EP2746409A1 - Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial - Google Patents

Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial Download PDF

Info

Publication number
EP2746409A1
EP2746409A1 EP12198817.4A EP12198817A EP2746409A1 EP 2746409 A1 EP2746409 A1 EP 2746409A1 EP 12198817 A EP12198817 A EP 12198817A EP 2746409 A1 EP2746409 A1 EP 2746409A1
Authority
EP
European Patent Office
Prior art keywords
steel product
content
range
weight
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP12198817.4A
Other languages
German (de)
English (en)
Inventor
Erfindernennung liegt noch nicht vor Die
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Priority to EP12198817.4A priority Critical patent/EP2746409A1/fr
Priority to US14/653,694 priority patent/US10450622B2/en
Priority to JP2015548288A priority patent/JP6719903B2/ja
Priority to CN201380072929.9A priority patent/CN104995317B/zh
Priority to PCT/EP2013/003898 priority patent/WO2014095082A1/fr
Priority to KR1020157019365A priority patent/KR102169850B1/ko
Priority to EP13830148.6A priority patent/EP2935635B1/fr
Publication of EP2746409A1 publication Critical patent/EP2746409A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above

Definitions

  • the present invention relates to a method of heat treating a manganese steel product, also referred to herein as a mid-manganese steel product. It is also a special alloy of a manganese steel product that can be heat treated by a special process.
  • steel products may include ferrite, pearlite, retained austenite, tempered martensite, martensite and bainite microstructures .
  • the properties of steel alloys depend, among other things, on the proportions of different phases, microstructures and their structural arrangement in microscopic observation.
  • Simple forms of advanced, high-strength steels of the 1st generation have, for example, a 2-phase composition of ferrites and martensites. Such steels are also referred to as biphasic steels. Ferrite (also called ⁇ -Fe or ⁇ -Fe depending on the constellation) forms a relatively soft matrix and martensite typically forms inclusions in this matrix.
  • Second generation steels such as TWIP steel, have mainly an austenitic microstructure and a high manganese content greater than 15% by weight.
  • TWIP stands for TWinning Induced Plasticity steel.
  • Each of these steels has different properties. Depending on the specific requirement profile, different steels are used, for example, in the automotive industry.
  • the carbon content (C) in such steels is typically in the range between 0.2 and 1.2 wt%. These are usually mild steels.
  • An austenite structure (also called gamma, ⁇ mixed crystal or ⁇ -Fe) is a mixed crystal that can form in a steel product.
  • the austenite structure has a bcc crystal structure, has a high heat resistance and offers good corrosion properties.
  • austenite formers which increase the austenite range, or volume fraction. These include nickel (Ni), chromium (Co) and manganese (Mn).
  • martensitic transformation Due to the formation of martensite and precipitates, undesirable cracking may occur during hot rolling of such steel products.
  • reconverted austenite also called “reverted austenite” or “Rev. austenite”
  • This form of austenite can be produced by a Miller and Grange 2-stage heat treatment. This process is also known as ART heat treatment.
  • ART stands for "Austenite Reverted Transformation”. There is a back transformation of martensite to back-converted austenite during ART heat treatment.
  • Ferrite is a metallurgical name for another mixed crystal, in whose lattice carbon is dissolved interstitially (ie in intermediate positions of the lattice).
  • a purely ferritic structure has a low strength, but a high ductility. By adding carbon, the strength can be improved, at the expense of ductility. That related to Fig. 1 described cast iron is an example of such a material.
  • ferrite formers which increase the ferrite range or volume fraction. These include chromium (Cr), molybdenum (Mo), vanadium (V), aluminum (Al), titanium (Ti), phosphorus (P) and silicon (Si).
  • Fig. 1 is a classic, highly schematic diagram of cast iron (a high carbon iron-carbon alloy> 2.06 wt%) shown.
  • two exemplary cooling curves are plotted as a function of the temperature T [° C] and the time t [min].
  • the perlite area is in Fig. 1 marked with 4 and the bainit range with 5.
  • M S denotes the martensite start temperature.
  • the corresponding line is in Fig. 1 denoted by the reference numeral 3.
  • the martensite start temperature M S is dependent on the alloy composition.
  • Perlite is a microstructure in which ⁇ -ferrite and cementite lamellae (cementite is iron carbide, Fe 3 C) are present.
  • Bainite also called bainitic iron
  • Bainite is not a phase in the true sense, but a microstructure that forms in steel in a certain temperature range. Bainite is mainly made from austenite.
  • martensite is formed at temperatures below line 3 in such a cast iron product.
  • a martensite is a fine-needle, very hard and brittle structure.
  • quenching of austenite occurs at such high cooling rates that there is no time for the carbon content in the steel to diffuse out of the lattice.
  • Curve 1 in Fig. 1 shows the quenching with a high cooling rate, which leads to the formation of martensitic structure.
  • Curve 2 in Fig. 1 shows a so-called bainite temperature treatment.
  • austenite When held at a temperature above M s , austenite can transform to bainite by avoiding conversion to the perlite step.
  • the steel products of the invention should have a tensile strength greater than 700 MPa.
  • the tensile strength should even be greater than 1200 MPa.
  • the steel products of the invention should simultaneously have better drawability and better bendability than the first generation steel products.
  • a steel product preferably a cold-rolled steel product, having an ultrafine multiphase structure with corresponding formability is provided by a combination of process and alloy concept.
  • Particularly preferred embodiments have an ultrafine multiphase bainitic structure which has a correspondingly good formability.
  • the alloy of the steel products of the invention has an average manganese content, which means that the manganese content is in the range of 3.5% by weight ⁇ Mn ⁇ 10% by weight, and preferably in the range of 3.5% by weight ⁇ Mn ⁇ 4 , 9% by weight.
  • the steel products of the invention form a heterogeneous system or a heterogeneous structure.
  • the steel products of the invention preferably have, according to the invention, a bainitic microstructure at least proportionally.
  • the proportion of the bainitic microstructure may be up to 20% by weight of the steel product.
  • the steel products of the invention preferably comprise at least a proportion of microstructures or areas of bainitic microstructure and martensite according to the invention.
  • the carbon content according to the invention is generally rather low. That is, the carbon content is in the range 0.1 wt.% ⁇ C ⁇ 0.14 wt.%.
  • the steels alloyed according to the invention are so-called mild, hypoeutectic steels.
  • Such alloys result in steel products having the desired properties if subjected to a two-stage thermal treatment with the process steps of claim 1.
  • This special form of two-stage temperature treatment has a significant influence on the formation of a multi-phase structure of the steel product.
  • the microstructure or the microstructure of the steel product is specifically influenced by a special two-stage temperature treatment.
  • the two-stage temperature treatment during cooling comprises an intermediate holding phase at a temperature which is in the range between 370 ° C and 400 ° C.
  • the intermediate holding phase has a maximum duration of 5 minutes. Holding at a temperature above M s , austenite can at least partially convert to bainite by avoiding conversion to the pearlite stage.
  • the alloy of the steel products comprises Al and Si components.
  • bainitizing i. the formation of bainitic microstructures. That the reduction of the Al and Si contents, as the invention provides, leads to a promotion of bainitic transformation. This is done by moving the Bainitsche area in the transformation diagram.
  • the Cr content is set to a maximum of 0.4% by weight.
  • the relationship between the carbon content and the manganese content By determining the relationship between the carbon content and the manganese content, stabilization of the austenite phase can be achieved according to the invention. Therefore, in preferred Embodiments of the relationship between the carbon content and the manganese content are set as follows: 0.01 ⁇ C (weight%) / Mn (weight%) ⁇ 0.04. The composition gives particularly excellent properties 0.02 ⁇ C (% by weight) / Mn (% by weight) ⁇ 0.04.
  • the relationship between the silicon content, the aluminum content and the chromium content is set as follows: 0.3 wt% ⁇ Si + Al + Cr ⁇ 1.2 wt%.
  • the invention can be applied to both hot and cold rolled steels and corresponding flat steel products.
  • the invention is used to provide cold rolled steel products in the form of cold rolled flat products (e.g., coils).
  • the tensile strength of the steel product is significantly greater than 700 MPa and can reach 1200 MPa and more.
  • the steel product which according to preferred embodiments of the invention comprises a structure with bainite, that it has significantly better bending properties and also a better HET value (HET stands for "hole expansion test”).
  • the invention relates to multi-phase medium-manganese steel products comprising martensite, ferrite and retained austenite regions or phases, and optionally also bainite microstructures. That the steel products of the invention are characterized by a special microstructure constellation which, depending on the embodiment, is also referred to as multiphase microstructure or, if bainite is present, as multiphase bainitic microstructure. In particular, this is about cold-rolled steel products.
  • steel (intermediate) products are sometimes referred to when it comes to emphasizing that it is not about the finished steel product but about a preliminary or intermediate product in a multi-stage production process.
  • the starting point for such production processes is usually a melt.
  • the alloy composition of the melt is given, since on this side of the manufacturing process, it is possible to influence the alloy composition relatively precisely (eg by attacking constituents, such as silicon).
  • the alloy composition of the steel product usually deviates only insignificantly from the alloy composition of the melt.
  • phase is defined here inter alia by its composition of proportions of the components, enthalpy content and volume. Different phases are separated in the steel product by phase boundaries.
  • the “components” or “constituents” of the phases may be either chemical elements (such as Mn, Ni, Al, Fe, C, etc.) or neutral, molecular aggregates (such as FeSi, Fe 3 C, SiO 2 , etc.). ) or charged, molecular aggregates (such as Fe 2+ , Fe 3+ , etc.).
  • compositions of the alloy or the steel product comprise, in addition to the explicitly listed materials or materials as the basic material iron (Fe) and so-called unavoidable impurities, which always occur in the molten bath and also show up in the resulting steel product. All% by weight must always be added to 100% by weight.
  • the mild to medium manganese steel products of the invention all have a manganese content of between 3.5 and 10 wt%, with the stated limits being within the range.
  • Such steel products have a medium manganese content.
  • Very particularly advantageous are medium-manganese steel products whose manganese content is between 3.5 and 4.9% by weight, whereby here too the stated limits belong to the range to this.
  • a bainite microstructure is a type of interstitial structure which typically forms at temperatures intermediate to those for perlite or martensite formation, as with reference to FIGS. 6A to 6D will be explained in more detail.
  • the conversion to a bainite microstructure usually competes with the transformation into a pearlite structure.
  • the bainite microstructure occurs according to the invention usually in a kind of conglomerate together with ferrite.
  • the invention relies on a combination of alloy composition (the melt) and process steps for heat treating the steel intermediate to achieve bainite microstructure levels in the overall structure of the steel product.
  • both the information in terms of alloy composition and the method steps of the invention are used together, as this gives the best results.
  • the consideration of the statements in terms of alloy composition also already gives remarkable results, for example with regard to the non-formability (for example in cold rolling).
  • the aluminum content Al is preferably in all embodiments of the invention in the range 0.0005 ⁇ Al ⁇ 1 wt.% And in particular in the range 0.0005 ⁇ Al ⁇ 0.0015.
  • the silicon content Si, aluminum content Al and chromium content Cr 0.3% by weight ⁇ Si + Al + Cr ⁇ 1.2% by weight.
  • all embodiments of the invention comprise a chromium content Cr which is less than 0.4% by weight.
  • all embodiments of the invention comprise a silicon content Si which is between 0.25 and 0.7% by weight.
  • the silicon content is in the range 0.3 ⁇ Si ⁇ 0.6.
  • the alloy of the steel products preferably comprises silicon components Si and aluminum components Al in all embodiments.
  • the bainitization can be enhanced. That is, the reduction of the silicon content Si and aluminum content Al, as the invention provides, leads to a promotion of the bainitic transformation. This happens because the bainitsche area 50 in the transformation diagram (see FIGS. 6A to 6D ) is moved.
  • Fig. 6A is a continuous ZTU diagram for a first alloy according to the invention shown (melt called MF232), which has been subjected to various treatment steps.
  • Table 2 shows the concrete alloy composition of melt MF232 and other exemplary melts of the invention.
  • a ZTU diagram is a material-dependent time-temperature conversion diagram. That is, a ZTU diagram shows the rate of conversion as a function of time for a continuously decreasing temperature. Overall, in this diagram and in the diagrams of the Figures 6B . 6C and 6D each shown eight curves. The alloys whose curves are shown in these ZTU diagrams all have the compositions shown in Table 2.
  • M f is the martensite finish temperature, which in English is called "martensite finish temperature”.
  • the martensite finish temperature M f is the temperature at which the conversion to martensite is completed thermodynamically. Also shown are the temperature thresholds Ac 3 and Ac 1 (see also Fig. 4A and 4B ). The range between Ac 3 and Ac 1 is referred to as ⁇ + ⁇ phase region .
  • the bainite region 50 is shifted in the diagram.
  • FIGS. 6A to 6D In each case a block arrow is shown approx. in the middle of the diagram following on the left. This block arrow is intended to schematically indicate that by reducing the silicon components Si and aluminum components Al (in comparison to the prior art), the bainite region 50 is displaced to the left. Typically, during rapid cooling (eg, with water), essentially only martensite is formed. By moving the bainite region 50 to the left, bainite microstructures are formed in the steel product even with relatively rapid cooling.
  • the two-stage annealing process is preferably carried out for all alloy compositions in such a way that, above all during the first annealing process (step S4.1 in FIG Fig. 4A or 4B and Fig. 3 ) the cooling curve A1 of the steel (between) products is such that the region of bainite formation 50 is traversed.
  • all embodiments of the alloy composition additionally comprise a nitrogen content N ranging between 0.004 wt.% And 0.006 wt.%, which corresponds to 40 ppm to 60 ppm.
  • an intermediate annealing step (eg with T ⁇ 650 ° C and 10 to 24 hours duration) can be inserted (not in FIG Fig. 3 shown).
  • the pre-annealing step may be carried out in a nitrogen atmosphere.
  • Fig. 4A 1 is a schematic representation of an exemplary temperature-time diagram for a first 2-stage temperature treatment of a steel (inter) product of the invention.
  • a previously known 2-stage method according to Arlazarov et al. shown in order to better show significant differences.
  • the heating E1 during the first annealing process and / or the heating E2 during the second annealing process is preferably carried out at a heating rate which is between 4 Kelvin / second and 50 Kelvin / second. Above all, good results are achieved in the range between 5 Kelvin / second and 15 Kelvin / second.
  • the temperature of the steel (between) product is maintained substantially constant.
  • holding H2 in all embodiments lasts between 3 and 5 hours, and preferably between 3.5 and 4.5 hours. That The following statement applies: 3 h ⁇ ⁇ 2 ⁇ 5 h, or 3.5 h ⁇ ⁇ 2 ⁇ 4.5 h.
  • a retention time of ⁇ 2 ⁇ 4h at a second holding temperature of T2 ⁇ 650 ° C has proven particularly useful.
  • the cooling of the steel (intermediate) product in all embodiments is carried out in the first annealing process and / or in the second annealing process at a cooling rate which is between 25 Kelvin / second and 200 Kelvin / second.
  • the cooling rate in all embodiments is between 40 Kelvin / second and 150 Kelvin / second.
  • the curves A1 * in Fig. 4A and in Fig. 4B each show a cooling process that begins with a high cooling rate of about 150 Kelvin / second and then decreases its cooling rate in the direction of 40 Kelvin / second. Therefore, the curves A1 * have no straight line but a curved waveform.
  • the curves A1 in Fig. 4A and 4B each show a linear cooling process, which runs with a high cooling rate of about 150 Kelvin / second.
  • Cooling may be linear (e.g., 150 Kelvin / second) or along a curved curve (e.g., along curve A1 *) in the first annealing process and / or second annealing process.
  • the cooling can be carried out in the second annealing process as in Fig. 4B shown.
  • the cooling consists here of three steps.
  • a rapid (eg linear) cooling takes place from T2 to a holding temperature T3, which lies in the range between 370 ° C and 400 ° C.
  • this holding temperature T3 is about 380 ° C.
  • the holding temperature T3 is preferably selected in all embodiments so that it is above the temperature M S.
  • the desired bainite microstructures are also formed (depending on the alloy composition and process procedure) if the alloy according to the invention is predetermined and the first annealing process according to the invention is carried out.
  • Fig. 4A is shown by the curve e1, h1, a1 and e2, h2, a2, the temperature during the first hold h1 is significantly lower than during the inventive first hold H1.
  • the first hold period ⁇ 1 is significantly longer.
  • martensite phases but no bainite microstructures are formed.
  • the temperature is slightly higher during the second holding h2 than during the second holding H2 according to the invention.
  • the second holding period ⁇ 2 is significantly longer.
  • T 670 ° C and 1h ⁇ 2 ⁇ 30 h.
  • EBSD Electrode BackScattered Diffraction
  • Fig. 5 Fig. 12 shows a schematic diagram of the distribution function Fx (x) of the grain diameter of the bcc- ⁇ phase of a specific steel product of the invention.
  • bcc stands for "body centered cubic".
  • the special steel product whose distribution function Fx (x) of the grain diameter in Fig. 5 is shown, has the following inventive alloy composition (in Table 1, the setpoints of the melt are given): Table 1: [Wt.%] Fe C Si Mn al Sample 231 rest 0.140 0,550 4,000 0.0005
  • the Fig. 5 Based on the distribution function Fx (x) the Fig. 5 It can be seen that the majority of the grains of the alloy structure has a grain size between 0 and about 3 microns. Since the EBSD investigations used have a lower resolution limit at about 0.1 ⁇ m, the average distribution of the particle size of the bcc- ⁇ phase can be limited to the range from about 0.1 ⁇ m to about 3 ⁇ m. Further EBSD investigations have shown that the distribution of the grain size of the fcc- ⁇ phase can be limited to the range from about 0.25 ⁇ m to about 0.75 ⁇ m.
  • Fig. 2 shows a common scale that allows classification of steel products on the diameter of the grain size.
  • the steel product (sample 231) of the invention is thus in the range of ultrafine grains (if the average distribution). This classification can also be applied to the other alloy compositions of the invention. Therefore, there is also talk here of an ultrafine multiphase structure and of an ultrafine multiphase bainitic structure, if detectable bainite microstructures are present.
  • the grains of the ferrite phases and the bainite microstructure are very fine. Particular preference is therefore given to alloys or steel products which have a combination of ferrite phases and bainite microstructures.
  • Table 2 shows the actual alloy composition in wt% of various samples of the invention.
  • Table 2 sample 230 231 232 233 Melt setpoint steel product Melt setpoint steel product Melt setpoint steel product Melt setpoint steel product Fe / Rest X X X X X X X C 0140 0142 0140 0140 0100 0098 0100 0105 Si 0550 0520 0550 0540 0350 0320 0350 0340 Mn 4000 4120 4000 4070 4900 4940 4900 4970 P 0 0.0050 0 0.0051 0 0.0054 0 0.0057 S 0 0.0083 0 0.0084 0 0.0070 0 0.0075 al 0.0005 0.0100 0.0005 0.0090 0.0005 0.0090 0.0005 0009 Cr 0 0016 0 0016 0 0016 0 0015 Ni 0 0011 0 0012 0 0012 0 0011 Not a word 0 0004 0 0005 0
  • Table 3 shows various characteristic sizes of steel products in the form of cold tapes with the actual alloy composition of Samples 231 and 233 of the invention after undergoing a two-stage annealing process Fig. 4A ).
  • R m is the tensile strength in MPa
  • a total is the elongation at break in% (the elongation at break is proportional to the ductility)
  • R mx A total is the product of tensile strength and elongation at break in MPa%.
  • Table 3 shows the best results in terms of tensile strength with respect to the product of R mx A total .
  • Comparative tests with conventional single-stage annealing processes and conventional two-stage annealing processes show that the alloy composition and method of the invention are very good Values - particularly as the product of R x A total terms - can be achieved.
  • Table 3 [Wt.%] R m [MPa] A total [%] Rmx Atotal [MPa%] structure Total grain size [ ⁇ m] Sample 231 773 32 25030 approx.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
EP12198817.4A 2012-12-21 2012-12-21 Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial Ceased EP2746409A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12198817.4A EP2746409A1 (fr) 2012-12-21 2012-12-21 Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial
US14/653,694 US10450622B2 (en) 2012-12-21 2013-12-20 Method for heat-treating a manganese steel product and manganese steel product
JP2015548288A JP6719903B2 (ja) 2012-12-21 2013-12-20 マンガン鋼材の熱処理方法およびマンガン鋼材
CN201380072929.9A CN104995317B (zh) 2012-12-21 2013-12-20 对锰钢产品进行热处理的方法和锰钢产品
PCT/EP2013/003898 WO2014095082A1 (fr) 2012-12-21 2013-12-20 Procédé de traitement thermique d'un produit en acier au manganèse et produit en acier au manganèse
KR1020157019365A KR102169850B1 (ko) 2012-12-21 2013-12-20 망간강 제품의 열처리 방법 및 망간강 제품
EP13830148.6A EP2935635B1 (fr) 2012-12-21 2013-12-20 Procédé de traitement thermique d'un produit en acier au manganèse et produit en acier au manganèse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12198817.4A EP2746409A1 (fr) 2012-12-21 2012-12-21 Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial

Publications (1)

Publication Number Publication Date
EP2746409A1 true EP2746409A1 (fr) 2014-06-25

Family

ID=47563085

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12198817.4A Ceased EP2746409A1 (fr) 2012-12-21 2012-12-21 Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial
EP13830148.6A Active EP2935635B1 (fr) 2012-12-21 2013-12-20 Procédé de traitement thermique d'un produit en acier au manganèse et produit en acier au manganèse

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13830148.6A Active EP2935635B1 (fr) 2012-12-21 2013-12-20 Procédé de traitement thermique d'un produit en acier au manganèse et produit en acier au manganèse

Country Status (6)

Country Link
US (1) US10450622B2 (fr)
EP (2) EP2746409A1 (fr)
JP (1) JP6719903B2 (fr)
KR (1) KR102169850B1 (fr)
CN (1) CN104995317B (fr)
WO (1) WO2014095082A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029162A1 (fr) * 2014-12-01 2016-06-08 Voestalpine Stahl GmbH Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085135A1 (fr) 2015-11-16 2017-05-26 Benteler Steel/Tube Gmbh Alliage d'acier présentant une grande capacité d'absorption d'énergie et produit en forme de tube à base d'acier
DE102015119839A1 (de) * 2015-11-17 2017-05-18 Benteler Steel/Tube Gmbh Stahllegierung mit hohem Energieaufnahmevermögen und Stahlrohrprodukt
JP2017145485A (ja) * 2016-02-19 2017-08-24 株式会社神戸製鋼所 高強度高延性鋼板の製造方法
EP3222734A1 (fr) * 2016-03-23 2017-09-27 Voestalpine Stahl GmbH Procede de traitement thermique d'un produit intermediaire en acier/manganese et produit intermediaire en acier traite thermiquement
KR20180104513A (ko) * 2017-03-13 2018-09-21 엘지전자 주식회사 공기 조화기
EP3594368A1 (fr) * 2018-07-13 2020-01-15 voestalpine Stahl GmbH Produit intermédiaire d'acier milieu-manganèse-feuillard laminé à froid à teneur en carbone réduite et procédé de fourniture d'un tel produit intermédiaire d'acier
KR102286889B1 (ko) 2019-08-30 2021-08-09 동남특수강(주) 망간강 제품의 열처리 시스템
KR102264344B1 (ko) * 2019-09-30 2021-06-11 현대제철 주식회사 고강도 및 고성형성을 가지는 강판 및 그 제조방법
CN110846577A (zh) * 2019-11-20 2020-02-28 南京钢铁股份有限公司 690MPa级高强度低屈强比中锰钢中厚钢及制造方法
KR102360396B1 (ko) * 2020-04-28 2022-02-08 현대제철 주식회사 고강도 및 고성형성을 가지는 강판 및 그 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047979A (en) * 1976-10-08 1977-09-13 United States Steel Corporation Heat treatment for improving the toughness of high manganese steels
KR20040059293A (ko) * 2002-12-28 2004-07-05 주식회사 포스코 가공성이 우수한 고강도 냉연강판과 그 제조방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5623773A (en) * 1972-05-30 1974-12-05 Commonwealth Aircraft Corporation Proprietary Limited IMPROVEMENTS IN OR RELATING Provisional TO MANGANESE STEEL Specification
JPS5935412B2 (ja) * 1980-03-19 1984-08-28 日新製鋼株式会社 析出硬化型ばね用ステンレス鋼素材の製法
JP2588421B2 (ja) * 1988-04-11 1997-03-05 日新製鋼株式会社 延性に優れた超高強度鋼材の製造方法
JPH05148535A (ja) * 1991-06-07 1993-06-15 Kobe Steel Ltd 熱処理歪が少なく曲げ疲労強度の優れた表面硬化部品の製造方法
JP2005068453A (ja) * 2003-08-28 2005-03-17 Nissan Motor Co Ltd 耐高面圧部品及びその製造方法
JP3889768B2 (ja) * 2005-03-31 2007-03-07 株式会社神戸製鋼所 塗膜密着性と延性に優れた高強度冷延鋼板および自動車用鋼部品
EP2679699A3 (fr) * 2005-03-31 2014-08-20 Kabushiki Kaisha Kobe Seiko Sho Feuille d'acier laminée à froid à haute résistance mécanique et pièces d'automobiles en acier ayant d'excellentes propriétés d'adhésion de film de revêtement, maniabilité et résistivité face à la fragilisation par l'hydrogène
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5094272B2 (ja) * 2007-08-21 2012-12-12 株式会社日本製鋼所 耐高圧水素環境脆化特性に優れた低合金高強度鋼およびその製造方法
BRPI0818530A2 (pt) * 2007-10-10 2015-06-16 Nucor Corp Aço laminado a frio de estrutura metalográfica complexa e método de fabricar uma chapa de aço de estrutura metalográfica complexa
KR101008117B1 (ko) * 2008-05-19 2011-01-13 주식회사 포스코 표면특성이 우수한 고가공용 고강도 박강판 및용융아연도금강판과 그 제조방법
JP5270274B2 (ja) * 2008-09-12 2013-08-21 株式会社神戸製鋼所 伸びおよび伸びフランジ性に優れた高強度冷延鋼板
JP5394709B2 (ja) * 2008-11-28 2014-01-22 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた超高強度鋼板
JP4903915B2 (ja) * 2010-01-26 2012-03-28 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
CN101892426B (zh) * 2010-06-21 2013-05-01 江油贝得力金属新材料有限公司 一种中高碳贝氏体钢及其制备方法
JP5699764B2 (ja) * 2011-04-11 2015-04-15 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
JP5825119B2 (ja) * 2011-04-25 2015-12-02 Jfeスチール株式会社 加工性と材質安定性に優れた高強度鋼板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047979A (en) * 1976-10-08 1977-09-13 United States Steel Corporation Heat treatment for improving the toughness of high manganese steels
KR20040059293A (ko) * 2002-12-28 2004-07-05 주식회사 포스코 가공성이 우수한 고강도 냉연강판과 그 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. ARLAZAROV ET AL.: "Evolution of microstructure and mechanical properties of medium Mn steels during double annealing", MATERIALS SCIENCE AND ENGINEERING A, 2012
A. ARLAZAROV ET AL.: "Evolution of microstructure and mechanical properties of medium Mn steels during double annealing", MATERIALS SCIENCE AND ENGINEERING A, 2012, XP002696031 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3029162A1 (fr) * 2014-12-01 2016-06-08 Voestalpine Stahl GmbH Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier
WO2016087392A1 (fr) * 2014-12-01 2016-06-09 Voestalpine Stahl Gmbh Procédé de traitement thermique d'un produit en acier au manganèse et produit en acier au manganèse comprenant un alliage spécial
CN107109506A (zh) * 2014-12-01 2017-08-29 奥钢联钢铁公司 锰钢产品的热处理方法和具有特定合金的锰钢产品
CN107109506B (zh) * 2014-12-01 2019-03-12 奥钢联钢铁公司 锰钢产品的热处理方法和具有特定合金的锰钢产品
US11124850B2 (en) 2014-12-01 2021-09-21 Voestalpine Stahl Gmbh Method for the heat treatment of a manganese steel product, and manganese steel product having a special alloy

Also Published As

Publication number Publication date
KR20150097722A (ko) 2015-08-26
JP2016513169A (ja) 2016-05-12
JP6719903B2 (ja) 2020-07-08
CN104995317B (zh) 2017-09-19
CN104995317A (zh) 2015-10-21
US10450622B2 (en) 2019-10-22
US20160002746A1 (en) 2016-01-07
EP2935635A1 (fr) 2015-10-28
WO2014095082A1 (fr) 2014-06-26
EP2935635B1 (fr) 2022-09-28
KR102169850B1 (ko) 2020-10-27

Similar Documents

Publication Publication Date Title
EP2935635B1 (fr) Procédé de traitement thermique d'un produit en acier au manganèse et produit en acier au manganèse
DE60131294T2 (de) Hochfester federstahl und federstahldraht
EP3655560B1 (fr) Produit plat en acier possédant une bonne résistance au vieillissement et son procédé de fabrication
DE60024672T2 (de) Stab- oder drahtprodukt zur verwendung beim kaltschmieden und herstellungsverfahren dafür
DE69420473T2 (de) Hochzäher und hochfester, nicht angelassener Stahl und Herstellungsverfahren dazu
EP3688203B1 (fr) Produit d'acier plat et son procédé de fabrication
WO2010054813A1 (fr) Feuillard d'acier au manganèse à teneur accrue en phosphore et son procédé de fabrication
EP2905348B1 (fr) Produit en acier plat de haute résistance avec une structure bainitique-martensitique et procédé de fabrication d'un tel produit acier plat
EP2840159B1 (fr) Procédé destiné à la fabrication d'un composant en acier
DE69708832T2 (de) Kaltgewalztes Stahlblech und sein Herstellungsverfahren
EP2690184B1 (fr) Cold rolled steel flat product and method for its production
EP3594368A1 (fr) Produit intermédiaire d'acier milieu-manganèse-feuillard laminé à froid à teneur en carbone réduite et procédé de fourniture d'un tel produit intermédiaire d'acier
EP2009120B1 (fr) Utilisation d'un alliage d'acier très solide destiné à la fabrication de tuyaux en acier très résistants et ayant une bonne déformabilité
DE3881002T2 (de) Durch wärmrbehandlung härtbares warmgewalztes stahlfeinblech mit ausgezeichneter kaltverformbarkeit und verfahren zu seiner herstellung.
DE112020006043T5 (de) Kaltgewalztes stahlblech mit ultrahoher festigkeit und verfahren zu dessen herstellung
DE10215598A1 (de) Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrißfreien Formteilen und Formteil
EP3433386B1 (fr) Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse.
WO2023025635A1 (fr) Produit plat en acier laminé à froid et son procédé de production
EP3872193A1 (fr) Procédé de fabrication d'un produit plat en acier laminé à chaud et produit plat en acier
EP3872206A1 (fr) Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement
EP3964591A1 (fr) Produit en acier plat laminé à chaud et procédé de fabrication d'un produit en acier plat laminé à chaud
EP3872194A1 (fr) Procédé de fabrication d'un produit plat en acier laminé à chaud et produit plat en acier
DE102019215055A1 (de) Verfahren zur Herstellung eines Stahlproduktes sowie ein entsprechendes Stahlprodukt
DE69705701T2 (de) Walzdraht verwendbar zur verstärkung von erzeugnisse aus plastische werkstoffe oder aus gummi
DE102022125128A1 (de) Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20140728