EP2742318A1 - Deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and a measurement system using said sensor - Google Patents

Deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and a measurement system using said sensor

Info

Publication number
EP2742318A1
EP2742318A1 EP12748009.3A EP12748009A EP2742318A1 EP 2742318 A1 EP2742318 A1 EP 2742318A1 EP 12748009 A EP12748009 A EP 12748009A EP 2742318 A1 EP2742318 A1 EP 2742318A1
Authority
EP
European Patent Office
Prior art keywords
enclosure
deformation
tube
measuring sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12748009.3A
Other languages
German (de)
French (fr)
Inventor
Stéphane GAILLOT
Nicolas REGAZZONI
Guy Cheymol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2742318A1 publication Critical patent/EP2742318A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/0205Interferometers characterised by particular mechanical design details of probe head
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping

Definitions

  • the present invention relates to a deformation measuring sensor, able to operate in a hostile environment, integrating an optical module for measuring displacement.
  • This sensor makes it possible to measure in real time, in situ and under severe operating conditions (for example in a fluid whose pressure and / or temperature are high, or in an area exposed to a neutron and gamma photon flux. ), the phenomena of deformation of an object that is subjected to various stresses (for example: temperature, pressure, heating by gamma radiation or wear).
  • this sensor finds applications in various industrial fields, in particular the nuclear and petrochemical fields.
  • this sensor applies to the measurement of the swelling of the sheath of a fuel rod placed in an irradiation device. But it can also be adapted to the measurement of other types of deformation, for example to the extent of the elongation of a fuel rod exposed to a neutron flux.
  • some components may be subject to various stresses that can lead to their deformation.
  • the swelling of a nuclear fuel rod, exposed to a growing neutron flux can reach 10% of its diameter.
  • the present invention aims to overcome these disadvantages.
  • the sensor which is the subject of the invention, makes it possible to measure radial deformations, for example swellings. It is able to operate under conditions of high pressure and high temperature. And it can measure deformations ranging from 0.1 mm to several millimeters, with an accuracy of about 10 micrometers.
  • the measurement is based on a real-time interferometry method, implemented via an optical module positioned in an enclosure which is isolated from the external environment.
  • the present invention relates to a deformation measuring sensor, able to operate in a hostile environment, characterized in that it comprises:
  • a movable element which has opposite first and second faces and which is displaceable with respect to the enclosure along a first axis meeting the first and second faces, the first face being intended to be brought into contact with an object liable to deform the second face being able to penetrate the enclosure through the opening thereof and to reflect an incident light,
  • a waterproof and elastic connection component having a return function between the mobile element and the enclosure
  • an optical module placed in the enclosure, to create an interferential light along a second axis that is not parallel to the first axis, using an auxiliary light, reflected by the second face of the movable element,
  • the first and second axes are perpendicular.
  • the optical module comprises a semi-reflecting mirror and a reflecting surface that cooperate with the second face of the movable member to form a Michelson type interferometer.
  • the measurement sensor comprises a connection bellows between the mobile element and the enclosure.
  • the deformation measurement sensor further comprises a device for pressurizing the chamber with a gas, to equalize the pressure between the inside and the outside of the enclosure.
  • the deformation measuring sensor further comprises a first tube sealingly connected to the chamber, extending along the second axis and allowing the circulation of the interferential light and the auxiliary light, intended to generate the interferential light by means of the optical module.
  • the deformation measuring sensor further comprises an optical fiber which extends into the first tube for transmit the auxiliary light and the interferential light.
  • Part of the optical fiber is preferably bent in the first tube so as to form a dilatation lyre therein.
  • the pressurization device comprises:
  • a second tube sealingly connected to the first tube and provided for supplying the chamber with gas via the first tube
  • a non-return valve mounted on the second tube, to prevent the passage of hostile environment in case of leakage of the enclosure.
  • the deformation measuring sensor prefferably with a sealing device between the optical fiber and the inner wall of the first tube, opposite the chamber with respect to the connection zone between the first and second tubes. second tubes, to prevent the passage of the hostile environment in case of leakage of the enclosure.
  • the present invention also relates to a system for measuring the deformation of an object, comprising:
  • FIG. 1 is a schematic longitudinal sectional view of a particular embodiment of the deformation measuring sensor, object of the invention.
  • FIG. 2 is a schematic view of an example of the deformation measuring system, object of the invention, using the deformation measuring sensor shown in FIG.
  • the senor 2 is used to measure the radial deformation of a sample 4 which extends along a vertical axis X in a hostile medium 6, for example pressurized water at high temperature.
  • This sample 4 is attached to the lower end of a sample holder 8.
  • the upper end of the latter is attached to a plate 10 constituting the head of the sample holder.
  • the sensor 2 is also in the hostile environment 6 and comprises:
  • an enclosure 12 having a cylindrical opening 14 which extends along an axis XI perpendicular to the axis X, a movable element 16 which slides in the opening 14 along the axis XI,
  • a connecting component 18 for connecting the mobile element 16 to the enclosure 12 in an elastic and watertight manner
  • the first face 22 of the mobile element 16 (radial probe) is brought into contact with the sample 4, and its second face 24 is in the enclosure 12.
  • This second face 24 (measurement surface) is able to reflect an incident light that is used to determine the deformation of the sample.
  • connection component 18 is a bellows that surrounds the cylindrical opening 14 and whose two ends are respectively fixed in a sealed manner to the enclosure 12 and to the movable element 16.
  • the optical module 20 is placed in the enclosure 12. It comprises a semi-reflecting mirror 26 and a reflecting surface 28 (reference surface) which is disposed at the bottom of the enclosure 12.
  • the semi-reflecting mirror 26 and the surface reflective 28 cooperate with the second face 24 of the movable member 16 to form a Michelson type interferometer.
  • the reflecting face 24 of the movable member 16 is perpendicular to the axis XI.
  • the reflecting surface 28 is perpendicular to another axis X2 which is perpendicular to the axis XI.
  • the semi-reflecting mirror 26 makes an angle of 45 ° with each of the axes XI and X2 as seen in Figure 1. More specifically, the optical module 20 uses a light 30 which propagates along the axis X2 (from top to bottom in FIG. 1). Part of this light 30 is reflected by the semi-reflecting mirror 26 along the axis XI and is reflected on the reflective face 24 of the movable member 16 towards the semi-reflecting mirror 26. The latter reflects a part thereof ( "First part” below) upwards along the axis X2.
  • Another part of the light 30 is transmitted by the semi-reflecting mirror 26 and is reflected on the reflecting surface 28 in the direction of the semi-reflecting mirror 26.
  • the latter transmits a part ("second part” hereinafter) to the up along the X2 axis.
  • the first and second portions interfere to form an interfering light 36 which propagates upward along the axis X2.
  • any radial deformation of the sample 4 causes a modification of the interferential light 36 (variation of the optical path difference between the light beam which is reflected on the fixed surface 28 and that which is reflected on the movable surface 24) .
  • This modification is representative of the radial deformation. The latter can therefore be determined by an appropriate treatment of the interferential light 36.
  • the sensor 2 is provided with a metal tube 38 which is sealingly connected to the enclosure 12.
  • the tube 38 extends vertically along the axis X2 and passes through the plate 10 as seen in Figure 1. This tube 38 allows the circulation of the lights 30 and 36.
  • the sensor 2 is also provided with an optical fiber 40 which extends along the axis X2 in the tube 38 to transmit these lights 30 and 36.
  • a collimation lens 42 is provided in the enclosure 12 , facing the lower end of the optical fiber 40.
  • the hostile medium 6 is pressurized water at high temperature.
  • the measurement of the deformation of the sample 4 is therefore carried out hot.
  • a device for managing the differential expansion between the optical fiber 40 and the metal tube 38 is a dilatation lyre 44 which is obtained by bending the optical fiber 40 suitably in the tube 38.
  • the water pressure is 15.5 MPa (155 bar) and its temperature is 320 ° C.
  • the sensor 2 is then equipped with a device 45 for pressurizing the chamber 12 with a gas, in order to equalize the pressure between the inside and the outside of the enclosure 12. This avoids prestressing the bellows 18 and the sensitivity of the deformation measurement is improved.
  • This pressurizing device 45 comprises another tube 46, one end of which is sealingly connected to the tube 38 and which also passes through the plate 10. As can be seen, at the other end of the tube 46, means 48 are provided for supplying gas to this tube 46 (and therefore the tube 38 and the chamber 12).
  • the gas used is, for example, nitrogen.
  • the tube 46 in case of failure of the seal of the enclosure 12, and to prevent unwanted lift fluid (pressurized hot water), we equip the tube 46 with a non return valve ⁇ 50. Moreover, it is expected a sealing member 52 between the optical fiber 40 and the inner wall of the tube 38, opposite the chamber 12 with respect to the zone 53 where the tubes 38 and 46 are connected.
  • the hostile environment 6 must itself be isolated from a surrounding external environment 56 and separated from it.
  • a chamber 54 is provided for confining the hostile medium 6. This enclosure 54 is only sketched in FIG. 1. It is sealingly connected to the plate 10.
  • the chamber 54 (containing the medium 6, the sample 4 and the sensor 2) is then immersed in the surrounding external medium 56 and means not shown are provided to introduce the hostile medium 6 into the chamber 54 and control the state (eg temperature and pressure in the case where the hostile medium is pressurized water at high temperature).
  • the tube 38 is then connected to another tube 58, in which there is another optical fiber 59, via a suitable connector 60 allowing sealing against the surrounding external medium 56 and the optical link. between the fibers 40 and 59.
  • the tube 46 is connected to another tube 62 through which the tube 46 is supplied with gas.
  • the connection between the tubes 46 and 62 is provided by a suitable connector 64, allowing sealing against the surrounding external medium 56 and the passage of the gas.
  • the plate 10 is provided with sealed passages 66 and 68 in the areas where it is crossed respectively by the tubes 38 and 46.
  • Figure 2 is a schematic and partial view of an example of the measuring system object of the invention.
  • the system 69 shown in this Figure 2 uses the sensor 2 shown in Figure 1, provides the light 30 and processes the interferential light 36 to determine the deformation of the sample 4.
  • This system comprises a light source 70 which generates the light 30, for example a white light, which is injected into the optical fiber 59 via a semi-reflecting mirror 72 and an appropriate lens 74.
  • the system 69 also includes:
  • a spectrometer 76 which receives, through the semi-reflecting mirror 72 and the lens 74, the interferential light transmitted by the fiber 59,
  • a computer 78 which processes the signals from the spectrometer 76 to determine, in real time, the deformation sought, and a device 80 for displaying the results of the measurements thus carried out.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

The invention relates to a deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and to a measurement system using said sensor. The sensor (2) includes: an enclosure (12) comprising an opening (14); a movable element (16) having a first surface (22) that is brought into contact with an object (4) that can deform, for example a nuclear fuel rod, and a second surface (24) that is reflective and extends into the enclosure through the above-mentioned opening; a sealed, resilient connecting component (18) performing a return function between the element and the enclosure; and, inside the enclosure, a module (20) for creating an interference light (36) using a light (30) reflected by the second surface of the element. According to the invention, deformation of the object results in a modification to the interference light that is representative of the deformation.

Description

CAPTEUR DE MESURE DE DEFORMATION, FONCTIONNANT EN MILIEU HOSTILE, INTEGRANT UN MODULE OPTIQUE DE MESURE DE DEPLACEMENT, ET SYSTEME DE MESURE UTILISANT LE  DEFORMATION MEASURING SENSOR, OPERATING IN A HOSTILE ENVIRONMENT, INCORPORATING AN OPTICAL MOTION MEASUREMENT MODULE, AND A MEASURING SYSTEM USING THE SAME
CAPTEUR  SENSOR
DESCRIPTION DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne un capteur de mesure de déformation, apte à fonctionner dans un milieu hostile, intégrant un module optique de mesure de déplacement. The present invention relates to a deformation measuring sensor, able to operate in a hostile environment, integrating an optical module for measuring displacement.
Ce capteur permet de mesurer en temps réel, in situ et dans des conditions d'utilisation sévères (par exemple dans un fluide dont la pression et/ou la température sont élevées, ou dans une zone exposée à un flux de neutrons et de photons gamma) , les phénomènes de déformation d'un objet qui est soumis à diverses sollicitations (par exemple : température, pression, chauffage par un rayonnement gamma ou usure) .  This sensor makes it possible to measure in real time, in situ and under severe operating conditions (for example in a fluid whose pressure and / or temperature are high, or in an area exposed to a neutron and gamma photon flux. ), the phenomena of deformation of an object that is subjected to various stresses (for example: temperature, pressure, heating by gamma radiation or wear).
Ce capteur trouve des applications dans divers domaines industriels, en particulier les domaines nucléaire et pétrochimique. Par exemple, dans le domaine nucléaire, ce capteur s'applique à la mesure du gonflement de la gaine d'un crayon de combustible placé dans un dispositif d'irradiation. Mais il peut aussi être adapté à la mesure d'autres types de déformation, par exemple à la mesure de l'allongement d'un crayon de combustible exposé à un flux de neutrons .  This sensor finds applications in various industrial fields, in particular the nuclear and petrochemical fields. For example, in the nuclear field, this sensor applies to the measurement of the swelling of the sheath of a fuel rod placed in an irradiation device. But it can also be adapted to the measurement of other types of deformation, for example to the extent of the elongation of a fuel rod exposed to a neutron flux.
En effet, dans un grand nombre de systèmes industriels, certains composants peuvent être soumis à diverses sollicitations qui peuvent conduire à leur déformation. Par exemple, le gonflement d'un crayon de combustible nucléaire, exposé à un flux neutronique croissant, peut atteindre 10% de son diamètre. Indeed, in a large number of industrial systems, some components may be subject to various stresses that can lead to their deformation. For example, the swelling of a nuclear fuel rod, exposed to a growing neutron flux, can reach 10% of its diameter.
Lorsque la déformation est trop importante, les composants peuvent cesser de fonctionner et même être détruits. Il est donc utile de pouvoir mesurer leur déformation en temps réel, d'autant plus qu'un retour à des conditions normales de fonctionnement peut conduire à la disparition du phénomène de déformation (cas d'une dilatation par exemple) ou ne donner qu'une information globale sur le phénomène (cas d'une usure d'un composant par exemple) .  When the deformation is too great, the components may stop working and even be destroyed. It is therefore useful to be able to measure their deformation in real time, especially since a return to normal operating conditions may lead to the disappearance of the deformation phenomenon (for example, a dilation) or to give only a global information on the phenomenon (case of wear of a component for example).
ÉTAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
On connaît déjà un capteur de déformation qui utilise un interféromètre de Fabry-Perot (qui interagit avec un faisceau lumineux) . Par contre, la disposition des surfaces de réflexion du faisceau lumineux (dans l'axe de la fibre optique, utilisée avec le capteur) et l'étendue de mesure de déformation atteignable par ce type de capteur (au moins une décade plus faible que celle qui est recherchée (de 0,1 mm à plusieurs millimètres) ) ne permettent pas son utilisation pour l'application mentionnée plus haut, à savoir la mesure du gonflement d'un crayon de combustible nucléaire sous irradiation. We already know a deformation sensor that uses a Fabry-Perot interferometer (which interacts with a light beam). On the other hand, the arrangement of the reflection surfaces of the light beam (in the axis of the optical fiber, used with the sensor) and the extent of deformation measurement achievable by this type of sensor (at least one decade lower than that which is sought (from 0.1 mm to several millimeters)) do not allow its use for the application mentioned above, namely the measurement of the swelling of a nuclear fuel rod under irradiation.
EXPOSÉ DE L' INVENTION STATEMENT OF THE INVENTION
La présente invention a pour but de remédier à ces inconvénients. Le capteur, objet de l'invention, permet de mesurer des déformations radiales, par exemple des gonflements. Il est capable de fonctionner dans des conditions de forte pression et de température élevée. Et il permet de mesurer des déformations allant de 0,1 mm à plusieurs millimètres, avec une précision de l'ordre de 10 micromètres. The present invention aims to overcome these disadvantages. The sensor, which is the subject of the invention, makes it possible to measure radial deformations, for example swellings. It is able to operate under conditions of high pressure and high temperature. And it can measure deformations ranging from 0.1 mm to several millimeters, with an accuracy of about 10 micrometers.
La mesure est fondée sur un procédé d' interférométrie en temps réel, mis en œuvre par l'intermédiaire d'un module optique positionné dans une enceinte qui est isolée du milieu extérieur.  The measurement is based on a real-time interferometry method, implemented via an optical module positioned in an enclosure which is isolated from the external environment.
De façon précise, la présente invention concerne un capteur de mesure de déformation, apte à fonctionner dans un milieu hostile, caractérisé en ce qu'il comprend :  Precisely, the present invention relates to a deformation measuring sensor, able to operate in a hostile environment, characterized in that it comprises:
- une enceinte, comportant une ouverture, an enclosure, having an opening,
- un élément mobile qui a des première et deuxième faces opposées et qui est déplaçable par rapport à l'enceinte suivant un premier axe rencontrant les première et deuxième faces, la première face étant destinée à être mise en contact avec un objet susceptible de se déformer, la deuxième face étant apte à pénétrer dans l'enceinte par l'ouverture de celle-ci et à réfléchir une lumière incidente, a movable element which has opposite first and second faces and which is displaceable with respect to the enclosure along a first axis meeting the first and second faces, the first face being intended to be brought into contact with an object liable to deform the second face being able to penetrate the enclosure through the opening thereof and to reflect an incident light,
- un composant de raccordement étanche et élastique, ayant une fonction de rappel entre l'élément mobile et l'enceinte,  a waterproof and elastic connection component, having a return function between the mobile element and the enclosure,
et  and
- un module optique, placé dans l'enceinte, pour créer une lumière interférentielle suivant un deuxième axe qui n'est pas parallèle au premier axe, en utilisant une lumière auxiliaire, réfléchie par la deuxième face de l'élément mobile, an optical module, placed in the enclosure, to create an interferential light along a second axis that is not parallel to the first axis, using an auxiliary light, reflected by the second face of the movable element,
de sorte qu'une déformation de l'objet provoque une modification de la lumière interférentielle, représentative de la déformation. so that a deformation of the object causes a modification of the interferential light, representative of the deformation.
Selon un mode de réalisation préféré du capteur de mesure de déformation, objet de l'invention, les premier et deuxième axes sont perpendiculaires.  According to a preferred embodiment of the deformation measuring sensor, object of the invention, the first and second axes are perpendicular.
De préférence, le module optique comprend un miroir semi-réfléchissant et une surface réfléchissante qui coopèrent avec la deuxième face de l'élément mobile pour former un interféromètre de type Michelson .  Preferably, the optical module comprises a semi-reflecting mirror and a reflecting surface that cooperate with the second face of the movable member to form a Michelson type interferometer.
Selon un mode de réalisation préféré de l'invention, le capteur de mesure comprend un soufflet de raccordement entre l'élément mobile et l'enceinte.  According to a preferred embodiment of the invention, the measurement sensor comprises a connection bellows between the mobile element and the enclosure.
De préférence, dans ce cas, le capteur de mesure de déformation comprend en outre un dispositif de pressurisation de l'enceinte par un gaz, pour égaliser la pression entre l'intérieur et l'extérieur de l'enceinte.  Preferably, in this case, the deformation measurement sensor further comprises a device for pressurizing the chamber with a gas, to equalize the pressure between the inside and the outside of the enclosure.
Selon un mode de réalisation préféré, le capteur de mesure de déformation comprend en outre un premier tube raccordé de façon étanche à l'enceinte, s' étendant suivant le deuxième axe et permettant la circulation de la lumière interférentielle et de la lumière auxiliaire, destinée à engendrer la lumière interférentielle au moyen du module optique.  According to a preferred embodiment, the deformation measuring sensor further comprises a first tube sealingly connected to the chamber, extending along the second axis and allowing the circulation of the interferential light and the auxiliary light, intended to generate the interferential light by means of the optical module.
Dans ce cas, de préférence, le capteur de mesure de déformation comprend en outre une fibre optique qui s'étend dans le premier tube pour transmettre la lumière auxiliaire et la lumière interférentielle. In this case, preferably, the deformation measuring sensor further comprises an optical fiber which extends into the first tube for transmit the auxiliary light and the interferential light.
Une partie de la fibre optique est de préférence courbée dans le premier tube de manière à y former une lyre de dilatation.  Part of the optical fiber is preferably bent in the first tube so as to form a dilatation lyre therein.
De façon avantageuse, le dispositif de pressurisation comprend :  Advantageously, the pressurization device comprises:
un deuxième tube raccordé de façon étanche au premier tube et prévu pour alimenter l'enceinte en gaz par l'intermédiaire du premier tube, et  a second tube sealingly connected to the first tube and provided for supplying the chamber with gas via the first tube, and
- un clapet anti-retour monté sur le deuxième tube, pour empêcher le passage du milieu hostile en cas de perte d'étanchéité de l'enceinte.  - A non-return valve mounted on the second tube, to prevent the passage of hostile environment in case of leakage of the enclosure.
Il est également préférable de munir le capteur de mesure de déformation d'un dispositif d'étanchéité entre la fibre optique et la paroi interne du premier tube, à l'opposé de l'enceinte par rapport à la zone de raccord entre les premier et deuxième tubes, pour empêcher le passage du milieu hostile en cas de perte d'étanchéité de l'enceinte.  It is also preferable to provide the deformation measuring sensor with a sealing device between the optical fiber and the inner wall of the first tube, opposite the chamber with respect to the connection zone between the first and second tubes. second tubes, to prevent the passage of the hostile environment in case of leakage of the enclosure.
La présente invention concerne aussi un système de mesure de la déformation d'un objet, comprenant :  The present invention also relates to a system for measuring the deformation of an object, comprising:
- le capteur de mesure de déformation, objet de l'invention,  the deformation measuring sensor, object of the invention,
- une source de lumière auxiliaire, et an auxiliary light source, and
- un dispositif de traitement de la lumière interférentielle pour déterminer la déformation. BRÈVE DESCRIPTION DES DESSINS an interferential light treatment device for determining the deformation. BRIEF DESCRIPTION OF THE DRAWINGS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : The present invention will be better understood on reading the description of exemplary embodiments given below, purely by way of indication and in no way limiting, with reference to the appended drawings in which:
la figure 1 est une vue en coupe longitudinale schématique d'un mode de réalisation particulier du capteur de mesure de déformation, objet de l'invention, et  FIG. 1 is a schematic longitudinal sectional view of a particular embodiment of the deformation measuring sensor, object of the invention, and
- la figure 2 est une vue schématique d'un exemple du système de mesure de déformation, objet de l'invention, utilisant le capteur de mesure de déformation représenté sur la figure 1.  FIG. 2 is a schematic view of an example of the deformation measuring system, object of the invention, using the deformation measuring sensor shown in FIG.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Dans l'exemple de l'invention, qui est schématiquement représenté sur la figure 1, le capteur 2 est utilisé pour mesurer la déformation radiale d'un échantillon 4 qui s'étend suivant un axe vertical X dans un milieu hostile 6, par exemple de l'eau pressurisée à haute température. Cet échantillon 4 est fixé à l'extrémité inférieure d'un porte-échantillon 8. L'extrémité supérieure de ce dernier est fixée à une plaque 10 constituant la tête du porte-échantillon. In the example of the invention, which is diagrammatically shown in FIG. 1, the sensor 2 is used to measure the radial deformation of a sample 4 which extends along a vertical axis X in a hostile medium 6, for example pressurized water at high temperature. This sample 4 is attached to the lower end of a sample holder 8. The upper end of the latter is attached to a plate 10 constituting the head of the sample holder.
Le capteur 2 est également dans le milieu hostile 6 et comprend :  The sensor 2 is also in the hostile environment 6 and comprises:
-une enceinte 12 comportant une ouverture cylindrique 14 qui s'étend suivant un axe XI perpendiculaire à l'axe X, -un élément mobile 16 qui coulisse dans l'ouverture 14 suivant l'axe XI, an enclosure 12 having a cylindrical opening 14 which extends along an axis XI perpendicular to the axis X, a movable element 16 which slides in the opening 14 along the axis XI,
-un composant de raccordement 18, pour raccorder l'élément mobile 16 à l'enceinte 12 de façon élastique et étanche, et  a connecting component 18, for connecting the mobile element 16 to the enclosure 12 in an elastic and watertight manner, and
-un module optique 20.  an optical module 20.
La première face 22 de l'élément mobile 16 (palpeur radial) est mise en contact avec l'échantillon 4, et sa deuxième face 24 se trouve dans l'enceinte 12. Cette deuxième face 24 (surface de mesure) est apte à réfléchir une lumière incidente qui est utilisée pour déterminer la déformation de l'échantillon.  The first face 22 of the mobile element 16 (radial probe) is brought into contact with the sample 4, and its second face 24 is in the enclosure 12. This second face 24 (measurement surface) is able to reflect an incident light that is used to determine the deformation of the sample.
Dans l'exemple décrit, le composant de raccordement 18 est un soufflet qui entoure l'ouverture cylindrique 14 et dont les deux extrémités sont respectivement fixées de façon étanche à l'enceinte 12 et à l'élément mobile 16.  In the example described, the connection component 18 is a bellows that surrounds the cylindrical opening 14 and whose two ends are respectively fixed in a sealed manner to the enclosure 12 and to the movable element 16.
Le module optique 20 est placé dans l'enceinte 12. Il comprend un miroir semi-réfléchissant 26 et une surface réfléchissante 28 (surface de référence) qui est disposée au fond de l'enceinte 12. Le miroir semi-réfléchissant 26 et la surface réfléchissante 28 coopèrent avec la deuxième face 24 de l'élément mobile 16 pour former un interféromètre de type Michelson.  The optical module 20 is placed in the enclosure 12. It comprises a semi-reflecting mirror 26 and a reflecting surface 28 (reference surface) which is disposed at the bottom of the enclosure 12. The semi-reflecting mirror 26 and the surface reflective 28 cooperate with the second face 24 of the movable member 16 to form a Michelson type interferometer.
La face réfléchissante 24 de l'élément mobile 16 est perpendiculaire à l'axe XI. La surface réfléchissante 28 est perpendiculaire à un autre axe X2 qui est perpendiculaire à l'axe XI. Le miroir semi- réfléchissant 26 fait un angle de 45° avec chacun des axes XI et X2 comme on le voit sur la figure 1. Plus précisément, le module optique 20 utilise une lumière 30 qui se propage suivant l'axe X2 (de haut en bas sur la figure 1) . Une partie de cette lumière 30 est réfléchie par le miroir semi- réfléchissant 26 suivant l'axe XI et se réfléchit sur la face réflectrice 24 de l'élément mobile 16 en direction du miroir semi-réfléchissant 26. Ce dernier en réfléchit une partie (« première partie » ci-après) vers le haut suivant l'axe X2. The reflecting face 24 of the movable member 16 is perpendicular to the axis XI. The reflecting surface 28 is perpendicular to another axis X2 which is perpendicular to the axis XI. The semi-reflecting mirror 26 makes an angle of 45 ° with each of the axes XI and X2 as seen in Figure 1. More specifically, the optical module 20 uses a light 30 which propagates along the axis X2 (from top to bottom in FIG. 1). Part of this light 30 is reflected by the semi-reflecting mirror 26 along the axis XI and is reflected on the reflective face 24 of the movable member 16 towards the semi-reflecting mirror 26. The latter reflects a part thereof ( "First part" below) upwards along the axis X2.
Une autre partie de la lumière 30 est transmise par le miroir semi-réfléchissant 26 et se réfléchit sur la surface réfléchissante 28 en direction du miroir semi-réfléchissant 26. Ce dernier en transmet une partie (« deuxième partie » ci-après) vers le haut suivant l'axe X2.  Another part of the light 30 is transmitted by the semi-reflecting mirror 26 and is reflected on the reflecting surface 28 in the direction of the semi-reflecting mirror 26. The latter transmits a part ("second part" hereinafter) to the up along the X2 axis.
Les première et deuxième parties interfèrent pour former une lumière interférentielle 36 qui se propage vers le haut suivant l'axe X2.  The first and second portions interfere to form an interfering light 36 which propagates upward along the axis X2.
Ainsi, toute déformation radiale de l'échantillon 4 provoque une modification de la lumière interférentielle 36 (variation de la différence de chemin optique entre le faisceau lumineux qui se réfléchit sur la surface 28 fixe, et celui qui se réfléchit sur la face 24 mobile) . Cette modification est représentative de la déformation radiale. Cette dernière peut donc être déterminée par un traitement approprié de la lumière interférentielle 36. On reviendra sur cette question dans la description de la figure 2.  Thus, any radial deformation of the sample 4 causes a modification of the interferential light 36 (variation of the optical path difference between the light beam which is reflected on the fixed surface 28 and that which is reflected on the movable surface 24) . This modification is representative of the radial deformation. The latter can therefore be determined by an appropriate treatment of the interferential light 36. We will come back to this question in the description of FIG.
Le capteur 2 est pourvu d'un tube métallique 38 qui est raccordé de façon étanche à l'enceinte 12. Le tube 38 s'étend verticalement suivant l'axe X2 et traverse la plaque 10 comme on le voit sur la figure 1. Ce tube 38 permet la circulation des lumières 30 et 36. The sensor 2 is provided with a metal tube 38 which is sealingly connected to the enclosure 12. The tube 38 extends vertically along the axis X2 and passes through the plate 10 as seen in Figure 1. This tube 38 allows the circulation of the lights 30 and 36.
Le capteur 2 est également pourvu d'une fibre optique 40 qui s'étend suivant l'axe X2 dans le tube 38 pour transmettre ces lumières 30 et 36. Comme on le voit, une lentille de collimation 42 est prévue dans l'enceinte 12, en regard de l'extrémité inférieure de la fibre optique 40.  The sensor 2 is also provided with an optical fiber 40 which extends along the axis X2 in the tube 38 to transmit these lights 30 and 36. As can be seen, a collimation lens 42 is provided in the enclosure 12 , facing the lower end of the optical fiber 40.
Dans l'exemple décrit, le milieu hostile 6 est de l'eau pressurisée à haute température. La mesure de la déformation de l'échantillon 4 est donc effectuée à chaud. On prévoit alors un dispositif pour gérer la dilatation différentielle entre la fibre optique 40 et le tube métallique 38. Ce dispositif est une lyre de dilatation 44 qui est obtenue en courbant la fibre optique 40 de façon appropriée dans le tube 38.  In the example described, the hostile medium 6 is pressurized water at high temperature. The measurement of the deformation of the sample 4 is therefore carried out hot. There is then provided a device for managing the differential expansion between the optical fiber 40 and the metal tube 38. This device is a dilatation lyre 44 which is obtained by bending the optical fiber 40 suitably in the tube 38.
A titre purement indicatif et nullement limitatif, la pression de l'eau vaut 15,5 MPa (155 bars) et sa température vaut 320°C.  As a purely indicative and in no way limiting, the water pressure is 15.5 MPa (155 bar) and its temperature is 320 ° C.
On munit alors le capteur 2 d'un dispositif 45 pour pressuriser l'enceinte 12 par un gaz, afin d'égaliser la pression entre l'intérieur et l'extérieur de l'enceinte 12. On évite ainsi de précontraindre le soufflet 18 et l'on améliore la sensibilité de la mesure de déformation.  The sensor 2 is then equipped with a device 45 for pressurizing the chamber 12 with a gas, in order to equalize the pressure between the inside and the outside of the enclosure 12. This avoids prestressing the bellows 18 and the sensitivity of the deformation measurement is improved.
Ce dispositif de pressurisation 45 comprend un autre tube 46 dont une extrémité est raccordée de façon étanche au tube 38 et qui traverse aussi la plaque 10. Comme on le voit, en l'autre extrémité du tube 46, des moyens 48 sont prévus pour alimenter en gaz ce tube 46 (et donc le tube 38 ainsi que l'enceinte 12) . Le gaz utilisé est par exemple de l'azote. This pressurizing device 45 comprises another tube 46, one end of which is sealingly connected to the tube 38 and which also passes through the plate 10. As can be seen, at the other end of the tube 46, means 48 are provided for supplying gas to this tube 46 (and therefore the tube 38 and the chamber 12). The gas used is, for example, nitrogen.
En outre, en cas de défaillance de l'étanchéité de l'enceinte 12, et pour éviter toute remontée intempestive de fluide (eau chaude pressurisée), on munit le tube 46 d'un clapet anti¬ retour 50. De plus, on prévoit un organe d'étanchéité 52 entre la fibre optique 40 et la paroi interne du tube 38, à l'opposé de l'enceinte 12 par rapport à la zone 53 où se raccordent les tubes 38 et 46. In addition, in case of failure of the seal of the enclosure 12, and to prevent unwanted lift fluid (pressurized hot water), we equip the tube 46 with a non return valve ¬ 50. Moreover, it is expected a sealing member 52 between the optical fiber 40 and the inner wall of the tube 38, opposite the chamber 12 with respect to the zone 53 where the tubes 38 and 46 are connected.
Dans certains cas, le milieu hostile 6 doit être lui-même isolé d'un milieu externe environnant 56 et séparé de ce dernier. Pour ce faire, on prévoit une enceinte 54 pour confiner le milieu hostile 6. Cette enceinte 54 est seulement esquissée sur la figure 1. Elle est raccordée de façon étanche à la plaque 10.  In some cases, the hostile environment 6 must itself be isolated from a surrounding external environment 56 and separated from it. To do this, a chamber 54 is provided for confining the hostile medium 6. This enclosure 54 is only sketched in FIG. 1. It is sealingly connected to the plate 10.
L'enceinte 54 (contenant le milieu 6, l'échantillon 4 et le capteur 2) se trouve alors plongée dans le milieu externe environnant 56 et des moyens non représentés sont prévus pour introduire le milieu hostile 6 dans l'enceinte 54 et en contrôler l'état (par exemple la température et la pression dans le cas où le milieu hostile est de l'eau pressurisée à haute température) .  The chamber 54 (containing the medium 6, the sample 4 and the sensor 2) is then immersed in the surrounding external medium 56 and means not shown are provided to introduce the hostile medium 6 into the chamber 54 and control the state (eg temperature and pressure in the case where the hostile medium is pressurized water at high temperature).
Le tube 38 est alors relié à un autre tube 58, dans lequel se trouve une autre fibre optique 59, par l'intermédiaire d'un connecteur approprié 60 permettant l'étanchéité vis-à-vis du milieu externe environnant 56 et la liaison optique entre les fibres 40 et 59. De même, le tube 46 est relié à un autre tube 62 par l'intermédiaire duquel on alimente le tube 46 en gaz. La liaison entre les tubes 46 et 62 est assurée par un connecteur approprié 64, permettant l'étanchéité vis-à-vis du milieu externe environnant 56 et le passage du gaz. The tube 38 is then connected to another tube 58, in which there is another optical fiber 59, via a suitable connector 60 allowing sealing against the surrounding external medium 56 and the optical link. between the fibers 40 and 59. Similarly, the tube 46 is connected to another tube 62 through which the tube 46 is supplied with gas. The connection between the tubes 46 and 62 is provided by a suitable connector 64, allowing sealing against the surrounding external medium 56 and the passage of the gas.
De plus, pour garantir l'étanchéité entre le milieu hostile 6 et le milieu externe environnant 56, la plaque 10 est pourvue de passages étanches 66 et 68 dans les zones où elle est respectivement traversée par les tubes 38 et 46.  In addition, to guarantee the seal between the hostile medium 6 and the surrounding external environment 56, the plate 10 is provided with sealed passages 66 and 68 in the areas where it is crossed respectively by the tubes 38 and 46.
La figure 2 est une vue schématique et partielle d'un exemple du système de mesure, objet de l'invention. Le système 69 représenté sur cette figure 2 utilise le capteur 2 représenté sur la figure 1, lui fournit la lumière 30 et traite la lumière interférentielle 36 pour déterminer la déformation de l'échantillon 4.  Figure 2 is a schematic and partial view of an example of the measuring system object of the invention. The system 69 shown in this Figure 2 uses the sensor 2 shown in Figure 1, provides the light 30 and processes the interferential light 36 to determine the deformation of the sample 4.
Ce système comprend une source lumineuse 70 qui engendre la lumière 30, par exemple une lumière blanche, que l'on injecte dans la fibre optique 59 par l'intermédiaire d'un miroir semi-réfléchissant 72 et d'une lentille appropriée 74.  This system comprises a light source 70 which generates the light 30, for example a white light, which is injected into the optical fiber 59 via a semi-reflecting mirror 72 and an appropriate lens 74.
Le système 69 comprend aussi :  The system 69 also includes:
-un spectromètre 76 qui reçoit, par l'intermédiaire du miroir semi-réfléchissant 72 et de la lentille 74, la lumière interférentielle 36 transmise par la fibre 59,  a spectrometer 76 which receives, through the semi-reflecting mirror 72 and the lens 74, the interferential light transmitted by the fiber 59,
-un ordinateur 78 qui traite les signaux issus du spectromètre 76 pour déterminer, en temps réel, la déformation recherchée, et -un dispositif 80 d'affichage des résultats des mesures ainsi effectuées. a computer 78 which processes the signals from the spectrometer 76 to determine, in real time, the deformation sought, and a device 80 for displaying the results of the measurements thus carried out.

Claims

REVENDICATIONS
1. Capteur de mesure de déformation (2), apte à fonctionner dans un milieu hostile (6), caractérisé en ce qu' il comprend : 1. Deformation measuring sensor (2), able to operate in a hostile environment (6), characterized in that it comprises:
une enceinte (12), comportant une ouverture ( 14 ) ,  an enclosure (12) having an opening (14),
- un élément mobile (16) qui a des première (22) et deuxième (24) faces opposées et qui est déplaçable par rapport à l'enceinte suivant un premier axe (XI) rencontrant les première et deuxième faces, la première face (22) étant destinée à être mise en contact avec un objet (4) susceptible de se déformer, la deuxième face (24) étant apte à pénétrer dans l'enceinte par l'ouverture de celle-ci et à réfléchir une lumière incidente,  a movable element (16) which has first (22) and second (24) opposite faces and which is displaceable relative to the enclosure along a first axis (XI) meeting the first and second faces, the first face (22); ) being intended to be brought into contact with an object (4) capable of deforming, the second face (24) being able to penetrate into the enclosure through the opening thereof and to reflect an incident light,
- un composant de raccordement étanche et élastique (18), ayant une fonction de rappel entre l'élément mobile et l'enceinte, et  a waterproof and elastic connection component (18), having a return function between the movable element and the enclosure, and
- un module optique (20), placé dans l'enceinte, pour créer une lumière interférentielle (36) suivant un deuxième axe (X2) qui n'est pas parallèle au premier axe (XI), en utilisant une lumière auxiliaire (30), réfléchie par la deuxième face de l'élément mobile,  an optical module (20), placed in the chamber, to create an interferential light (36) along a second axis (X2) which is not parallel to the first axis (XI), by using an auxiliary light (30) , reflected by the second face of the movable element,
de sorte qu'une déformation de l'objet provoque une modification de la lumière interférentielle, représentative de la déformation. so that a deformation of the object causes a modification of the interferential light, representative of the deformation.
2. Capteur de mesure de déformation selon la revendication 1, dans lequel les premier (XI) et deuxième (X2) axes sont perpendiculaires. 2. deformation measuring sensor according to claim 1, wherein the first (XI) and second (X2) axes are perpendicular.
3. Capteur de mesure de déformation selon l'une quelconque des revendications 1 et 2, dans lequel le module optique (20) comprend un miroir semi- réfléchissant (26) et une surface réfléchissante (28) qui coopèrent avec la deuxième face (24) de l'élément mobile (16) pour former un interféromètre de type Michelson . A strain measurement sensor according to any of claims 1 and 2, wherein the optical module (20) comprises a semi-reflecting mirror (26) and a reflecting surface (28) cooperating with the second face (24). ) of the movable member (16) to form a Michelson type interferometer.
4. Capteur de mesure de déformation selon l'une quelconque des revendications 1 à 3, comprenant un soufflet (18) de raccordement entre l'élément mobile (16) et l'enceinte (12). 4. Deformation measuring sensor according to any one of claims 1 to 3, comprising a bellows (18) for connection between the movable member (16) and the enclosure (12).
5. Capteur de mesure de déformation selon la revendication 4, comprenant en outre un dispositif (45) de pressurisation de l'enceinte (12) par un gaz, pour égaliser la pression entre l'intérieur et l'extérieur de l'enceinte. 5. Deformation measuring sensor according to claim 4, further comprising a device (45) for pressurizing the enclosure (12) with a gas, to equalize the pressure between the inside and the outside of the enclosure.
6. Capteur de mesure de déformation selon l'une quelconque des revendications 1 à 5, comprenant en outre un premier tube (38) raccordé de façon étanche à l'enceinte (12), s'étendant suivant le deuxième axe (X2) et permettant la circulation de la lumière interférentielle (36) et de la lumière auxiliaire (30), destinée à engendrer la lumière interférentielle au moyen du module optique (20) . The strain measuring sensor according to any one of claims 1 to 5, further comprising a first tube (38) sealingly connected to the enclosure (12), extending along the second axis (X2) and allowing the circulation of the interferential light (36) and the auxiliary light (30) for generating the interference light by means of the optical module (20).
7. Capteur de mesure de déformation selon la revendication 6, comprenant en outre une fibre optique (40) qui s'étend dans le premier tube (38) pour transmettre la lumière auxiliaire (30) et la lumière interférentielle (36) . The deformation measuring sensor of claim 6, further comprising an optical fiber (40) extending into the first tube (38) for transmitting the auxiliary light (30) and the interference light (36).
8. Capteur de mesure de déformation selon la revendication 7, dans lequel une partie de la fibre optique (40) est courbée dans le premier tube (38) de manière à y former une lyre de dilatation (44) . The deformation measuring sensor according to claim 7, wherein a portion of the optical fiber (40) is bent into the first tube (38) to form a dilatation lyre (44) therein.
9. Capteur de mesure de déformation selon la revendication 5 et l'une quelconque des revendications 6 à 8, dans lequel le dispositif de pressurisation (45) comprend : The deformation measuring sensor according to claim 5 and any one of claims 6 to 8, wherein the pressurizing device (45) comprises:
- un deuxième tube (46) raccordé de façon étanche au premier tube (38) et prévu pour alimenter l'enceinte (12) en gaz par l'intermédiaire du premier tube, et  a second tube (46) sealingly connected to the first tube (38) and provided for supplying the chamber (12) with gas via the first tube, and
- un clapet anti-retour (50) monté sur le deuxième tube (46), pour empêcher le passage du milieu hostile (6) en cas de perte d'étanchéité de l'enceinte.  - A non-return valve (50) mounted on the second tube (46), to prevent the passage of hostile medium (6) in case of leakage of the enclosure.
10. Capteur de mesure de déformation selon la revendication 9, comprenant en outre un dispositif d'étanchéité (52) entre la fibre optique (40) et la paroi interne du premier tube (38), à l'opposé de l'enceinte (12) par rapport à la zone de raccord (53) entre les premier (38) et deuxième (46) tubes, pour empêcher le passage du milieu hostile (6) en cas de perte d'étanchéité de l'enceinte. The deformation measuring sensor according to claim 9, further comprising a sealing device (52) between the optical fiber (40) and the inner wall of the first tube (38), opposite the enclosure ( 12) relative to the connection zone (53) between the first (38) and second (46) tubes, for prevent the passage of hostile environment (6) in case of leakage of the enclosure.
11. Système (69) de mesure de la déformation d'un objet, comprenant : 11. System (69) for measuring the deformation of an object, comprising:
- le capteur de mesure de déformation (2) selon l'une quelconque des revendications 1 à 10,  the deformation measuring sensor (2) according to any one of claims 1 to 10,
- une source (70) de lumière auxiliaire, et a source (70) of auxiliary light, and
- un dispositif (76, 78) de traitement de la lumière interférentielle (36) pour déterminer la déformation . an interferential light processing device (76, 78) for determining the deformation.
EP12748009.3A 2011-08-12 2012-08-09 Deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and a measurement system using said sensor Withdrawn EP2742318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157324A FR2979012B1 (en) 2011-08-12 2011-08-12 DEFORMATION MEASURING SENSOR, OPERATING IN A HOSTILE ENVIRONMENT, INCORPORATING AN OPTICAL MOTION MEASURING MODULE, AND MEASURING SYSTEM USING THE SENSOR
PCT/EP2012/065556 WO2013023976A1 (en) 2011-08-12 2012-08-09 Deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and a measurement system using said sensor

Publications (1)

Publication Number Publication Date
EP2742318A1 true EP2742318A1 (en) 2014-06-18

Family

ID=46682820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12748009.3A Withdrawn EP2742318A1 (en) 2011-08-12 2012-08-09 Deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and a measurement system using said sensor

Country Status (7)

Country Link
US (1) US9404736B2 (en)
EP (1) EP2742318A1 (en)
JP (1) JP6078066B2 (en)
KR (1) KR101947054B1 (en)
CN (1) CN103733018B (en)
FR (1) FR2979012B1 (en)
WO (1) WO2013023976A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169282B2 (en) 2016-09-07 2021-11-09 Atomic Energy Of Canada Limited / Énergie Atomique Du Canada Limitée Detection apparatus and method
CN109387309B (en) * 2017-08-08 2024-06-18 陈艺征 Pressure sensor
CN109346201B (en) * 2018-11-22 2019-11-19 河北工业大学 A kind of nuclear fuel assembly internal modification detection device based on equivalent volume measurement
CN109360670B (en) * 2018-12-03 2020-06-09 河北工业大学 Multifunctional detection device for self-adaptive centering nuclear fuel assembly
CN109373885B (en) * 2018-12-21 2019-12-27 河北工业大学 Nuclear fuel assembly multifunctional detection device based on array type flexible detection
CN113176043B (en) * 2021-04-16 2022-07-01 南京工程学院 Gas leakage detection system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3040583A (en) * 1959-12-10 1962-06-26 United Aircraft Corp Optical pressure transducer
US4665747A (en) * 1985-04-19 1987-05-19 Muscatell Ralph P Flight instrument using light interference for pressure sensing
DE4124755A1 (en) * 1991-07-25 1993-01-28 Esd Gmbh Sicherheits Und Dicht Indicating and measuring very small deformations in components - illuminating surface with monochromic light, with flat piece of glass applied and evaluating interference lines
US6697162B1 (en) * 1999-10-13 2004-02-24 Mitutoyo Corporation Optical interferometric measuring instrument and laser interference apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503007A1 (en) * 1985-01-30 1986-07-31 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Method for measuring geometrical variables and device for carrying out the method
JPS63259403A (en) * 1986-03-31 1988-10-26 Nankai Rikagaku Kiki Seisakusho:Kk Car height measuring apparatus
US5940180A (en) * 1994-10-11 1999-08-17 Giddings & Lewis Laser interferometer measurement system for use with machine tools
US6269198B1 (en) * 1999-10-29 2001-07-31 Litton Systems, Inc. Acoustic sensing system for downhole seismic applications utilizing an array of fiber optic sensors
US20020196993A1 (en) * 2001-06-26 2002-12-26 Schroeder Robert J. Fiber optic supported sensor-telemetry system
DE102004038239A1 (en) * 2004-08-05 2006-03-16 Vibracoustic Gmbh & Co. Kg Air spring with integrated optical level sensor
CN1645040A (en) * 2005-01-20 2005-07-27 上海交通大学 Planar light waveguide measuring apparatus for micro-displacement
WO2007149733A2 (en) * 2006-06-19 2007-12-27 Baker Hughes Incorporated Isolated sensor housing
CN201016705Y (en) * 2007-02-07 2008-02-06 中国科学院上海光学精密机械研究所 Micro-displacement high-precision real-time interference measuring device
DE102008033820B4 (en) * 2008-07-19 2015-06-25 Audi Ag Motor vehicle with active suspension
WO2011063086A1 (en) * 2009-11-19 2011-05-26 Halliburton Energy Services, Inc. Downhole optical radiometry tool
CN101963515B (en) * 2010-09-29 2012-01-04 哈尔滨工程大学 Distributed Michelson optical fibre white light interference sensing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3040583A (en) * 1959-12-10 1962-06-26 United Aircraft Corp Optical pressure transducer
US4665747A (en) * 1985-04-19 1987-05-19 Muscatell Ralph P Flight instrument using light interference for pressure sensing
DE4124755A1 (en) * 1991-07-25 1993-01-28 Esd Gmbh Sicherheits Und Dicht Indicating and measuring very small deformations in components - illuminating surface with monochromic light, with flat piece of glass applied and evaluating interference lines
US6697162B1 (en) * 1999-10-13 2004-02-24 Mitutoyo Corporation Optical interferometric measuring instrument and laser interference apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Pressurisation - Wikipédia", 20 December 2016 (2016-12-20), XP055396572, Retrieved from the Internet <URL:https://fr.wikipedia.org/wiki/Pressurisation> [retrieved on 20170807] *
See also references of WO2013023976A1 *

Also Published As

Publication number Publication date
KR20140049038A (en) 2014-04-24
FR2979012B1 (en) 2013-08-30
FR2979012A1 (en) 2013-02-15
US9404736B2 (en) 2016-08-02
CN103733018A (en) 2014-04-16
KR101947054B1 (en) 2019-02-12
US20140293269A1 (en) 2014-10-02
WO2013023976A1 (en) 2013-02-21
JP2014529065A (en) 2014-10-30
CN103733018B (en) 2017-10-20
JP6078066B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2013023976A1 (en) Deformation measurement sensor operating in a hostile environment and including an integrated optical movement measurement module, and a measurement system using said sensor
EP0124415B1 (en) Optical sensor
US11119290B2 (en) Alignment device and transmitter/receiver system with two angular degrees of freedom
US6141098A (en) Fiber optic temperature sensor
US7821622B2 (en) Optical refractometer for measuring seawater salinity and corresponding salinity sensor
CA2961278A1 (en) Device for measuring the depth of a weld seam in real time
FR2766923A1 (en) Optical instrument measures the refractive index of a fluid e.g., sea-water
US20090141273A1 (en) Optical apparatus
Zhang et al. Photonic sensors review progress of optical fiber sensors and its application in harsh environment
CN105823732A (en) Method, Device and Sensor for Determining an Absorption Behavior of a Medium
Whitney et al. Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments
TWI290614B (en) A measuring apparatus for the thin film thickness using interference technology of laser
Wang et al. Sapphire fiber high-temperature sensor based on colorimetric method
FR2766922A1 (en) Optical instrument measures the refractive index of a fluid e.g. sea-water
CN107064060B (en) A kind of fiber array optic probe for the field measurement that burns
CN111207689A (en) Non-contact thread measuring device based on spectrum confocal principle
FR2578978A1 (en) Method and device for measuring the refractive index of a medium
EP3489629B1 (en) Arrangement for mapping temperature and deformation of a wall of a nuclear fuel pencil
JPH01197633A (en) Liquid refractometer and liquid concentration meter using same
FR3032034A1 (en) TEST APPARATUS AND TESTING DEVICE FOR INCREASED ACCURACY PRECISION
CA2500274A1 (en) Bragg grating pressure sensor
US20220357185A1 (en) Optical sensor and physical quantity measurement device
Zheng et al. Accuracy analysis of parallel plate interferometer for angular displacement measurement
Veitch et al. Hartmann wavefront sensors for Advanced LIGO
FR2929701A1 (en) Sample elongation sensor for research reactor, has light reflector that extends fiber, where reflector and end of fiber are made of materials insensitive to compaction by irradiation on major portion of distance between anchoring points

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170814

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180227