor
Cornel Marxer
Jean-Philippe ROBERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sercalo Microtechnology Ltd
Original Assignee
Silicior SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicior SA filed Critical Silicior SA
Publication of EP2784600A2 publication Critical patent/EP2784600A2/fr
Publication of EP2784600A3 publication Critical patent/EP2784600A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/02Escapements permanently in contact with the regulating mechanism
    • G04B15/04Cylinder escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the present invention relates to processes for manufacturing micromechanical parts, essentially planar, from a silicon substrate. It relates more specifically to a method of manufacturing such parts, formed at least locally, of silicon oxide. The present invention also relates to micromechanical parts comprising at least one portion consisting of silicon oxide.
  • silicon in the mechanical precision watch industry has grown significantly in recent years. It is used for the manufacture of essentially flat micromechanical parts, such as anchors, escape wheels, spirals or pendulums. Indeed, silicon advantageously replaces, in some applications, metals or metal alloys, and this for various reasons. Its machining techniques, by photolithography and deep reactive ion etching (DRIE), allow to obtain forms of great complexity with a precision of the order of one micron, from substrates of thin silicon or silicon on insulator. In addition, silicon is insensitive to the magnetic field, and has interesting mechanical properties from the tribological point of view. For more information on these topics, please refer to the documents EP 1422436 , WO2009068091 and EP 2284629 .
  • Silicon oxide SiO 2 is transparent and bright, as long as its surface is perfectly polished. Its aesthetic potential is therefore important. Nevertheless, the etching of the silicon oxide is of a lesser precision and a speed lower than that of the silicon. The resin layer necessary for the protection of the oxide during the etching process is important, and the final aesthetic appearance is poor, particularly because of the roughness produced by the etching. The manufacture of micro-mechanical silicon oxide parts by the methods known to those skilled in the art, is difficult and the result is unsatisfactory.
  • the method according to the invention makes it possible to manufacture micromechanical parts comprising at least a portion of silicon oxide, without using an etching step of the oxide.
  • the surface state of the oxide is not affected, and the piece has a locally transparent and glossy appearance that can produce a particularly aesthetic optical effect.
  • the invention also relates to a micromechanical component comprising at least one portion formed of silicon oxide.
  • the formed portion of silicon oxide has a plurality of adjacent channels separated by thin walls, forming a rigid cell structure.
  • the manufacturing method according to the invention of an essentially planar micromechanical component preferentially applies, for economic reasons, to the batch production or 'batch' of a multitude of small parts. It comprises a first step a, of machining one or more micromechanical parts 1, from a flat silicon substrate 10, so as to form the contours.
  • the substrate 10 is, for example, consisting of a monocrystalline or poly-crystalline silicon plate, typically between 50 and 200 micrometers thick, the face of which advantageously has a mirror-polished appearance.
  • a film 11 made of a material other than silicon adhering to the rear face of the plate 10 acts as a barrier layer.
  • the film 11, of thickness 0.5 to 20 microns, consists for example of aluminum, gold, parylene, or other material capable of being deposited in a thin layer.
  • a silicon-on-insulator plate, better known as SOI (Silicon On Insulator) will be used.
  • the parts 1 are machined by photolithography and etching methods well known to those skilled in the art, or by any other alternative method for micromachining silicon with a resolution of about one micrometer.
  • the Deep Reactive Ion Etching Deep Reactive Ion Etching (DRIE) method will be used to etch the silicon vertically to a thickness of up to 300 microns.
  • DRIE Deep Reactive Ion Etching Deep Reactive Ion Etching
  • Thin connecting beams 12, visible in figure 2 connect the parts 1 to each other and to the substrate 10, so as to maintain said substrate in one piece during the following steps.
  • a plurality of adjacent channels 13, separated by thin walls 14, are machined perpendicularly to the plane of the part 1.
  • the thin-walled channel assembly 13 1 forms a rigid cellular structure 15 extending less on a portion 15 of the part 1.
  • the rigidity of the cellular structure 15 is conferred by the ratio between the radial and longitudinal dimensions of the channels 13, which is between 5 and 30.
  • the channels 13 being deep relative to their width, they oppose compression and torsion forces.
  • Their section may be square, rectangular, circular, or other, depending on the use and the nature of the parts 1. Particularly advantageously, one will opt for a hexagonal section, forming a honeycomb structure ', whose mechanical properties are well determined and provide optimum rigidity for a minimal amount of material.
  • the thin walls 14 have a thickness typically between 0.5 and 5 micrometers for reasons which will become apparent in the remainder of this disclosure.
  • the arrangement of the channels 13 may be periodic or any, provided that the thickness of the walls 14 remains within the aforementioned range.
  • the machining of the channels 13 separated by thin walls 14 makes it possible to constitute a rigid cellular structure 15 formed essentially of vacuum, but nevertheless rigid and resistant to mechanical stresses.
  • the cell structure 15 thus formed is more or less extended on the surface of the parts 1, depending on the desired aesthetic effect.
  • a solid zone 16, intended for fastening parts 1 or any other mechanical function will be free of structuring, in order to withstand mounting and clamping forces on an axis or other metal part.
  • the cellular structure 15 may be limited by a casing 17, of thickness substantially equal to that of the thin walls 14, drawing the contours of the parts 1, and intended to close all the channels 13.
  • machining step 1 of the workpiece 1 and the channels 13 can be divided into two distinct steps, the first intended to form the contours of the workpiece 1, the second dedicated to the etching of the channels 13.
  • the differences in terms of dimension of structures can be significant from one stage to another, and the skilled person may be required to choose different etching parameters, so as to optimize each of them. It follows that step a will be or not divided into two substeps, depending on cost or manufacturing constraints.
  • the film 11 is removed on the back side by a chemical or physicochemical process.
  • the parts 1 are then secured between them and the substrate 10, thanks to the fine beams 12 which connect them.
  • a third step consists of a thermal oxidation of the whole of the substrate 10 and of the parts 1 which form it, for a time sufficient to oxidize the thin walls 14 to the core.
  • Such an oxidation is generally a operation at high temperature, for example between 1000 ° C and 1200 ° C, in a humid atmosphere, of a duration of the order of twenty hours or more.
  • the precise parameters of the oxidation are determined by those skilled in the art, depending on the thickness of the thin walls 14 to be oxidized, and other data, such as the exact nature of the substrate 10 (polycrystalline or monocrystalline), its crystalline orientation, the desired final rendering, etc.
  • the thickness of the walls 14 is multiplied approximately by a factor 2.17 during the oxidation, that is, the channels 13, the walls 14, and more generally, all the different portions of the parts 1 are dimensioned, during the step a, taking into account the gain in material procured by oxidation.
  • nodes 20 where the walls 14 compete are formed by the convergence of three or four walls 14. They have a diagonal dimension greater than the thickness of the walls 14. It follows that their core 21 can remain stainless after the oxidation step c, as shown in figure 3b . The piece 1 then has an unsightly appearance. To overcome this drawback, it will avoid the convergence of four walls 14 in a node 20, as shown in FIG. figure 3a because no possibility of thinning of their heart is possible. Rather, nodes 20 formed of the convergence of three walls 14, as illustrated in FIG. figure 3c , allowing thinning 22 of the node 20 on the opposite side to one of the three walls 14. This thinning 22 is compensated by the contribution of material provided by the oxidation, visible in figure 3d .
  • surface treatments may be carried out locally or on all of the parts 1, after the thermal oxidation step c.
  • a deposition of silicon nitride or diamond makes it possible to increase the hardness of the pieces 1, whereas a physicochemical type of metal deposition, for example a gold deposit, on the anthracite zones confers an appearance even more aesthetic.
  • a physicochemical type of metal deposition for example a gold deposit
  • the pieces 1 are separated from the substrate 10 by breaking the connecting beams 12.
  • FIG 4 and 5 Two examples of pieces thus produced are illustrated in figure 4 and 5 .
  • the piece 1 forms an entirely transparent watch movement escapement anchor, with the exception of two solid areas 16 defining two holes 18 and 19 for mounting part 1, and two pallets 23 and 24.
  • the piece is bounded by an envelope 17, which in practice should not cut the channels 13 below a minimum size.
  • Exhibit 1 illustrated in figure 5 is a spiral equipping a watch exhaust. Its cellular structure is of rectangular type, the rectangles being of variable sizes and in a non-periodic arrangement along the spiral.
  • the geometry of the channels 13 and their arrangement are chosen to provide mechanical characteristics given to the spiral.
  • micro-mechanical parts transparent at least locally.
  • present invention is not limited to the embodiments described above, but extends to all variants within the scope of those skilled in the art, falling within the scope of the claims below. It will be noted, in particular, that other micro-machining processes of parts 1 and channels 13 having a sufficient resolution can be used, apart from the DRIE etching.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pièce micromécanique (1) essentiellement plane, à partir d'un substrat de silicium (10) plan, comprenant les étapes suivantes : -usinage des contours de ladite pièce (1), et d'une pluralité de canaux (13) adjacents, séparés par des parois minces (14), formant une structure cellulaire rigide s'étendant au moins sur une portion (15) de la pièce (1), -oxydation thermique de la pièce (1) pendant une durée suffisante pour oxyder à coeur lesdites parois minces (14).

Description

  • La présente invention est relative aux procédés de fabrication de pièces micromécaniques, essentiellement planes, à partir d'un substrat de silicium. Elle concerne plus précisément un procédé de fabrication de telles pièces, formées au moins localement, d'oxyde de silicium. La présente invention se rapporte également à des pièces micromécaniques comportant au moins une portion constituée d'oxyde de silicium.
  • L'emploi du silicium dans l'industrie horlogère mécanique de précision a connu un essor important ces dernières années. Il est utilisé pour la fabrication de pièces micromécaniques essentiellement planes, telles que des ancres, des roues d'échappement, des spiraux ou des balanciers. En effet, le silicium remplace avantageusement, dans certaines applications, les métaux ou alliages métalliques, et ceci pour diverses raisons. Ses techniques d'usinage, par photolithographie et gravure ionique réactive profonde (DRIE, de l'anglais Deep Reactive Ion Etching), permettent d'obtenir des formes d'une grande complexité avec une précision de l'ordre du micron, à partir de substrats de silicium mince ou de silicium sur isolant. De plus, le silicium est insensible au champ magnétique, et présente des propriétés mécaniques intéressantes du point de vue tribologique. Pour plus d'informations sur ces différents sujets, on se référera aux documents EP 1422436 , WO2009068091 et EP 2284629 .
  • Toutefois, le silicium, de par sa couleur anthracite ou bleue-aubergine en fonction des traitements de surfaces subis, est d'un aspect peu esthétique. Cette caractéristique peut constituer un réel problème dans l'horlogerie haut de gamme, en particulier pour des montres conçues pour dévoiler largement le mécanisme du mouvement. Cet inconvénient est loin d'être mineur, dans la mesure où des efforts considérables sont déployés par les fabricants horlogers pour produire continuellement de nouveaux effets visuels esthétiques et surprenants.
  • Une solution possible à ce problème, consiste à employer de l'oxyde de silicium, en lieu et place du silicium. L'oxyde de silicium SiO2 est transparent, et brillant, pour autant que sa surface soit parfaitement polie. Son potentiel esthétique est donc important. Néanmoins, la gravure de l'oxyde de silicium est d'une précision moindre et d'une vitesse inférieure à celle du silicium. La couche de résine nécessaire à la protection de l'oxyde durant le procédé de gravure, est importante, et l'aspect esthétique final est médiocre, en particulier en raison de la rugosité produite par la gravure. La fabrication de pièces micro-mécaniques en oxyde de silicium par les procédés connus de l'homme de métier, est donc malaisée et le résultat est insatisfaisant.
  • Le but de la présente invention est de remédier à ces inconvénients, en proposant un procédé de fabrication simple et performant d'une pièce micromécanique comportant au moins une portion transparente en oxyde de silicium, lequel est d'aspect scintillant et esthétique. Plus précisément, l'invention concerne un procédé de fabrication d'une pièce micromécanique essentiellement plane, à partir d'un substrat de silicium plan, comprenant les étapes suivantes :
    • usinage des contours de la pièce, et d'une pluralité de canaux adjacents, séparés par des parois minces, formant une structure cellulaire rigide s'étendant au moins sur une portion de la pièce,
    • oxydation thermique de la pièce pendant une durée suffisante pour oxyder à coeur les parois minces.
  • Grâce à ces caractéristiques, le procédé selon l'invention permet de fabriquer des pièces micromécaniques comportant au moins une portion en oxyde de silicium, sans faire usage d'une étape de gravure de l'oxyde. L'état de surface de l'oxyde ne subit pas d'altération, et la pièce présente un aspect localement transparent et brillant susceptible de produire un effet optique particulièrement esthétique.
  • L'invention concerne également une pièce micromécanique comportant au moins une portion formée d'oxyde de silicium. Selon l'invention, la portion formée d'oxyde de silicium comporte une pluralité de canaux adjacents séparés par des parois minces, formant une structure cellulaire rigide.
  • Les caractéristiques et avantages de la présente invention ressortiront de la description qui va suivre, faite en regard des dessins annexés, et donnant à titre d'exemple explicatif, mais nullement limitatif, un exemple de réalisation d'un procédé de fabrication d'une pièce micromécanique selon l'invention, dessins dans lesquels :
    • la figure 1 représente des vues schématiques en coupe, des différentes étapes du procédé de fabrication selon l'invention,
    • la figure 2 illustre une vue de dessus de la première étape dudit procédé,
    • la figure 3 est une vue de détail d'une pièce micromécanique fabriquée selon ledit procédé, et,
    • les figures 4 et 5 sont des vues de dessus de deux exemples de pièces réalisées selon ledit procédé
  • En préambule à la description qui suit, on notera que les échelles des figures 1 à 5, ont volontairement été modifiées dans le but d'améliorer leur lisibilité.
  • Le procédé de fabrication selon l'invention d'une pièce micromécanique essentiellement plane, représenté schématiquement en figures 1 et 2, s'applique préférentiellement, pour des considérations économiques, à la production par lots ou 'batch' d'une multitude de petites pièces. Il comporte une première étape a, d'usinage d'une ou plusieurs pièces micromécaniques 1, à partir d'un substrat de silicium 10 plan, de manière à en former les contours. Le substrat 10 est, par exemple, constitué d'une plaque de silicium monocristallin ou poly-cristallin, d'épaisseur typiquement comprise entre 50 et 200 micromètres, dont la face présente, avantageusement, un aspect poli miroir. Un film11 constitué d'un matériau autre que le silicium, adhérant à la face arrière de la plaque 10, fait fonction de couche d'arrêt. Le film 11, d'épaisseur 0.5 à 20 micromètres, est constitué, par exemple, d'aluminium, d'or, de parylène, ou autre matériau apte à être déposé en couche mince. En variante, on emploiera une plaque de silicium sur isolant, mieux connu sous l'appellation SOI (de l'anglais Silicon On Insulator).
  • Les pièces 1 sont usinées par les méthodes de photolithographie et gravure bien connues de l'homme de métier, ou par toute autre méthode alternative permettant le micro-usinage du silicium avec une résolution de l'ordre du micromètre. De préférence, on emploiera le procédé de gravure ionique réactive profonde, ou DRIE, de l'anglais Deep Reactive Ion Etching, lequel permet de graver le silicium verticalement sur une épaisseur allant jusqu'à 300 micromètres. Pour plus d'informations sur la gravure DRIE, on se référera à la littérature spécialisée sur le sujet. De minces poutres de liaison 12, visibles en figure 2, relient les pièces 1 les unes aux autres et au substrat 10, de manière à maintenir ledit substrat d'un seul tenant lors des étapes suivantes.
  • Lors de la même étape a, une pluralité de canaux 13 adjacents, séparés par des parois minces 14, sont usinés perpendiculairement au plan de la pièce 1. L'ensemble canaux 13 1 parois minces 14 forme une structure cellulaire rigide 15 s'étendant au moins sur une portion 15 de la pièce 1. La rigidité de la structure cellulaire 15 est conférée par le ratio entre les dimensions radiales et longitudinales des canaux 13, lequel est compris entre 5 et 30 . Les canaux 13 étant profonds par rapport à leur largeur, ils s'opposent à des efforts de compression et de torsion. Leur section peut être de forme carrée, rectangulaire, circulaire, ou autre, en fonction de l'utilisation et de la nature des pièces 1. De manière particulièrement avantageuse, on optera pour une section hexagonale, formant une structure en 'nid d'abeille', dont les propriétés mécaniques sont bien déterminées et procurent une rigidité optimale pour une quantité de matière minimale. Les parois minces 14 ont une épaisseur typiquement comprises entre 0.5 et 5 micromètres pour des raisons qui apparaîtront dans la suite de cet exposé. L'agencement des canaux 13 peut être périodique ou quelconque, pour autant que l'épaisseur des parois 14 reste dans la fourchette susmentionnée.
  • L'usinage des canaux 13 séparés par des parois minces 14, permet de constituer une structure cellulaire rigide 15 formée essentiellement de vide, mais néanmoins rigide et résistante aux contraintes mécaniques. La structure cellulaire 15 ainsi formée est plus ou moins étendue en surface des pièces 1, en fonction de l'effet esthétique souhaité. En règle générale, une zone massive 16, destinée à l'attache des pièces 1 ou tout autre fonction mécanique, sera exempte de structuration, afin de supporter des efforts de montage et de serrage sur un axe ou une autre pièce métallique. La structure cellulaire 15 peut être limitée par une enveloppe 17, d'épaisseur sensiblement égale à celle des parois minces 14, dessinant les contours des pièces 1, et destinée à fermer tous les canaux 13.
  • On notera que l'étape a d'usinage de la pièce 1 et des canaux 13, peut être scindée en deux étapes distinctes, la première destinée à former les contours de la pièce 1, la seconde dédiée à la gravure des canaux 13. En effet, les différences en terme de dimension de structures peuvent être significatives d'une étape à l'autre, et l'homme de métier pourra être amener à choisir des paramètres de gravure distincts, de manière à optimiser chacune d'entre elles. Il s'ensuit que l'étape a sera, ou non, divisée en deux sous-étapes, en fonction des contraintes de coût ou de fabrication.
  • Dans une deuxième étape, représentée en figure b, le film 11 est éliminé en face arrière, par un procédé chimique ou physico-chimique. Les pièces 1 sont alors maintenues solidaires entres elles et du substrat 10, grâce aux fines poutres 12 qui les relient.
  • Enfin, une troisième étape, illustrée en figure c, consiste en une oxydation thermique de l'ensemble du substrat 10 et des pièces 1 qui le forment, pendant une durée suffisante pour oxyder à coeur les parois minces 14. Une telle oxydation est généralement une opération à haute température, par exemple entre 1000°C et 1200°C, en atmosphère humide, d'une durée de l'ordre d'une vingtaine d'heures ou davantage. Les paramètres précis de l'oxydation sont déterminés par l'homme de métier, en fonction de l'épaisseur des parois minces 14 à oxyder, et de données autres, telles que la nature exacte du substrat 10 (poly cristallin ou monocristallin), son orientation cristalline, le rendu final souhaité, etc. L'épaisseur des parois 14 est multiplié approximativement par un facteur 2.17 durant l'oxydation, c'est pourquoi, les canaux 13, les parois 14, et plus généralement, toutes les différentes portions des pièces 1 sont dimensionnées, lors de l'étape a, en tenant compte du gain en matière procuré par l'oxydation.
  • Concernant les dimensions des parois 14 avant l'étape c d'oxydation, une attention toute particulière sera portée aux noeuds 20 où les parois 14 concourent. Ces noeuds 20, illustrés en figure 3a à 3d, avant et après l'étape c d'oxydation, sont formés par la convergence de trois ou quatre parois 14. Ils ont une diagonale de dimension supérieure à l'épaisseur des parois 14. Il s'ensuit que leur coeur 21 peut demeurer inoxydé après l'étape d'oxydation c, comme représenté en figure 3b. La pièce 1 présente alors un aspect inesthétique. Pour remédier à cet inconvénient, on évitera la convergence de quatre parois 14 en un noeud 20, tel que représenté en figure 3a, car aucune possibilité d'amincissement de leur coeur n'est possible. On privilégiera plutôt des noeuds 20 formés de la convergence de trois parois 14, tel qu'illustré en figure 3c, permettant un amincissement 22 du noeud 20 du côté opposé à l'une des trois parois 14. Cet amincissement 22 est compensé par l'apport de matière fourni par l'oxydation, visible en figure 3d.
  • Ainsi oxydées à coeur, les parois minces 14 et les noeuds 20 prennent un aspect transparent propre à l'oxyde de silicium SiO2. Les structures cellulaires 15 gravées lors de l'étape a, deviennent entièrement transparentes, et scintillent sous l'effet de la lumière. Le rendu esthétique est surprenant, tandis que les caractéristiques mécaniques des pièces 1 sont pratiquement inchangées par rapport au silicium. Les zones 16 non structurées conservent leur couleur anthracite, tandis que l'enveloppe 17 est transparente au même titre que les parois 14. Un effet esthétique particulièrement saisissant peut être obtenu en réalisant une enveloppe 17 dont les flancs forment un réseau optique diffractant la lumière. Plus généralement, une grande variété d'effets visuels et de propriétés optiques peut être imaginée et obtenue, en fonction des paramètres des différents procédés de gravure et d'oxydation, et les structures cellulaires choisies. Les possibilités de rendu esthétiques sont nombreuses et ne peuvent pas être énumérées intégralement, mais toutes entrent dans le cadre de cette invention.
  • On notera aussi que des traitements de surface, à caractère mécanique ou esthétique, peuvent être réalisés localement ou sur l'ensemble des pièces 1, après l'étape c d'oxydation thermique. Par exemple, un dépôt de nitrure de silicium ou de diamant permet d'augmenter la dureté des pièces 1, tandis qu'un dépôt métallique de type physico-chimique, par exemple un dépôt d'or, sur les zones anthracites, confère un aspect encore plus esthétique. Différentes variantes sont possibles et l'homme de métier choisira la plus appropriée, selon la fonction de la pièce, sans sortir du cadre de l'invention.
  • Après l'étape c d'oxydation, et d'éventuels traitements de surface ultérieurs, les pièces 1 sont séparées du substrat 10 par rupture des poutres de liaison 12.
  • Deux exemples de pièces ainsi réalisées sont illustrés en figure 4 et 5. En figure 4, la pièce 1 forme une ancre d'échappement pour mouvement horloger entièrement transparente, à l'exception de deux zones pleines 16 définissant deux trous 18 et 19 destinés au montage de la pièce 1, et de deux palettes 23 et 24. La structure cellulaire choisie dans cet exemple, de type 'nid d'abeille', confère à l'ancre un aspect élégant et très régulier. La pièce est limitée par une enveloppe 17, qui en pratique ne devra pas couper les canaux 13 en dessous d'une taille minimale.
  • La pièce 1 illustrée en figure 5 est un spiral équipant un échappement horloger. Sa structure cellulaire est de type rectangulaire, les rectangles étant de tailles variables et suivant une disposition non périodique le long du spiral. Dans ce cas particulier, la géométrie des canaux 13 et leur disposition sont choisies pour procurer des caractéristiques mécaniques données au spiral. En particulier, il est possible, par un calcul judicieux des dimensions des canaux 13, de régler l'isochronisme du spiral, c'est à dire, la stabilité de sa fréquence de rotation, en fonction de son amplitude maximale de rotation. D'autre part, on pourra déposer une couche de silicium, nitrure de silicium ou diamant, sur une partie ou l'ensemble du spiral, dans le but de compenser la variation thermique du module d'élasticité de l'oxyde de silicium, et par suite de la constante de ressort du spiral. Un tel spiral est dit thermo-compensé. L'homme du métier saura choisir l'épaisseur de la couche pour obtenir cette propriété.
  • Ainsi a été décrit un procédé de fabrication de pièces micro-mécaniques transparentes au moins localement. Bien entendu, la présente invention ne se limite pas aux modes de réalisation décrits ci-dessus, mais s'étend à toutes les variantes à la portée de l'homme de métier, s'inscrivant dans le cadre des revendications ci-après. On notera, en particulier, que d'autres procédés de micro-usinage des pièces 1 et des canaux 13 ayant une résolution suffisante peuvent être employés, en dehors de la gravure DRIE.

Claims (13)

  1. Procédé de fabrication d'une pièce micromécanique (1) essentiellement plane, à partir d'un substrat de silicium (10) plan, comprenant les étapes suivantes :
    - usinage des contours de ladite pièce (1), et d'une pluralité de canaux (13) adjacents, séparés par des parois minces (14), formant une structure cellulaire rigide (15) s'étendant au moins sur une portion de la pièce (1),
    - oxydation thermique de la pièce (1) pendant une durée suffisante pour oxyder à coeur lesdites parois minces (14).
  2. Procédé de fabrication selon la revendication 1 caractérisé en ce que lesdites parois (14) ont une épaisseur comprise entre 0.5 et 5 micromètres avant oxydation.
  3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que lesdits canaux (13) sont d'orientation sensiblement perpendiculaire au plan de la pièce et en ce que leurs dimensions radiales sont inférieures à leurs dimensions longitudinales.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que ladite structure cellulaire est périodique.
  5. Procédé selon la revendication 4, caractérisé en ce que ladite structure cellulaire est de type nid d'abeille.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que ladite structure cellulaire (15) est limitée par une enveloppe extérieure (17).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'une couche mince, à fonction mécanique ou esthétique, est déposée au moins localement sur ladite pièce (1) après ladite oxydation thermique.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'usinage de ladite pièce (1) et desdits canaux (13) est réalisé par gravure ionique réactive profonde.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'usinage de ladite pièce (1) et desdits canaux (13), est réalisé en deux étapes distinctes.
  10. Pièce micromécanique (1) comportant au moins une portion formée d'oxyde de silicium, caractérisée en ce que ladite portion comporte une pluralité de canaux (13) adjacents séparés par des parois minces (14), formant une structure cellulaire rigide (15).
  11. Pièce micromécanique (1) selon la revendication 13, caractérisée en ce qu'elle comporte, en outre, une zone massive (16).
  12. Pièce micromécanique selon la revendication 11, caractérisée en ce ladite zone massive (16) est en silicium.
  13. Pièce micromécanique selon l'une des revendications 10 à 12, caractérisé en ce qu'elle est recouverte d'une couche mince destinée à compenser la variation thermique du module d'élasticité de l'oxyde de silicium.
EP14162203.5A 2013-03-28 2014-03-28 Procédé de fabrication d'une pièce micro-mécanique essentiellement plane, et pièce micro-mécanique comportant au moins une portion formée d'oxyde de silicium Withdrawn EP2784600A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00686/13A CH707797A1 (fr) 2013-03-28 2013-03-28 Procédé de fabrication d'une pièce micro-mécanique essentiellement plane, et pièce micro-mécanique comportant au moins une portion formée d'oxyde de silicium.

Publications (2)

Publication Number Publication Date
EP2784600A2 true EP2784600A2 (fr) 2014-10-01
EP2784600A3 EP2784600A3 (fr) 2016-04-20

Family

ID=50433955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14162203.5A Withdrawn EP2784600A3 (fr) 2013-03-28 2014-03-28 Procédé de fabrication d'une pièce micro-mécanique essentiellement plane, et pièce micro-mécanique comportant au moins une portion formée d'oxyde de silicium

Country Status (2)

Country Link
EP (1) EP2784600A3 (fr)
CH (1) CH707797A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168697A1 (fr) * 2015-11-11 2017-05-17 Nivarox-FAR S.A. Procédé de fabrication d'une pièce à base de silicium avec au moins un motif à illusion d'optique
JP2018048935A (ja) * 2016-09-23 2018-03-29 セイコーエプソン株式会社 機械部品の製造方法、及び時計の製造方法
EP3339978A1 (fr) * 2016-12-20 2018-06-27 The Swatch Group Research and Development Ltd Composant horloger en materiau composite
WO2019076742A1 (fr) * 2017-10-20 2019-04-25 Tronic's Microsystems Procede de fabrication d'une piece micromecanique en silicium
CH714293A1 (fr) * 2017-11-01 2019-05-15 Griffes Consulting Sa Structure nid d'abeille.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
WO2009068091A1 (fr) 2007-11-28 2009-06-04 Manufacture Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S.A. Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP2284629A1 (fr) 2009-08-13 2011-02-16 ETA SA Manufacture Horlogère Suisse Résonateur mécanique thermocompensé

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10130379A1 (de) * 2001-06-23 2003-01-02 Bosch Gmbh Robert Mikromechanischer Massenflusssensor und Verfahren zu dessen Herstellung
DE10219254B4 (de) * 2002-04-30 2011-08-11 Robert Bosch GmbH, 70469 Mikromechanisches Bauelement mit einem Isolationsbereich und entsprechendes Herstellungsverfahren
CH700640B1 (fr) * 2009-03-19 2014-09-30 Mhvj Manufacture Horlogère Vallée De Joux Pièce d'horlogerie allegée et renforcée.
CH701988B1 (fr) * 2009-10-07 2014-06-30 Nivarox Sa Procédé de fabrication d'un évidement oblique dans une couche de silicium.
EP2363762B1 (fr) * 2010-03-04 2017-11-22 Montres Breguet SA Pièce d'horlogerie comportant un mouvement mécanique à haute fréquence
CH704906B1 (fr) * 2011-05-09 2020-06-30 Lvmh Swiss Mft Sa C/O Zenith Succursale De Lvmh Swiss Mft Sa Ressort spiral en silicium pour montre mécanique.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (fr) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
WO2009068091A1 (fr) 2007-11-28 2009-06-04 Manufacture Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S.A. Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP2284629A1 (fr) 2009-08-13 2011-02-16 ETA SA Manufacture Horlogère Suisse Résonateur mécanique thermocompensé

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168697A1 (fr) * 2015-11-11 2017-05-17 Nivarox-FAR S.A. Procédé de fabrication d'une pièce à base de silicium avec au moins un motif à illusion d'optique
EP3168696A1 (fr) * 2015-11-11 2017-05-17 Nivarox-FAR S.A. Procédé de fabrication d'une pièce à base de silicium avec au moins un motif à illusion d'optique
US9740174B2 (en) 2015-11-11 2017-08-22 Nivarox-Far S.A. Method for fabrication of a silicon-based component with at least one optical illusion pattern
JP2018048935A (ja) * 2016-09-23 2018-03-29 セイコーエプソン株式会社 機械部品の製造方法、及び時計の製造方法
EP3339978A1 (fr) * 2016-12-20 2018-06-27 The Swatch Group Research and Development Ltd Composant horloger en materiau composite
WO2018115009A1 (fr) * 2016-12-20 2018-06-28 The Swatch Group Research And Development Ltd Composant horloger en materiau composite
JP2019536051A (ja) * 2016-12-20 2019-12-12 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 複合材料によって作られた計時器用部品
US11679577B2 (en) 2016-12-20 2023-06-20 The Swatch Group Research And Development Ltd Timepiece component made of composite material
WO2019076742A1 (fr) * 2017-10-20 2019-04-25 Tronic's Microsystems Procede de fabrication d'une piece micromecanique en silicium
FR3072688A1 (fr) * 2017-10-20 2019-04-26 Tronic's Microsystems Procede de fabrication d'une piece micromecanique en silicium
CH714293A1 (fr) * 2017-11-01 2019-05-15 Griffes Consulting Sa Structure nid d'abeille.

Also Published As

Publication number Publication date
EP2784600A3 (fr) 2016-04-20
CH707797A1 (fr) 2014-09-30

Similar Documents

Publication Publication Date Title
EP1882212B1 (fr) Organe d'affichage analogique en materiau cristallin, piece d'horlogerie pourvue d'un tel organe d'affichage, et procede pour sa fabrication
EP2784600A2 (fr) Procédé de fabrication d'une pièce micro-mécanique essentiellement plane, et pièce micro-mécanique comportant au moins une portion formée d'oxyde de silicium
EP2791739B1 (fr) Palier antichoc pour piece d'horlogerie
EP3083487B1 (fr) Procédé de fabrication d'un composant horloger
FR2935178A1 (fr) Substrat pour support de miroir de poids reduit ainsi que miroir avec support de miroir de poids reduit
CH702431A2 (fr) Procédé de fabrication d'une pièce micromécanique.
EP3495894A1 (fr) Procédé de fabrication d'un composant horloger
EP3168697B1 (fr) Procédé de fabrication d'une pièce à base de silicium avec au moins un motif à illusion d'optique
EP2631721A1 (fr) Composants horlogers en titane revêtus de diamant
EP2840059B1 (fr) Procédé de fabrication d'une pièce de micro-mécanique et la pièce fabriquée à l'aide de ce procédé
EP3764169B1 (fr) Procede pour depolir par endroits un composant horloger en silicium
CH703445B1 (fr) Pièce micromécanique en silicium et son procédé de fabrication.
CH717124A2 (fr) Procédé de fabrication d'un dispositif à lames flexibles monobloc en silicium, notamment pour l'horlogerie.
CH707527A2 (fr) Pièce d'horlogerie oscillante telle que masse oscillante de remontoir ou balancier.
CH710603B1 (fr) Ressort-spiral d'horlogerie à fréquence réglable.
EP3412625A1 (fr) Procede de fabrication d'une piece micromecanique
EP4052098B1 (fr) Procede de fabrication d'un composant horloger en silicium
CH711740A2 (fr) Procédé de fabrication d'une pièce à base de silicium avec au moins un motif à illusion d'optique.
EP3822709B1 (fr) Procédé de fabrication d'un composant horloger
CH717409A2 (fr) Pièce en silicium pour l'horlogerie et procédé de fabrication d'une telle pièce.
EP3907565A1 (fr) Procede de fabrication d'un composant horloger en silicium
EP4312084A1 (fr) Procede de fabrication d'un spiral en silicium
CH713854A2 (fr) Procédé de fabrication d'une pièce micromécanique.
CH710581A1 (fr) Ressort spiral et son procédé de fabrication.
EP4121821A1 (fr) Procede de fabrication d'un composant horloger a base de silicium

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140328

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SERCALO MICROTECHNOLOGY LTD.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 15/04 20060101AFI20160311BHEP

Ipc: G04B 17/06 20060101ALI20160311BHEP

Ipc: G04B 15/14 20060101ALI20160311BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161001