EP2732237B1 - KONTURMESSGERÄT UND VERFAHREN ZUR KONTURMESSUNG EINES WERKSTÜCKS MIT TANGENTIAL ANEINANDER ANSCHLIEßENDEN KONTURGEOMETRIEN - Google Patents

KONTURMESSGERÄT UND VERFAHREN ZUR KONTURMESSUNG EINES WERKSTÜCKS MIT TANGENTIAL ANEINANDER ANSCHLIEßENDEN KONTURGEOMETRIEN Download PDF

Info

Publication number
EP2732237B1
EP2732237B1 EP12733470.4A EP12733470A EP2732237B1 EP 2732237 B1 EP2732237 B1 EP 2732237B1 EP 12733470 A EP12733470 A EP 12733470A EP 2732237 B1 EP2732237 B1 EP 2732237B1
Authority
EP
European Patent Office
Prior art keywords
contour
geometry
substitute element
substitute
contour geometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12733470.4A
Other languages
English (en)
French (fr)
Other versions
EP2732237A1 (de
Inventor
Hero Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Mahr Holding GmbH
Original Assignee
Carl Mahr Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Mahr Holding GmbH filed Critical Carl Mahr Holding GmbH
Publication of EP2732237A1 publication Critical patent/EP2732237A1/de
Application granted granted Critical
Publication of EP2732237B1 publication Critical patent/EP2732237B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Definitions

  • the present invention relates to a contour measuring device and a method for contour measurement.
  • the contour of a workpiece is detected two-dimensionally or alternatively three-dimensionally.
  • the contour measuring device has a sensing device for measuring measuring points along the workpiece contour to be detected.
  • the sensing device may tactile or non-contact, for example, work optically.
  • a stylus device is eg off DE 10 2009020 294 A1 known.
  • the contour can also be detected with a contour measuring device having an image processing, such as for example DE 10 2007 016 502 A1 is known.
  • a contour measuring device having an image processing such as for example DE 10 2007 016 502 A1 is known.
  • the contour of the workpiece to be detected is recorded by a camera.
  • An image processing determines the contour of the workpiece. This is done in DE 10 2007 016 502 A1 suggested to first configure the measurement task.
  • the measuring range is defined and a tool model assigned to the measuring range.
  • DE 196 00 002 A1 describes a method for the integral geometry testing of workpieces from multiple mold surfaces, wherein the workpieces can be aligned freely in three-dimensional space. There are several measuring points on the outer surface of the workpiece and the design tolerance ranges used to dimensional accuracy of the workpiece.
  • an iterative process attempts to change the orientation of sections of the workpiece in space so as to maintain or minimize all predetermined tolerances of the sections and between sections .
  • the sections of the workpiece are fitted into the point cloud of the measuring points, so to speak, such that either the sum of the squares of the measuring point distances from the fitted workpiece is minimal or the maximum values of the measuring point distances from the fitted workpiece are minimal.
  • the workpiece to be measured has a workpiece contour with a first contour geometry and a second contour geometry adjoining at a first transition point. It is predefined that the two contour geometries should connect tangentially to one another at the first transition point. This information is given to the contour measuring device or the method.
  • the workpiece contour to be measured is measured in a single measuring movement along the first contour geometry and the second contour geometry, wherein a plurality of measuring points are detected. Based on the recorded measuring points, the different contour geometries can be distinguished. Each identified contour geometry is then assigned a replacement element. If the measurement points measured in a contour geometry are located on a circular arc, a contour is assigned to this contour geometry as a replacement element. If the measuring points lie on a straight line within a contour geometry, a straight line is assigned to this contour geometry.
  • the first transition point between the first contour geometry and the second contour geometry is not yet known, in a preferred embodiment, only those measuring points are used for the determination of the respective replacement element, which have a sufficient minimum distance to the measuring points of the transition point, and in particular to the measuring points were used for the determination of the replacement element of the subsequent contour geometry.
  • first and the second replacement element determines that the first and the second replacement element tangentially connect to each other at the transition point. For example, first a circle or a straight line is determined as the first substitute element. Subsequently, as a second substitute element, for example, a circle is calculated under the condition that it adjoins tangentially to the previously determined first substitute element. The tangential connection point then represents the first transition point between the first contour geometry and the second contour geometry.
  • the inventive method significantly improves the reproducibility of the results.
  • the calculation of the position of the first transition point is preferably repeated iteratively in order to increase the accuracy.
  • other or additional measurement points within a respective contour geometry can be used to calculate the assigned replacement element.
  • the iterative calculation of the position of the first transition point is preferably terminated when a change in position between two successive position determinations of the first transition point is smaller than a predetermined change threshold value. Alternatively, the number of iterations could also be specified.
  • the workpiece to be measured can also have three or more contour geometries, with two adjacent contour geometries tangentially joining each other.
  • the first replacement element of a first contour geometry and the third replacement element of a third one are preferred Contour geometry determined.
  • the position and / or the size of an intermediate second replacement element is calculated such that the second replacement element connects tangentially to the first replacement element and the third replacement element. The calculation of the second substitute element is therefore taking into account two boundary conditions.
  • a desired contour of the workpiece can be determined.
  • the deviation of the actual contour of the workpiece actually measured via the measuring points can be determined from the nominal contour and, for example, displayed graphically to the operator via a display device of the contour measuring device.
  • a flat contour geometry for example, by a section a cylinder jacket surface or a plane may be formed.
  • contour measurement several linear measurements are made to detect the area.
  • the tangential transition can take place, for example, between a plane and a section of a cylinder jacket surface or between two adjoining sections of two cylinder jacket surfaces. The transition point is determined analogously to the methods described above.
  • the method of least squares can be used.
  • other mathematical criteria such as e.g. Envelope criteria (outer circle, ie the smallest circumscribed circle), equine criteria (pen circle, ie the largest inscribed circle) or minimum criteria (minimum or Chebyshev circle with the smallest area) to determine a circle as a substitute element.
  • Envelope criteria outer circle, ie the smallest circumscribed circle
  • equine criteria pen circle, ie the largest inscribed circle
  • minimum criteria minimum or Chebyshev circle with the smallest area
  • FIG. 1 is very simplified a block diagram of a contour measuring device 10 is shown.
  • the contour measuring device 10 has a sensing device 11 with a probe 12, which can be moved to measure a workpiece contour 13 of a workpiece 14 along the workpiece contour 13.
  • the contour measuring device 10 is designed as a stylus device.
  • the contour measuring device 10 has a slide 15 that can be moved linearly in a measuring direction R, to which a scanning arm 16 is pivotably mounted about a pivot axis 17.
  • the probe arm 16 extends from the pivot axis 17 to its first end 18, on which the probe 12 is arranged.
  • the measuring arm 16 is assigned a measuring transducer 20 which detects the pivoting position of the sensing arm 16 about the pivot axis 17.
  • the measured values of the measuring transducer 20 are transmitted to a control device 21.
  • the control device 21 is connected to an operating unit 22.
  • the operating unit 22 comprises input means and / or output means as a user interface to an operator.
  • the output means in the embodiment include a display device 23, for example, a display.
  • the control device 21 is set up to carry out the method according to the invention for contour measurement. A preferred procedure is shown in the flow chart FIG. 6 and will be described below with reference to the FIGS. 2 to 5 explained.
  • a workpiece 14 is clamped for measuring the workpiece contour 13 in a clamping device of the contour measuring device 10.
  • the method for contour measurement is started in a first method step S1.
  • the measuring probe 12 is moved along the workpiece contour 13 in a second method step S2.
  • the carriage 15 is moved in the direction of measurement R.
  • the contour of the scanning arm 16 is deflected about the pivot axis 17, which is detected by the transducer 20 and transmitted to the control device 21.
  • a multiplicity of measuring points M are detected along the workpiece contour 13, as shown very schematically in FIG FIG. 2 is illustrated.
  • k measuring points M1 to Mk are measured along the workpiece contour 13.
  • a counter variable i is subsequently set to zero and incremented by one in a subsequent fourth method step S4.
  • contiguous contour geometries K of the workpiece contour 13 are determined on the basis of the detected measuring points M, with five contour geometries K1 to K5 being schematically illustrated in the workpiece 14 schematically illustrated here.
  • the number of contour geometries depends on the workpiece 14 and is basically arbitrary.
  • the workpiece 14 has a desired contour KS, in which the contour geometries K connect tangentially to one another at transition points U.
  • the first contour geometry K1 connects tangentially to the second contour geometry K2 at a first transition point U1.
  • the second contour geometry K2 connects tangentially to the third contour geometry K3 at a second transition point U2, etc.
  • the number of these transition points U, at which two adjacent contour geometries K tangentially adjoin one another depends on the workpiece 14 and is fundamentally arbitrary.
  • a tangential transition can take place, for example, between two contour geometries contoured in the shape of a circle, as exemplified at the first transition point U1 or the second transition point U2 in the embodiment described herein.
  • a tangential transition can also take place between a rectilinear contour geometry and a circular arc-shaped contour geometry, as illustrated at the fourth transition point U4 between the fourth contour geometry K4 and the fifth contour geometry K5.
  • the positions of the transition points U are still unknown. However, it can be detected at the attachment of the measuring points M whether the assigned contour geometry K runs along a circular arc or along a straight line.
  • each contour geometry K is assigned a replacement element G in each case. This assignment is schematic in FIG. 3 illustrated.
  • the contour of the first contour geometry K1 extends along a circular arc.
  • the first replacement element G1 is therefore assigned a circle to the first contour geometry K1.
  • the second contour geometry K2 extends along a circular arc, so that the second contour geometry K2 is also assigned a circle as the second substitute element G2.
  • the third contour geometry K3 and the fourth contour geometry K4 are each assigned a circle as the third substitute element G3 and the fourth substitute element G4.
  • the fifth contour geometry K5 extends in a straight line, so that the fifth contour geometry K5 is assigned a straight line as a fifth replacement element G5.
  • the position the transition points U1 to U4 is still unknown, are used in deciding which replacement element of a contour geometry K1 to Kx only those measuring points M are used, which have a minimum distance A to the measuring points M, which for determining the replacement element G for the adjacent contour geometry K be used.
  • the fourth measuring point M4 is disregarded in the fifth method step S5 because it does not have the required minimum distance A from the third measuring point M3 and the fifth measuring point M 5.
  • the third measuring point M3 was used to determine the first geometric element and the fifth measuring point M5 to determine the second substitute element G2. Neither the third measuring point M3, nor the fifth measuring point M5, the fourth measuring point M4 has a sufficient minimum distance A and is therefore not taken into account in the determination of the replacement elements G1 and G2.
  • the circular second substitute element G2 is calculated such that it merges tangentially into the circular first substitute element G1 or adjoins it.
  • the point at which the two adjacent replacement elements G1, G2 merge tangentially into one another represents the first transition point U1.
  • the circular third replacement element G3 can be calculated so that it adjoins the second replacement element D2 tangentially, resulting in the second transition point U2 results. This is done for all adjoining substitute elements G1 to G5.
  • every second replacement element for example, the first replacement element G1, the third replacement element G3 and the fifth replacement element G5 to determine.
  • the intermediate replacement elements G2, G4 can be determined taking into account two boundary conditions, namely that they tangentially connect to the respective adjacent replacement element G1, G3 or G3, G5.
  • a sixth method step S6 the transition points U are determined, at which the contour geometries K adjoin one another tangentially.
  • a seventh method step S7 it is first queried whether it is the first calculation of the transition points U. For this purpose, it is checked whether the cell variable i is greater than 1. If this is not the case (branch N), the method returns to the fourth method step S4. Otherwise, the method is continued in the eighth method step S8 (branch Y).
  • the position deviation D between two is calculated in successive iterations for each transition point U.
  • a subsequent ninth method step S9 it is then queried whether the position deviation D is greater than a predetermined change threshold value Dmax. If this is the case (branch Y), the method returns to the fourth method step S4. Otherwise, the method is continued in a tenth method step S10.
  • the fourth method step S4 returns in the seventh method step S7 or in the ninth method step S9, a new iteration of the calculation takes place the position of the transition points U in the process steps S5 and S6.
  • additional or other measuring points M are used in the determination of the substitute elements, as in the previous compilation iterations. In this way, with each iteration loop, the accuracy of the calculation of the transition points U can be increased.
  • the determined position of the transition points U changes only slightly in two consecutive computational interactions and the position change D is smaller than a predefined change threshold Dmax. It is also possible that the number of iterations for calculating the position of different transition points U1, U2, U3, U4 is different in order to achieve the desired accuracy.
  • the measurement result is output via the display device 23 in the tenth method step S10.
  • the measurement result consists of a nominal contour KS of the workpiece contour 13, which is determined on the basis of the replacement elements G adjoining one another at the transition points U.
  • Sollachir KS and the measured basis of the measuring points M actual contour KM is output. From this, the deviation between the nominal contour KS and the actual contour KM can be seen.
  • FIG. 5 An example of a graphical representation for displaying the measurement result is in FIG. 5 illustrated. There, the height z is right-angled over the path in measuring direction R. to the direction of measurement R indicated. The transition points U between two tangentially adjoining contour geometries K are shown. In addition, circular arc angle ⁇ or lengths l can also be represented.
  • FIG. 4 Illustrated for comparison FIG. 4 the result of a single measurement of the contour geometries K independently. It can also be seen that the areas at the respective transition points can not be measured or with insufficient accuracy. In this example, for example, the radial lines of the second contour geometry K2 and the third contour geometry K3 intersect at an intersection P, which is not possible with tangentially contiguous contour geometries K. A comparison of the actual contour KM with the nominal contour KS at the transition points U is not or only insufficiently possible in such a single measurement.
  • a flat contour geometry can be formed, for example, by a section of a cylinder jacket surface or a plane. Several parallel staggered contour measurements are performed. The tangential transition can take place, for example, between a plane and a section of a cylinder jacket surface or between two adjoining sections of two cylinder jacket surfaces.
  • a substitute element in a further modification can as a substitute element also uses a point and, for example, the tangential connection to this point can be used as a boundary condition for the calculation of a subsequent further replacement element.
  • the invention relates to a contour measuring device 10 and to a method for contour measurement of a workpiece contour 13.
  • the workpiece contour 13 has a plurality of contour geometries K. At least a first contour geometry K1 and a second contour geometry K2 tangentially adjoin one another at a first transition point U1.
  • a plurality of measuring points M are recorded along the first contour geometry K1 and the second contour geometry K2.
  • a first substitute element G1 is determined and assigned to the first contour geometry K1.
  • a second geometric element G2 associated therewith is determined.
  • the calculation of the size and / or the position of the second geometric element G2 takes place under the boundary condition that the second replacement element G2 connects tangentially to the first replacement element G1.
  • the tangential transition point between the two replacement elements G1, G2 forms the first transition point U1 determined in this way. This method can be repeated iteratively with the aid of additional or other measuring points M until a sufficiently accurate position determination of the first transition point U1 has taken place.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Konturmessgerät sowie ein Verfahren zur Konturmessung. Die Kontur eines Werkstücks wird dabei zweidimensional oder alternativ auch dreidimensional erfasst. Das Konturmessgerät weist eine Tasteinrichtung zur Messung von Messpunkten entlang der zu erfassenden Werkstückkontur auf. Die Tasteinrichtung kann taktil oder berührungslos, beispielsweise optisch arbeiten. Beispielsweise kann als Konturmessgerät ein Tastschnittgerät dienen, das einen Messtaster aufweist, der entlang einer vorgegebenen Bahn der zu messenden Kontur bewegt wird. Ein Tastschnittgerät ist z.B. aus DE 10 2009020 294 A1 bekannt.
  • Alternativ kann die Kontur auch mit einem eine Bildverarbeitung aufweisenden Konturmessgerät erfasst werden, wie dies beispielsweise aus DE 10 2007 016 502 A1 bekannt ist. Dabei wird die zu erfassende Kontur des Werkstücks durch eine Kamera aufgenommen. Über eine Bildverarbeitung wird dann die Kontur des Werkstücks ermittelt. Hierzu wird in DE 10 2007 016 502 A1 vorgeschlagen, zunächst die Messaufgabe zu konfigurieren. Dabei wird der Messbereich festgelegt und dem Messbereich ein Werkzeugmodell zugeordnet.
  • DE 196 00 002 A1 beschreibt ein Verfahren für die integrale Geometrieprüfung von Werkstücken aus mehreren Formflächen, wobei die Werkstücke frei im dreidimensionalen Raum ausgerichtet werden können. Es werden mehrere Messpunkte auf der Außenfläche des Werkstücks und die konstruktiv vorgegebenen Toleranzbereiche verwendet, um die Maßhaltigkeit des Werkstücks zu prüfen. Wenn beispielsweise ein Toleranzwert nicht eingehalten wird, aber andere Toleranzwerte noch nicht ausgeschöpft sind, wird durch ein iteratives Verfahren versucht, die Orientierung von Abschnitten des Werkstücks im Raum so zu ändern, dass alle vorgegebenen Toleranzen der Abschnitte und zwischen den Abschnitten eingehalten bzw. minimiert werden. Dazu werden die Abschnitte des Werkstücks sozusagen in die Punktwolke des Messpunkte eingepasst, derart, dass entweder die Summe der Quadrate der Messpunktabstände vom eingepassten Werkstück minimal sind oder die Betragsmaxima der Messpunktabstände vom eingepassten Werkstück minimal sind.
  • Bei der Konturmessung, insbesondere bei der Verwendung eines entlang der Werkstückkontur bewegten Messtasters hat sich gezeigt, dass es schwierig ist, die Übergangsstellen zwischen zwei Konturgeometrien zu bestimmen, an denen die Konturgeometrien tangential aneinander anschließen. Dies kann beispielsweise ein tangentialer Übergang zwischen zwei kreisbogenförmigen Konturgeometrien oder der tangentiale Übergangs zwischen einer geraden Konturgeometrie und einer kreisbogenförmigen Konturgeometrie sein. Beim Vermessen der Werkstückkontur ist es nur sehr schwer möglich, die Übergangsstelle mit ausreichender Genauigkeit zu bestimmen. Dies führt wiederum dazu, dass es schwierig ist festzustellen, ob bei der Herstellung des Werkstücks der tangentiale Übergang mit der gewünschten Genauigkeit gefertigt wurde.
  • Es kann daher als eine Aufgabe der vorliegenden Erfindung angesehen werden, ein Konturmessgerät, Insbesondere ein Tastschnittgerät, und ein Verfahren zur Konturmessung zu schaffen, das eine exaktere Bestimmung von Übergangsstellen ermöglicht, an denen zwei Konturgeometrien der zu erfassenden Werkstückkontur tangential aneinander anschließen.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruches 1 sowie ein Konturmessgerät mit den Merkmalen des Patentanspruches 13 gelöst.
  • Das zu vermessende Werkstück weist eine Werkstückkontur mit einer ersten Konturgeometrie und einer sich an einer ersten Übergangsstelle anschließenden zweiten Konturgeometrie auf. Es ist vorgegeben, dass die beiden Konturgeometrien an der ersten Übergangsstelle tangential aneinander anschließen sollen. Diese Information wird dem Konturmessgerät bzw. dem Verfahren vorgegeben.
  • Zunächst wird die zu vermessende Werkstückkontur in einer einzigen Messbewegung entlang der ersten Konturgeometrie und der zweiten Konturgeometrie gemessen, wobei eine Vielzahl von Messpunkten erfast werden. Anhand der aufgenommenen Messpunkte können die verschiedenen Konturgeometrien unterschieden werden. Jeder erkannten Konturgeometrie wird dann ein Ersatzelement zugeordnet. Befinden sich die in einer Konturgeometrie gemessenen Messpunkte auf einem Kreisbogen, wird dieser Konturgeometrie ein Kreis als Ersatzelement zugeordnet. Liegen die Messpunkte innerhalb einer Konturgeometrie auf einer Geraden, wird dieser Konturgeometrie eine Gerade zugeordnet. Da die erste Übergangsstelle zwischen der ersten Konturgeometrie und der zweiten Konturgeometrie noch nicht bekannt ist, wird bei einem bevorzugten Ausführungsbeispiel für die Bestimmung des jeweiligen Ersatzelements nur solche Messpunkte verwendet, die einen ausreichenden Mindestabstand zu den Messpunkten der Übergangsstelle aufweisen, und insbesondere zu den Messpunkten die für die Bestimmung des Ersatzelements der sich anschließenden Konturgeometrie verwendet wurden.
  • Im Anschluss daran wird die Lage und/oder die Größe des ersten Ersatzelements und/oder des zweiten Ersatzelements unter der Randbedingung ermittelt, dass das erste und das zweite Ersatzelement an der Übergangsstelle tangential aneinander anschließen. Es wird beispielsweise zunächst als erstes Ersatzelement ein Kreis oder eine Gerade bestimmt. Im Anschluss daran wird als zweites Ersatzelement beispielsweise ein Kreis unter der Bedingung berechnet, dass dieser tangential an das zuvor bestimmte erste Ersatzelement anschließt. Die tangentiale Anschlussstelle stellt dann die erste Übergangsstelle zwischen der ersten Konturgeometrie und der zweiten Konturgeometrie dar.
  • Gerade bei Radien, die sich lediglich entlang eines kleinen Winkelsegments erstrecken verbessert das erfindungsgemäße Verfahren die Reproduzierbarkeit der Ergebnisse deutlich.
  • Die Berechnung der Position der ersten Übergangsstelle wird vorzugsweise iterativ wiederholt, um die Genauigkeit zu erhöhen. In jedem Iterationsschritt können dabei andere oder zusätzliche Messpunkte innerhalb einer betreffenden Konturgeometrie zur Berechnung des zugeordneten Ersatzelements verwendet werden. Die iterative Berechnung der Position der ersten Übergangsstelle wird bevorzugt dann beendet, wenn eine Positionsänderung zwischen zwei aufeinanderfolgenden Positionsbestimmungen der ersten Übergangsstelle kleiner ist als ein vorgegebener Änderungsschwellenwert. Alternativ hierzu könnte die Anzahl der Iterationen auch vorgegeben werden.
  • Das zu vermessende Werkstück kann auch drei oder mehr Konturgeometrien aufweisen, wobei jeweils zwei benachbarte Konturgeometrien tangential aneinander anschließen. Bevorzugt wird hierbei das erste Ersatzelement einer ersten Konturgeometrie und das dritte Ersatzelement einer dritten Konturgeometrie bestimmt. Anschließend wird die Lage und/oder die Größe eines dazwischen liegenden zweiten Ersatzelements derart berechnet, dass das zweite Ersatzelement tangential an das erste Ersatzelement und das dritte Ersatzelement anschließt. Die Berechnung des zweiten Ersatzelements erfolgt mithin unter Berücksichtigung von zwei Randbedingungen.
  • Es ist ferner von Vorteil, wenn bei der Bestimmung eines Geometriehilfselments nur Messpunkte verwendet werden, die einen Mindestabstand von der Übergangsstelle bzw. den zur Berechnung des sich anschließenden Ersatzelements verwendeten Messpunkten aufweisen. Der Mindestabstand kann dabei variabel sein und verringert werden, wenn sich die Genaugkeit der Positionsbestimmung der Übergangsstelle zwischen zwei Konturgeometrien in Abhängigkeit von der der Anzahl der bereits durchgeführten iterativen Positionsbestimmung der betreffenden Übergangsstelle erhöht. Somit können bei nachfolgenden iterativen Positionsberechnungen der betreffenden Übergangsstellen auch solche Messpunkte berücksichtigt werden, die bei einer früheren Berechnung noch nicht verwendet werden konnten.
  • Anhand der berechneten Ersatzelemente der Konturgeometrien kann eine Sollkontur des Werkstücks ermittelt werden. Abhängig von der Sollkontur kann die Abweichung der über die Messpunkte tatsächlich gemessenen Istkontur des Werkstücks von der Sollkontur ermittelt und beispielsweise über eine Anzeigeeinrichtung des Konturmessgeräts den Bediener grafisch angezeigt werden.
  • Es ist auch möglich, das erfindungsgemäße Verfahren bei flächigen tangentialen Übergängen zwischen zwei benachbarten flächigen Konturgeometrien zu verwenden. Eine flächige Konturgeometrie kann beispielsweise durch einen Abschnitt einer Zylindermantelfläche oder eine Ebene gebildet sein. Bei der Konturmessung werden mehrere linienförmige Messungen zur Erfassung der Fläche durchgeführt. Der tangentiale Übergang kann beispielsweise zwischen einer Ebene und einem Abschnitt einer Zylindermantelfläche oder zwischen zwei aneinander anschließenden Abschnitten zweier Zylindermantelflächen erfolgen. Die Übergangsstelle wird analog zu den vorstehend beschriebenen Verfahren ermittelt.
  • Zur Berechnung eines Kreises als Ersatzelement kann die Methode der kleinsten Quadrate (häufig auch als "method of least squares" bezeichnet) verwendet werden. Alternativ ist es auch möglich, durch andere mathematische Kriterien, wie z.B. Hüllkriterien (Hüllkreis, also der kleinste umschriebene Kreis), Pferchkriterien (Pferchkreis, also der größte eingeschriebene Kreis) oder Minimumkriterien (Minimum- oder Tschebyscheff-Kreis mit der kleinsten Fläche) einen Kreis als Ersatzelement zu bestimmen. Über diese Ersatzkreisbestimmung und die Nebenbedingung sich tangential aneinander anschließender Ersatzelemente kann daraus die Übergangsstelle ermitteln werden.
  • Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Patentansprüche und der Beschreibung. Die Beschreibung erläutert die Erfindung anhand von bevorzugten Ausführungsbeispielen und beschränkt sich auf wesentliche Merkmale der Erfindung und sonstiger Gegebenheiten. Die Zeichnung ist ergänzend heranzuziehen. Es zeigen:
    • Figur 1 ein Ausführungsbeispiel eines Konturmessgeräts in schematischer, blockschaltbildähnlicher Darstellung,
    • Figur 2 bei einem Verfahren zur Konturmessung aufgenommene Messpunkte entlang einer zu vermessenden Werkstückkontur in beispielhafter, schematischer und nicht maßstäblicher Darstellung,
    • Figur 3 die anhand der erkannten Konturgeometrien berechneten Ersatzelemente,
    • Figur 4 die Darstellung der Ergebnisse einer Konturmessung anhand eines Verfahrens nach dem Stand der Technik,
    • Figur 5 die Ergebnisse der Konturmessung einer Werkstückkontur anhand des erfindungsgemäßen Verfahrens und
    • Figur 6 das Flussdiagramm eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens zur Konturmessung.
  • In Figur 1 ist äußerst vereinfacht ein Blockschaltbild eines Konturmessgeräts 10 dargestellt. Das Konturmessgerät 10 weist eine Tasteinrichtung 11 mit einem Messtaster 12 auf, der zur Messung einer Werkstückkontur 13 eines Werkstücks 14 entlang der Werkstückkontur 13 bewegt werden kann. Beim Ausführungsbeispiel ist das Konturmessgerät 10 als Tastschnittgerät ausgeführt. Das Konturmessgerät 10 verfügt über einen linear in eine Messrichtung R bewegbaren Schlitten 15, an den ein Tastarm 16 um eine Schwenkachse 17 schwenkbar gelagert ist. Der Tastarm 16 erstreckt sich ausgehend von der Schwenkachse 17 zu seinem ersten Ende 18 hin, an dem der Messtaster 12 angeordnet ist. An seinem dem ersten Ende 18 entgegengesetzten zweiten Ende 19 ist dem Tastarm 16 ein Messwertaufnehmer 20 zugeordnet, der die Schwenkstellung des Tastarms 16 um die Schwenkachse 17 erfasst. Die Messwerte des Messwertaufnehmers 20 werden an eine Steuereinrichtung 21 übermittelt. Die Steureinrichtung 21 ist mit einer Bedieneinheit 22 verbunden. Die Bedieneinheit 22 umfasst Eingabemittel und/oder Ausgabemittel als Bedienschnittstelle zu einer Bedienperson. Die Ausgabemittel enthalten beim Ausführungsbeispiel eine Anzeigeeinrichtung 23, beispielsweise ein Display.
  • Die Steuereinrichtung 21 ist dazu eingerichtet, das erfindungsgemäß Verfahren zur Konturmessung durchzuführen. Ein bevorzugter Verfahrensablauf ist im Flussdiagramm nach Figur 6 dargestellt und wird nachfolgend unter Bezugnahme auf die Figuren 2 bis 5 erläutert.
  • Ein Werkstück 14 wird zur Messung der Werkstückkontur 13 in eine Einspannvorrichtung des Konturmessgeräts 10 eingespannt. Anschließend wird das Verfahren zur Konturmessung in einem ersten Verfahrensschritt S1 gestartet. Beim Ausführungsbeispiel wird in einem zweiten Verfahrensschritt S2 der Messtaster 12 entlang der Werkstückkontur 13 bewegt. Hierfür wird der Schlitten 15 in Messrichtung R verfahren. Abhängig vom Konturverlauf wird der Tastarm 16 um die Schwenkachse 17 ausgelenkt, was vom Messwertaufnehmer 20 erfasst und an die Steuereinrichtung 21 übermittelt wird. Auf diese Weise werden entlang der Werkstückkontur 13 eine Vielzahl von Messpunkten M erfasst, wie dies äußerst schematisiert in Figur 2 veranschaulicht ist. Beispielsgemäß werden k Messpunkte M1 bis Mk entlang der Werkstückkontur 13 gemessen.
  • Beispielsgemäß wird in einem dritten Verfahrensschritt S3 anschließend eine Zählvariable i auf null gesetzt und in einem nachfolgenden vierten Verfahrensschritt S4 um eins inkrementiert.
  • Im anschließenden fünften Verfahrensschritt S5 werden anhand der erfassten Messpunkte M aneinander anschließende Konturgeometrien K der Werkstückkontur 13 ermittelt, wobei bei dem hier schematisch veranschaulichten Werkstück 14 fünf Konturgeometrien K1 bis K5 schematisch veranschaulicht sind. Die Anzahl der Konturgeometrien hängt vom Werkstück 14 ab und ist grundsätzlich beliebig.
  • Das Werkstück 14 weist eine Sollkontur KS auf, bei der die Konturgeometrien K an Übergangsstellen U tangential aneinander anschließen. Die erste Konturgeometrie K1 schließt an einer ersten Übergangsstelle U1 tangential an zweite Konturgeometrie K2 an. Die zweite Konturgeometrie K2 schließt an einer zweiten Übergangsstelle U2 wiederum tangential an die dritte Konturgeometrie K3 an usw. Die Anzahl dieser Übergangsstellen U, an der jeweils zwei benachbarte Konturgeometrien K tangential aneinander anschließen hängt vom Werkstück 14 ab und ist grundsätzlich beliebig. Ein tangentialer Übergang kann beispielsweise zwischen zwei kreisbogenförmig konturierten Konturgeometrien erfolgen, wie dies an der ersten Übergangsstelle U1 oder der zweiten Übergangsstelle U2 bei dem hier beschriebenen Ausführungsbeispiel beispielhaft dargestellt ist. Ein tangentialer Übergang kann auch zwischen einer geradlinig verlaufenden Konturgeometrie und einer kreisbogenförmig verlaufenden Konturgeometrie erfolgen, wie dies an der vierten Übergansstelle U4 zwischen der vierten Konturgeometrie K4 und der fünften Konturgeometrie K5 veranschaulicht ist.
  • Im fünften Verfahrensschritt S5 sind die Positionen der Übergangsstellen U noch unbekannt. Anhang der Messpunkte M kann jedoch erkannt werden, ob die zugeordnete Konturgeometrie K entlang eines Kreisbogens oder entlang einer Geraden verläuft. Im fünften Verfahrensschritt S5 wird jeder Konturgeometrie K jeweils ein Ersatzelement G zugeordnet. Diese Zuordnung ist schematisch in Figur 3 veranschaulicht.
  • Anhand der Messpunkte M1 bis M3 wird beispielsweise festgestellt, dass sich die Kontur der ersten Konturgeometrie K1 entlang eines Kreisbogens erstreckt. Als erstes Ersatzelement G1 wird der ersten Konturgeometrie K1 daher ein Kreis zugeordnet. Gleichermaßen wird beispielsweise anhand der Messpunkte M5, M6 und M7 festgestellt, dass sich auch die zweite Konturgeometrie K2 entlang eines Kreisbogens erstreckt, so dass der zweiten Konturgeometrie K2 ebenfalls ein Kreis als zweites Ersatzelement G2 zugeordnet wird. Auch der dritten Konturgeometrie K3 und der vierten Konturgeometrie K4 wird jeweils ein Kreis als drittes Ersatzelement G3 und viertes Ersatzelement G4 zugeordnet. Die fünfte Konturgeometrie K5 erstreckt sich geradlinig, so dass der fünften Konturgeometrie K5 eine Gerade als fünftes Ersatzelement G5 zugeordnet wird.
  • Da in diesem fünften Verfahrensschritt S5 die Position der Übergangsstellen U1 bis U4 noch unbekannt ist, werden bei der Entscheidung, welches Ersatzelement einer Konturgeometrie K1 bis Kx zugeordnet wird nur solche Messpunkte M verwendet, die einen Mindestabstand A zu den Messpunkten M aufweisen, die zur Bestimmung des Ersatzelements G für die benachbarte Konturgeometrie K verwendet werden. In Figur 2 ist dies sehr stark schematisiert veranschaulicht. Der vierte Messpunkt M4 bleibt beispielsweise im fünften Verfahrensschritt S5 außer Betracht, weil er nicht den erforderlichen Mindestabstand A zum dritten Messpunkt M3 und zum fünften Messpunkt M 5 aufweist. Der dritte Messpunkt M3 wurde zur Bestimmung des ersten Geometrieelements und der fünfte Messpunkt M5 zur Bestimmung des zweiten Ersatzelement G2 verwendet. Weder zum dritten Messpunkt M3, noch zum fünften Messpunkt M5 weist der vierte Messpunkt M4 einen ausreichenden Mindestabstand A auf und wird daher bei der Ermittlung der Ersatzelemente G1 und G2 nicht berücksichtigt.
  • Bei einer bevorzugten Ausführungsvariante des Verfahrens wird das kreisförmige zweite Ersatzelement G2 so berechnet, dass es tangential in das kreisförmige erste Ersatzelement G1 übergeht bzw. an dieses anschließt. Der Punkt, an dem die beiden benachbarten Ersatzelemente G1, G2 tangential ineinander übergehen stellt die erste Übergangsstelle U1 dar. Gleichermaßen kann das kreisförmige dritte Ersatzelement G3 so berechnet werden, dass es sich tangential an das zweite Ersatzelement D2 anschließt, woraus sich die zweite Übergangsstelle U2 ergibt. Dies wird für alle aneinander anschließenden Ersatzelemente G1 bis G5 durchgeführt.
  • In Abwandlung hierzu ist es auch möglich in einem ersten Schritt jedes zweite Ersatzelement, beispielsweise das erste Ersatzelement G1, das dritte Ersatzelement G3 und das fünfte Ersatzelement G5 zu ermitteln. Im Anschluss daran können die dazwischen liegenden Ersatzelemente G2, G4 unter Berücksichtigung von jeweils zwei Randbedingungen ermittelt werden, nämlich dass sie an der jeweils benachbarten Ersatzelement G1, G3 bzw. G3, G5 tangential anschließen.
  • Auf diese Weise werden in einem sechsten Verfahrensschritt S6 die Übergangsstellen U bestimmt, an denen die Konturgeometrien K tangential aneinander anschließen.
  • In der Regel ist diese erste Berechnung der Übergangsstellen U allerdings noch nicht genau genug. Beim bevorzugten Ausführungsbeispiel wird daher iterativ die Genauigkeit der Berechnung der Übergangsstellen U erhöht. Hierfür wird in einem siebten Verfahrensschritt S7 zunächst abgefragt, ob es sich um die erste Berechnung der Übergangsstellen U handelt. Zu diesem Zweck wird geprüft, ob die Zellvariable i größer ist als 1. Ist dies nicht der Fall (Verzweigung N), so wird zum vierten Verfahrensschritt S4 zurückgesprungen. Andernfalls wird das Verfahren im achten Verfahrensschritt S8 fortgesetzt (Verzweigung Y).
  • Im achten Verfahrensschritt S8 wird die Positionsabweichung D zwischen zwei in aufeinanderfolgenden Iterationen für jede Übergangsstelle U berechnet. In einem daran anschließenden neunten Verfahrensschritt S9 wird dann abgefragt, ob die Positionsabweichung D größer ist als ein vorgegebener Änderungsschwellenwert Dmax. Ist dies der Fall (Verzweigung Y), so wird zum vierten Verfahrensschritt S4 zurückgesprungen. Andernfalls wird das Verfahren in einem zehnten Verfahrensschritt S10 fortgesetzt.
  • Wenn im siebten Verfahrensschritt S7 oder im neunten Verfahrensschritt S9 zum vierten Verfahrensschritt S4 zurückgesprungen wird, erfolgt eine neue Iteration der Berechnung der Position der Übergangsstellen U in den Verfahrensschritten S5 und S6. Dabei werden zusätzliche oder andere Messpunkte M bei der Ermittlung der Ersatzelemente verwendet, als in den vorangegangenen Berechnungsiterationen. Auf diese Weise kann bei jeder Iterationsschleife die Genauigkeit der Berechnung der Übergansstellen U erhöht werden.
  • Wurde schließlich eine ausreichende Genauigkeit erreicht, wird dies beim bevorzugten Ausführungsbeispiel dadurch erkannt, dass sich die ermittelte Position der Übergangsstellen U in zwei aufeinander folgenden Berechnungsinterationen nur noch geringfügig ändert und die Positionsänderung D kleiner ist als ein vorgegebenen Änderungsschwellen Dmax. Es ist auch möglich, dass die Anzahl der Iterationen für die Berechnung der Position verschiedener Übergangsstellen U1, U2, U3, U4 unterschiedlich groß ist, um die gewünschte Genauigkeit zu erreichen.
  • Wurde für aller Übergangsstellen U eine ausreichende Genauigkeit der Positionsbestimmung erkannt (Verzweigung N aus dem neunten Verfahrensschritt S9), so wird das Messergebnis im zehnten Verfahrensschritt S10 über die Anzeigeeinrichtung 23 ausgegeben. Beim Ausführungsbeispiel besteht das Messergebnis aus einer Sollkontur KS der Werkstückkontur 13, die anhand der an den Übergangsstellen U aneinander anschließenden Ersatzelemente G ermittelt wird. Zusätzlich zu dieser Sollkontor KS wird auch die anhand der Messpunkte M gemessene Istkontur KM ausgegeben. Daraus ist dann auch die Abweichung zwischen der Sollkontur KS und der Istkontur KM ersichtlich.
  • Ein Beispiel für eine grafische Darstellung zur Anzeige des Messergebnisses ist in Figur 5 veranschaulicht. Dort ist über dem Weg in Messrichtung R die Höhe z rechtwinkelig zur Messrichtung R angegeben. Auch die Übergangsstellen U zwischen zwei tangential aneinander anschließenden Konturgeometrien K sind dargestellt. Zusätzlich können auch Kreisbogenwinkel α oder Längen l dargestellt werden.
  • Zum Vergleich veranschaulicht Figur 4 das Ergebnis einer Einzelmessung der Konturgeometrien K unabhängig voneinander. Dabei ist auch zu erkennen, dass die Bereiche an den jeweiligen Übergangstellen nicht oder mit nur unzureichender Genauigkeit vermessen werden können. Bei diesem Beispiel schneiden sich beispielsweise die Radiallinien der zweiten Konturgeometrie K2 und der dritten Konturgeometrie K3 in einem Schnittpunkt P, was bei tangential aneinander anschließenden Konturgeometrien K nicht möglicht ist. Ein Vergleich der Istkontur KM mit der Sollkontur KS an den Übergangsstellen U ist bei einer solchen Einzelmessung nicht oder nur unzureichend möglich.
  • Im Anschluss an die Ausgabe des Messergebnisses wird das Verfahren in einem elften Verfahrensschritt S11 beendet.
  • In Abwandlung zu dem hier beschriebenen Ausführungsbeispiel können auch flächenhafte tangentiale Übergänge zwischen zwei benachbarten flächigen Konturgeometrien auf dieselbe Weise ermittelt werden. Eine flächige Konturgeometrie kann beispielsweise durch einen Abschnitt einer Zylindermantelfläche oder eine Ebene gebildet werden. Dabei werden mehrere parallel zueinander versetzte Konturmessungen durchgeführt. Der tangentiale Übergang kann beispielsweise zwischen einer Ebene und einem Abschnitt einer Zylindermantelfläche oder zwischen zwei aneinander anschließenden Abschnitten zweier Zylindermantelflächen erfolgen.
  • Bei einer weiteren Abwandlung kann als Ersatzelement auch ein Punkt verwendet und beispielsweise der tangentiale Anschluss an diesen Punkt als Randbedingung für die Berechnung eines sich anschließenden weiteren Ersatzelements verwendet werden.
  • Die Erfindung betrifft ein Konturmessgerät 10, sowie ein Verfahren zur Konturmessung einer Werkstückkontur 13. Die Werkstückkontur 13 weist mehrere Konturgeometrien K auf. Zumindest eine erste Konturgeometrie K1 und eine zweite Konturgeometrie K2 schließen an einer ersten Übergangsstelle U1 tangential aneinander an. Zunächst werden entlang der ersten Konturgeometrie K1 und der zweiten Konturgeometrie K2 eine Vielzahl von Messpunkten M aufgenommen. Auf Basis eines Teils der Messpunkte innerhalb der ersten Konturgeometrie K1 wird ein erstes Ersatzelement G1 ermittelt und der ersten Konturgeometrie K1 zugeordnet. Analog hierzu wird auf Basis von einigen Messpunkten M der zweiten Konturgeometrie K2 ein dieser zugeordnetes zweites Geometrieelement G2 ermittelt. Die Berechnung der Größe und/oder der Lage des zweiten Geometrieelements G2 erfolgt unter der Randbedingung, dass sich das zweite Ersatzelement G2 tangential an das erste Ersatzelement G1 anschließt. Der tangentiale Übergangspunkt zwischen den beiden Ersatzelementen G1, G2 bildet die auf diese Weise ermittelte erste Übergangsstelle U1. Dieses Verfahren kann unter zur Hilfenahme zusätzlicher oder anderen Messpunkte M iterativ wiederholt werden, bis eine ausreichend genaue Positionsbestimmung der ersten Übergangsstelle U1 erfolgt ist.
  • Bezugszeichenliste:
  • 10
    Konturmessgerät
    11
    Tasteinrichtung
    12
    Messtaster
    13
    Werkstückkontur
    14
    Werkstück
    15
    Schlitten
    16
    Tastarm
    17
    Schwenkachse
    18
    erstes Ende
    19
    zweites Ende
    20
    Messwertaufnehmer
    21
    Steuereinrichtung
    22
    Bedieneinheit
    23
    Anzeigeeinrichtung
    A
    Mindestabstand
    D
    Positionsabweichung
    i
    Zählvariable
    KS
    Sollkontur
    KM
    Istkontur
    M
    Messpunkt
    P
    Schnittpunkt
    R
    Messrichtung
    S1...S11
    Verfahrensschritt
    U
    Übergangsstelle

Claims (15)

  1. Verfahren zur Konturmessung eines Werkstücks (14) mit einer ersten Konturgeometrie (K1) und einer zweiten Konturgeometrie (K2) und einer ersten Übergangsstelle (U1), an der die erste und die zweite Konturgeometrie (K1, K2) aneinander anschließen, wobei der Anschluss an der ersten Übergangsstelle (U1) tangential verlaufen soll, mit folgenden Schritten:
    (a) Messen von mehreren Messpunkten (M) entlang der ersten Konturgeometrie (K1) und der zweiten Konturgeometrie (K2),
    (b) Bestimmen eines ersten Ersatzelements (G1) für die erste Konturgeometrie (K1) anhand wenigstens eines Messpunkts (M) im Bereich der ersten Konturgeometrie (K1),
    (c) Bestimmen eines zweiten Ersatzelements (G2) für die zweite Konturgeometrie (K2) anhand wenigstens eines Messpunkts (M) im Bereich der zweiten Konturgeometrie (K2),
    (d) Berechnen der Lage und/oder Größe des ersten Ersatzelements (G1) und/oder zweiten Ersatzelements (G2) unter der Randbedingung, dass das erste Ersatzelement (G1) und das zweite Ersatzelement (G2) tangential aneinander anschließen,
    (e) Bestimmen der Position der ersten Übergangsstelle (U1) an der Stelle, an der das erste Ersatzelement (G1) und das zweite Ersatzelement (G2) tangential aneinander anschließen.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Schritte (b) bis (e) jeweils unter Verwendung anderer oder zusätzlicher Messpunkte (M) für die Bestimmung des ersten Ersatzelements (G1) und/oder des zweiten Ersatzelements (G2) wiederholt werden, bis die Positionsänderung (D) zwischen zwei aufeinander folgenden Positionsbestimmungen der ersten Übergangsstelle (U1) kleiner ist als ein vorgegebener Änderungsschwellenwert (Dmax).
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass das zu vermessende Werkstück (14) eine dritte Konturgeometrie (K3) aufweist, die an einer zweiten Übergangsstelle (U2) an die zweite Konturgeometrie (K2) anschließt, wobei der Anschluss an der zweiten Übergangsstelle (U2) tangential verlaufen soll, wobei im Schritt (d) die Berechnung der Lage und/oder Größe des ersten Ersatzelements (G1) und/oder zweiten Ersatzelements (G2)und/oder dritten Ersatzelements (G3) unter der Randbedingung erfolgt, dass sowohl das erste und das zweite Ersatzelement (G1, G2) als auch das zweite und das dritte Ersatzelement (G2, G3) tangential aneinander anschließen.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass einer sich entlang eines Kreisbogens erstreckenden Konturgeometrie (K1, K2, K3, K4) als Ersatzelement (G1, G2, G3, G4) ein Kreis zugeordnet wird.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, dass zur Bestimmung des Kreises als Geomentriehilfselement (G1, G2, G3, G4) mindestens drei Messpunkte der zugeordneten Konturgeometrie (K1, K2, K3, K4) gemessen werden.
  6. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass einer geradlinig erstreckenden Konturgeometrie (K5) als Ersatzelement (G5) eine Gerade zugeordnet wird.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, dass zur Bestimmung der Gerade als Geomentriehilfselement (G5) mindestens drei Messpunkte der zugeordneten Konturgeometrie (K5) gemessen werden.
  8. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass bei der Bestimmung eines Ersatzelements (G1) nur Messpunkte (M1, M2, M3) verwendet werden, die einen Mindestabstand (A) von der Übergangsstelle (U1) oder den Übergangsstellen aufweisen, an der die dem Ersatzelement (G1) zugeordnete Konturgeometrie (K1) an eine benachbarte Konturgeometrie (K2) anschließt.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet, dass der Mindestabstand variabel ist und reduziert wird, je kleiner die Positionsänderung zwischen zwei aufeinanderfolgenden Berechnungen der betreffenden Übergangsstelle (U) ist.
  10. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass nach der Bestimmung der Übergangsstelle (U) anhand der ermittelten Ersatzelemente (G) eine Sollkontur (KS) bestimmt wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, die Abweichung zwischen den Messpunkten (M) und der Sollkontur (KS) bestimmt wird.
  12. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet die Sollkontur (KS) und die sich aus den Messpunkten (M) ergebende Istkontur (KM) des Werkstücks (14) auf einer Anzeigeeinrichtung (23) grafisch dargestellt werden.
  13. Konturmessgerät (10) zur Konturmessung eines Werkstücks (14) mit einer ersten Konturgeometrie (K1), einer zweiten Konturgeometrie (K2) und einer ersten Übergangsstelle (U1), an der die erste Konturgeometrie (K1) und die zweite Konturgeometrie (K2) aneinander anschließen, wobei der Anschluss an der ersten Übergangsstelle (U1) tangential verlaufen soll,
    mit einer Tasteinrichtung (11) zur Messung mehrer Messpunkte (M) entlang der zu messenden Kontur (13) des Werkstücks (14),
    mit einer Steuereinrichtung (21), die dazu eingerichtet ist folgenden Schritte durchzuführen:
    (a) Messen von mehreren Messpunkten (M) entlang der ersten Konturgeometrie (K1) und der zweiten Konturgeometrie (K2),
    (b) Bestimmen eines ersten Ersatzelements (G1) für die erste Konturgeometrie (K1) anhand wenigstens eines Messpunkts (M) im Bereich der ersten Konturgeometrie (K1),
    (c) Bestimmen eines zweiten Ersatzelements (G2) für die zweite Konturgeometrie (K2) anhand wenigstens eines Messpunkts (M) im Bereich der zweiten Konturgeometrie (K2),
    (d) Berechnen der Lage und/oder Größe des ersten und/oder zweiten Ersatzelements (G2) unter der Randbedingung, dass das erste Ersatzelement (G1) und das zweite Ersatzelement (G2) tangential aneinander anschließen,
    (e) Bestimmen der Position der ersten Übergangsstelle (U1) an der Stelle, an der das erste und das zweite Ersatzelement (G2) tangential aneinander anschließen.
  14. Konturmessgerät (10) nach Anspruch 13,
    dadurch gekennzeichnet, dass die Steuereinrichtung dazu eingerichtet ist, die Schritte (b) bis (e) jeweils unter Verwendung anderer oder zusätzlicher Messpunkte (M) für die Bestimmung des ersten Ersatzelements (G1) und/oder des zweiten Ersatzelements (G2) zu wiederholen, bis die Positionsänderung (D) zwischen zwei aufeinander folgenden Positionsbestimmungen der ersten Übergangsstelle (U1) kleiner ist als ein vorgegebener Änderungsschwellenwert (Dmax).
  15. Konturmessgerät nach Anspruch 13,
    dadurch gekennzeichnet, dass die Tasteinrichtung (11) einen entlang der zu messenden Werkstückkontur (13) bewegbaren taktilen oder optischen Messtaster (12) aufweist.
EP12733470.4A 2011-07-13 2012-07-04 KONTURMESSGERÄT UND VERFAHREN ZUR KONTURMESSUNG EINES WERKSTÜCKS MIT TANGENTIAL ANEINANDER ANSCHLIEßENDEN KONTURGEOMETRIEN Active EP2732237B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011051800A DE102011051800B3 (de) 2011-07-13 2011-07-13 Konturmessgerät und Verfahren zur Konturmessung eines Werkstücks mit tangential aneinander anschließenden Konturgeometrien
PCT/EP2012/063021 WO2013007569A1 (de) 2011-07-13 2012-07-04 KONTURMESSGERÄT UND VERFAHREN ZUR KONTURMESSUNG EINES WERKSTÜCKS MIT TANGENTIAL ANEINANDER ANSCHLIEßENDEN KONTURGEOMETRIEN

Publications (2)

Publication Number Publication Date
EP2732237A1 EP2732237A1 (de) 2014-05-21
EP2732237B1 true EP2732237B1 (de) 2016-11-23

Family

ID=46489211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12733470.4A Active EP2732237B1 (de) 2011-07-13 2012-07-04 KONTURMESSGERÄT UND VERFAHREN ZUR KONTURMESSUNG EINES WERKSTÜCKS MIT TANGENTIAL ANEINANDER ANSCHLIEßENDEN KONTURGEOMETRIEN

Country Status (6)

Country Link
US (1) US10274301B2 (de)
EP (1) EP2732237B1 (de)
JP (1) JP6324889B2 (de)
CN (1) CN103827628B (de)
DE (1) DE102011051800B3 (de)
WO (1) WO2013007569A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011051800B3 (de) 2011-07-13 2012-07-19 Carl Mahr Holding Gmbh Konturmessgerät und Verfahren zur Konturmessung eines Werkstücks mit tangential aneinander anschließenden Konturgeometrien
CN104089599B (zh) * 2014-07-04 2017-01-25 北京工业大学 用于接触式测头测量中提取二维轮廓的准形态学滤波方法
DE102016207342A1 (de) 2016-04-29 2017-11-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Ermittlung von Gestaltabweichungen einer Oberfläche, Oberflächenbewertungs-System und Computerprogrammprodukt

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988615A (ja) * 1982-11-12 1984-05-22 Takehiko Tanaka 自動車および航空機の輪郭形状作成用の数値制御方法
DE19600002C2 (de) * 1995-01-05 2002-01-17 Blaz Santic Integrales Verfahren für on-line Geometrieprüfung von Werkstücken aus mehreren Formflächen
JPH10311710A (ja) * 1997-05-13 1998-11-24 Tokai Rika Co Ltd 寸法測定方法
JPH11211452A (ja) * 1998-01-29 1999-08-06 Mazda Motor Corp 構造体の形状誤差評価装置及び評価方法及びコンピュータ読み取りが可能な記憶媒体
DE19914862B4 (de) * 1999-04-01 2006-11-23 E. Zoller Gmbh & Co. Kg Verfahren und Vorrichtung zum Vermessen eines Konturverlaufs eines Werkstücks
DE10258493B4 (de) * 2002-12-14 2009-11-19 Robert Bosch Gmbh Verfahren zur Bestimmung von Krümmungsradien einer Kontur
CN100453969C (zh) 2004-12-31 2009-01-21 上海萨克斯动力总成部件***有限公司 用于测量复杂曲面的三坐标机测量方法及其装置
GB0508273D0 (en) * 2005-04-25 2005-06-01 Renishaw Plc Method for scanning the surface of a workpiece
GB0508395D0 (en) 2005-04-26 2005-06-01 Renishaw Plc Method for scanning the surface of a workpiece
US7355728B2 (en) * 2005-06-16 2008-04-08 Timbre Technologies, Inc. Optical metrology model optimization for repetitive structures
FR2887978B1 (fr) * 2005-06-29 2007-10-12 Snecma Moteurs Sa Procede de controle du profil de la zone de raccordement entre la partie cylindrique et la depouille d'un rouleau pour palier a roulement de turbomachine
JP4741344B2 (ja) * 2005-11-07 2011-08-03 ダイハツ工業株式会社 形状認識装置及び歪評価装置
GB0614423D0 (en) * 2006-07-20 2006-08-30 Rolls Royce Plc Method for characterising the profile of a surface
JP2008116392A (ja) * 2006-11-07 2008-05-22 Tokyo Seimitsu Co Ltd 被測定物の幾何学的性状算出方法及び幾何学的性状プログラム、並びに輪郭形状測定装置
DE102007016502B4 (de) * 2007-03-26 2012-08-16 Harbin Measuring & Cutting Tool Group Co.,Ltd. Messverfahren und Messsystem zum Vermessen von Werkzeugen
JP5274782B2 (ja) * 2007-03-27 2013-08-28 株式会社ミツトヨ 表面性状測定装置、表面性状測定方法及び表面性状測定プログラム
DE102007044000A1 (de) * 2007-09-14 2009-04-02 Esco Gmbh Engineering Solutions Consulting Verfahren zur Bestimmung einer Raumform eines Werkstücks
DE102008021304B4 (de) * 2008-04-21 2019-04-25 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zum Bestimmen von geometrischen Parametern eines Messobjekts mit zumindest zwei formgleichen Abschnitten
JP5395470B2 (ja) * 2009-03-12 2014-01-22 ダイハツ工業株式会社 形状認識装置
DE102009020294A1 (de) * 2009-05-07 2010-11-18 Mahr Gmbh Verfahren und Vorrichtung zur Messung eines Oberflächenprofils
CN101762259B (zh) * 2010-01-08 2012-08-22 沈阳黎明航空发动机(集团)有限责任公司 一种燃气轮机燃烧室过渡段截面轮廓度的检测方法
DE102011051800B3 (de) 2011-07-13 2012-07-19 Carl Mahr Holding Gmbh Konturmessgerät und Verfahren zur Konturmessung eines Werkstücks mit tangential aneinander anschließenden Konturgeometrien

Also Published As

Publication number Publication date
WO2013007569A1 (de) 2013-01-17
JP6324889B2 (ja) 2018-05-16
EP2732237A1 (de) 2014-05-21
US10274301B2 (en) 2019-04-30
DE102011051800B3 (de) 2012-07-19
CN103827628B (zh) 2017-05-10
US20140249775A1 (en) 2014-09-04
CN103827628A (zh) 2014-05-28
JP2014522978A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
DE3784047T2 (de) Kalibrierungsverfahren für ein Koordinatenmessgerät und ähnliche Geräte.
EP1407224A1 (de) Verfahren zur messung von oberflächeneigenschaften sowie koordinatenmessgerät
EP2212647A1 (de) Verfahren zum kalibrieren eines koordinatenmessgerätes
EP3274654B1 (de) Verfahren, vorrichtung und computerprogrammprodukt zum bestimmen von dimensionellen eigenschaften eines messobjekts
DE202007019371U1 (de) Messen eines Objekts
EP3403051B1 (de) Verfahren und vorrichtung zum vorgeben von vorgabedaten für eine vermessung eines zu vermessenden werkstücks durch ein koordinatenmessgerät und/oder für eine auswertung von messergebnissen einer vermessung eines vermessenen werkstücks durch ein koordinatenmessgerät
EP2423639A1 (de) Verfahren zur Ermittlung von Spaltmaß und/oder Bündigkeit von Karosserieteilen eines Kraftfahrzeugs und Steuerungsprogramm
EP2732237B1 (de) KONTURMESSGERÄT UND VERFAHREN ZUR KONTURMESSUNG EINES WERKSTÜCKS MIT TANGENTIAL ANEINANDER ANSCHLIEßENDEN KONTURGEOMETRIEN
DE102016100308A1 (de) Verfahren zur Bestimmung von einer Referenzkoordinate eines Werkstücks und Bearbeitungsmaschine
DE102017126198B4 (de) Verfahren und System zur lehrenlosen Vermessung eines Gewindes
DE102007011603B4 (de) Verfahren und Vorrichtung zum Bestimmen von Geometriedaten eines konischen Messobjekts
DE19805155B4 (de) Verfahren zum Erzeugen von Steuerdaten für Koordinatenmeßgeräte
EP1316777A1 (de) Verfahren und Vorrichtung zum räumlichen Vermessen von Werkstücken an einer Werkzeugmaschine
DE102006005990B4 (de) Werkstückvermessung für 3-D Lageerkennung in mehreren Multi-Roboter-Stationen
DE4006949C5 (de) Verfahren zum punktweisen Abtasten der Oberfläche eines Werkstücks
DE19914862B4 (de) Verfahren und Vorrichtung zum Vermessen eines Konturverlaufs eines Werkstücks
DE102007044000A1 (de) Verfahren zur Bestimmung einer Raumform eines Werkstücks
DE102007007574B3 (de) Verfahren zum Ermitteln von Messstellen
DE102010054973B4 (de) Verfahren und Messsystem zur Vermessung eines Messobjekts
DE102010011841B4 (de) Verfahren zur Validierung eines Messergebnisses eines Koordinatenmessgeräts
DE102016206986B4 (de) Verfahren und Vorrichtung zur Bestimmung einer Rundheit-Formmessabweichung sowie Lehrring
DE102013110062A1 (de) Korrekturverfahren für die Messung mit einem Koordinatenmessgerät
DE102012104017A1 (de) Messeinrichtung und Verfahren zur Messung von Kugeln
EP1850089B1 (de) Vorrichtung und Verfahren zum räumlichen Vermessen von Werkstücken an einer Werkzeugmaschine
DE19735975C2 (de) Verfahren zur rechnerischen Vibrationsunterdrückung bei Koordinatenmeßgeräten sowie Koordinatenmeßgerät zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01B 21/04 20060101AFI20160525BHEP

Ipc: G01B 21/20 20060101ALI20160525BHEP

Ipc: G01B 5/20 20060101ALI20160525BHEP

Ipc: G06T 17/10 20060101ALI20160525BHEP

INTG Intention to grant announced

Effective date: 20160623

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 848320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008863

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008863

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 848320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120704

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 12

Ref country code: GB

Payment date: 20230720

Year of fee payment: 12

Ref country code: CH

Payment date: 20230801

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 12

Ref country code: DE

Payment date: 20230626

Year of fee payment: 12