EP2739918B1 - System and method for optimising the operation of a heat pump system - Google Patents

System and method for optimising the operation of a heat pump system Download PDF

Info

Publication number
EP2739918B1
EP2739918B1 EP12759659.1A EP12759659A EP2739918B1 EP 2739918 B1 EP2739918 B1 EP 2739918B1 EP 12759659 A EP12759659 A EP 12759659A EP 2739918 B1 EP2739918 B1 EP 2739918B1
Authority
EP
European Patent Office
Prior art keywords
cycle fluid
evaporator
exchanger
exchanger system
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12759659.1A
Other languages
German (de)
French (fr)
Other versions
EP2739918A1 (en
Inventor
Fernando RAMOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PrestiClim
Original Assignee
PrestiClim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PrestiClim filed Critical PrestiClim
Publication of EP2739918A1 publication Critical patent/EP2739918A1/en
Application granted granted Critical
Publication of EP2739918B1 publication Critical patent/EP2739918B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Definitions

  • the present invention relates to the field of heat pumps.
  • the invention more particularly relates to a method for optimizing the operation of a heat pump installation, in which the cycle fluid undercooled by the defrosting of a heat exchanger makes it possible to improve the efficiency of the installation.
  • the invention also relates to an improved performance heat pump installation operating continuously.
  • a heat pump captures thermal energy from an external environment or more generally from a source of heat called a cold source to restore it in a heating circuit, water circulating in this circuit , usually inside a building.
  • a heat pump conventionally comprises a compressor, a condenser for supplying heat, an expander preparing the vaporization reaction by lowering the liquid pressure (to provide a low pressure liquid to the evaporator) and an evaporator.
  • the evaporator generally consists of a heat exchanger in which the liquid refrigerant is vaporized by the heat extracted from the cold source.
  • the coefficient of performance COP of a heat pump is defined as the ratio between the heat output delivered at the condenser and the work supplied. This work corresponds to the electric power consumed by the engine to move the compression system, also called "power absorbed".
  • the coefficient of performance is often much lower than 3 for heat pumps operating in environments where the outside temperature is for example below 0 ° C. For a long time, there has been a need to increase the coefficient of performance of heat pumps.
  • the present invention therefore aims to overcome one or more of the disadvantages of the prior art by proposing a heat pump installation recovering a maximum of energy so as to increase its coefficient of performance, and providing heat continuously all defrosting part of the installation when necessary.
  • the operating mode of the installation depends on the outside temperature, measured by thermometric measurement means controlled by a processor and software, actuating the control means according to the mode required for the corresponding outside temperature.
  • the installation is designed to operate in different modes depending on the outside temperature, to ensure in all cases a continuous return of heat in the heating circuit.
  • each exchanger in operation can receive a lateral air flow which will instantly cool in the area corresponding to the inlet and outlet sides of the air flow, on which there is the pipe of the evaporator in which circulates the cycle fluid.
  • the zone in the center of the exchanger system heats and defrosts the zone by taking calories from the circulating fluid in the channel of the exchange zone.
  • the second heat exchange zone surrounding the first heat exchange zone of each exchanger system, is of the finned tube type.
  • each exchanger system comprises a radiator including the two exchange zones.
  • each of said exchange zones extends over the entire height of a volume occupied by each exchange system.
  • a further object of the invention is to provide a method of optimizing the operation of a heat pump installation, with improved efficiency and continuous heat exchange.
  • the method comprises a step of simultaneous operation, the means of derivation of the cycle fluid flow being open and the control means being closed, allowing the heating of the cycle fluid in the two evaporators simultaneously.
  • the method comprises a step of switching from one mode of operation to another when the external temperature, measured using at least one thermometric sensor, crosses a threshold value.
  • the method comprises a step of subcooling the cycle fluid and defrosting the exchanger systems only performed with the heat pump system heat exchanger systems, without interrupting the upstream stage of cooling the fluid. cycle in the condenser.
  • the cycle fluid is brought to a supercritical state in a part of the circuit.
  • the latter is located under conditions of pressure and temperature such that there is coexistence of the liquid and gaseous phases.
  • the warming of the cycle fluid in the evaporator will cause a gain of enthalpy at constant pressure and induce a gradual transition to the gaseous state of the cycle fluid.
  • the method comprises a step of air circulation at the level of the exchanger systems reaching a speed of at least 2 m / s.
  • the process comprises an evaporation step in the exchange zone which fulfills the evaporator function carried out at a maximum temperature of between -10 ° C. and -20 ° C.
  • the heat pump installation operates from a cold source (A).
  • the installation conventionally comprising a circuit provided with at least one compressor (1), a condenser (2), at least two expander (3, 3 ') of at least two evaporators (4, 4') and at least two fans (5, 5 ').
  • the cycle fluid circulating in the circuit may for example be a refrigerant known per se (refrigerant R134a, R22 or other similar fluid), may or may not be brought to a supercritical state.
  • the condenser (2) is cooled by a fluid to be heated.
  • the installation comprises at least two systems (12, 12 ') exchangers with the cycle fluid, each having a first zone (Z1, Z1') for heat exchange for cooling the cycle fluid and a second zone (Z2, Z2 ') for heat exchange surrounding the first (Z1, Z1') and for heating the cycle fluid.
  • the second zone (Z2, Z2 ' ) corresponds to the evaporator (4, 4 ') of the circuit.
  • bladed fans (5, 5 ') placed next to the exchanger systems (12, 12') generate a flow, for example circular or helical, passing right through the second exchange zone (Z2, Z2 ') before exit the box enclosing the fan-system exchanger assembly (5, 5 ', 12, 12').
  • the figure 4 shows a positioning of the fans (5, 5 ') at the side portions of a box (50) enclosing the components (1, 2, 12, 12', 3, 3 ', 4, 4') of the pump heat.
  • Said casing ( fig 4 , 50) is provided with downward openings (51, 51 ') and below (52, 52') of the evaporators (4, 4 ') so that the air flow generated by the operation of the fans ( 5, 5 ') and passing right through the second exchange zone (S2, Z2') of the exchanger systems (12, 12 '), enters and out of the bottom of the box (50).
  • the semi-enclosed space (53, 53 ') formed by the box and existing between each fan (5, 5 ') adjacent to an evaporator (4, 4') and the inner wall of the box (50) facing each fan (5, 5 '), allows when a fan (5, 5') ) is stopped to maintain the warm air heated by the cycle fluid in the top of the box (50), the density of the hot air is lower than that of the cold air, thus promotes the defrosting of the evaporator (4, 4 ') adjacent to the fan (5, 5') when stopped.
  • the exchanger systems (12, 12 ') consist of two disjoint zones (Z1 and Z1', Z2 and Z2 ') of exchange, in which the cycle fluid circulates. While the first zone (Z1, Z1 ') of exchange, upstream of the expander (3, 3') in the direction of circulation, is traversed by the cycle fluid so as to heat the system (12, 12 ') exchanger, the second zone (Z2, Z2 ') is crossed downstream of the expander (3, 3') so that the evaporator (4, 4 ') heats the cycle fluid by extracting heat from the source cold (A).
  • the supply of the evaporator (4, 4') after the outlet of the expander (3, 3 ') can be carried out with a distributor (E2, E2 ').
  • a distributor E2, E2 '
  • several circuits of the second exchange zone (Z2, Z2 ') are fed in parallel.
  • the first zone (Z1, Z1 ') constitutes a liquid / air exchanger.
  • the system (12, 12 ') exchanger may comprise parallel fins aligned along an axis. These fins may be spaced apart by 3.2 mm or any other conventional gap.
  • This system (12, 12 ') is distributed between a first side, common to a plurality of fins, of said second zone (Z2, Z2') which receives the flow of air entering the system (12, 12 ') exchanger in a component direction perpendicular to the axis of alignment of the fins or parallel to the fins, and a second common side to the same plurality of fins which is opposite the first side to bring out said air flow of the system ( 12, 12 ') exchanger.
  • the pipe (21, 22) for receiving heat from the outgoing air flow forms all or part of the evaporator (4, 4 ') of the circuit and is positioned on either side of the sides of the system ( 12, 12 ') exchanger.
  • the relative humidity percentage of the air flow used can be 90%.
  • the air circulation is carried out with a speed of between 1 and 2.5 m / s, for an inlet face in the exchanger system (12, 12 ') having an area of the order of 0.1 of 5 m 2 and even more.
  • the flow can also reach 15m 3 / s and even more for applications to industrial buildings.
  • the exchanger system (12, 12 ') may also be free of fins and essentially comprise a smooth tube of stainless material, which makes it suitable for use in corrosive or charged atmospheres.
  • the temperature of the cycle fluid (liquid) is 65 ° at the inlet (E1, E1 ') of a heat exchanger system (12, 12'), the condensation temperature being 67 ° C.
  • the cycle fluid leaving the first zone (Z1, Z1 ') is cooled to a temperature of 8 ° C and is led via the outlet (S1, S1') to the expander (3, 3 ').
  • each exchanger system (12, 12 ') may have a substantially constant height (h).
  • the air flow passes through a complete surface of this generally parallelepipedal volume, entering through the second zone (Z2, Z2 ') of exchange, that is to say by the first side.
  • the height (h) is preferably greater than the depth (d) of the exchanger system (12, 12 '). This depth can be constant and of the order of 0.1 to 0.2 m while the surface of the inlet face of the air flow can correspond to 1 m 2 and more.
  • the exchanger systems (12, 12 ') can advantageously be positioned vertically, as illustrated in FIG. 1.
  • each of the exchange zones (Z1 and Z1', Z2 and Z2 ') extends over the entire height (h) of the volume occupied by the exchanger system (12, 12 ').
  • the thickness of the second exchange zone (Z2, Z2 ') where the evaporator (4, 4') is located may be comparable to or at least three times the thickness of the first zone (Z1, Z1 ') exchange. With reference to the figure 3 There are four rows for the exchange made in the evaporator (4, 4 ') and a single row for the exchange of subcooling. The thickness of said second zone (Z2, Z2 ') is therefore much greater in this case than the thickness of the first exchange zone (Z1, Z1').
  • the size of the exchanger system (12, 12 ') including the two zones (Z1 and Z1', Z2 and Z2 ') is variable as a function of the powers envisaged.
  • the total thickness of the exchange surface can be 180 mm for 5 rows: 4 rows for the evaporator (4, 4 ') and 1 row for the zone (Z1, Z1') forming the subcooler and the defroster.
  • the pumping of calories to the cycle fluid in the second exchange zone (Z2, Z2 ') requires a surplus of thickness with respect to the calorie release operation performed in the zone (Z1, Z1') of -cooling.
  • the size of the system (12, 12 ') exchanger of the figure 1 is 1000 x 1000 x 150. It should be noted here that this type of dimensioning with joining according to the largest section (1 m 2 in this case) of the subcooler of the exchanger (12, 12 ') against the evaporator (4, 4 ') optimizes defrosting.
  • the circuit splits into at least two pipes (21, 22) at the outlet of the condenser (2), each of the pipes (21, 22) being connected to the inlet (E1, E1 ') of the first zone (Z1, Z1 ') of an exchanger system (12, 12').
  • a control system (6, 6') of the circulation of the cycle fluid for example a solenoid valve, driven for example by software on the basis of temporal data and data collected by example using temperature sensors.
  • the regulators (3, 3 ') and the control systems (6, 6') are external to the exchanger systems (12, 12 ').
  • the pipes (21, 22) divide upstream of the inlet into the first exchange zone (Z1, Z1 ') and merge downstream of the control means (6, 6'), creating a bypass to prevent the circulation of the cycle fluid in the first zone (Z1, Z1 ') of exchange.
  • the circulation of the cycle fluid in these branch circuits is controlled by bypass means (7, 7 '), which may be of the same type as the control means (6, 6').
  • the inlet (E2, E2 ') and / or the outlet (S2, S2') of the evaporators can be placed at the same height level as the input (E1, E1 ') or the output (S1, S1') of the circuit part upstream of the regulators (3, 3 ') placed in the first zone (Z1, Z1 ') exchange.
  • the cooling of the cycle fluid upstream of the expander (3, 3 ') results in subcooling with respect to a normal cycle (C1).
  • the cycle (C2) obtained thus makes it possible to start the expansion with a fluid of less enthalpy.
  • the effect of this subcooling is to obtain at the end of expansion (isenthalpic) an increase in the liquid level for the cycle fluid arriving in the evaporator (4, 4 '). Therefore, the capacity of the evaporator (4, 4 ') can be improved.
  • the exchanger system (12, 12 ') may comprise a radiator including the two exchange zones (Z1 and Z1', Z2 and Z2 ').
  • one of the control systems for example the second (6 ') is closed, thus preventing the circulation of the cycle fluid in the first zone (Z1') of the second system (12 ') exchanger, while the first system of control (6) is open.
  • the cycle fluid is thus directed by the inlet (E1) in the first exchange zone (Z1) of the first exchanger system (12).
  • the subcooled cycle fluid then exits the first zone (Z1) of the first exchanger system (12), goes from the outlet (S1) to the expander (3 ') and then enters the second zone (Z2'). exchange of the second system (12 ') exchanger, thus allowing the cycle fluid to extract the heat from the cold source (A) (the fan (5') operates and allows the circulation of air) and to heat up at the level of the evaporator (4 ').
  • the cycle fluid then flows from the outlet (S2 ') of the second zone (Z2') of the second system (12 ') exchanger to the compressor (1), then from the compressor (1) to the condenser (2) where it is cooled.
  • the state of the control systems (6, 6 ') is reversed, ie the first control system (6) is closed and prevents circulation of the cycle fluid while the second (6') is open and allows circulation of the cycle fluid.
  • the cycle fluid is thus directed to the inlet (E1 ') of the first zone (Z1') of the second exchanger system (12 '), where it will be sub-cooled while de-icing the second exchanger system (12').
  • the fan (5 ') is stopped, stopping the circulation of air at the system (12') exchanger, the hot air heated by the remaining cycle fluid more trapped in the box (50) near the exchanger (12 ') and the fan (5') at a standstill, favoring the defrosting of the evaporator (4 ') adjacent to the fan (5') at standstill.
  • the sub-cooled cycle fluid then flows from the outlet (S1 ') of the first zone (Z1') of the second system (12 ') exchanger to the expander (3), before entering the second zone (Z2) for exchanging the first exchanger system, where it is cooled at the level of the evaporator (4), the fan (5) operating and allowing the circulation of air and the heat exchange between the cycle fluid and the cold source (AT).
  • the cycle fluid is then directs the output (S2) of the second zone (Z2) of the first system (12) exchanger to the compressor (1), then the compressor (1) to the condenser (2) where it is cooled.
  • T ' the state of the control systems (6, 6') is reversed again to de-ice again the first system (12) exchanger.
  • This alternation of the state of the control means (6, 6 ') which is carried out for example by means of a timer, continues as long as the temperature of the outside air is below a threshold value, for example 7 ° C, this temperature being measured for example by means of a thermometric sensor.
  • the bypass means (7, 7 ') are closed.
  • the control means (6, 6 ') are closed and the bypass means (7, 7') are open.
  • the cycle fluid thus circulates at the outlet of the condenser (2) in the two branch circuits leading to the two zones (Z2, Z2 ') of the systems (12, 12') exchangers, the cycle fluid not circulating in the two zones (Z1, Z1 ') exchange systems (12, 12') exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Defrosting Systems (AREA)

Description

DOMAINE TECHNIQUE DE L'INVENTIONTECHNICAL FIELD OF THE INVENTION

La présente invention se rapporte au domaine des pompes à chaleur. L'invention concerne plus particulièrement un procédé d'optimisation de fonctionnement d'une installation de pompe à chaleur, dans laquelle le fluide de cycle sous-refroidi par le dégivrage d'un échangeur thermique permet d'améliorer le rendement de l'installation. L'invention concerne également une installation de pompe à chaleur à rendement amélioré fonctionnant en continu.The present invention relates to the field of heat pumps. The invention more particularly relates to a method for optimizing the operation of a heat pump installation, in which the cycle fluid undercooled by the defrosting of a heat exchanger makes it possible to improve the efficiency of the installation. The invention also relates to an improved performance heat pump installation operating continuously.

ARRIERE-PLAN TECHNOLOGIQUE DE L'INVENTIONBACKGROUND OF THE INVENTION

De façon connue en soi, une pompe à chaleur capte de l'énergie thermique d'un environnement extérieur ou plus généralement d'une source de chaleur dite source froide pour la restituer dans un circuit de chauffage, de l'eau circulant dans ce circuit, généralement à l'intérieur d'un bâtiment. Une pompe à chaleur comprend classiquement un compresseur, un condenseur pour fournir de la chaleur, un détendeur préparant la réaction de vaporisation en abaissant la pression du liquide (pour fournir un liquide basse pression à l'évaporateur) et un évaporateur. L'évaporateur consiste généralement en un échangeur thermique dans lequel le fluide frigorigène liquide est vaporisé par la chaleur extraite de la source froide.In a manner known per se, a heat pump captures thermal energy from an external environment or more generally from a source of heat called a cold source to restore it in a heating circuit, water circulating in this circuit , usually inside a building. A heat pump conventionally comprises a compressor, a condenser for supplying heat, an expander preparing the vaporization reaction by lowering the liquid pressure (to provide a low pressure liquid to the evaporator) and an evaporator. The evaporator generally consists of a heat exchanger in which the liquid refrigerant is vaporized by the heat extracted from the cold source.

Le coefficient de performance COP d'une pompe à chaleur se définit comme le ratio entre la puissance calorifique délivrée au niveau du condenseur et le travail fourni. Ce travail correspond à la puissance électrique consommée par le moteur pour mouvoir le système de compression, appelée également « puissance absorbée ». Le coefficient de performance est souvent très inférieur à 3 pour des pompes à chaleur fonctionnant dans des milieux où la température extérieure est par exemple inférieure à 0°C. Il existe donc depuis longtemps un besoin pour augmenter le coefficient de performance des pompes à chaleur.The coefficient of performance COP of a heat pump is defined as the ratio between the heat output delivered at the condenser and the work supplied. This work corresponds to the electric power consumed by the engine to move the compression system, also called "power absorbed". The coefficient of performance is often much lower than 3 for heat pumps operating in environments where the outside temperature is for example below 0 ° C. For a long time, there has been a need to increase the coefficient of performance of heat pumps.

Toujours en se basant sur le fonctionnement classique d'une installation de pompe à chaleur, il est essentiel de noter que l'évaporateur, qui prélève de la chaleur à la source froide, sera donc soumis à des températures très basses. Pour éviter une baisse du débit de circulation du fluide de cycle et donc une chute de rendement, il est nécessaire de dégivrer périodiquement l'évaporateur. Pour procéder à ce dégivrage, il est courant :

  • soit, et c'est fréquemment le cas, d'inverser le cycle de fonctionnement de la pompe à chaleur, auquel cas le condenseur devient l'évaporateur et réciproquement,
  • soit de créer une dérivation conduisant le fluide de cycle chaud directement de la sortie du compresseur à l'évaporateur. Ce système est bien décrit dans le document CA 2561123 A1 , qui révèle un dispositif permettant de dériver une partie du fluide de cycle depuis la sortie du compresseur afin de l'injecter directement dans l'évaporateur, pour le dégivrer.
Ces deux façons de procéder ne permettent cependant pas d'assurer un fonctionnement en continu de l'installation, et donc une alimentation continue du circuit de chauffage.Still based on the conventional operation of a heat pump installation, it is essential to note that the evaporator, which draws heat from the cold source, will therefore be subjected to very low temperatures. To avoid a decrease in the flow rate of the cycle fluid and therefore a drop in efficiency, it is necessary to periodically defrost the evaporator. To carry out this deicing, it is common:
  • either, and this is frequently the case, to reverse the operating cycle of the heat pump, in which case the condenser becomes the evaporator and vice versa,
  • or to create a bypass leading the hot cycle fluid directly from the compressor outlet to the evaporator. This system is well described in the document CA 2561123 A1 , which reveals a device for deriving a portion of the cycle fluid from the outlet of the compressor for injection directly into the evaporator, to defrost.
These two ways of proceeding however do not allow to ensure a continuous operation of the installation, and thus a continuous supply of the heating circuit.

Il est connu dans l'état de la technique, par le document US 3,777,508 A ou son équivalent DE 2,243,784 A , une pompe à chaleur dont le rendement et l'efficacité de dégivrage d'un évaporateur est amélioré en dérivant une partie du fluide de cycle vers un échangeur de chaleur électrique, qui fournit un surplus d'énergie calorifique au fluide de cycle pour le réinjecter dans l'évaporateur.It is known in the state of the art, by the document US 3,777,508 A or its equivalent DE 2,243,784 A , a heat pump whose efficiency and defrosting efficiency of an evaporator is improved by deriving a portion of the cycle fluid to an electric heat exchanger, which provides a surplus of heat energy to the cycle fluid for reinjecting it in the evaporator.

Cependant, ce type d'installation engage périodiquement une consommation d'énergie électrique importante alors qu'au même moment, la pompe à chaleur ne fournit pas ou peu d'énergie. Ainsi le coefficient de performance de la pompe à chaleur baisse inexorablement.However, this type of installation periodically engages a significant electrical energy consumption while at the same time, the heat pump does not provide or little energy. Thus the coefficient of performance of the heat pump decreases inexorably.

Il est également connu dans l'état de la technique la possibilité d'utiliser plusieurs évaporateurs dans l'installation de pompe à chaleur, afin d'assurer un fonctionnement continu de l'installation et une alimentation continue du circuit de chauffage. En d'autre terme, même pendant le dégivrage d'un évaporateur, pourvu qu'au moins un autre continue de fonctionner, la pompe à chaleur sera en mesure de délivrer de la chaleur. Un tel dispositif est décrit dans le document US 2006/0,144,060 A1 : une installation de pompe à chaleur est composée de plusieurs évaporateurs, dont les performances peuvent être mutualisées. Quand un des évaporateurs a besoin d'être dégivré, le sens de circulation du fluide de cycle est inversé dans cet évaporateur, mais les autres continuent d'échanger de la chaleur avec la source froide. De cette manière, le condenseur fonctionne de manière continue ce qui permet à l'installation de fournir de la chaleur même pendant le dégivrage d'un évaporateur. Une telle pompe à chaleur est aussi décrite dans US2009173091 A1 .It is also known in the state of the art the possibility of using several evaporators in the heat pump installation, to ensure continuous operation of the installation and a continuous supply of the heating circuit. In other words, even during the defrosting of an evaporator, provided that at least one other continues to operate, the heat pump will be able to deliver heat. Such a device is described in the document US 2006 / 0.144,060 A1 : a heat pump installation consists of several evaporators, whose performance can be shared. When one of the evaporators needs to be defrosted, the flow direction of the cycle fluid is reversed in this evaporator, but the others continue to exchange heat with the cold source. In this way, the condenser operates continuously which allows the installation to provide heat even during the defrosting of an evaporator. Such a heat pump is also described in US2009173091 A1 .

Cependant, rien dans ce type d'installation ne permet d'améliorer le rendement de la pompe à chaleur.However, nothing in this type of installation can improve the efficiency of the heat pump.

DESCRIPTION GENERALE DE L'INVENTIONGENERAL DESCRIPTION OF THE INVENTION

La présente invention a donc pour objet de pallier un ou plusieurs des inconvénients de l'art antérieur en proposant une installation de pompe à chaleur récupérant un maximum d'énergie de façon à augmenter son coefficient de performance, et fournissant de la chaleur en continu tout en dégivrant une partie de l'installation lorsque cela est nécessaire.The present invention therefore aims to overcome one or more of the disadvantages of the prior art by proposing a heat pump installation recovering a maximum of energy so as to increase its coefficient of performance, and providing heat continuously all defrosting part of the installation when necessary.

A cet effet, l'invention concerne une installation de pompe à chaleur selon la Revendication 1, fonctionnant à partir d'une source froide, comprenant un circuit doté d'au moins un compresseur, d'un condenseur, de moyens de détente, et d'au moins un évaporateur, un fluide de cycle circulant dans le circuit, le condenseur étant refroidi par un fluide à chauffer, caractérisée en ce qu'elle comporte :

  • au moins deux systèmes échangeurs, composés chacun de deux zones d'échange de chaleur disjointes fluidiquement et liées thermiquement, la première zone d'échange remplissant la fonction de sous-refroidissement du fluide de cycle et de dégivreur de la deuxième zone d'échange, cette dernière remplissant la fonction d'évaporateur, les deux systèmes échangeurs étant montés en parallèle par rapport à l'ensemble compresseur - condenseur, de part et d'autre d'au moins deux moyens de détentes ;
  • des moyens de circulation du fluide de cycle entre l'ensemble compresseur - condenseur et les systèmes échangeurs, ainsi que des moyens de contrôle et des moyens de dérivation du flux de fluide de cycle dans le circuit permettant le fonctionnement de l'installation selon soit ;
    • ∘ un mode de circulation alternée du fluide de cycle dans le dégivreur d'un premier système échangeur puis dans l'évaporateur du deuxième système échangeur,
    • ∘ un mode de circulation simultanée en parallèle, du fluide de cycle passant dans l'évaporateur des deux systèmes échangeurs;
l'installation comprenant en outre un caisson renfermant les composants de la pompe à chaleur, le caisson formant ainsi des espaces semi-clos entre chaque ventilateur et une paroi interne du caisson en regard de chaque ventilateur, chaque ventilateur étant placé contre chaque système échangeur le long de leur hauteur h, le flux d'air généré par chaque ventilateur entrant par une ouverture basse du caisson et remontant vers un système échangeur, traversant de part en part la deuxième zone d'échange dudit système échangeur, puis redescendant et ressortant du caisson par une ouverture située sous chaque évaporateur dans le bas du caisson, ces espaces semi-clos permettant de favoriser le dégivrage des évaporateurs par la présence d'air chaud en haut du caisson. Ainsi, l'installation composée d'au moins deux systèmes échangeurs permet de réaliser deux optimisations dans le cadre du fonctionnement de l'installation. D'une part, le fluide de cycle en traversant la première zone d'échange d'un premier système échangeur, cède une partie de son énergie calorifique à ce dernier afin de le dégivrer. D'autre part, cette extraction de chaleur permet de refroidir le fluide de cycle et à cet effet d'augmenter significativement le rendement de la pompe à chaleur.For this purpose, the invention relates to a heat pump installation according to Claim 1, operating from a cold source, comprising a circuit provided with at least one compressor, a condenser, expansion means, and at least one evaporator, a cycle fluid circulating in the circuit, the condenser being cooled by a fluid to be heated, characterized in that it comprises:
  • at least two exchanger systems, each composed of two fluidically and thermally bonded disjoint heat exchange zones, the first exchange zone fulfilling the function of subcooling the cycle and de-icer fluid of the second exchange zone, the latter performing the function of evaporator, the two exchanger systems being connected in parallel with the compressor-condenser assembly, on either side of at least two expansion means;
  • means for circulation of the cycle fluid between the compressor-condenser assembly and the exchanger systems, as well as control means and means for bypassing the cycle fluid flow in the circuit allowing the operation of the installation according to either;
    • A mode of alternating circulation of the cycle fluid in the defroster of a first exchanger system and then in the evaporator of the second exchanger system,
    • ∘ a simultaneous circulation mode in parallel, the cycle fluid passing through the evaporator of the two exchanger systems;
the installation further comprising a box enclosing the components of the heat pump, the box thus forming semi-enclosed spaces between each fan and an inner wall of the box facing each fan, each fan being placed against each heat exchanger system along their height h, the air flow generated by each fan entering through a lower opening of the box and back to a heat exchanger system, passing right through the second exchange zone of said exchanger system, then down and out of the box through an opening located under each evaporator in the bottom of the box, these semi-enclosed spaces to promote the defrosting of the evaporators by the presence of hot air at the top of the box. Thus, the installation composed of at least two exchanger systems makes it possible to carry out two optimizations within the framework of the operation of the installation. On the one hand, the cycle fluid passing through the first exchange zone of a first exchanger system, transfers part of its heat energy to the latter in order to defrost it. On the other hand, this heat extraction makes it possible to cool the cycle fluid and for this purpose significantly increase the efficiency of the heat pump.

Selon une autre particularité, le mode de fonctionnement de l'installation dépend de la température extérieure, mesurée par des moyens de mesure thermométrique contrôlés par un processeur et un logiciel, actionnant les moyens de contrôle en fonction du mode requis pour la température extérieure correspondante.According to another feature, the operating mode of the installation depends on the outside temperature, measured by thermometric measurement means controlled by a processor and software, actuating the control means according to the mode required for the corresponding outside temperature.

Ainsi, L'installation est conçue pour fonctionner dans différents mode suivant la température extérieure, pour assurer dans tous les cas une restitution continue de la chaleur dans le circuit de chauffage.Thus, the installation is designed to operate in different modes depending on the outside temperature, to ensure in all cases a continuous return of heat in the heating circuit.

Selon une autre particularité, chaque système échangeur comprend :

  • des ailettes parallèles alignées suivant un plan;
  • Une zone d'échange constituées de deux sous-zones reliées fluidiquement, la première sous zone étant positionnée sur un premier coté recevant un flux d'air selon une composante parallèle au plan P dans le système échangeur, la deuxième sous-zone étant positionnée sur un deuxième côté opposée audit premier côté pour faire ressortir ledit flux d'air du système échangeur ;
  • une zone d'échange située entre les deux sous zones d'échange et reliée thermiquement aux dites sous-zones d'échange.
According to another particularity, each exchanger system comprises:
  • parallel fins aligned in a plane;
  • An exchange zone consisting of two sub-zones connected fluidically, the first sub-zone being positioned on a first side receiving a flow of air along a component parallel to the plane P in the exchanger system, the second sub-zone being positioned on a second side opposite said first side to bring out said air flow of the exchanger system;
  • an exchange zone located between the two exchange zones and thermally connected to said exchange sub-zones.

Ainsi, chaque échangeur en fonctionnement peut recevoir un flux d'air latéral qui va instantanément se refroidir dans la zone correspondant aux côtés d'entrée et de sortie du flux d'air, sur lesquels on trouve la canalisation de l'évaporateur dans laquelle circule le fluide de cycle. La zone située au centre du système échangeur réchauffe et dégivre la zone en prenant des calories au fluide de cycle circulant dans la canalisation de la zone d'échange.Thus, each exchanger in operation can receive a lateral air flow which will instantly cool in the area corresponding to the inlet and outlet sides of the air flow, on which there is the pipe of the evaporator in which circulates the cycle fluid. The zone in the center of the exchanger system heats and defrosts the zone by taking calories from the circulating fluid in the channel of the exchange zone.

Selon une autre particularité, la deuxième zone d'échange de chaleur, entourant la première zone d'échange de chaleur de chaque système échangeur, est du type tube à ailettes.According to another feature, the second heat exchange zone, surrounding the first heat exchange zone of each exchanger system, is of the finned tube type.

Selon une autre particularité, chaque système échangeur comprend un radiateur incluant les deux zones d'échange.According to another particularity, each exchanger system comprises a radiator including the two exchange zones.

Selon une autre particularité, chacune desdites zones d'échange s'étend sur toute la hauteur d'un volume occupé par chaque système échangeur.According to another feature, each of said exchange zones extends over the entire height of a volume occupied by each exchange system.

Ainsi, les échanges de chaleur entre le fluide de cycle et les zones d'échange du système échangeur sont maximisés.Thus, the heat exchanges between the cycle fluid and the exchange zones of the exchanger system are maximized.

Un objectif supplémentaire de l'invention est de proposer une méthode d'optimisation de fonctionnement d'une installation de pompe à chaleur, à rendement amélioré et d'échanges calorifiques continus.A further object of the invention is to provide a method of optimizing the operation of a heat pump installation, with improved efficiency and continuous heat exchange.

A cet effet, l'invention concerne un procédé d'optimisation de fonctionnement d'une installation de pompe à chaleur selon la Revendication 8, fonctionnant à partir d'une source froide, comprenant un circuit doté d'au moins un compresseur, d'un condenseur, de moyens de détente, d'un fluide de cycle circulant dans le circuit, d'au moins un système échangeur remplissant une fonction d'évaporateur, des moyens de contrôle et de dérivation et un caisson renfermant les composants de la pompe à chaleur, caractérisé en ce qu'il comporte :

  • Une étape de transfert de chaleur du fluide de cycle vers une zone d'un système échangeur différente de celle remplissant la fonction d'évaporateur, et ayant pour effet le sous-refroidissement du fluide de cycle et le dégivrage dudit système échangeur ;
  • Une étape de circulation de l'air dans des espaces semi-clos du caisson, l'air entrant par une ouverture basse du caisson, remontant vers un système échangeur, traversant de part en part la deuxième zone d'échange dudit système échangeur, puis redescendant et ressortant du caisson par une ouverture situé sous chaque évaporateur dans le bas du caisson;
  • Une étape de circulation du fluide de cycle sous-refroidi vers des moyens de détente, puis dans la seconde zone d'échange d'un système échangeur, permettant le réchauffement du fluide de cycle au niveau de l'évaporateur;
  • Une étape de fonctionnement simultané, les moyens de dérivation du flux de fluide de cycle étant ouverts et les moyens de contrôle étant fermés, permettant le réchauffement du fluide de cycle dans les deux évaporateurs simultanément. Selon une autre particularité, le procédé comprend une étape de fonctionnement alternatif, le fluide de cycle ne circulant pas dans au moins un des évaporateurs par l'association des moyens de minuterie et de la fermeture d'au moins un des moyens de contrôle et des moyens de dérivation, le refroidissement du fluide de cycle dans le condenseur et le fonctionnement du compresseur étant continus.
To this end, the invention relates to a method for optimizing the operation of a heat pump installation according to Claim 8, operating from a cold source, comprising a circuit provided with at least one compressor, a condenser, expansion means, a cycle fluid circulating in the circuit, at least one exchanger system performing an evaporator function, control and bypass means and a box containing the components of the pump. heat, characterized in that it comprises:
  • A step of transferring heat from the cycle fluid to a zone of an exchanger system different from that fulfilling the function of the evaporator, and having the effect of the subcooling of the cycle fluid and the defrosting of said exchanger system;
  • A step of air circulation in semi-enclosed spaces of the box, the air entering through a lower opening of the box, going back to an exchange system, passing right through the second exchange zone of said exchanger system, then descending and emerging from the box through an opening located under each evaporator in the bottom of the box;
  • A step of circulation of the sub-cooled cycle fluid to expansion means, then in the second exchange zone of an exchanger system, allowing the heating of the cycle fluid at the evaporator;
  • A step of simultaneous operation, the means of derivation of the cycle fluid flow being open and the control means being closed, allowing the heating of the cycle fluid in the two evaporators simultaneously. According to another feature, the method comprises an alternative operating step, the cycle fluid not circulating in at least one of the evaporators by the combination of the timer means and the closure of at least one of the control means and bypass means, the cooling of the cycle fluid in the condenser and the operation of the compressor being continuous.

Selon une autre particularité, le procédé comprend une étape de fonctionnement simultané, les moyens de dérivation du flux de fluide de cycle étant ouverts et les moyens de contrôle étant fermés, permettant le réchauffement du fluide de cycle dans les deux évaporateurs simultanément.According to another particularity, the method comprises a step of simultaneous operation, the means of derivation of the cycle fluid flow being open and the control means being closed, allowing the heating of the cycle fluid in the two evaporators simultaneously.

Selon une autre particularité, le procédé comprend une étape de basculement d'un mode de fonctionnement à l'autre lorsque la température extérieure, mesurée à l'aide d'au moins un capteur thermométrique, franchit une valeur seuil.According to another particularity, the method comprises a step of switching from one mode of operation to another when the external temperature, measured using at least one thermometric sensor, crosses a threshold value.

Selon une autre particularité, le procédé comprend une étape de sous-refroidissement du fluide de cycle et de dégivrage des systèmes échangeurs uniquement réalisée avec les systèmes échangeurs de l'installation de pompe à chaleur, sans interruption de l'étape amont de refroidissement du fluide de cycle dans le condenseur.According to another particularity, the method comprises a step of subcooling the cycle fluid and defrosting the exchanger systems only performed with the heat pump system heat exchanger systems, without interrupting the upstream stage of cooling the fluid. cycle in the condenser.

Selon une autre particularité, le fluide de cycle est amené à un état supercritique dans une partie du circuit.According to another particularity, the cycle fluid is brought to a supercritical state in a part of the circuit.

Ainsi, après la phase de détente du fluide de cycle, ce dernier se trouve dans des conditions de pression et de température telles qu'il y a coexistence des phases liquide et gazeuse. Le réchauffement du fluide de cycle dans l'évaporateur va entrainer un gain d'enthalpie à pression constante et induire un passage progressif à l'état gazeux du fluide de cycle.Thus, after the relaxation phase of the cycle fluid, the latter is located under conditions of pressure and temperature such that there is coexistence of the liquid and gaseous phases. The warming of the cycle fluid in the evaporator will cause a gain of enthalpy at constant pressure and induce a gradual transition to the gaseous state of the cycle fluid.

Selon une autre particularité, le procédé comprend une étape de circulation d'air au niveau des systèmes échangeurs atteignant une vitesse d'au moins 2 m/s.According to another feature, the method comprises a step of air circulation at the level of the exchanger systems reaching a speed of at least 2 m / s.

Selon une autre particularité, le procédé comprend une étape d'évaporation dans la zone d'échange remplissant la fonction d'évaporateur réalisée à une température maximum comprise entre -10 °C et -20 °C.According to another particularity, the process comprises an evaporation step in the exchange zone which fulfills the evaporator function carried out at a maximum temperature of between -10 ° C. and -20 ° C.

L'invention, avec ses caractéristiques et avantages, ressortira plus clairement à la lecture de la description faite en référence aux dessins annexés dans lesquels :

  • la figure 1 illustre un premier mode de réalisation de l'invention ;
  • la figure 2 montre schématiquement un deuxième mode de réalisation de l'invention ;
  • la figure 3 illustre une vue en coupe selon un plan P d'un système échangeur;
  • la figure 4 représente une vue en coupe d'une installation de pompe à chaleur dans un mode de réalisation de l'invention ;
  • les figures 5a, 5b et 5c illustrent deux modes de fonctionnement alternatif et un mode de fonctionnement simultané de l'invention ;
    • o dans le premier mode alternatif représenté illustré par la figure 5a, les dérivations (7, 7') sont coupées et le moyen de contrôle (6) laisse circuler le fluide de cycle,
    • ∘ dans le deuxième mode alternatif représenté illustré par la figure 5b, les dérivations (7, 7') sont coupées et le moyen de contrôle (6') laisse circuler le fluide de cycle.
    • ∘ Dans le mode simultané représenté illustré par la figure 5c, les moyens de contrôle (6, 6') sont fermés et les dérivations (7, 7') ouvertes laissent circuler le fluide de cycle.
  • la figure 6 représente un diagramme pression/enthalpie illustrant l'apport de l'invention pour le cycle d'une pompe à chaleur ;
The invention, with its features and advantages, will emerge more clearly on reading the description given with reference to the appended drawings in which:
  • the figure 1 illustrates a first embodiment of the invention;
  • the figure 2 schematically shows a second embodiment of the invention;
  • the figure 3 illustrates a sectional view along a plane P of a heat exchanger system;
  • the figure 4 represents a sectional view of a heat pump installation in one embodiment of the invention;
  • the Figures 5a, 5b and 5c illustrate two alternative modes of operation and a simultaneous mode of operation of the invention;
    • o in the first alternative mode represented illustrated by the figure 5a the taps (7, 7 ') are cut off and the control means (6) circulates the cycle fluid,
    • ∘ in the second alternative mode shown illustrated by the figure 5b the taps (7, 7 ') are cut off and the control means (6') circulates the cycle fluid.
    • ∘ In the simultaneous mode shown illustrated by the figure 5c the control means (6, 6 ') are closed and the branches (7, 7') open to circulate the cycle fluid.
  • the figure 6 represents a pressure / enthalpy diagram illustrating the contribution of the invention for the cycle of a heat pump;

DESCRIPTION DES MODES DE REALISATION PREFERES DE L'INVENTIONDESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

En référence aux figures 1 et 2, l'installation de pompe à chaleur fonctionne à partir d'une source froide (A). L'installation comprenant conventionnellement un circuit doté d'au moins un compresseur (1), d'un condenseur (2), d'au moins deux détendeur (3, 3') d'au moins deux évaporateurs (4, 4') et d'au moins deux ventilateurs (5, 5'). Le fluide de cycle qui circule dans le circuit peut par exemple être un fluide frigorifique connu en soi (fluide frigorigène R134a, R22 ou autre fluide similaire), pouvant être amené ou non à un état supercritique.With reference to figures 1 and 2 , the heat pump installation operates from a cold source (A). The installation conventionally comprising a circuit provided with at least one compressor (1), a condenser (2), at least two expander (3, 3 ') of at least two evaporators (4, 4') and at least two fans (5, 5 '). The cycle fluid circulating in the circuit may for example be a refrigerant known per se (refrigerant R134a, R22 or other similar fluid), may or may not be brought to a supercritical state.

Dans un fonctionnement de pompe à chaleur, par exemple celui d'une installation de chauffage ou d'un chauffe-eau, le condenseur (2) est refroidi par un fluide à chauffer. L'installation comprend au moins deux systèmes (12, 12') échangeurs avec le fluide de cycle, chacun doté d'une première zone (Z1, Z1') d'échange de chaleur destinée au refroidissement du fluide de cycle et d'une seconde zone (Z2, Z2') d'échange de chaleur entourant la première (Z1, Z1') et destinée au réchauffement du fluide de cycle.In a heat pump operation, for example that of a heating installation or a water heater, the condenser (2) is cooled by a fluid to be heated. The installation comprises at least two systems (12, 12 ') exchangers with the cycle fluid, each having a first zone (Z1, Z1') for heat exchange for cooling the cycle fluid and a second zone (Z2, Z2 ') for heat exchange surrounding the first (Z1, Z1') and for heating the cycle fluid.

Tandis qu'au moins une canalisation (21, 22) du circuit en amont du système de détente (3, 3') est placée dans la première zone (Z1, Z1') d'échange, la seconde zone (Z2, Z2') correspond à l'évaporateur (4, 4') du circuit. En référence à la figure 4, des ventilateurs (5, 5') à pales placés à côté des systèmes échangeurs (12, 12') génèrent un flux par exemple circulaire ou hélicoïdal traversant de part en part la deuxième zone (Z2, Z2') d'échange avant de sortir du caisson enfermant l'ensemble ventilateur-système échangeur (5, 5', 12, 12'). La figure 4 montre un positionnement des ventilateurs (5, 5') au niveau des parties latérales d'un caisson (50) renfermant les composants (1, 2, 12, 12', 3, 3', 4, 4') de la pompe à chaleur. Ledit caisson (fig 4, 50) est réalisé avec des ouvertures vers le bas (51, 51') et en dessous (52, 52') des évaporateurs (4, 4') de telle sorte que le flux d'air généré par le fonctionnement des ventilateurs (5, 5') et traversant de part en part la deuxième zone d'échange (S2, Z2') des systèmes échangeurs (12, 12'), entre et ressorte par le bas du caisson (50). Ainsi, l'espace semi-clos (53, 53') formé par le caisson et existant entre chaque ventilateur (5, 5') adjacent à un évaporateur (4, 4') et la paroi interne du caisson (50) en regard de chaque ventilateur (5, 5'), permet lorsque un ventilateur (5, 5') est arrêté de maintenir l'air chaud réchauffé par le fluide de cycle dans le haut du caisson (50), la densité de l'air chaud étant plus faible que celle de l'air froid, favorise ainsi le dégivrage de l'évaporateur (4, 4') adjacent au ventilateur (5, 5') à l'arrêt.While at least one pipe (21, 22) of the circuit upstream of the expansion system (3, 3 ') is placed in the first zone (Z1, Z1') exchange, the second zone (Z2, Z2 ' ) corresponds to the evaporator (4, 4 ') of the circuit. With reference to the figure 4 bladed fans (5, 5 ') placed next to the exchanger systems (12, 12') generate a flow, for example circular or helical, passing right through the second exchange zone (Z2, Z2 ') before exit the box enclosing the fan-system exchanger assembly (5, 5 ', 12, 12'). The figure 4 shows a positioning of the fans (5, 5 ') at the side portions of a box (50) enclosing the components (1, 2, 12, 12', 3, 3 ', 4, 4') of the pump heat. Said casing ( fig 4 , 50) is provided with downward openings (51, 51 ') and below (52, 52') of the evaporators (4, 4 ') so that the air flow generated by the operation of the fans ( 5, 5 ') and passing right through the second exchange zone (S2, Z2') of the exchanger systems (12, 12 '), enters and out of the bottom of the box (50). Thus, the semi-enclosed space (53, 53 ') formed by the box and existing between each fan (5, 5 ') adjacent to an evaporator (4, 4') and the inner wall of the box (50) facing each fan (5, 5 '), allows when a fan (5, 5') ) is stopped to maintain the warm air heated by the cycle fluid in the top of the box (50), the density of the hot air is lower than that of the cold air, thus promotes the defrosting of the evaporator (4, 4 ') adjacent to the fan (5, 5') when stopped.

Les systèmes échangeurs (12, 12') sont constitués de deux zones disjointes (Z1 et Z1', Z2 et Z2') d'échange, dans lesquelles circulent le fluide de cycle. Tandis que la première zone (Z1, Z1') d'échange, en amont du détendeur (3, 3') dans le sens de circulation, est traversée par le fluide de cycle de manière à réchauffer le système (12, 12') échangeur, la deuxième zone (Z2, Z2') est traversée en aval du détendeur (3, 3') de manière à ce que l'évaporateur (4, 4') réchauffe le fluide de cycle par extraction de la chaleur de la source froide (A). Afin d'alimenter de façon homogène plusieurs circuits sur le système échangeur (12, 12'), l'alimentation de l'évaporateur (4, 4') après la sortie du détendeur (3, 3') peut s'effectuer avec un distributeur (E2, E2'). Dans ce cas, plusieurs circuits de la seconde zone (Z2, Z2') d'échange sont alimentés parallèlement. La première zone (Z1, Z1') constitue un échangeur liquide/air.The exchanger systems (12, 12 ') consist of two disjoint zones (Z1 and Z1', Z2 and Z2 ') of exchange, in which the cycle fluid circulates. While the first zone (Z1, Z1 ') of exchange, upstream of the expander (3, 3') in the direction of circulation, is traversed by the cycle fluid so as to heat the system (12, 12 ') exchanger, the second zone (Z2, Z2 ') is crossed downstream of the expander (3, 3') so that the evaporator (4, 4 ') heats the cycle fluid by extracting heat from the source cold (A). In order to supply a homogeneous circuit several circuits on the exchanger system (12, 12 '), the supply of the evaporator (4, 4') after the outlet of the expander (3, 3 ') can be carried out with a distributor (E2, E2 '). In this case, several circuits of the second exchange zone (Z2, Z2 ') are fed in parallel. The first zone (Z1, Z1 ') constitutes a liquid / air exchanger.

En référence à la figure 1, le système (12, 12') échangeur peut comporter des ailettes parallèles alignées suivant un axe. Ces ailettes peuvent être espacées entre elles de 3,2 mm ou de tout autre écart conventionnel. Ce système (12, 12') se répartit entre un premier côté, commun à une pluralité d'ailettes, de ladite deuxième zone (Z2, Z2') qui reçoit le flux d'air pénétrant dans le système (12, 12') échangeur selon une direction à composante perpendiculaire à l'axe d'alignement des ailettes ou parallèle aux ailettes, et un deuxième côté commun à la même pluralité d'ailettes qui est opposé au premier côté pour faire ressortir ledit flux d'air du système (12, 12') échangeur. La canalisation (21, 22) destinée à recevoir de la chaleur issue du flux d'air sortant forme tout ou partie de l'évaporateur (4, 4') du circuit et est positionnée de part et d'autre des côtés du système (12, 12') échangeur. Le pourcentage d'humidité relative du flux d'air utilisé peut être de 90%. De manière non limitative, la circulation d'air s'effectue avec une vitesse comprise entre 1 et 2,5 m/s, pour une face d'entrée dans le système échangeur (12, 12') ayant une superficie de l'ordre de 0,1 de 5 m2 et même plus. Le débit peut aussi atteindre 15m3/s et même plus pour des applications à des bâtiments industriels.With reference to the figure 1 , the system (12, 12 ') exchanger may comprise parallel fins aligned along an axis. These fins may be spaced apart by 3.2 mm or any other conventional gap. This system (12, 12 ') is distributed between a first side, common to a plurality of fins, of said second zone (Z2, Z2') which receives the flow of air entering the system (12, 12 ') exchanger in a component direction perpendicular to the axis of alignment of the fins or parallel to the fins, and a second common side to the same plurality of fins which is opposite the first side to bring out said air flow of the system ( 12, 12 ') exchanger. The pipe (21, 22) for receiving heat from the outgoing air flow forms all or part of the evaporator (4, 4 ') of the circuit and is positioned on either side of the sides of the system ( 12, 12 ') exchanger. The relative humidity percentage of the air flow used can be 90%. Without limitation, the air circulation is carried out with a speed of between 1 and 2.5 m / s, for an inlet face in the exchanger system (12, 12 ') having an area of the order of 0.1 of 5 m 2 and even more. The flow can also reach 15m 3 / s and even more for applications to industrial buildings.

Le système (12, 12') échangeur peut aussi être dépourvu d'ailettes et comporter essentiellement un tube lisse en matière inoxydable, ce qui le rend adapté pour des utilisations dans des atmosphères corrosives ou chargées.The exchanger system (12, 12 ') may also be free of fins and essentially comprise a smooth tube of stainless material, which makes it suitable for use in corrosive or charged atmospheres.

Dans l'exemple qui suit, la température du fluide de cycle (liquide) est de 65° à l'entrée (E1, E1') d'un système échangeur (12, 12'), la température de condensation pouvant être de 67°C. Le fluide de cycle qui sort de la première zone (Z1, Z1') est refroidi à une température de 8°C et est conduit via la sortie (S1, S1') vers le détendeur (3, 3').In the following example, the temperature of the cycle fluid (liquid) is 65 ° at the inlet (E1, E1 ') of a heat exchanger system (12, 12'), the condensation temperature being 67 ° C. The cycle fluid leaving the first zone (Z1, Z1 ') is cooled to a temperature of 8 ° C and is led via the outlet (S1, S1') to the expander (3, 3 ').

Dans un mode de réalisation de l'invention, le volume occupé par chaque système échangeur (12, 12') peut avoir une hauteur (h) sensiblement constante. Le flux d'air traverse par exemple une surface complète de ce volume globalement parallélépipédique, en entrant par la deuxième zone (Z2, Z2') d'échange, c'est à dire par le premier côté. En référence à la figure 1, la hauteur (h) est de préférence supérieure à la profondeur (d) du système échangeur (12, 12'). Cette profondeur peut être constante et de l'ordre de 0,1 à 0,2 m alors que la surface de la face d'entrée du flux d'air peut correspondre à 1 m2 et plus. Les systèmes échangeurs (12, 12') peuvent avantageusement être positionnés de façon verticale, comme illustré dans la figue 1. Dans une forme de réalisation préférée, chacune des zones (Z1 et Z1', Z2 et Z2') d'échange s'étend sur toute la hauteur (h) du volume occupé par le système échangeur (12, 12'). L'épaisseur de la seconde zone (Z2, Z2') d'échange où est localisé l'évaporateur (4, 4') peut être comparable à ou correspondre au moins au triple de l'épaisseur de la première zone (Z1, Z1') d'échange. En référence à la figure 3, Il y a quatre rangs pour l'échange réalisé dans l'évaporateur (4, 4') et un simple rang pour l'échange de sous-refroidissement. L'épaisseur de ladite seconde zone (Z2, Z2') est donc bien supérieure dans ce cas à l'épaisseur de la première zone (Z1, Z1') d'échange.In one embodiment of the invention, the volume occupied by each exchanger system (12, 12 ') may have a substantially constant height (h). For example, the air flow passes through a complete surface of this generally parallelepipedal volume, entering through the second zone (Z2, Z2 ') of exchange, that is to say by the first side. With reference to the figure 1 , the height (h) is preferably greater than the depth (d) of the exchanger system (12, 12 '). This depth can be constant and of the order of 0.1 to 0.2 m while the surface of the inlet face of the air flow can correspond to 1 m 2 and more. The exchanger systems (12, 12 ') can advantageously be positioned vertically, as illustrated in FIG. 1. In a preferred embodiment, each of the exchange zones (Z1 and Z1', Z2 and Z2 ') extends over the entire height (h) of the volume occupied by the exchanger system (12, 12 '). The thickness of the second exchange zone (Z2, Z2 ') where the evaporator (4, 4') is located may be comparable to or at least three times the thickness of the first zone (Z1, Z1 ') exchange. With reference to the figure 3 There are four rows for the exchange made in the evaporator (4, 4 ') and a single row for the exchange of subcooling. The thickness of said second zone (Z2, Z2 ') is therefore much greater in this case than the thickness of the first exchange zone (Z1, Z1').

On comprend que la taille du système échangeur (12, 12') incluant les deux zones (Z1 et Z1', Z2 et Z2') est variable en fonction des puissances envisagées. L'épaisseur totale de la surface d'échange peut être de 180 mm pour 5 rangs : 4 rangs pour l'évaporateur (4, 4') et 1 rang pour la zone (Z1, Z1') formant le sous-refroidisseur et le dégivreur. Le pompage de calories vers le fluide de cycle dans la seconde zone d'échange (Z2, Z2') nécessite un surplus d'épaisseur par rapport à l'opération de libération de calories effectuée dans la zone (Z1, Z1') de sous-refroidissement. De manière non limitative, la taille du système (12, 12') échangeur de la figure 1 est de 1000 x 1000 x 150. Il faut ici préciser que ce type de dimensionnement avec accolement selon la plus grande section (1 m2 dans ce cas) du sous-refroidisseur de l'échangeur (12, 12') contre l'évaporateur (4, 4') permet d'optimiser le dégivrage.It will be understood that the size of the exchanger system (12, 12 ') including the two zones (Z1 and Z1', Z2 and Z2 ') is variable as a function of the powers envisaged. The total thickness of the exchange surface can be 180 mm for 5 rows: 4 rows for the evaporator (4, 4 ') and 1 row for the zone (Z1, Z1') forming the subcooler and the defroster. The pumping of calories to the cycle fluid in the second exchange zone (Z2, Z2 ') requires a surplus of thickness with respect to the calorie release operation performed in the zone (Z1, Z1') of -cooling. Without limitation, the size of the system (12, 12 ') exchanger of the figure 1 is 1000 x 1000 x 150. It should be noted here that this type of dimensioning with joining according to the largest section (1 m 2 in this case) of the subcooler of the exchanger (12, 12 ') against the evaporator (4, 4 ') optimizes defrosting.

Dans un mode de réalisation, le circuit se divise en au moins deux canalisations (21, 22) à la sortie du condenseur (2), chacune des canalisations (21, 22) étant connectée à l'entrée (E1, E1') de la première zone (Z1, Z1') d'un système échangeur (12, 12'). Entre la sortie (S1, S1') de la première zone (Z1, Z1') et le détendeur (3, 3'), lui même situé en amont de l'entrée (E2, E2') de la deuxième zone (Z2, Z2') d'échange, est installé un système de contrôle (6, 6') de la circulation du fluide de cycle, par exemple une électrovanne, pilotée par exemple par un logiciel sur la base de données temporelles et de données recueillies par exemple à l'aide de capteurs de température. Les détendeurs (3, 3') et les systèmes de contrôle (6, 6') sont extérieurs aux systèmes échangeurs (12, 12'). Dans un mode de réalisation, les canalisations (21, 22) se divisent en amont de l'entrée dans la première zone (Z1, Z1') d'échange et fusionnent en aval des moyens de contrôle (6, 6'), créant une dérivation permettant d'éviter la circulation du fluide de cycle dans la première zone (Z1, Z1') d'échange. La circulation du fluide de cycle dans ces circuits de dérivation est contrôlée par des moyens de dérivation (7, 7'), qui peuvent être du même type que les moyens de contrôle (6, 6'). Les canalisations (21, 22) connectés aux sorties (S2, S2') des évaporateurs (4, 4') fusionnent en amont du compresseur (1), formant une unique canalisation connectée à l'entrée du compresseur (1). L'entrée (E2, E2') et/ou la sortie (S2, S2') des évaporateurs peut être placée à un même niveau de hauteur que l'entrée (E1, E1') ou la sortie (S1, S1') de la partie circuit en amont des détendeurs (3, 3') placées dans la première zone (Z1, Z1') d'échange. Dans l'exemple de la figure 1, seule la sortie (S1, S1') de la première zone (Z1, Z1') d'échange est placée à un niveau de hauteur différent des autres entrées (E1 et E1', E2 et E2') ou de la sortie (S2, S2') de la deuxième zone (Z2, Z2') d'échange des systèmes échangeurs (12, 12').In one embodiment, the circuit splits into at least two pipes (21, 22) at the outlet of the condenser (2), each of the pipes (21, 22) being connected to the inlet (E1, E1 ') of the first zone (Z1, Z1 ') of an exchanger system (12, 12'). Between the outlet (S1, S1 ') of the first zone (Z1, Z1') and the expansion valve (3, 3 '), itself located upstream of the inlet (E2, E2') of the second zone (Z2 , Z2 ') exchange, is installed a control system (6, 6') of the circulation of the cycle fluid, for example a solenoid valve, driven for example by software on the basis of temporal data and data collected by example using temperature sensors. The regulators (3, 3 ') and the control systems (6, 6') are external to the exchanger systems (12, 12 '). In one embodiment, the pipes (21, 22) divide upstream of the inlet into the first exchange zone (Z1, Z1 ') and merge downstream of the control means (6, 6'), creating a bypass to prevent the circulation of the cycle fluid in the first zone (Z1, Z1 ') of exchange. The circulation of the cycle fluid in these branch circuits is controlled by bypass means (7, 7 '), which may be of the same type as the control means (6, 6'). The pipes (21, 22) connected to the outlets (S2, S2 ') of the evaporators (4, 4') merge upstream of the compressor (1), forming a single pipe connected to the inlet of the compressor (1). The inlet (E2, E2 ') and / or the outlet (S2, S2') of the evaporators can be placed at the same height level as the input (E1, E1 ') or the output (S1, S1') of the circuit part upstream of the regulators (3, 3 ') placed in the first zone (Z1, Z1 ') exchange. In the example of the figure 1 only the output (S1, S1 ') of the first exchange zone (Z1, Z1') is placed at a height level different from the other inputs (E1 and E1 ', E2 and E2') or the output ( S2, S2 ') of the second zone (Z2, Z2') for exchanging the exchanger systems (12, 12 ').

Comme illustré par le diagramme de la figure 6, le refroidissement du fluide de cycle en amont du détendeur (3, 3') se traduit par un sous-refroidissement par rapport à un cycle normal (C1). Le cycle (C2) obtenu permet donc de démarrer la détente avec un fluide de moindre enthalpie. L'effet de ce sous-refroidissement est d'obtenir en fin de détente (isenthalpique) une augmentation du taux de liquide pour le fluide de cycle arrivant dans l'évaporateur (4, 4'). Par conséquent, La capacité de l'évaporateur (4, 4') peut être améliorée.As illustrated by the diagram of the figure 6 the cooling of the cycle fluid upstream of the expander (3, 3 ') results in subcooling with respect to a normal cycle (C1). The cycle (C2) obtained thus makes it possible to start the expansion with a fluid of less enthalpy. The effect of this subcooling is to obtain at the end of expansion (isenthalpic) an increase in the liquid level for the cycle fluid arriving in the evaporator (4, 4 '). Therefore, the capacity of the evaporator (4, 4 ') can be improved.

En référence à la figure 1, le système échangeur (12, 12') peut comprendre un radiateur incluant les deux zones (Z1 et Z1', Z2 et Z2') d'échange.With reference to the figure 1 , the exchanger system (12, 12 ') may comprise a radiator including the two exchange zones (Z1 and Z1', Z2 and Z2 ').

Pour obtenir le complément d'efficacité comme illustré à la figure 6, et pour proposer le dégivrage des systèmes (12, 12') échangeurs sans inversion de cycle et sans interruption du refroidissement du fluide de cycle dans le condenseur (2), il est proposé selon l'invention un procédé d'optimisation du fonctionnement d'une installation de pompe à chaleur. Dans un mode de fonctionnement, en référence aux figures 5a et 5b, le fluide de cycle circule alternativement, à l'aide des systèmes de contrôle, dans l'une ou l'autre portion du circuit en aval du condenseur. A un instant T, et en référence à la figure 5a, un des systèmes de contrôle, par exemple le deuxième (6'), est fermé, empêchant ainsi la circulation du fluide de cycle dans la première zone (Z1') du deuxième système (12') échangeur, tandis que le premier système de contrôle (6) est ouvert. Le fluide de cycle se dirige donc par l'entrée (E1) dans la première zone (Z1) d'échange du premier système (12) échangeur. Il se produit alors une extraction de calories du fluide de cycle vers le premier système (12) échangeur, avec pour effet combiné le sous-refroidissement du fluide de cycle et le dégivrage de l'évaporateur (4) du premier système (12) échangeur, le dégivrage étant d'autant plus efficace que le ventilateur (5) est à l'arrêt, arrêtant la circulation d'air de la source froide (A), l'air chaud réchauffé par le fluide de cycle restant de plus emprisonné dans le caisson (50) à proximité de l'échangeur (12) et du ventilateur (5) à l'arrêt favorise le dégivrage de l'évaporateur (4) adjacent au ventilateur (5) à l'arrêt. Le fluide de cycle sous-refroidi sort ensuite de la première zone (Z1) du premier système (12) échangeur, se dirige de la sortie (S1) vers le détendeur (3'), puis pénètre dans la deuxième zone (Z2') d'échange du deuxième système (12') échangeur, permettant ainsi au fluide de cycle d'extraire la chaleur de la source froide (A) (le ventilateur (5') fonctionne et permet la circulation d'air) et de se réchauffer au niveau de l'évaporateur (4'). Le fluide de cycle se dirige ensuite de la sortie (S2') de la deuxième zone (Z2') du deuxième système (12') échangeur vers le compresseur (1), puis du compresseur (1) vers le condenseur (2) où il est refroidi. Au bout par exemple d'un temps T' de fonctionnement, par exemple trente minutes, et en référence à la figure 5b, l'état des systèmes de contrôle (6, 6') s'inverse, autrement dit le premier système de contrôle (6) est fermé et empêche la circulation du fluide de cycle tandis que le deuxième (6') est ouvert et autorise la circulation du fluide de cycle. Le fluide de cycle se dirige donc vers l'entrée (E1') de la première zone (Z1') du deuxième système (12') échangeur, où il sera sous-refroidi tout en dégivrant le deuxième système (12') échangeur. Le ventilateur (5') est arrêté, stoppant la circulation d'air au niveau du système (12') échangeur, l'air chaud réchauffé par le fluide de cycle restant de plus emprisonné dans le caisson (50) à proximité de l'échangeur (12') et du ventilateur (5') à l'arrêt, favorisant le dégivrage de l'évaporateur (4') adjacent au ventilateur (5') à l'arrêt. Le fluide de cycle sous-refroidi se dirige ensuite de la sortie (S1') de la première zone (Z1') du deuxième système (12') échangeur vers le détendeur (3), avant de pénétrer dans la deuxième zone (Z2) d'échange du premier système échangeur, où il est refroidi au niveau de l'évaporateur (4), le ventilateur (5) fonctionnant et permettant la circulation d'air et l'échange de chaleur entre le fluide de cycle et la source froide (A). Le fluide de cycle se dirige ensuite de la sortie (S2) de la deuxième zone (Z2) du premier système (12) échangeur vers le compresseur (1), puis du compresseur (1) vers le condenseur (2) où il est refroidi. Au bout d'un même temps T', l'état des systèmes de contrôle (6, 6') s'inverse à nouveau afin de dégivrer de nouveau le premier système (12) échangeur. Cette alternance de l'état des moyens de contrôle (6, 6'), qui est effectuée par exemple à l'aide d'une minuterie, continue tant que la température de l'air extérieur est inférieure à une valeur seuil, par exemple 7 °C, cette température étant mesurée par exemple à l'aide d'un capteur thermométrique. Durant la phase de fonctionnement alterné, les moyens de dérivation (7, 7') sont fermés.To obtain the additional effectiveness as illustrated in figure 6 , and to propose the defrosting of the systems (12, 12 ') exchangers without cycle inversion and without interruption of the cooling of the cycle fluid in the condenser (2), it is proposed according to the invention a method of optimizing the operation of the a heat pump installation. In a mode of operation, with reference to Figures 5a and 5b , the cycle fluid circulates alternately, using the control systems, in one or the other portion of the circuit downstream of the condenser. At a time T, and with reference to the figure 5a , one of the control systems, for example the second (6 '), is closed, thus preventing the circulation of the cycle fluid in the first zone (Z1') of the second system (12 ') exchanger, while the first system of control (6) is open. The cycle fluid is thus directed by the inlet (E1) in the first exchange zone (Z1) of the first exchanger system (12). There is then a calorie extraction from the cycle fluid to the first system (12) exchanger, with the combined effect of the subcooling of the cycle fluid and the defrosting of the evaporator (4) of the first exchanger system (12), the defrosting being all the more effective when the fan (5) is at the same time stopping, stopping the air circulation of the cold source (A), the hot air heated by the remaining cycle fluid further trapped in the box (50) near the exchanger (12) and the fan (5). ) at standstill promotes the defrosting of the evaporator (4) adjacent to the fan (5) at a standstill. The subcooled cycle fluid then exits the first zone (Z1) of the first exchanger system (12), goes from the outlet (S1) to the expander (3 ') and then enters the second zone (Z2'). exchange of the second system (12 ') exchanger, thus allowing the cycle fluid to extract the heat from the cold source (A) (the fan (5') operates and allows the circulation of air) and to heat up at the level of the evaporator (4 '). The cycle fluid then flows from the outlet (S2 ') of the second zone (Z2') of the second system (12 ') exchanger to the compressor (1), then from the compressor (1) to the condenser (2) where it is cooled. After, for example, a time T 'of operation, for example thirty minutes, and with reference to the figure 5b the state of the control systems (6, 6 ') is reversed, ie the first control system (6) is closed and prevents circulation of the cycle fluid while the second (6') is open and allows circulation of the cycle fluid. The cycle fluid is thus directed to the inlet (E1 ') of the first zone (Z1') of the second exchanger system (12 '), where it will be sub-cooled while de-icing the second exchanger system (12'). The fan (5 ') is stopped, stopping the circulation of air at the system (12') exchanger, the hot air heated by the remaining cycle fluid more trapped in the box (50) near the exchanger (12 ') and the fan (5') at a standstill, favoring the defrosting of the evaporator (4 ') adjacent to the fan (5') at standstill. The sub-cooled cycle fluid then flows from the outlet (S1 ') of the first zone (Z1') of the second system (12 ') exchanger to the expander (3), before entering the second zone (Z2) for exchanging the first exchanger system, where it is cooled at the level of the evaporator (4), the fan (5) operating and allowing the circulation of air and the heat exchange between the cycle fluid and the cold source (AT). The cycle fluid is then directs the output (S2) of the second zone (Z2) of the first system (12) exchanger to the compressor (1), then the compressor (1) to the condenser (2) where it is cooled. At the end of a same time T ', the state of the control systems (6, 6') is reversed again to de-ice again the first system (12) exchanger. This alternation of the state of the control means (6, 6 '), which is carried out for example by means of a timer, continues as long as the temperature of the outside air is below a threshold value, for example 7 ° C, this temperature being measured for example by means of a thermometric sensor. During the alternating operating phase, the bypass means (7, 7 ') are closed.

Ce fonctionnement alterné de l'installation permet d'assurer :

  • le dégivrage alterné des systèmes (12, 12') échangeurs, sans inversion de la circulation du fluide de cycle, le condenseur (2) fournissant de la chaleur en continu,
  • le sous-refroidissement du fluide de cycle, ce qui améliore le rendement de la pompe à chaleur.
This alternate operation of the installation ensures:
  • alternately defrosting the exchanger systems (12, 12 '), without inverting the circulation of the cycle fluid, the condenser (2) supplying heat continuously,
  • the subcooling of the cycle fluid, which improves the efficiency of the heat pump.

Dans un mode de fonctionnement en référence à la figure 5c, lorsque la température extérieure devient supérieure à une valeur seuil, par exemple 7 °C, les moyens de contrôle (6, 6') sont fermés et les moyens de dérivation (7, 7') sont ouverts. Le fluide de cycle circule ainsi en sortie du condenseur (2) dans les deux circuits de dérivation menant aux deux zones (Z2, Z2') des systèmes (12, 12') échangeurs, le fluide de cycle ne circulant pas dans les deux zone (Z1, Z1') d'échange des systèmes (12, 12') échangeurs. On aura alors un fonctionnement simultané et en parallèle des deux évaporateurs (4, 4'), et des deux ventilateurs (5, 5') qui favorisent alors l'échange de chaleur de la source froide (A) vers le fluide de cycle, le fluide de cycle étant réchauffé en parallèle dans les deux zones (Z2, Z2') d'échange des systèmes (12, 12') échangeurs. Ce mode de fonctionnement permet de réduire la puissance fournie à l'installation de pompe à chaleur, évitant ainsi les pics de puissance.In a mode of operation with reference to the figure 5c when the outside temperature becomes higher than a threshold value, for example 7 ° C, the control means (6, 6 ') are closed and the bypass means (7, 7') are open. The cycle fluid thus circulates at the outlet of the condenser (2) in the two branch circuits leading to the two zones (Z2, Z2 ') of the systems (12, 12') exchangers, the cycle fluid not circulating in the two zones (Z1, Z1 ') exchange systems (12, 12') exchangers. There will then be simultaneous and parallel operation of the two evaporators (4, 4 ') and the two fans (5, 5') which then promote the heat exchange from the cold source (A) to the cycle fluid, the cycle fluid being heated in parallel in the two exchange zones (Z2, Z2 ') of the exchanger systems (12, 12'). This operating mode reduces the power supplied to the heat pump system, thus avoiding power peaks.

La présente demande décrit diverses caractéristiques techniques et avantages en référence aux figures et/ou à divers modes de réalisation. L'homme de métier comprendra que les caractéristiques techniques d'un mode de réalisation donné peuvent en fait être combinées avec des caractéristiques d'un autre mode de réalisation à moins que l'inverse ne soit explicitement mentionné ou qu'il ne soit évident que ces caractéristiques sont incompatibles. De plus, les caractéristiques techniques décrites dans un mode de réalisation donné peuvent être isolées des autres caractéristiques de ce mode à moins que l'inverse ne soit explicitement mentionné.The present application describes various technical features and advantages with reference to the figures and / or various embodiments. Those skilled in the art will appreciate that the technical features of a given embodiment may in fact be combined with features of another embodiment unless the reverse is explicitly mentioned or it is evident that these features are incompatible. In addition, the technical features described in a given embodiment can be isolated from the other features of this mode unless the opposite is explicitly mentioned.

Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine défini par la portée des revendications jointes, et l'invention ne doit pas être limitée aux détails donnés ci-dessus.It should be obvious to those skilled in the art that the present invention allows embodiments in many other specific forms without departing from the scope defined by the scope of the appended claims, and the invention should not be limited. to the details given above.

Claims (14)

  1. Heat pump installation functioning from a cold source (A), comprising a circuit having at least one compressor (1), a condenser (2), pressure release means (3, 3'), and at least one evaporator (4, 4'), a cycle fluid circulating in the circuit, the condenser (2) being cooled by a fluid to be heated, the installation comprising:
    - at least two exchanger systems (12, 12') each composed of two fluidly disconnected and thermally connected heat exchange zones (Z1 and Z1', Z2 and Z2'), the first exchange zone (Z1, Z1') fulfilling the function of subcooling the cycle fluid and defroster of the second exchange zone (Z2, Z2'), the latter fulfilling the function of evaporator (4, 4'), the two exchanger systems (12, 12') being mounted in parallel relative to the compressor (1) - condenser (2) assembly, on either side of at least two pressure release means (3, 3');
    - means for circulating the cycle fluid between the compressor (1) - condenser (2) assembly and the exchanger systems (12, 12'), as well as control means (6, 6') and diversion means (7, 7') for the cycle fluid stream in the circuit, allowing the installation to function according to a mode of alternate circulation of the cycle fluid in the defroster of a first exchanger system (12, 12'), then in the evaporator (4, 4') of the second exchanger system (12, 12'),
    the heat pump installation being further characterised in that the control means (6, 6') and the diversion means (7, 7') for the cycle fluid stream in the circuit allow the installation to function according to a mode of simultaneous circulation in parallel, of the cycle fluid passing through the evaporator (4, 4') of the two exchanger systems (12, 12'), the installation further comprising a chamber (50) enclosing the components (1, 2, 12, 12', 3, 3') of the heat pump, the chamber (50) thus forming semi-enclosed spaces (53, 53') between each fan (5, 5') and an internal wall of the chamber (50) opposite each fan (5, 5'), each fan (5, 5') being placed against each exchanger system (12, 12') along their height h, the air stream generated by each fan (5, 5') entering via a bottom opening (51, 51') of the chamber (50) and ascending towards an exchanger system (12, 12'), crossing from one side to the other of the second exchange zone (Z2, Z2') of said exchanger system (12, 12'), then descending again and exiting from the chamber (50) via an opening (52, 52') situated under each evaporator (4, 4') in the bottom of the chamber (50), these semi-enclosed spaces (53, 53') making it possible to promote defrosting of the evaporators (4, 4') by the presence of hot air at the top of the chamber (50).
  2. Installation according to claim 1, in which the mode of operation depends on the outside temperature, measured by thermometric measurement means controlled by a processor and software, actuating the control means (6, 6') according to the mode required for the corresponding outside temperature.
  3. Installation according to claim 1, in which each exchanger system (12, 12') comprises:
    - parallel fins aligned along a plane (P);
    - an exchange zone (Z2, Z2') consisting of two fluidly connected subzones (Z2a and Z2a', Z2b and Z2b'), the first subzone (Z2a, Z2a') being positioned on a first side receiving an air stream along a component parallel to the plane P in the exchanger system (12, 12'), the second subzone (Z2b, Z2b') being positioned on a second side opposite to said first side to cause said air stream to exit from the exchanger system (12, 12');
    - an exchange zone (Z1, Z1') situated between the two exchange subzones (Z2a and Z2a', Z2b and Z2b') and thermally connected to said exchange subzones (Z2a and Z2a', Z2b and Z2b').
  4. Installation according to one of claims 1 to 3, in which the second heat exchange zone (Z2, Z2'), surrounding the first heat exchange zone (Z1, Z1') of each exchanger system (12, 12'), is of the finned tube type.
  5. Installation according to one of claims 1 to 4, in which each exchanger system (12, 12') comprises a radiator including the two exchange zones (Z1 and Z1', Z2 and Z2').
  6. Installation according to one of claims 1 to 5, in which each of said exchange zones (Z1 and Z1', Z2 and Z2') extends over the full height (h) of a volume occupied by each exchanger system (12, 12').
  7. Installation according to one of claims 1 to 6, characterised in that the fan (5, 5'), adjacent to an evaporator (4, 4') in the process of defrosting, is idle so as to promote defrosting of the evaporator (4, 4').
  8. Method for optimising operation of a heat pump installation operating from a cold source (A), comprising a circuit having at least one compressor (1), a condenser (2), pressure release means (3, 3'), a cycle fluid circulating in the circuit, at least two exchanger systems (12, 12') capable of fulfilling a function of evaporator (4, 4'), control means (6, 6') and diversion means (7, 7'), and a chamber (50) enclosing the components (1, 2, 12, 12', 3, 3') of the heat pump, characterised in that it comprises:
    - a step of transfer of heat from the cycle fluid to a zone of an exchanger system (12, 12') different to the one which fulfils the function of evaporator (4, 4'), and having the effect of subcooling the cycle fluid and defrosting said exchanger system (12, 12');
    - a step of circulating the air in semi-enclosed spaces (53, 53') of the chamber (50), the air entering via a bottom opening (51, 51') of the chamber (50), ascending towards an exchanger system (12, 12'), crossing from one side to the other of the second exchange zone (Z2, Z2') of said exchanger system (12, 12'), then descending again and exiting from the chamber (50) via an opening (52, 52') situated under each evaporator (4, 4') in the bottom of the chamber (50);
    - a step of circulating the subcooled cycle fluid towards pressure release means (3, 3'), then in the second exchange zone (Z2, Z2') of an exchanger system (12, 12'), allowing reheating of the cycle fluid to the level of the evaporator (4, 4');
    - a step of simultaneous operation, the means (7, 7') of diverting the cycle fluid stream being open and the control means (6, 6') being closed, allowing reheating of the cycle fluid in the two evaporators (4, 4') simultaneously.
  9. Method according to claim 8, comprising an alternate functioning step, the cycle fluid not circulating in at least one of the evaporators (4, 4') by association of the timer and closure means for at least one of the control means (6, 6') and the diversion means (7, 7'), the cooling of the cycle fluid in the condenser (2) and the operation of the compressor (1) being continuous.
  10. Method according to one of claims 8 to 9, comprising a step of switching from one mode of operation to the other when the outside temperature, measured with the aid of at least one temperature sensor, crosses a threshold value.
  11. Method according to one of claims 8 to 10, of which the step of subcooling the cycle fluid and defrosting the exchanger systems (12, 12') is only carried out with the exchanger systems (12, 12') of the heat pump installation, without interruption of the upstream step of cooling the cycle fluid in the condenser (2).
  12. Method according to one of claims 8 to 11, in which the cycle fluid is brought to a supercritical state in part of the circuit.
  13. Method according to one of claims 8 to 12, in which the step of air circulation at the level of the exchanger systems (12, 12') reaches a speed of at least 2 m/s.
  14. Method according to one of claims 8 to 13, comprising a step of evaporation in the exchange zone (Z2, Z2') which fulfils the function of evaporator (4, 4') carried out at a maximum temperature of between -10°C and -20°C.
EP12759659.1A 2011-08-04 2012-07-30 System and method for optimising the operation of a heat pump system Not-in-force EP2739918B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1157148A FR2978816B1 (en) 2011-08-04 2011-08-04 INSTALLATION AND METHOD FOR OPTIMIZING THE OPERATION OF A HEAT PUMP INSTALLATION
PCT/EP2012/064902 WO2013017572A1 (en) 2011-08-04 2012-07-30 System and method for optimising the operation of a heat pump system

Publications (2)

Publication Number Publication Date
EP2739918A1 EP2739918A1 (en) 2014-06-11
EP2739918B1 true EP2739918B1 (en) 2018-03-07

Family

ID=46875743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12759659.1A Not-in-force EP2739918B1 (en) 2011-08-04 2012-07-30 System and method for optimising the operation of a heat pump system

Country Status (3)

Country Link
EP (1) EP2739918B1 (en)
FR (1) FR2978816B1 (en)
WO (1) WO2013017572A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807268B (en) * 2015-04-22 2017-07-25 广东芬尼克兹节能设备有限公司 The starting mode of pump control method and system of a kind of heat pump
SE541964C2 (en) 2016-07-12 2020-01-14 Es Energy Save Holding Ab Heat pump apparatus module
CN108548349B (en) * 2018-03-26 2020-10-30 广州西奥多科技有限公司 Defrosting control system of intelligent heat pump
FR3127554B1 (en) * 2021-09-30 2023-10-20 Lemasson Method for regulating the operation of a heat pump equipped with two evaporator exchangers and a condenser exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173091A1 (en) * 2005-12-20 2009-07-09 Lung-Tan Hu Multi-range composite-evaporator type cross-defrosting system
JP2009250464A (en) * 2008-04-02 2009-10-29 Panasonic Corp Ventilation air conditioning device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1395194A (en) 1971-09-06 1975-05-21 Matsushita Electric Ind Co Ltd Heat pump type air conditioning systems
FR2338465A1 (en) * 1976-01-15 1977-08-12 Multifluid En Heating and refrigeration system - has heat source acting on refrigerating medium between condenser and expander
IL55047A0 (en) * 1977-07-22 1978-08-31 Carrier Corp Heat exchange system
DE2921257A1 (en) * 1979-05-25 1980-12-04 Sueddeutsche Kuehler Behr Heat pump for central heating - combines heat exchanger and evaporator in common unit in refrigeration section of circuit
DE3128352A1 (en) * 1981-07-17 1983-01-27 Zamos GmbH, 8152 Feldkirchen Heat pump
DE3323338A1 (en) * 1983-06-29 1985-02-14 Jogindar Mohan Prof. Dr.-Ing. 7505 Ettlingen Chawla Monovalent heat pumps with air as the energy source
US7171817B2 (en) 2004-12-30 2007-02-06 Birgen Daniel J Heat exchanger liquid refrigerant defrost system
DE102005018125A1 (en) * 2005-04-20 2006-10-26 Bernhard Wenzel A method for defrosting evaporators in heat pump systems has each evaporator provided with a similar tubular defrost unit by which the evaporators are operated alternately
CA2561123A1 (en) 2005-09-28 2007-03-28 H-Tech, Inc. Heat pump system having a defrost mechanism for low ambient air temperature operation
FR2901015A1 (en) * 2006-05-12 2007-11-16 Goff Michel Paul Marcel Le Water/air heat pump for refrigerating unit, has hot battery placed in upstream of cold battery with respect to direction of air, where cold battery is heated by thermal conductivity effect due to hot battery
FR2909440B1 (en) * 2006-11-30 2010-03-26 Mvm HEAT PUMP INSTALLATION WITH IMPROVED YIELD, USING A SERIES OF EXCHANGES WITH AN EXTERNAL FLUID INTRODUCED BEFORE THE HOLDER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173091A1 (en) * 2005-12-20 2009-07-09 Lung-Tan Hu Multi-range composite-evaporator type cross-defrosting system
JP2009250464A (en) * 2008-04-02 2009-10-29 Panasonic Corp Ventilation air conditioning device

Also Published As

Publication number Publication date
FR2978816A1 (en) 2013-02-08
WO2013017572A1 (en) 2013-02-07
EP2739918A1 (en) 2014-06-11
FR2978816B1 (en) 2018-06-22

Similar Documents

Publication Publication Date Title
EP2643643B2 (en) Device for the thermal conditioning of a passenger compartment of a vehicle
EP2739918B1 (en) System and method for optimising the operation of a heat pump system
FR2589560A1 (en) REFRIGERATION CIRCUIT AND HEAT PUMP CIRCUIT, AND DEFROSTING METHOD
FR2834778A1 (en) THERMAL MANAGEMENT DEVICE, PARTICULARLY FOR A MOTOR VEHICLE EQUIPPED WITH A FUEL CELL
FR2694076A1 (en) Refrigeration system and its operating method.
FR2713320A1 (en) Process for continuous control and defrosting of a refrigeration exchanger and installation equipped with such an exchanger.
EP1963758A1 (en) Refrigeration-generation solar unit for an air-conditioning system, heat-generation solar unit, corresponding devices and corresponding control method
WO2010137120A1 (en) Heat pump type hot water supply device
EP3172499B1 (en) Cold production apparatus, including means for condensation by air and water simultaneously, and the method for implementing said facility
WO2021053227A1 (en) Air conditioning unit for an aircraft
FR2865070A1 (en) Heat regulation device for motor vehicle`s battery module, has heat regulation unit with refrigerant fluid/air heat exchanger forming evaporator for cold source of heat pump, such that exchanger is called as battery evaporator
EP2863130B1 (en) Method for the regulation of a thermal system for a building
FR2909440A1 (en) Heat pump installation for e.g. hot water distribution, in building, has pumping unit to circulate exterior fluid in exchanging system along determined direction such that fluid passes via zones for being cooled and heated, respectively
EP2288841B1 (en) System and method for vaporising a co2 containing cryogenic fluid, in particular liquefied natural gas
FR2778970A1 (en) Deicing evaporators of refrigeration equipment and/or heat pumps
FR2986860A1 (en) THERMAL INSTALLATION AND METHOD FOR PROVIDING THERMAL CONDITIONING OF A LOCAL AND HOT WATER PRODUCTION
EP3027978B1 (en) Refrigerating circuit, facility comprising such a circuit and corresponding method
WO2010043829A2 (en) Heat pump
EP0006412A1 (en) Dry cooling tower
FR3072767A1 (en) THERMODYNAMIC MACHINE HAVING A DEFROSTING EXCHANGER
EP3194874B1 (en) Heat pipe and method for making a heat pipe
EP4310420A1 (en) Defrosting system for at least one coolant of a refrigeration system
FR3137147A3 (en) FOUR WAY VALVE
EP2977696B1 (en) System and method for managing liquid condensates of a heat exchanger
FR2825143A1 (en) Monobloc system and hot and cold water production installation, for air conditioning, uses a programmable automatic three way valve to control fluid circulating in principal and auxiliary circuits

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 977002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012043727

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180307

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 977002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20180731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180824

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180726

Year of fee payment: 7

Ref country code: CH

Payment date: 20180827

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012043727

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

26N No opposition filed

Effective date: 20181210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012043727

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190730

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180707