EP2721421A1 - Dispositif et procede de mesure d'acceleration avec demodulation numerique - Google Patents

Dispositif et procede de mesure d'acceleration avec demodulation numerique

Info

Publication number
EP2721421A1
EP2721421A1 EP12729466.8A EP12729466A EP2721421A1 EP 2721421 A1 EP2721421 A1 EP 2721421A1 EP 12729466 A EP12729466 A EP 12729466A EP 2721421 A1 EP2721421 A1 EP 2721421A1
Authority
EP
European Patent Office
Prior art keywords
signal
digital
mass
modulated
modulation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12729466.8A
Other languages
German (de)
English (en)
Inventor
Vincent Ragot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Sagem Defense Securite SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Defense Securite SA filed Critical Sagem Defense Securite SA
Publication of EP2721421A1 publication Critical patent/EP2721421A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Definitions

  • the invention relates to the field of acceleration measurement.
  • the subject of the invention is devices, such as accelerometers, and methods for measuring acceleration.
  • Acceleration measuring devices comprising a support, a mass m movable relative to the support and elastic means opposing the displacement of the mass m with respect to the support. These devices comprise means for detecting at least one physical quantity representative of a displacement of the mass relative to the support. The detection means are associated with modulation means arranged to generate, from the detected value of the physical quantity, at least one modulated analog signal from which the acceleration undergone by the mass is determined.
  • modulation means are for example known from GB 791827A.
  • acceleration measuring devices having a digital output.
  • a demodulator is connected to the modulation means and to an analog-to-digital converter so as to generate a demodulated digital signal representative of the displacement of the mass relative to the support.
  • the acceleration is then determined by a numerical calculation.
  • acceleration measuring devices have a precision which may be insufficient for certain applications.
  • An object of the invention is to provide an acceleration measuring device and a measuring method acceleration method for reducing the difference between the actual acceleration experienced by the mass and the estimated acceleration value.
  • the invention relates to an acceleration measuring device, comprising a mass movable relative to a support and resiliently biased into a neutral position, and means for detecting a physical quantity representative of a displacement of the ground relative to the support which are associated with a modulator to produce, according to the detected magnitude and a modulation signal, an analog modulated signal representative of the displacement of the mass.
  • the device comprises an analog digital converter connected to the detection means and arranged to convert the analog modulated signal into a digital modulated signal, a demodulator connected to the converter and arranged to produce a digital signal demodulated from the digital modulated signal and characteristics of the signal of the digital signal. modulation, and means for calculating an estimated value of acceleration as a function of said demodulated digital signal.
  • the invention it is sought to produce a demodulated digital signal that can be used by numerical calculation means to calculate an estimated value of acceleration experienced by the mass.
  • the fact of performing the digital conversion of the analog signal before carrying out the demodulation operation makes it possible to reduce the volume of errors contained in the demodulated digital signal.
  • a standard error related to the analog demodulation is a demodulation symmetry defect.
  • the analog demodulation means comprise an operational amplifier introducing a error called offset which is defined by the voltage to be applied to the input of this operational amplifier so that the voltage at the output of this operational amplifier is zero.
  • the analog signal is not demodulated directly but the digital signal.
  • the demodulation operation from the digital data representative of the analog signal is performed by a numerical computation controlled so that fewer errors are generated during the demodulation by numerical calculation that is generated with an analog demodulation means. In particular, there are practically no more errors related to a demodulation dissymmetry.
  • the invention also relates to a method for measuring an acceleration, comprising the steps of:
  • the method of the invention makes it possible to reduce the difference between the estimated value of acceleration and the acceleration actually experienced by the moving mass.
  • FIG. 1 shows schematically an accelerometer type device according to the invention
  • FIG. 2 represents an electronic circuit of the device according to the invention, making it possible to implement the method according to the invention
  • FIG. 3 shows the electronic circuit of Figure 2 according to an alternative embodiment.
  • the invention relates to a device for measuring an acceleration experienced by a seismic mass m along an axis of acceleration A-A visible in FIG.
  • a piece of mass m is suspended from a rigid support 1 via elastic means of stiffness k known.
  • the support 1, which serves as a housing, is U-shaped in the middle of which is placed the seismic mass m.
  • the elastic means 2 comprise an elastic beam (or elastic hinge) having one end connected to the mass m and another end connected to the base of the U so as to be flexed under the effect of the mass m along an axis perpendicular to the plane in which extends the U-shape and recall the mass m in a position of equilibrium or neutral position.
  • the device comprises means for detecting the distance separating a first side of the mass of a first branch la from the U shape and / or the distance e2 separating a second side of this mass from a second branch lb of the U shape.
  • the detection means here comprise a first pair of electrodes 5a, 5b so that one of these electrodes is on the first face of the mass m and the other of these electrodes is on the first branch la of the U-shape and vis-à-vis the electrode carried by the first face of the mass m. These electrodes vis-à-vis form a first capacitor whose capacity Cl is variable according to the distance el.
  • the detection means comprise a second pair of electrodes 6a, 6b forming a second capacitor whose capacitance C2 is variable as a function of the distance e2.
  • This type of accelerometer is known as an electrostatic pendulum accelerometer for measuring linear accelerations along a sensitive axis.
  • the elastic beam exerts on the seismic mass m an elastic return force proportional to the stiffness k and the distance separating the center of inertia of the seismic mass m from its equilibrium position called "mechanical zero".
  • This mechanical zero is defined as the equilibrium position (marked relative to the support case 1) obtained when the acceleration applied to the mass m along the sensitive axis A-A is zero.
  • the estimated acceleration noted y is ideally deduced from the measurement of x denoted x (equilibrium position of the center of inertia of m) and the knowledge of k:
  • Ax represents the value estimated by measuring the displacement of the center of inertia of the mass m according to A-A and is estimated by means of the detection means whose errors are added to the quantity to be measured:
  • could be deduced from the measurement of only one of the capacitors Ci or C 2 .
  • Each electrode 5a, 5b, 6a, 6b has a surface S vis-à-vis the other electrode of the couple to which it belongs. To facilitate the calculations it is assumed that these surfaces S are here identical for the first capacitor and the second capacitor, but these surfaces could also differ from each other.
  • the gap that is to say the real distance between the electrodes of a pair of electrodes, is denoted e ⁇ ⁇ :
  • circuits of Figures 2 and 3 are examples of possible embodiments for the implementation of the invention. These exemplary embodiments make it possible to avoid the use of an analog demodulator which has the disadvantage of creating an offset biasing the demodulated digital signal Y and consequently the estimate of ⁇ .
  • the detection means are associated with modulation means 4 adapted to generate a modulated analog signal S representative of a displacement ⁇ of the mass m with respect to the support 1.
  • the modulated signal S is modulated according to a modulation signal M (t).
  • These modulation means 4 comprise DC voltage sources V and U and first and second analog switches II, 12.
  • the first switch II comprises:
  • the second switch 12 comprises:
  • Switches II, 12 selectively adopt a first configuration in which the first input terminal is connected to the output terminal and a second configuration in which the second input terminal is connected to the output terminal.
  • the switches II, 12 are connected to a control means C comprising an excitation source Exc generating a modulation signal M (t).
  • This modulation signal (t) alternately takes first and second values, and these control means C are such that when the signal M (t) takes its first value, the control means C control the passage of the switches II, 12 in their first configurations and when the modulation signal M (t) takes its second value, the control means C control the passage of the switches II, 12 in their second configurations.
  • the modulation signal M (t) is preferably a periodic signal having a square-wave voltage.
  • the detection means are connected to an operational amplifier having an input denoted "+” said non-inverting input and an input denoted "-" called inverting and an output connected to the inverting input -.
  • the non-inverting input of the operational amplifier is connected to the electrodes of the first and second capacitors which are not connected to the switches II, 12.
  • each of the capacitors has an electrode connected to an output of one of the switches and a electrode related to the non-inverting input of the operational amplifier.
  • the output of the operational amplifier is also connected to its inverting input so that this input is subjected to the output signal.
  • the signal generated at the output of this operational amplifier is a signal S which is modulated according to the modulation signal M (t) which controls the switches.
  • M (t) which controls the switches.
  • the non-inverting input of the amplifier receives a signal which is a function of the values of capacitors C1 and C2 which depend on the position of the mass relative to the support, it can be seen that this modulated output signal of the amplifier operational is also representative tative of a displacement ⁇ of the mass m with respect to the support 1.
  • the electronic circuit of FIG. 2 also comprises a digital demodulator Dn.
  • This digital demodulator Dn comprises an analog digital converter and digital demodulation means, in this case a digital computing unit OCN programmed to perform a digital demodulation operation.
  • the digital analog converter CAN comprises an input connected to the output of the operational amplifier for receiving the modulated analog signal S and an output connected to an input of a digital computing device OCN. Note that the CAN digital analog converter is also connected to the excitation source to achieve the conversion taking, for example, into account the modulation signal, however this link may be less direct.
  • the digital demodulation means formed by the digital computing unit OCN comprise:
  • OCN demodulation means demodulate the digital signal coming from the output of the analog converter CAN according to characteristics of the modulation signal M (t).
  • the device of the invention further comprises calculating means CAL having an input connected to the output of the digital computing device OCN through which the signal Y passes. As a function of said demodulated digital signal Y, these calculation means CAL generate an estimated value Y representative of the acceleration ⁇ undergone by the mass m.
  • the voltages U and V are so-called continuous voltages.
  • the switches are wired so that when one of the capacitors has an electrode connected to one switch and subjected to the voltage U, then the electrode of the other capacitor which is connected to the other switch is necessarily subjected to the voltage V.
  • This analog signal S is converted into a digital signal by the CAN converter and the demodulation means of the digital demodulator Dn (that is to say the digital computing device OCN) perform a demodulation.
  • This demodulation consists in differentiating between successive successive values of the signal S taken in time by taking into account the characteristics of the modulation signal M (t) as the time slots for which the signal M (t) takes its first value and the time intervals where this signal M (t) takes its second value.
  • the modulation signal M (t) is a periodic signal having a specific fixed frequency and the OCN demodulation means demodulate the modulated signal converted into digital as a function of the said own fixed frequency of the modulation signal M (t).
  • the present invention limits errors by substituting an analog demodulator for a digital demodulator.
  • the perfect symmetry of the digital demodulator Dn due to the digital computing unit OCN allows the use of a reference voltage U and a reference voltage V which are asymmetrical and also makes it possible to reject the offset of the analog part brought back to the input of the CAN digital analog converter.
  • the numerical calculation means CAL calculate the estimated value of the displacement Ax of the mass m.
  • FIG. 3 An alternative mode of the electronic circuit of FIG. 2 is presented in FIG. 3.
  • This circuit is identical to that of FIG. 2 but also comprises a calculation function f making it possible to generate a demodulation signal M '' (t) in FIG. function of the modulation signal M (t).
  • the calculation function can be summarized as the extraction of only one of the harmonics constituting the signal M (t) so as to make the device less sensitive to bandwidth limitations and linearity errors of the electronics.
  • this last circuit of the figure 3 allows an estimation of ⁇ improved compared to the circuit of FIG.
  • the acceleration measuring device of the invention can be used in a closed loop, in this case ⁇ is slaved to zero by applying to the seismic mass m a so-called counter-reaction force which is exactly opposed to the force of inertia. there. Divided by the seismic mass, this force constitutes the estimate of the acceleration.
  • the detection means may be of the electromagnetic type.
  • the excitation source Exc is arranged so that the modulation signal generated is independent, that is to say de-correlated, of the measured effective acceleration and therefore of independent / correlated dice of the physical quantity detected.
  • this modulation signal has characteristics of fixed period and / or fixed frequency, that is to say constant.
  • the characteristic (s) of the modulation signal M (t) used to generate the demodulated digital signal (Y), such as the own fixed frequency, are thus independent of the measured acceleration, which reduces the risk of occurrence of uncertainties in the modulation signal and, therefore, in the demodulation signal.
  • the acceleration measurement made according to the invention thus has an even smaller uncertainty as the characteristics of the modulation signal used to perform the demodulation is / are independent of the variations of the acceleration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Pressure Sensors (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Dispositif de mesure d' accélération, comportant une masse (m) mobile par rapport à un support et rappelée élastiquement dans une position neutre, des moyens de détection d'une grandeur physique (C1, C2) représentative d'un déplacement (Δx) de la masse, un modulateur (4) pour générer, à partir de la grandeur (C1, C2) et d'un signal de modulation (M(t), un signal (S) analogique représentatif du déplacement (Δx), un convertisseur relié au modulateur et agencé pour convertir le signal modulé analogique en signal modulé numérique et des moyens de démodulation pour créer un signal démodulé numérique (Y) à partir du signal modulé numérique (S) et de caractéristiques du signal de modulation (M(t)), et des moyens de calcul (CAL) d'une valeur (ŷ) d'accélération ( ƴ) en fonction du signal numérique démodulé (Y).

Description

DISPOSITIF ET PROCEDE DE MESURE D'ACCELERATION AVEC
DEMODULATION NUMERIQUE
L' invention concerne le domaine de la mesure de l'accélération.
Plus particulièrement, l'invention a pour objet les dispositifs, type accéléromètres , et les procédés de mesure d' accélération.
ARRIERE PLAN DE L' INVENTION
On connaît des dispositifs de mesure d'accélération, comprenant un support, une masse m mobile par rapport au support et des moyens élastiques s' opposant au déplacement de la masse m par rapport au support. Ces dispositifs comprennent des moyens de détection d'au moins une grandeur physique représentative d'un déplacement de la masse par rapport au support. Les moyens de détection sont associés à des moyens de modulation agencés pour générer, à partir de la valeur détectée de la grandeur physique, au moins un signal analogique modulé à partir duquel l'accélération subie par la masse est déterminée. De tels dispositifs sont par exemple connus du document GB 791827A.
Il est également connu, notamment du document US 2010174490A1, des dispositifs de mesure d'accélération ayant une sortie numérique. Dans ces dispositifs, un démodulateur est relié aux moyens de modulation et à un convertisseur analogique numérique de manière à générer un signal numérique démodulé représentatif du déplacement de la masse par rapport au support. L'accélération est alors déterminée par un calcul numérique.
De tels dispositifs de mesure d'accélération ont une précision qui peut se révéler insuffisante pour certaines applications.
OBJET DE L' INVENTION
Un objet de l'invention est de fournir un dispositif de mesure d'accélération et un procédé de mesure d'accélération permettant une réduction de l'écart entre l'accélération réelle subie par la masse et la valeur d'accélération estimée.
RESUME DE L'INVENTION
A cet effet, l'invention concerne un dispositif de mesure d'accélération, comportant une masse mobile par rapport à un support et rappelée élastiquement dans une position neutre, et des moyens de détection d'une grandeur physique représentative d'un déplacement de la masse par rapport au support qui sont associés à un modulateur pour produire, en fonction de la grandeur détectée et d'un signal de modulation, un signal modulé analogique représentatif du déplacement de la masse. Le dispositif comprend un convertisseur analogique numérique relié aux moyens de détection et agencé pour convertir le signal modulé analogique en signal modulé numérique, un démodulateur relié au convertisseur et agencé pour produire un signal numérique démodulé à partir du signal modulé numérique et de caractéristiques du signal de modulation, et des moyens de calcul d'une valeur estimée d'accélération en fonction dudit signal numérique démodulé.
Avec l' invention on cherche à produire un signal numérique démodulé qui puisse être utilisé par des moyens numériques de calcul pour calculer une valeur estimée d'accélération subie par la masse. Le fait de réaliser la conversion numérique du signal analogique avant de réaliser l'opération de démodulation permet de réduire le volume d'erreurs contenues dans le signal numérique démodulé. En effet, on a constaté que la démodulation d'un signal analogique, non converti en signal numérique, introduit des erreurs liées aux moyens électroniques analogiques de démodulation. Une erreur type liée à la démodulation analogique est un défaut de symétrie de la démodulation. Typiquement les moyens de démodulation analogique comportent un amplificateur opérationnel introduisant une erreur appelée offset qui est définie par la tension à appliquer sur l'entrée de cet amplificateur opérationnel pour que la tension, en sortie de cet amplificateur opérationnel, soit nulle. Grâce à l'invention, on ne démodule pas directement le signal analogique mais le signal numérique. L'opération de démodulation à partir des données numériques représentatives du signal analogique est réalisée par un calcul numérique maîtrisé de sorte qu'on génère moins d'erreurs lors de la démodulation par calcul numérique qu'on en génère avec un moyen de démodulation analogique. En particulier on ne retrouve pratiquement plus d'erreurs liées à une dissymétrie de démodulation.
L' invention concerne également un procédé de mesure d'une accélération, comportant les étapes de :
détection d'une grandeur physique représentative d'un déplacement de la masse par rapport à un support, la masse étant rappelée élastiquement dans une position neutre ;
- génération, à partir de la grandeur physique détectée et d'un signal de modulation, d'au moins un signal analogique modulé ;
conversion du signal analogique modulé en signal numérique modulé ;
- génération d'un signal numérique démodulé à partir du signal numérique modulé et de caractéristiques du signal de modulation ;
- calcul d'une valeur estimée d'accélération à partir du signal numérique démodulé.
Pour des raisons déjà énoncées en référence au dispositif de l'invention, on constate que le procédé de l'invention permet de réduire l'écart entre la valeur estimée d'accélération et l'accélération réellement subie par la masse mobile.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels:
- la figure 1 représente schématiquement un dispositif de type accéléromètre conforme à l'invention ;
- la figure 2 représente un circuit électronique du dispositif selon l'invention, permettant de mettre en œuvre le procédé selon l'invention ;
- la figure 3 représente le circuit électronique de la figure 2 selon une variante de réalisation.
EXPOSE DETAILLE DE L'INVENTION
L'invention concerne un dispositif de mesure d'une accélération subie par une masse sismique m selon un axe d'accélération A-A visible sur la figure 1.
Une pièce de masse m est suspendue à un support rigide 1 par l'intermédiaire de moyens élastiques de raideur k connue. Le support 1, qui fait office de boîtier, est en forme de U au milieu duquel est placée la masse sismique m. Les moyens élastiques 2 comprennent une poutre élastique (ou charnière élastique) ayant une extrémité liée à la masse m et une autre extrémité liée à la base du U de manière à être en flexion sous l'effet de la masse m selon un axe perpendiculaire au plan dans lequel s'étend la forme en U et à rappeler la masse m dans une position d'équilibre ou position neutre.
Le dispositif comporte des moyens de détection de la distance el séparant un premier côté de la masse d'une première branche la de la forme en U et/ou de la distance e2 séparant un second côté de cette masse d'une seconde branche lb de la forme en U. Les moyens de détection comprennent ici un premier couple d'électrodes 5a, 5b de manière que l'une de ces électrodes soit sur la première face de la masse m et que l'autre de ces électrodes soit sur la première branche la de la forme en U et en vis-à-vis de l'électrode portée par la première face de la masse m. Ces électrodes en vis-à-vis forment un premier condensateur dont la capacité Cl est variable en fonction de la distance el . Les moyens de détection comprennent un deuxième couple d'électrodes 6a, 6b formant un second condensateur dont la capacité C2 est variable en fonction de la distance e2.
Ce type d' accéléromètre est connu sous le nom d' accéléromètre pendulaire à mesure électrostatique destiné à mesurer les accélérations linéaires selon un axe sensible .
En première approximation la poutre élastique exerce sur la masse sismique m une force de rappel élastique proportionnelle à la raideur k et à la distance séparant le centre d'inertie de la masse sismique m de sa position d'équilibre dite « zéro mécanique ».
Ce zéro mécanique est défini comme la position d'équilibre (repérée par rapport au boîtier support 1) obtenue quand l'accélération appliquée à la masse m selon l'axe sensible A-A est nulle.
Dans le mode de fonctionnement le plus élémentaire dit « en boucle ouverte », une accélération constante ap- pliquée selon l'axe sensible A-A amène la masse sismique m dans une nouvelle position d'équilibre.
Dans ce mode de fonctionnement, l'accélération estimée notée y se déduit idéalement de la mesure de x notée x (position d'équilibre du centre d'inertie de m) et de la connaissance de k :
k
γ =—Ax
m
Ax représente la valeur estimée par mesure du déplacement du centre d'inertie de la masse m selon A-A et est estimé à l'aide des moyens de détection dont les er- reurs s'ajoutent à la grandeur à mesurer :
Ax = Ax+ Ax Il en résulte une erreur γ d'estimation de l'accélération à mesurer valant :
~ k
γ =— Δχ
m
Dans le cas d'une détection électrostatique, comme c'est le cas du dispositif présenté à la figure 1, Δχ pourrait être déduit de la mesure d'une seule des capacités Ci ou C2. Chaque électrode 5a, 5b, 6a, 6b possède une surface S en vis-à-vis de l'autre électrode du couple auquel elle appartient. Pour faciliter les calculs on fait l'hypothèse que ces surfaces S sont ici identiques pour le premier condensateur et le second condensateur, mais ces surfaces pourraient aussi différer l'une de l'autre.
Dans les calculs ci-après, l'entrefer, c'est-à-dire la distance réelle entre les électrodes d'un couple d'électrodes, est notée e ± Δχ :
Avec :
Quand Co n'est pas connu avec une précision suffisante, Δχ est entaché d'un biais qui se répercute sur l'estimée de l'accélération γ . C'est la raison pour laquelle on estime Δχ à l'aide d'un circuit utilisant les deux valeurs mesurées des capacités Cl et C2 au lieu d'une seule. Des exemples de tels circuits sont donnés aux figures 2 et 3.
Les circuits des figures 2 et 3 sont des exemples de modes de réalisations possibles pour la mise en œuvre de l'invention. Ces exemples de réalisation permettent d'éviter l'emploi d'un démodulateur analogique qui a pour inconvénient de créer un offset biaisant le signal numérique démodulé Y et par conséquent l'estimée de Δχ.
On retrouve sur le circuit de la figure 2 les condensateurs permettant la détection de deux grandeurs physiques Cl et C2 représentatives d'un déplacement Δχ de la masse m par rapport au support 1.
Les moyens de détection sont associés à des moyens de modulation 4 adaptés pour générer un signal analogique modulé S représentatif d'un déplacement Δχ de la masse m par rapport au support 1. Le signal modulé S est modulé en fonction d'un signal de modulation M(t). Ces moyens de modulation 4 comportent des sources de tension continues V et U et des premier et second interrupteurs analogiques II, 12. Le premier interrupteur II comporte :
- une première borne d' entrée reliée à la première source de tension V ;
- une deuxième borne d' entrée reliée à la deuxième source de tension U ; et
- une borne de sortie reliée à l'une des électrodes du premier condensateur de capacité Cl.
Le deuxième interrupteur 12 comporte :
- une première borne d' entrée reliée à la deuxième source de tension U ;
- une deuxième borne d' entrée reliée à la première source de tension V ; et
- une borne de sortie reliée à l'une des électrodes du second condensateur de capacité Cl.
Les interrupteurs II, 12 adoptent sélectivement une première configuration dans laquelle la première borne d'entrée est reliée à la borne de sortie et une seconde configuration dans laquelle la deuxième borne d'entrée est reliée à la borne de sortie. Les interrupteurs II, 12 sont reliés à un moyen de commande C comportant une source d'excitation Exc générant un signal de modulation M(t). Ce signal de modulation (t) prend alternativement des première et seconde valeurs, et ces moyens de commande C sont tels que lorsque le signal M(t) prend sa première valeur, les moyens de commande C commandent le passage des interrupteurs II, 12 dans leurs premières configurations et lorsque le signal de modulation M(t) prend sa seconde valeur, les moyens de commande C commandent le passage des interrupteurs II, 12 dans leurs secondes configurations. Le signal de modulation M(t) est préférentiellement un signal périodique ayant une tension en créneau.
Les moyens de détection sont reliés à un amplificateur opérationnel ayant une entrée notée « + » dite entrée non-inverseuse et une entrée notée « - » dite inverseuse et une sortie reliée à l'entrée inverseuse -.
L'entrée non-inverseuse de l'amplificateur opérationnel est reliée aux électrodes des premier et second condensateurs qui ne sont pas liées aux interrupteurs II, 12. Ainsi, chacun des condensateurs possède une électrode liée à une sortie d'un des interrupteurs et une électrode liée à l'entrée non-inverseuse de l'amplificateur opérationnel .
La sortie de l'amplificateur opérationnel est aussi reliée à son entrée inverseuse de manière que cette entrée soit soumise au signal de sortie.
Le signal généré en sortie de cet amplificateur opérationnel est un signal S qui est modulé en fonction du signal de modulation M(t) qui commande les interrupteurs. Par ailleurs, comme l'entrée non-inverseuse de l'amplificateur reçoit un signal fonction des valeurs des capacités Cl et C2 qui dépendent de la position de la masse par rapport au support, on constate que ce signal de sortie modulé de l'amplificateur opérationnel est aussi représen- tatif d'un déplacement Δχ de la masse m par rapport au support 1.
Le circuit électronique de la figure 2 comporte également un démodulateur numérique Dn. Ce démodulateur numérique Dn comporte un convertisseur analogique numérique et des moyens de démodulation numérique, en l'occurrence un organe de calcul numérique OCN programmé pour effectuer une opération de démodulation numérique. Le convertisseur analogique numérique CAN comporte une entrée relié à la sortie de l'amplificateur opérationnel pour recevoir le signal analogique modulé S et une sortie reliée à une entrée d'un organe de calcul numérique OCN. On note que le convertisseur analogique numérique CAN est aussi relié à la source d'excitation pour réaliser la conversion en prenant, par exemple, en compte le signal de modulation, toutefois ce lien peut être moins direct.
Les moyens de démodulation numérique formés par l'organe de calcul numérique OCN comportent :
- une autre entrée qui est reliée à la source d'excitation Exc générant le signal de modulation M(t) ; et
- une sortie par laquelle est transmis un signal Y. Ces moyens de démodulation OCN démodulent le signal numérique provenant de la sortie du convertisseur analogique CAN en fonction de caractéristiques du signal de modulation M(t) .
Le dispositif de l'invention comporte en outre des moyens de calcul CAL ayant une entrée reliée à la sortie de l'organe de calcul numérique OCN par laquelle transite le signal Y. En fonction dudit signal numérique démodulé Y, ces moyens de calcul CAL génèrent une valeur estimée Y représentative de l'accélération^ subie par la masse m.
Les tensions U et V sont des tensions continues dites de référence. Les interrupteurs sont câblés de manière que lorsque l'un des condensateurs a une électrode reliée à un interrupteur et soumise à la tension U, alors l'électrode de l'autre condensateur qui est reliée à l'autre interrupteur est forcément soumise à la tension V.
Quand les interrupteurs sont dans leurs premières configurations visibles aux figures 2 et 3, le signal S en sortie de l'amplificateur est :
V U c2
Lorsque les interrupteurs sont dans leurs secondes configurations, le signal S en sortie de l'amplificateur est :
— +—
_ C2 Ci
— +—
c2 C1
Ce signal analogique S est converti en signal numérique par le convertisseur CAN et les moyens de démodulation du démodulateur numérique Dn (c'est-à-dire l'organe de calcul numérique OCN) effectuent une démodulation. Cette démodulation consiste à faire la différence entre différentes valeurs successives du signal S prises dans le temps en prenant en compte des caractéristiques du signal de modulation M(t) comme les intervalles de temps pour lesquels le signal M(t) prend sa première valeur et les intervalles de temps où ce signal M(t) prend sa seconde valeur.
On note que le signal de modulation M(t) est un signal périodique ayant une fréquence fixe propre et les moyens de démodulation OCN démodulent le signal modulé converti en numérique en fonction de ladite fréquence fixe propre du signal de modulation M(t).
En pratique, et contrairement à un démodulateur analogique, le fonctionnement de ces moyens de démodulation OCN par calcul numérique occasionne un défaut de symétrie (noté5) et un défaut d'offset (vos) nuls. Le signal numérique démodulé Y en sortie de l'organe de calcul numérique OCN est donc :
Comme δ = 0 et vos =0, le biais est nul et
La présente invention limite les erreurs en substituant au démodulateur analogique un démodulateur numérique.
Par ailleurs, la parfaite symétrie du démodulateur numérique Dn due à l'organe de calcul numérique OCN autorise l'emploi d'une tension de référence U et d'une tension de référence V qui sont dissymétriques et permet également de rejeter l'offset de la partie analogique ramené à l'entrée du convertisseur analogique numérique CAN.
A partir de ce signal numérique démodulé Y, les moyens de calcul numérique CAL, calculent la valeur estimée ^ du déplacement Ax de la masse m.
Connaissant cette valeur ^ le calculateur CAL calcule l'accélération estimée avec la formule =k-Ax/m.
Un mode alternatif du circuit électronique de la figure 2 est présenté à la figure 3. Ce circuit est identique à celui de la figure 2 mais comporte en plus une fonction de calcul f permettant de générer un signal de démodulation M' ' (t) en fonction du signal de modulation M(t). La fonction de calcul peut se résumer à l'extraction d'une seule des harmoniques constituant le signal M(t) de sorte à rendre le dispositif moins sensible aux limitations de bande passante et aux erreurs de linéarité de l'électronique. On note que ce dernier circuit de la figure 3 permet une estimation de Δχ améliorée par rapport au circuit de la figure 2.
L'invention n'est pas limitée aux exemples décrits précédemment et couvre toute variante entrant dans le champ de l'invention telle que définie par les revendications.
En particulier le dispositif de mesure d'accélération de l'invention peut être utilisé en boucle fermée, dans ce cas Δχ est asservi à zéro en appliquant à la masse sismique m une force dite de contre réaction qui s'oppose exactement à la force d'inertie . y. Divisée par la masse sismique, cette force constitue l'estimée de 1' accélération .
Les moyens de détection peuvent être de type électromagnétique .
On note que pour la mise en œuvre du dispositif et du procédé selon l'invention, la source d'excitation Exc est agencée pour que le signal de modulation généré soit indépendant, c'est-à-dire dé-corrélé, de l'accélération effective mesurée et donc de indépendant / dé corrélé de la grandeur physique détectée. Idéalement, ce signal de modulation présente des caractéristiques de période fixe et/ou de fréquence fixe, c'est-à-dire constante. La ou les caractéristique (s) du signal de modulation M(t) utilisée (s) pour générer le signal numérique démodulé (Y) , comme la fréquence fixe propre, sont ainsi indépendantes de l'accélération mesurée, ce qui réduit le risque d'apparition d'incertitudes dans le signal de modulation et, par conséquent, dans le signal de démodulation. La mesure d'accélération réalisée selon l'invention présente ainsi une incertitude d'autant plus réduite que la / les caractéristiques du signal de modulation utilisée (s) pour réaliser la démodulation est / sont indépendantes des variations de l'accélération.

Claims

REVENDICATIONS
1. Dispositif de mesure d'accélération, comportant une masse (m) mobile par rapport à un support (1) et rappelée élastiquement dans une position neutre, et des moyens de détection d'une grandeur physique (Cl, C2) représentative d'un déplacement (Δχ) de la masse (m) par rapport au support (1) qui sont associés à un modulateur pour produire, en fonction de la grandeur détectée et d'un signal de modulation, un signal modulé analogique représentatif du déplacement de la masse, caractérisé en ce que le dispositif comprend un convertisseur analogique numérique relié aux moyens de détection et agencé pour convertir le signal modulé analogique en signal modulé numérique, un démodulateur relié au convertisseur et agencé pour produire un signal numérique démodulé (Y) à partir du signal modulé numérique (S) et de caractéristiques du signal de modulation (M(t)), et des moyens de calcul (CAL) d'une valeur estimée d'accélération (γ) en fonction dudit signal numérique démodulé (Y) .
2. Dispositif selon la revendication 1, dans lequel le démodulateur est agencé pour tenir compte d'une erreur présente dans le signal modulé numérique (S) .
3. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le signal de modulation est un signal indépendant de la grandeur physique détectée.
4. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le signal de modulation est un signal présentant une période fixe.
5. Dispositif selon la revendication précédente, dans lequel le signal de modulation est un signal périodique ayant une fréquence fixe propre.
6. Dispositif selon la revendication 5, dans lequel les moyens de démodulation démodulent le signal modulé converti en numérique en fonction de ladite fréquence fixe propre du signal de modulation.
7. Dispositif selon l'une quelconque des revendications 1 à 6, dans lequel les moyens de calcul de la valeur estimée d'accélération (γ) sont agencés pour :
estimer une valeur ( Δχ ) représentative du déplacement (Δχ) de la masse (m) par rapport au support (1) en fonction du signal démodulé numérique (Y) ; et
- calculer la valeur estimée d'accélération (γ) en fonction de la valeur estimée ( Δχ ) représentative du déplacement (Δχ) de la masse (m) et d'une raideur (k) de moyens de rappel élastique de la masse (m) en position neutre .
8. Procédé de mesure d'une accélération, comportant les étapes de :
détection d'une grandeur physique (Cl, C2) représentative d'un déplacement (Δχ) de la masse (m) par rapport à un support (1), la masse (m) étant rappelée élastiquement dans une position neutre ;
génération, à partir de la grandeur physique détectée (Cl, C2) et d'un signal de modulation ( (t)), d'au moins un signal analogique modulé (S) ;
- conversion du signal analogique modulé en signal numérique modulé ;
- génération d'un signal numérique démodulé (Y) à partir du signal numérique modulé (S) et de caractéristiques du signal de modulation (M(t)) ;
- calcul d'une valeur estimée d'accélération (γ) à partir du signal numérique démodulé (Y) .
9. Procédé selon la revendication 8, dans lequel la génération du signal numérique démodulé (Y) limite l'effet des erreurs présentes dans le signal modulé numérique (S) du fait de la conversion en numérique du signal analogique modulé (S) .
10. Procédé selon l'une quelconque des revendications 8 ou 9, dans lequel le signal de modulation (M(t)) est un signal indépendant de la grandeur physique détectée .
11. Procédé selon l'une quelconque des revendications 8 à 10, dans lequel le signal de modulation (M(t)) est un signal présentant une période fixe.
12. Procédé selon l'une quelconque des revendications 8 à 11, dans lequel le signal de modulation est un signal périodique ayant une fréquence fixe propre.
13. Procédé selon la revendication 12, dans lequel les caractéristiques du signal de modulation (M(t)) utilisées pour générer le signal numérique démodulé (Y) comportent ladite fréquence fixe propre du signal de modulation.
14. Procédé selon la revendication 11, dans lequel les caractéristiques du signal de modulation (M(t)) utilisées pour générer le signal numérique démodulé (Y) comportent ladite période fixe du signal de modulation.
EP12729466.8A 2011-06-15 2012-06-13 Dispositif et procede de mesure d'acceleration avec demodulation numerique Withdrawn EP2721421A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1101825A FR2976674B1 (fr) 2011-06-15 2011-06-15 Dispositif et procede de mesure d'acceleration avec demodulation numerique
PCT/EP2012/061201 WO2012171957A1 (fr) 2011-06-15 2012-06-13 Dispositif et procede de mesure d'acceleration avec demodulation numerique

Publications (1)

Publication Number Publication Date
EP2721421A1 true EP2721421A1 (fr) 2014-04-23

Family

ID=46354226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12729466.8A Withdrawn EP2721421A1 (fr) 2011-06-15 2012-06-13 Dispositif et procede de mesure d'acceleration avec demodulation numerique

Country Status (3)

Country Link
EP (1) EP2721421A1 (fr)
FR (1) FR2976674B1 (fr)
WO (1) WO2012171957A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901226B (zh) * 2014-04-22 2017-01-18 东南大学 三轴硅谐振式加速度计闭环驱动控制与频率检测电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB791827A (en) 1948-03-22 1958-03-12 Mini Of Supply Improvements in or relating to accelerometers
JP3322067B2 (ja) * 1995-04-24 2002-09-09 株式会社デンソー 物理量検出装置
US7347096B2 (en) * 2005-07-25 2008-03-25 Nebojsa Vrcelj Digital accelerometer
US8352191B2 (en) 2009-01-02 2013-01-08 Landis+Gyr, Inc. Seismic detection in electricity meters
EP2419746B1 (fr) * 2009-04-14 2013-03-13 Atlantic Inertial Systems Limited Systèmes de commande d'accéléromètre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012171957A1 *

Also Published As

Publication number Publication date
WO2012171957A1 (fr) 2012-12-20
FR2976674A1 (fr) 2012-12-21
FR2976674B1 (fr) 2013-12-13

Similar Documents

Publication Publication Date Title
EP3472558B1 (fr) Système de mesure et gyromètre comportant un tel système
EP0565462A1 (fr) Perfectionnement aux micro-capteurs pendulaires asservis
EP1763455A1 (fr) Dispositif optique de mesure de l'epaisseur d'un milieu au moins partiellement transparent
EP2541213A1 (fr) Procédé pour reduire la non linéarite pendant la mesure d'un paramètre physique et circuit electronique pour sa mise en oeuvre
EP2938965B1 (fr) Procede de comparaison de deux centrales inertielles solidaires d'un meme porteur
FR2942033A1 (fr) Circuit de compensation d'un capteur de vitesse de lacet
WO2018037191A1 (fr) Procede et dispositif d'estimation de force
CA2319848A1 (fr) Systeme de propulsion a assistance proportionnelle
WO2012156016A1 (fr) Mesure differentielle de tension
FR2827040A1 (fr) Systeme d'elimination de decalage pour un gyroscope vibrant
EP1533600A1 (fr) Système capteur de couple absolu de torsion et module le comprenant
EP2721421A1 (fr) Dispositif et procede de mesure d'acceleration avec demodulation numerique
FR3050849B1 (fr) Procede et dispositif de reduction de bruit dans un signal module
EP1995575B1 (fr) Système d'analyse de fréquence de dispositifs resonnants
FR2800869A1 (fr) Gyroscope a resonateur hemispherique et procede correspondant
EP3044697B1 (fr) Procédé électronique d'extraction de l'amplitude et de la phase d'un signal dans une détection synchrone et montage interférométrique pour la mise en oeuvre du procédé
EP3899497A1 (fr) Dispositif laser pour interferometrie a polarisation
WO2007017471A1 (fr) Procede et dispositif de determination de la vitesse d'un coureur
EP2618163B1 (fr) Procédé de mesure d'un paramètre physique et circuit électronique d'interface d'un capteur capacitif pour sa mise en oeuvre
EP1655581B1 (fr) Dispositif pour détecter au moins la position d'une cible mobile
EP2378247B1 (fr) Dispositif de traitement numérique de l'information issue d'un gyrolaser et gyrolaser associé
FR2947899A1 (fr) Procede de detection de pente et de devers, et d'estimation de leur signe
EP2130066B1 (fr) Dispositif et procédé de mesure de la masse de matériau magnétique, appareil d'analyse incorporant ce dispositif
WO2016128686A1 (fr) Dispositif de captage d'au moins une espèce chimique comprenant un capteur chimique et procédé de fabrication d'un tel capteur chimique
FR2901018A3 (fr) Procede de mesure des parametres d'adherence entre la voie d'un vehicule et la chaussee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141029

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150509