EP2715229B1 - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
EP2715229B1
EP2715229B1 EP12724986.0A EP12724986A EP2715229B1 EP 2715229 B1 EP2715229 B1 EP 2715229B1 EP 12724986 A EP12724986 A EP 12724986A EP 2715229 B1 EP2715229 B1 EP 2715229B1
Authority
EP
European Patent Office
Prior art keywords
steam
combustion chamber
boiler
generator according
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12724986.0A
Other languages
German (de)
French (fr)
Other versions
EP2715229A1 (en
Inventor
Klaus VÖLKERER
Willibald Eidler
Arno Past
Josef Koglbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vep Umwelttechnik - Neumot - Produktions- und Vert
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to SI201230344T priority Critical patent/SI2715229T1/en
Priority to PL12724986T priority patent/PL2715229T3/en
Publication of EP2715229A1 publication Critical patent/EP2715229A1/en
Application granted granted Critical
Publication of EP2715229B1 publication Critical patent/EP2715229B1/en
Priority to HRP20151149TT priority patent/HRP20151149T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/02Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/02Steam boilers of forced-flow type of forced-circulation type
    • F22B29/023Steam boilers of forced-flow type of forced-circulation type without drums, i.e. without hot water storage in the boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/02Combinations of boilers having a single combustion apparatus in common
    • F22B33/10Combinations of boilers having a single combustion apparatus in common of two or more superposed boilers with separate water volumes and operating with two or more separate water levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/04Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways the tubes having plain outer surfaces, e.g. in vertical arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/02Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G3/00Steam superheaters characterised by constructional features; Details of component parts thereof
    • F22G3/001Steam tube arrangements not dependent of location
    • F22G3/002Steam tube arrangements not dependent of location with helical steam tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G7/00Steam superheaters characterised by location, arrangement, or disposition
    • F22G7/14Steam superheaters characterised by location, arrangement, or disposition in water-tube boilers, e.g. between banks of water tubes

Definitions

  • the subject invention relates to a steam generator having a combustion chamber, at least one flue and a boiler assembly wherein each boiler assembly has a plurality of individual, similarly formed steam boilers with closed water circuit, each of which has a tube construction, the at least one guided through the combustion chamber risers, a steam outlet pipe , a downpipe and a leading from this to the riser connecting pipe
  • the risk potential of a steam boiler plant is mainly dependent on the volume of the pressure vessels and the maximum operating pressure, whereby the plants can be classified according to certain characteristics, such as the pressure content product (product of operating pressure times volume) in different hazard classes.
  • Pressure vessels with a low risk potential include superheated steam boilers or pressure vessels susceptible to overheating, the pressure-content product of which is less than 200 [bar xl] or, if they are made of pipes with Nominal diameters up to and including DN 32, the pressure content of which is less than 350 [bar xl].
  • These include, for example, so-called "fast steam generators".
  • quick steam generators deliver only small amounts of steam of mostly low quality and are therefore unsuitable for many applications.
  • Steam generators of the type mentioned are, for example CH-349 997 or DE-465 425 known. These trainings are conventional steam boilers with multiple water circuits.
  • the subject invention solves this problem by a steam generator of the type mentioned, in which each of the steam boiler to achieve a low risk potential according to ⁇ 5 of the Austrian Pressure Equipment Supervision Regulation (DGÜW-V) is constructed of tubes up to a maximum of DN 32, the pressure content product (pxv) is less than 350 [bar xl].
  • the amount of steam that can be generated is not increased by an increase in boiler volume and maximum pressure, but is determined by the number of steam boilers that are operated via the combustion chamber.
  • the steam boilers can be designed as a natural circulation, forced circulation or forced circulation boiler. Forced-circulation boiler, for example, have helical risers, which are guided through the combustion chamber.
  • a heat exchanger for feeding water may be arranged in the flue gas duct. This improves the energy efficiency of the system.
  • the heat exchanger advantageously comprises tubes whose tube axes are arranged substantially in the same plane as the tube axes of the boiler.
  • This allows an extremely compact construction of steam boiler and heat exchangers, wherein the tubes of the heat exchanger, for example, can be arranged within a frame formed by riser, steam outlet pipe, downpipe and connecting pipe.
  • Several flat juxtaposed heat exchanger of several juxtaposed, flat steam boilers can be arranged in an advantageous manner in the same flue gas duct. Baffles in the flue gas duct can increase the flow path of the flue gas in the heat exchanger and thus improve the heat transfer.
  • At least one further steam boiler can be provided for cooling the combustion chamber walls, the riser tubes of which are arranged in the region of the combustion chamber walls.
  • the risers of such combustion chamber wall steam boiler for example, in the areas where no risers of the former identically constructed steam boiler are provided, be arranged in a cage around the combustion chamber wall, so that the wall is cooled in all areas and used to generate steam. This improves the steam yield and energy efficiency of the system while providing cooling of the combustion chamber walls.
  • the steam extraction lines leading away from the respective steam extraction connections of the steam boilers can open in a steam manifold. This is possible because the steam manifold, out of safety considerations, is no longer to count the volume of the steam boiler. Several steam boilers, whose steam is introduced into a common steam manifold, are therefore not to be regarded as a total volume, but each individually for the design of the safety criteria. Thus, it is possible to produce large amounts of steam with a steam generator according to the invention, which corresponds to a quick steam generator in terms of safety and legal operating conditions.
  • the vapor extraction lines leading away from the respective steam extraction connections of the steam boilers can each open into a superheater pipe arranged in the combustion chamber.
  • Steam superheating is beneficial, for example, for feeding steam engines or turbines.
  • the steam generator according to the invention can be used advantageously for the operation of a power plant, such as for power generation from biomass or gas, even in relatively small scale.
  • the steam jet compressors can be used for feeding multi-stage steam engines, for example a turbine or a multi-stage axial piston engine, wherein derived from the engine, relaxed exhaust steam of a stage in the steam jet compressor with that fed from the boiler Main steam is brought to the desired pressure level and in the superheater to the required temperature for the next stage.
  • the individual superheater tubes can advantageously be helically wound in the region of the combustion chamber and arranged in the manner of a cylinder. As a result, the available space in the combustion chamber can be used optimally.
  • the steam boilers can have a horizontally arranged evaporator tube at the operating level of the water level.
  • An advantageous embodiment of the invention may finally provide that the tube axes of a steam boiler are arranged substantially in the same, preferably vertical plane. Due to the flat construction achieved thereby, it is possible to arrange several steam generators in a small space next to each other, so that the space available in the combustion chamber can be optimally utilized.
  • Fig. 1 to 4 show a first embodiment of the invention of the steam generator in perspective view ( Fig. 1 ), in two side views ( Fig.2 and 3 ) and a plan view ( Fig. 4 ).
  • Fig. 1 For better visibility of the individual components has been dispensed with a representation of the walls of the combustion chamber and the flue gas duct.
  • the figures thus show primarily the boiler assembly 2 of the invention.
  • the individual components are mounted on a frame 18, wherein the combustion chamber 1 is located in the middle of the substantially symmetrical construction.
  • the combustion chamber 1 On both sides five steam boilers are arranged, with the sake of clarity in Fig. 1 only the steam boiler 3a to 3e of the right side are provided with reference numerals.
  • the steam boiler 3 shown is a natural circulation boiler, wherein the feed water is introduced via a feedwater supply 23 and preheated by a heat exchanger 11, which is located in the flue gas duct 10. Opposite the feedwater supply 23, a pressure measuring device 19 is arranged to control the operating pressure.
  • the flue gas channel 10 is in Fig. 5 only schematically illustrated by dashed lines, wherein in the interior of the flue gas duct 10 a plurality of baffles 20 are arranged, which extend the path of the flue gas in the region of the heat exchanger 11.
  • the baffles 20 are in Fig.
  • the riser 4 is arranged in the combustion chamber 1 and extends therein vertically along a combustion chamber wall. (A corresponding combustion chamber wall is, for example, in the in Fig. 9 shown embodiment). However, the riser 4 may also have an oblique or tortuous course, unless this affects the arrangement of the other steam boiler.
  • a vent opening 21 through which the flue gases from the combustion chamber 1 enter the flue gas duct 10.
  • the supply line 22 for the feed water from the heat exchanger 11 is located just above this exhaust port 21st
  • the riser pipe 4 branches into a horizontally arranged evaporator tube 9 and a vapor discharge pipe 5 lying parallel above it.
  • the water level 8 is approximately in the middle of the evaporator tube 9, so that the water surface available for evaporation is maximized , This prevents vapor bubbles, which may form further below in the riser 4, from pushing up a "plug of water” as it ascends to the vapor extraction port 14, which would affect the quality and dryness of the vapor being removed.
  • the steam can emerge from the water in a wide range and rise either via the extension of the riser 4 or via an additional evaporation pipe 24 into the steam outlet pipe 5.
  • the steam extraction port 14, where the steam to a steam extraction line 15 (FIG. Fig. 1 to 4 ) is discharged, is located on the steam outlet pipe 5 at the uppermost point of the boiler 3. Furthermore, a safety valve 25 is disposed on the steam outlet pipe 5.
  • the steam outlet pipe 5 opens into a vertical level pipe 28, at the upper end of a level sensor 26 is used, via which the water level can be controlled.
  • a sight glass 27 is arranged for visual inspection on the level pipe 28 in the height of the operating water level 8.
  • the lower end of the fill level pipe 28 opens into a downpipe 6, which extends from the combustion chamber remote end of the evaporator tube 9 down.
  • the water cycle is closed by a connecting pipe 7, which enters the combustion chamber 1 in the lower region and opens into the riser pipe 4.
  • a drain valve 29 is further arranged in the lowest-lying area of the steam boiler, through which the system can be emptied.
  • a circulation pump In order to provide a forced circulation instead of a natural circulation, only a circulation pump would have to be additionally installed, for example in the region of the downpipe 6 or the connecting pipe 7. This can be implemented constructively by a person skilled in the art without further ado.
  • a forced circulation boiler would not fall pipe 6th contained, but the preheated in the heat exchanger 11 feed water would be fed directly to the riser 4 via a connecting pipe.
  • the riser 4 can be extended by being guided, for example, helically or meandering in the combustion chamber 1. This can be advantageous, above all, for steam generators without preheating or for forced circulation boilers.
  • the spiral risers of several steam generators could form a cylindrical shape superimposed in the combustion chamber in the form of a multiple helix, whereby a uniform heating of all riser tubes could be achieved.
  • the riser pipes must be vertical and straight. Rather, for example, meandering pipes or diagonal running through the combustion chamber 1 pipes can be used as risers, as long as this is compatible with the arrangement of the other steam boiler.
  • the illustrated embodiment of the steam boiler is constructed exclusively from standardized pipes, for example with a nominal diameter of DN 32 and DN 25, so that within the meaning of the Austrian Pressure Equipment Surveillance Ordinance (DGÜW-V), a steam boiler consisting of such pipes can only be used from a pressure-content product of more than 350 bar xl] represents a steam boiler with high risk potential.
  • a pressure content product of more than 200 [bar xl] would already pose a high risk potential of the boiler.
  • a steam boiler volume of about 10 liters can be achieved.
  • a maximum operating pressure of 32 bar results in a pressure-content product of about 320 [bar xl], so that the steam boiler according to DGÜW-V has a low risk potential.
  • the ten risers 4 of the steam boiler 3 are arranged on two opposite sides of the combustion chamber 1 in a lattice-like manner.
  • the riser tubes 13 extend bar-shaped vertically to the side surfaces of the combustion chamber wall and in addition to the additional steam yield cooling cause the combustion chamber walls.
  • a combustion chamber wall steam boiler 12 is shown removed.
  • the combustion chamber wall steam boiler 12 has a plurality of parallel risers 13, which are fastened to the frame 18 and are supplied with feed water via distribution pipes 30.
  • the distribution pipes 30 are in turn fed via a supply pipe 31, on which a feedwater supply 23 and a pressure measuring device 19 are provided.
  • the combustion chamber wall steam boiler 12 has a vertical level pipe 28 with a level sensor 26 and a sight glass 27.
  • the sight glass 27 is disposed at the level of the service water level.
  • the riser pipes 13 open into collecting pipes 32, via which the steam is passed into a steam outlet pipe 5, at which a safety valve 25 and a steam extraction connection 14 are located.
  • the risers 13 form two groups, which are each arranged in a corner of the combustion chamber wall.
  • the first group of risers 13a-13g are each of equal length and extend substantially over the entire height of the combustion chamber wall.
  • the risers 13h-13o of the second group are of different lengths, since a space for a combustion opening 34 must be kept free on the combustion chamber front side.
  • the risers 13h to 131 extend substantially over the entire height of the combustion chamber wall, the riser 13m to 13o, however, extend between an above the firing opening located intermediate tube 35 which is connected to the two risers 13k and 131, and one of the upper manifolds 32nd Both groups extend on the combustion chamber front and rear wall each substantially to half of the combustion chamber, from where start the corresponding risers of the opposite combustion chamber wall steam boiler 12.
  • the entire combustion chamber wall is used for steam generation.
  • the two riser groups of a combustion chamber wall steam boiler 12 are spaced apart, wherein in the gap between the risers 4 of the five similarly designed steam boiler 3 run.
  • On the frame 18 a plurality of receptacles 33 are provided for the risers 4 of the five similarly designed steam boilers 3.
  • the in Fig. 1 to 4 illustrated steam generator according to the invention is able to supply superheated steam in twelve different pressure levels a consumer.
  • a consumer for example, a multi-stage turbine or a multi-stage Achsialkolbenmotor be driven.
  • cascaded steam jet compressor 16 which are arranged above the combustion chamber.
  • Each steam jet compressor 16 is fed via a steam extraction line 15 with the steam generated in one of the twelve steam boilers 3, 12, wherein the steam produced in each steam boiler has substantially the same quality, for example a pressure of 32 bar and a temperature of about 240 ° C (saturated steam).
  • the second input of the steam jet compressor 16 is charged with the relaxed in the subsequent stage steam.
  • This partially expanded steam is then treated in the steam jet compressor 16 with the live steam and introduced into a superheater tube 17 in which the steam is superheated to, for example, about 420 ° C and fed to the downstream working stage.
  • the superheater tubes 17 of the various stages are arranged in parallel helically superimposed, so that the entirety of the superheater tubes form a cylindrical shape.
  • the illustrated embodiment may generate steam at twelve different pressure levels. However, it is also easily possible to summarize several stages and to produce 16 four different pressure levels, for example, each with three parallel interconnected steam jet compressors. Several steam extraction lines 15 could also be fed together to a steam jet compressor 16. For example, four steam extraction lines could be combined in one of three steam jet compressors to generate three pressure levels. In cases where no different steam levels are needed, the steam jet compressor could also be completely dispensed with, the steam from the steam extraction lines 15 being introduced directly into the superheater tubes 17. It is also possible to generate different vapor pressures by adjusting the pressure in the individual Steam boilers is regulated differently. The steam generator according to the invention can thus be flexibly adapted to different needs.
  • Fig. 8 a further embodiment of the steam generator according to the invention is shown, which has no superheater. This embodiment is advantageous for all applications in which superheated saturated steam is not required, for example for steam cleaning or for temperature control in the chemical industry and the food industry (eg in breweries).
  • the individual steam extraction lines 15 of the twelve steam boilers 3, 12 are combined to form a single vapor manifold 36 and fed to the consumer.
  • the others in Fig. 8 components shown substantially correspond to in Fig. 1 illustrated embodiment, so that no further detailed explanation is required.
  • Fig. 9 shows the steam generator the Fig. 8 , however, in Fig. 9 also the combustion chamber walls 37 and the flue gas channel 10 are shown.
  • a combustion opening 34 is provided, in which the burner is used.
  • the lateral opening in the flue gas duct 10 is closed by a simple bolted cover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)

Description

Die gegenständliche Erfindung betrifft einen Dampferzeuger mit einem Brennraum, zumindest einem Rauchgaskanal und einer Kesselbaugruppe wobei jede Kesselbaugruppe eine Vielzahl an einzelnen, gleichartig ausgebildeten Dampfkesseln mit geschlossenem Wasserkreislauf aufweist, von welchen jeder eine Rohrkonstruktion aufweist, die zumindest ein durch den Brennraum geführtes Steigrohre, ein Dampfablassrohr, ein Fallrohr und ein von diesem zum Steigrohr führendes Verbindungsrohr aufweistThe subject invention relates to a steam generator having a combustion chamber, at least one flue and a boiler assembly wherein each boiler assembly has a plurality of individual, similarly formed steam boilers with closed water circuit, each of which has a tube construction, the at least one guided through the combustion chamber risers, a steam outlet pipe , a downpipe and a leading from this to the riser connecting pipe

Die Erzeugung von Dampf ist seit dem Beginn der industriellen Revolution eine wesentliche Notwendigkeit zahlreicher industrieller Einrichtungen. Trotz der langjährigen Erfahrung im Umgang mit Dampferzeugern ist deren Betrieb immer noch risikobehaftet, da es bei Unachtsamkeit oder technischem Versagen zu gefährlichen Dampfexplosionen kommen kann. Daher ist die Aufstellung, der Betrieb und die Wartung von Dampferzeugern strengen behördlichen Regelungen unterworfen, wie etwa in Österreich der "Druckgeräteüberwachungsverordnung" (DGÜW-V), der "Aufstellung und Betrieb von Dampfkessel Verordnung" (ABV) und dem "Dampfkesselbetriebsgesetz" (DKBG).The production of steam has been an essential necessity of many industrial installations since the beginning of the industrial revolution. Despite the many years of experience in dealing with steam generators, their operation is still fraught with risk, as carelessness or technical failure can lead to dangerous steam explosions. Therefore, the installation, operation and maintenance of steam generators is subject to strict official regulations, such as in Austria the "Pressure Equipment Surveillance Ordinance" (DGÜW-V), the "Installation and Operation of Steam Boiler Ordinance" (ABV) and the "Steam Boiler Operating Act" (DKBG ).

Das Gefahrenpotential einer Dampfkesselanlage ist vor allem vom Volumen der Druckbehälter und vom maximalen Betriebsdruck abhängig, wobei sich die Anlagen anhand bestimmter Merkmale, etwa des Druckinhaltsprodukts (Produkt aus Betriebsdruck mal Volumen) in verschiedene Gefahrenklassen einordnen lassen.The risk potential of a steam boiler plant is mainly dependent on the volume of the pressure vessels and the maximum operating pressure, whereby the plants can be classified according to certain characteristics, such as the pressure content product (product of operating pressure times volume) in different hazard classes.

Für Dampfkessel, Druckbehälter oder Rohrleitung mit hohem Gefahrenpotential sind umfangreiche und kostenintensive Bestimmungen über die erste Betriebsprüfung, regelmäßige Betriebsprüfungen, Art der Überwachung, Revisionsfristen und Überwachungsmaßnahmen (Maßnahmen im Rahmen der wiederkehrenden Untersuchungen und Überprüfungen) sowie deren Dokumentation einzuhalten.For steam boilers, pressure vessels or pipelines with a high risk potential, comprehensive and costly provisions must be observed for the first company audit, regular audits, type of monitoring, revision periods and monitoring measures (measures within the framework of periodic inspections and checks) as well as their documentation.

Anlagen mit geringem Gefahrenpotential sind von diesen strengen Regelungen ausgenommen und haben unter anderem den Vorteil, dass beispielsweise die Überwachung vom Betreiber selbst vorgenommen werden kann. Zu den Druckbehältern mit niedrigem Gefahrenpotential zählen etwa überhitzungsgefährdete Dampfkessel oder überhitzungsgefährdete Druckbehälter, deren Druckinhaltsprodukt kleiner als 200 [bar x l] ist, oder, wenn sie aus Rohren mit Nennweiten bis maximal einschließlich DN 32 bestehen, deren Druckinhaltsprodukt kleiner als 350 [bar x l] ist. Dazu zählen beispielsweise sogenannte "Schnelldampferzeuger". Schnelldampferzeuger liefern jedoch nur geringe Dampfmengen von meist geringer Qualität und sind daher für viele Anwendungen ungeeignet.Systems with a low risk potential are exempted from these strict regulations and have, among other things, the advantage that, for example, the monitoring can be carried out by the operator himself. Pressure vessels with a low risk potential include superheated steam boilers or pressure vessels susceptible to overheating, the pressure-content product of which is less than 200 [bar xl] or, if they are made of pipes with Nominal diameters up to and including DN 32, the pressure content of which is less than 350 [bar xl]. These include, for example, so-called "fast steam generators". However, quick steam generators deliver only small amounts of steam of mostly low quality and are therefore unsuitable for many applications.

Dampferzeuger der eingangs genannten Art sind z.B. aus CH-349 997 oder DE-465 425 bekannt. Bei diesen Ausbildungen handelt es sich um herkömmliche Dampfkessel mit mehreren Wasserkreisläufen.Steam generators of the type mentioned are, for example CH-349 997 or DE-465 425 known. These trainings are conventional steam boilers with multiple water circuits.

Es besteht jedoch ein Bedarf an kostengünstigen Dampferzeugern mit einem geringen Gefahrenpotential, welche auch große Mengen qualitativ hochwertigen Dampfes erzeugen können. Dies reduziert bei größtmöglicher Betriebssicherheit die Kosten für die Dampferzeugung erheblich.However, there is a need for low cost, low risk steam generators which can also produce large quantities of high quality steam. This considerably reduces the costs for generating steam with the greatest possible operational reliability.

Die gegenständliche Erfindung löst diese Aufgabe durch einen Dampferzeuger der eingangs genannten Art, bei welchem jeder der Dampfkessel zur Erreichung eines niedrigen Gefahrenpotentials gemäß §5 der österreichischen Druckgeräteüberwachungs-Verordnung (DGÜW-V) aus Rohren bis einschließlich maximal DN 32 aufgebaut ist, wobei das Druckinhaltsprodukt (p x V) weniger als 350 [bar x l] beträgt. Die erzeugbare Dampfmenge wird nicht durch eine Erhöhung von Kesselvolumen und Maximaldruck gesteigert, sondern sie bestimmt sich aus der Anzahl an Dampfkesseln, die über den Brennraum betrieben werden. Je nach Bedarf können die Dampfkessel als Naturumlauf-, Zwangsumlauf- oder Zwangsdurchlaufkessel ausgebildet sein. Zwangsdurchlaufkessel können beispielsweise wendelförmige Steigrohre aufweisen, die durch den Brennraum geführt sind.The subject invention solves this problem by a steam generator of the type mentioned, in which each of the steam boiler to achieve a low risk potential according to §5 of the Austrian Pressure Equipment Supervision Regulation (DGÜW-V) is constructed of tubes up to a maximum of DN 32, the pressure content product (pxv) is less than 350 [bar xl]. The amount of steam that can be generated is not increased by an increase in boiler volume and maximum pressure, but is determined by the number of steam boilers that are operated via the combustion chamber. Depending on requirements, the steam boilers can be designed as a natural circulation, forced circulation or forced circulation boiler. Forced-circulation boiler, for example, have helical risers, which are guided through the combustion chamber.

Vorzugsweise kann in einer Ausführungsform der Erfindung im Rauchgaskanal ein Wärmetauscher zur Speisewasservorwärmung angeordnet sein. Dies verbessert die Energieeffizienz des Systems.Preferably, in one embodiment of the invention, a heat exchanger for feeding water may be arranged in the flue gas duct. This improves the energy efficiency of the system.

Dabei kann der Wärmetauscher in vorteilhafter Weise Rohre aufweist, deren Rohrachsen im Wesentlichen in derselben Ebene wie die Rohrachsen des Dampfkessels angeordnet sind. Dies ermöglicht eine äußerst kompakte Bauweise von Dampfkessel und Wärmetauscher, wobei die Rohre des Wärmetauschers beispielsweise innerhalb eines von Steigrohr, Dampfablassrohr, Fallrohr und Verbindungsrohr gebildeten Rahmens angeordnet sein können. Mehrere flach nebeneinander angeordnete Wärmetauscher von mehreren nebeneinander angeordneten, flachen Dampfkesseln können in vorteilhafter Weise im gleichen Rauchgaskanal angeordnet sein. Leitbleche im Rauchgaskanal können den Strömungsweg des Rauchgases im Bereich der Wärmetauscher vergrößern und somit die Wärmeübertragung verbessern.In this case, the heat exchanger advantageously comprises tubes whose tube axes are arranged substantially in the same plane as the tube axes of the boiler. This allows an extremely compact construction of steam boiler and heat exchangers, wherein the tubes of the heat exchanger, for example, can be arranged within a frame formed by riser, steam outlet pipe, downpipe and connecting pipe. Several flat juxtaposed heat exchanger of several juxtaposed, flat steam boilers can be arranged in an advantageous manner in the same flue gas duct. Baffles in the flue gas duct can increase the flow path of the flue gas in the heat exchanger and thus improve the heat transfer.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung kann zur Kühlung der Brennraumwände zumindest ein weiterer Dampfkessel vorgesehen sein, dessen Steigrohre im Bereich der Brennraumwände angeordnet sind. Die Steigrohre solcher Brennraumwand-Dampfkessel können beispielsweise in den Bereichen, wo keine Steigleitungen der erstgenannten gleichartig aufgebauten Dampfkessel vorgesehen sind, käfigartig um die Brennraumwand angeordnet sein, sodass die Wand in allen Bereichen gekühlt und zur Dampferzeugung genutzt wird. Dies verbessert die Dampfausbeute und die Energieeffizienz des Systems und sorgt gleichzeitig für eine Kühlung der Brennraumwände.In a further advantageous embodiment of the invention, at least one further steam boiler can be provided for cooling the combustion chamber walls, the riser tubes of which are arranged in the region of the combustion chamber walls. The risers of such combustion chamber wall steam boiler, for example, in the areas where no risers of the former identically constructed steam boiler are provided, be arranged in a cage around the combustion chamber wall, so that the wall is cooled in all areas and used to generate steam. This improves the steam yield and energy efficiency of the system while providing cooling of the combustion chamber walls.

Vorzugsweise können die von den jeweiligen Dampfentnahme-Anschlüssen der Dampfkessel wegführenden Dampfentnahmeleitungen in einer Dampfsammelleitung münden. Dies ist möglich, da die Dampfsammelleitung, aus sicherheitstechnischen Überlegungen heraus, nicht mehr zum Volumen der Dampfkessel zu zählen ist. Mehrere Dampfkessel, deren Dampf in eine gemeinsame Dampfsammelleitung eingeleitet wird, sind daher für die Auslegung der Sicherheitskriterien nicht als Gesamtvolumen, sondern jeweils einzeln zu betrachten. Somit ist es möglich, große Dampfmengen mit einem erfindungsgemäßen Dampferzeuger herzustellen, der hinsichtlich der Sicherheit und der gesetzlichen Betriebsbestimmungen einem Schnelldampferzeuger entspricht.Preferably, the steam extraction lines leading away from the respective steam extraction connections of the steam boilers can open in a steam manifold. This is possible because the steam manifold, out of safety considerations, is no longer to count the volume of the steam boiler. Several steam boilers, whose steam is introduced into a common steam manifold, are therefore not to be regarded as a total volume, but each individually for the design of the safety criteria. Thus, it is possible to produce large amounts of steam with a steam generator according to the invention, which corresponds to a quick steam generator in terms of safety and legal operating conditions.

Andererseits können die von den jeweiligen Dampfentnahme-Anschlüssen der Dampfkessel wegführenden Dampfentnahmeleitungen, gegebenenfalls über jeweils einen Dampfstrahlverdichter, jeweils in ein im Brennraum angeordnetes Überhitzerrohr münden. Eine Dampfüberhitzung ist beispielsweise für die Beschickung von Dampfmotoren oder -turbinen günstig. Der erfindungsgemäße Dampferzeuger kann dadurch vorteilhaft zum Betrieb eines Kraftwerks, etwa zur Stromerzeugung aus Biomasse oder -gas, auch in verhältnismäßig kleinem Maßstab verwendet werden. Die Dampfstrahlverdichter können zur Speisung mehrstufiger Dampfmaschinen, beispielsweise einer Turbine oder eines mehrstufigen Axialkolbenmotors, verwendet werden, wobei aus dem Motor stammender, entspannter Abdampf einer Stufe im Dampfstrahlverdichter mit dem vom Dampfkessel zugeleiteten Frischdampf auf das jeweils gewünschte Druckniveau und im Überhitzer auf die erforderliche Temperatur für die nächste Stufe gebracht wird.On the other hand, the vapor extraction lines leading away from the respective steam extraction connections of the steam boilers, optionally via a respective steam jet compressor, can each open into a superheater pipe arranged in the combustion chamber. Steam superheating is beneficial, for example, for feeding steam engines or turbines. The steam generator according to the invention can be used advantageously for the operation of a power plant, such as for power generation from biomass or gas, even in relatively small scale. The steam jet compressors can be used for feeding multi-stage steam engines, for example a turbine or a multi-stage axial piston engine, wherein derived from the engine, relaxed exhaust steam of a stage in the steam jet compressor with that fed from the boiler Main steam is brought to the desired pressure level and in the superheater to the required temperature for the next stage.

Die einzelnen Überhitzerrohre können in vorteilhafter Weise im Bereich des Brennraums schraubenlinienförmig gewunden und zylinderartig angeordnet sein. Dadurch kann der im Brennraum zur Verfügung stehende Platz optimal genutzt werden.The individual superheater tubes can advantageously be helically wound in the region of the combustion chamber and arranged in the manner of a cylinder. As a result, the available space in the combustion chamber can be used optimally.

In einer weiteren bevorzugten Ausführungsform der Erfindung können die Dampfkessel auf dem Betriebsniveau des Wasserspiegels ein horizontal angeordnetes Verdampferrohr aufweisen. Dadurch wird die Wasseroberfläche, an der der erzeugte Dampf aus dem Wasser entweichen kann, erheblich vergrößert. Die erzielbare Dampfqualität kann dadurch verbessert werden.In a further preferred embodiment of the invention, the steam boilers can have a horizontally arranged evaporator tube at the operating level of the water level. As a result, the water surface at which the generated steam can escape from the water, significantly increased. The achievable steam quality can be improved.

Eine vorteilhafte Ausgestaltung der Erfindung kann schließlich vorsehen, dass die Rohrachsen eines Dampfkessels im Wesentlichen in derselben, vorzugsweise vertikalen Ebene angeordnet sind. Durch die dadurch erzielte flache Konstruktion ist es möglich, mehrere Dampferzeuger auf engem Raum nebeneinander anzuordnen, sodass der im Brennraum verfügbare Platz optimal genutzt werden kann.An advantageous embodiment of the invention may finally provide that the tube axes of a steam boiler are arranged substantially in the same, preferably vertical plane. Due to the flat construction achieved thereby, it is possible to arrange several steam generators in a small space next to each other, so that the space available in the combustion chamber can be optimally utilized.

Die Erfindung wird nunmehr unter Bezugnahme auf die beigefügten Zeichnungen beispielhaft beschrieben, wobei

  • Fig. 1 eine erfindungsgemäße Kesselbaugruppe in schaubildlicher Darstellung,
  • Fig. 2 und 3 die Kesselbaugruppe der Fig. 1 in jeweils einer Seitenansicht und
  • Fig. 4 die selbe Kesselbaugruppe in einer Draufsicht;
  • Fig. 5 einen der gleichartig ausgebildeten Dampfkessel in einer Seitenansicht und
  • Fig. 6 den Dampfkessel der Fig. 5 in schaubildlicher Darstellung;
  • Fig. 7 einen Brennraumwand-Dampfkessel in schaubildlicher Darstellung;
  • Fig. 8 eine weitere vorteilhafte Ausführungsform der erfindungsgemäßen Kesselbaugruppe, bei welcher die Dampfentnahmeleitungen in einer Dampfsammelleitung münden, und
  • Fig. 9 die Kesselbaugruppe der Fig. 8 mit der Brennraumwand und den Rauchgaskanälen zeigt.
The invention will now be described by way of example with reference to the accompanying drawings, in which:
  • Fig. 1 a boiler assembly according to the invention in a perspective view,
  • Fig. 2 and 3 the boiler assembly of the Fig. 1 in each case a side view and
  • Fig. 4 the same boiler assembly in a plan view;
  • Fig. 5 one of the identically formed steam boiler in a side view and
  • Fig. 6 the steam boiler the Fig. 5 in a perspective view;
  • Fig. 7 a combustion chamber wall steam boiler in a diagrammatic representation;
  • Fig. 8 a further advantageous embodiment of the boiler assembly according to the invention, in which the steam extraction lines open in a vapor manifold, and
  • Fig. 9 the boiler assembly of the Fig. 8 with the combustion chamber wall and the flue gas ducts pointing.

In der folgenden Beschreibung sind gleichartige Bauteile jeweils mit den gleichen Bezugszeichen versehen. Sofern dies für die Beschreibung erforderlich ist, werden die Bezugszeichen von Bauteilen, die in einer Figur mehrfach vorhanden sind, durch Kleinbuchstaben ergänzt.In the following description, similar components are each provided with the same reference numerals. If necessary for the description, the Reference numerals of components that are present multiple times in a figure, supplemented by lowercase letters.

Fig. 1 bis 4 zeigen eine erste erfindungsgemäße Ausführungsform des Dampferzeugers in schaubildlicher Darstellung (Fig. 1), in zwei Seitenansichten (Fig.2 und 3) und einer Draufsicht (Fig. 4). Zur besseren Sichtbarkeit der einzelnen Bauelemente wurde auf eine Darstellung der Wände des Brennraums und des Rauchgaskanals verzichtet. Die Figuren zeigen somit in erster Linie die Kesselbaugruppe 2 der Erfindung. Fig. 1 to 4 show a first embodiment of the invention of the steam generator in perspective view ( Fig. 1 ), in two side views ( Fig.2 and 3 ) and a plan view ( Fig. 4 ). For better visibility of the individual components has been dispensed with a representation of the walls of the combustion chamber and the flue gas duct. The figures thus show primarily the boiler assembly 2 of the invention.

Die einzelnen Bauelemente sind auf einem Rahmen 18 montiert, wobei sich der Brennraum 1 in der Mitte der im Wesentlichen symmetrischen Konstruktion befindet. Auf beiden Seiten sind je fünf Dampfkessel angeordnet, wobei der Übersichtlichkeit halber in Fig. 1 nur die Dampfkessel 3a bis 3e der rechten Seite mit Bezugszeichen versehen sind.The individual components are mounted on a frame 18, wherein the combustion chamber 1 is located in the middle of the substantially symmetrical construction. On both sides five steam boilers are arranged, with the sake of clarity in Fig. 1 only the steam boiler 3a to 3e of the right side are provided with reference numerals.

Der Aufbau der einzelnen Dampfkessel 3 wird nunmehr mit Bezugnahme auf die Fig. 5 und 6 näher erläutert. Der dargestellte Dampfkessel 3 ist ein Naturumlaufkessel, wobei das Speisewasser über eine Speisewasserzuführung 23 eingebracht und über einen Wärmetauscher 11 vorgewärmt wird, welcher sich im Rauchgaskanal 10 befindet. Gegenüber der Speisewasserzuführung 23 ist zur Regelung des Betriebsdrucks eine Druckmesseinrichtung 19 angeordnet. Der Rauchgaskanal 10 ist in Fig. 5 nur schematisch durch Strichlinien dargestellt, wobei im Inneren des Rauchgaskanals 10 mehrere Umlenkbleche 20 angeordnet sind, welche den Weg des Rauchgases im Bereich des Wärmetauschers 11 verlängern. Die Umlenkbleche 20 sind in Fig. 5 schräg angeordnet, sie können jedoch auch quer zu den Rohren des Wärmetauschers 11 verlaufen, wenn dies konstruktiv einfacher umzusetzen ist. Das Speisewasser steigt in den Rohren des Wärmetauschers 11 hoch, wird dabei bei gleichzeitiger Kühlung der Rauchgase vorgewärmt und wird im oberen Bereich des Steigrohrs 4 dem Wasserkreislauf zugefügt. Das Steigrohr 4 ist im Brennraum 1 angeordnet und verläuft darin vertikal entlang einer Brennraumwandung. (Eine entsprechende Brennraumwand ist beispielsweise in der in Fig. 9 dargestellten Ausführungsform gezeigt). Das Steigrohr 4 kann jedoch auch einen schrägen oder gewundenen Verlauf aufweisen, sofern dies die Anordnung der weiteren Dampfkessel nicht beeinträchtigt. Im oberen Bereich des Steigrohrs 4 befindet sich im Brennraum 1 eine Abzugsöffnung 21, über welche die Rauchgase aus dem Brennraum 1 in den Rauchgaskanal 10 eintreten. Die Zuleitung 22 für das Speisewasser aus dem Wärmetauscher 11 befindet sich knapp oberhalb dieser Abzugsöffnung 21.The structure of the individual steam boiler 3 will now be with reference to the Fig. 5 and 6 explained in more detail. The steam boiler 3 shown is a natural circulation boiler, wherein the feed water is introduced via a feedwater supply 23 and preheated by a heat exchanger 11, which is located in the flue gas duct 10. Opposite the feedwater supply 23, a pressure measuring device 19 is arranged to control the operating pressure. The flue gas channel 10 is in Fig. 5 only schematically illustrated by dashed lines, wherein in the interior of the flue gas duct 10 a plurality of baffles 20 are arranged, which extend the path of the flue gas in the region of the heat exchanger 11. The baffles 20 are in Fig. 5 arranged obliquely, but they can also extend transversely to the tubes of the heat exchanger 11, if this is structurally easier to implement. The feed water rises in the tubes of the heat exchanger 11 high, is preheated while cooling the flue gases and is added to the water cycle in the upper region of the riser 4. The riser 4 is arranged in the combustion chamber 1 and extends therein vertically along a combustion chamber wall. (A corresponding combustion chamber wall is, for example, in the in Fig. 9 shown embodiment). However, the riser 4 may also have an oblique or tortuous course, unless this affects the arrangement of the other steam boiler. In the upper region of the riser 4 is located in the combustion chamber 1, a vent opening 21 through which the flue gases from the combustion chamber 1 enter the flue gas duct 10. The supply line 22 for the feed water from the heat exchanger 11 is located just above this exhaust port 21st

Oberhalb der Zuleitung 22 verzweigt sich das Steigrohr 4 in ein horizontal angeordnetes Verdampferrohr 9 und ein parallel darüber liegendes Dampfablassrohr 5. Im Betrieb befindet sich der Wasserspiegel 8 in etwa in der Mitte des Verdampferrohrs 9, sodass die für das Ausdampfen zur Verfügung stehende Wasseroberfläche maximiert wird. Dies verhindert, dass Dampfblasen, die sich weiter unterhalb im Steigrohr 4 bilden können, beim Aufsteigen einen "Wasserpfropfen" bis zum Dampfentnahme-Anschluss 14 nach oben drücken, was die Qualität und die Trockenheit des entnommenen Dampfes beeinträchtigen würde. Im Verdampferrohr 9 kann hingegen der Dampf in einem breiten Bereich aus dem Wasser austreten und entweder über die Verlängerung des Steigrohres 4 oder über ein zusätzliches Ausdampfrohr 24 in das Dampfablassrohr 5 aufsteigen. Der Dampfentnahme-Anschluss 14, an dem der Dampf an eine Dampfentnahmeleitung 15 (Fig. 1 bis 4) abgegeben wird, befindet sich am Dampfablassrohr 5 an der obersten Stelle des Dampfkessels 3. Weiters ist am Dampfablassrohr 5 ein Sicherheitsventil 25 angeordnet.Above the feed line 22, the riser pipe 4 branches into a horizontally arranged evaporator tube 9 and a vapor discharge pipe 5 lying parallel above it. In operation, the water level 8 is approximately in the middle of the evaporator tube 9, so that the water surface available for evaporation is maximized , This prevents vapor bubbles, which may form further below in the riser 4, from pushing up a "plug of water" as it ascends to the vapor extraction port 14, which would affect the quality and dryness of the vapor being removed. In the evaporator tube 9, however, the steam can emerge from the water in a wide range and rise either via the extension of the riser 4 or via an additional evaporation pipe 24 into the steam outlet pipe 5. The steam extraction port 14, where the steam to a steam extraction line 15 (FIG. Fig. 1 to 4 ) is discharged, is located on the steam outlet pipe 5 at the uppermost point of the boiler 3. Furthermore, a safety valve 25 is disposed on the steam outlet pipe 5.

Das Dampfablassrohr 5 mündet in einem vertikalen Füllstandsrohr 28, an dessen oberem Ende ein Füllstandssensor 26 eingesetzt ist, über den der Wasserspiegel kontrolliert werden kann. Zusätzlich ist am Füllstandsrohr 28 in der Höhe des Betriebs-Wasserspiegels 8 ein Schauglas 27 zur Sichtkontrolle angeordnet. Das untere Ende des Füllstandsrohrs 28 mündet in ein Fallrohr 6, welches sich vom brennraumfernen Ende des Verdampferrohrs 9 nach unten erstreckt. Der Wasserkreislauf wird durch ein Verbindungsrohr 7 geschlossen, welches im unteren Bereich in den Brennraum 1 eintritt und in das Steigrohr 4 mündet. Am Verbindungsrohr 7 ist weiters im tiefstgelegenen Bereich des Dampfkessel ein Ablassventil 29 angeordnet, über welches das System entleert werden kann.The steam outlet pipe 5 opens into a vertical level pipe 28, at the upper end of a level sensor 26 is used, via which the water level can be controlled. In addition, a sight glass 27 is arranged for visual inspection on the level pipe 28 in the height of the operating water level 8. The lower end of the fill level pipe 28 opens into a downpipe 6, which extends from the combustion chamber remote end of the evaporator tube 9 down. The water cycle is closed by a connecting pipe 7, which enters the combustion chamber 1 in the lower region and opens into the riser pipe 4. At the connecting pipe 7, a drain valve 29 is further arranged in the lowest-lying area of the steam boiler, through which the system can be emptied.

Um anstelle eines Naturumlaufs einen Zwangsumlauf vorzusehen, müsste lediglich zusätzlich eine Umwälzpumpe eingebaut werden, beispielsweise im Bereich des Fallrohrs 6 oder des Verbindungsrohrs 7. Dies kann von einem Fachmann konstruktiv ohne Weiteres umgesetzt werden.In order to provide a forced circulation instead of a natural circulation, only a circulation pump would have to be additionally installed, for example in the region of the downpipe 6 or the connecting pipe 7. This can be implemented constructively by a person skilled in the art without further ado.

Um die Erfindung mit Zwangsdurchlaufkesseln zu betreiben, wären etwas weitergehende konstruktive Änderungen erforderlich, die jedoch auch dem Können eines Durchschnittsfachmanns entsprechen. Ein Zwangsumlaufkessel würde kein Fallrohr 6 enthalten, sondern das im Wärmetauscher 11 vorgewärmte Speisewasser würde direkt über ein Verbindungsrohr dem Steigrohr 4 zugeführt.To operate the invention with forced-circulation boilers, somewhat more extensive design changes would be required, but also to the skill of one of ordinary skill in the art. A forced circulation boiler would not fall pipe 6th contained, but the preheated in the heat exchanger 11 feed water would be fed directly to the riser 4 via a connecting pipe.

Das Steigrohr 4 kann verlängert werden, indem es beispielsweise wendel- oder mäanderförmig im Brennraum 1 geführt wird. Dies kann vor allem bei Dampferzeugern ohne Vorwärmung oder bei Zwangsumlaufkesseln vorteilhaft sein. Die gewundenen Steigrohre mehrerer Dampferzeuger könnten in Form einer Mehrfachhelix übereinander gelegt im Brennraum eine Zylinderform ausbilden, wodurch sich eine gleichmäßige Erwärmung aller Steigrohre erzielen ließe. Es ist weiters nicht zwingend erforderlich, dass die Steigrohre vertikal und gerade ausgebildet sein müssen. Vielmehr können beispielsweise auch mäandrierende Rohre oder diagonal durch den Brennraum 1 verlaufende Rohre als Steigleitungen verwendet werden, sofern dies mit der Anordnung der anderen Dampfkessel vereinbar ist.The riser 4 can be extended by being guided, for example, helically or meandering in the combustion chamber 1. This can be advantageous, above all, for steam generators without preheating or for forced circulation boilers. The spiral risers of several steam generators could form a cylindrical shape superimposed in the combustion chamber in the form of a multiple helix, whereby a uniform heating of all riser tubes could be achieved. It is also not mandatory that the riser pipes must be vertical and straight. Rather, for example, meandering pipes or diagonal running through the combustion chamber 1 pipes can be used as risers, as long as this is compatible with the arrangement of the other steam boiler.

Wie in Fig. 6 gut zu erkennen ist, sind in der dargestellten Ausführungsform alle Rohre des Dampfkessels 3 in einer gemeinsamen vertikalen Ebene angeordnet, sodass der im Wesentlichen rechteckige Dampfkessel 3 eine flache Form aufweist. Dadurch ist es auf einfache Weise möglich, mehrere gleichartige Dampfkessel eng nebeneinander anzuordnen, wie dies beispielsweise in Fig. 1 zu sehen ist, in der auf beiden Seiten des Brennraums jeweils fünf Dampfkessel 3a-3e flach nebeneinander angeordnet sind.As in Fig. 6 As can be clearly seen, in the illustrated embodiment, all the tubes of the steam boiler 3 are arranged in a common vertical plane, so that the substantially rectangular steam boiler 3 has a flat shape. This makes it possible in a simple manner to arrange several similar steam boiler closely next to each other, as for example in Fig. 1 can be seen, in which five steam boilers 3a-3e are arranged flat side by side on both sides of the combustion chamber.

Die dargestellte Ausführungsform des Dampfkessels ist ausschließlich aus genormten Rohren, beispielsweise mit einem Nenndurchmesser von DN 32 und DN 25, aufgebaut, sodass im Sinne der österreichischen Druckgeräteüberwachungsverordnung (DGÜW-V) ein aus solchen Rohren bestehender Dampfkessel erst ab einem Druckinhaltsprodukt von über 350 [bar x l] ein Dampfkessel mit hohem Gefahrenpotential darstellt. Bei der Verwendung größerer Rohrdurchmesser würde bereits ein Druckinhaltsprodukt von über 200 [bar x l] ein hohes Gefahrenpotential des Kessels bedingen. Bei der in Fig. 5 und 6 dargestellten Ausführungsform kann bei einer maximalen Höhe von etwa 190-200 cm und einer maximalen Breite von etwa 70-90 cm durch eine geeignete Dimensionierung der Rohre ein Dampfkesselvolumen von etwa 10 Liter erreicht werden. Bei einem maximalen Betriebdruck von 32 bar ergibt sich ein Druckinhaltsprodukt von ca. 320 [bar x l], sodass dem Dampfkessel gemäß DGÜW-V ein geringes Gefahrenpotential zukommt.The illustrated embodiment of the steam boiler is constructed exclusively from standardized pipes, for example with a nominal diameter of DN 32 and DN 25, so that within the meaning of the Austrian Pressure Equipment Surveillance Ordinance (DGÜW-V), a steam boiler consisting of such pipes can only be used from a pressure-content product of more than 350 bar xl] represents a steam boiler with high risk potential. When using larger pipe diameters, a pressure content product of more than 200 [bar xl] would already pose a high risk potential of the boiler. At the in Fig. 5 and 6 illustrated embodiment, with a maximum height of about 190-200 cm and a maximum width of about 70-90 cm by a suitable dimensioning of the tubes, a steam boiler volume of about 10 liters can be achieved. At a maximum operating pressure of 32 bar results in a pressure-content product of about 320 [bar xl], so that the steam boiler according to DGÜW-V has a low risk potential.

Wieder unter Bezugnahme auf die Fig. 1 bis 4 ist zu erkennen, dass die zehn Steigrohre 4 der Dampfkessel 3 an zwei gegenüberliegenden Seiten des Brennraums 1 stabgitterartig angeordnet sind. Um auch die restlichen Seitenflächen des Brennraums zur Dampferzeugung zu nutzen und die Schamottverkleidung der Brennraumwände zu kühlen, sind zwei weitere Dampfkessel, die Brennraumwand-Dampfkessel 12, vorgesehen, deren Steigrohre 13 stabgitterförmig vertikal an den Seitenflächen der Brennraumwand verlaufen und neben der zusätzlichen Dampfausbeute eine Kühlung der Brennraumwände bewirken.Again with reference to the Fig. 1 to 4 It can be seen that the ten risers 4 of the steam boiler 3 are arranged on two opposite sides of the combustion chamber 1 in a lattice-like manner. In order to use the remaining side surfaces of the combustion chamber to generate steam and cool the fireclay panel of the combustion chamber walls, two other steam boilers, the combustion chamber wall steam boiler 12, provided, the riser tubes 13 extend bar-shaped vertically to the side surfaces of the combustion chamber wall and in addition to the additional steam yield cooling cause the combustion chamber walls.

In Fig. 7 ist ein Brennraumwand-Dampfkessel 12 herausgelöst dargestellt. Der Brennraumwand-Dampfkessel 12 weist eine Vielzahl an parallelen Steigrohren 13 auf, die am Rahmen 18 befestigt sind und über Verteilerrohre 30 mit Speisewasser versorgt werden. Die Verteilerrohre 30 werden wiederum über ein Zuleitungsrohr 31 gespeist, an welchem eine Speisewasserzuführung 23 und eine Druckmesseinrichtung 19 vorgesehen sind. Weiters weist der Brennraumwand-Dampfkessel 12 ein vertikales Füllstandsrohr 28 mit einem Füllstandssensor 26 und einem Schauglas 27 auf. Das Schauglas 27 ist auf dem Niveau des Betriebswasserspiegels angeordnet. An ihrem oberen Ende münden die Steigrohre 13 in Sammelrohren 32, über welche der Dampf in ein Dampfablassrohr 5 geleitet wird, an dem sich ein Sicherheitsventil 25 und ein Dampfentnahme-Anschluss 14 befinden.In Fig. 7 a combustion chamber wall steam boiler 12 is shown removed. The combustion chamber wall steam boiler 12 has a plurality of parallel risers 13, which are fastened to the frame 18 and are supplied with feed water via distribution pipes 30. The distribution pipes 30 are in turn fed via a supply pipe 31, on which a feedwater supply 23 and a pressure measuring device 19 are provided. Furthermore, the combustion chamber wall steam boiler 12 has a vertical level pipe 28 with a level sensor 26 and a sight glass 27. The sight glass 27 is disposed at the level of the service water level. At its upper end, the riser pipes 13 open into collecting pipes 32, via which the steam is passed into a steam outlet pipe 5, at which a safety valve 25 and a steam extraction connection 14 are located.

Die Steigleitungen 13 bilden zwei Gruppen, die jeweils in einer Ecke der Brennraumwand angeordnet sind. Die erste Gruppe der Steigleitungen 13a-13g sind jeweils gleich lang und erstrecken sich im Wesentlichen über die gesamte Höhe der Brennraumwand. Die Steigleitungen 13h-13o der zweiten Gruppe sind unterschiedlich lang, da an der Brennraumvorderseite ein Raum für eine Feuerungsöffnung 34 frei gehalten sein muss. Die Steigleitungen 13h bis 131 erstrecken sich im Wesentlichen über die gesamte Höhe der Brennraumwand, die Steigleitungen 13m bis 13o erstrecken sich hingegen zwischen einem oberhalb der Feuerungsöffnung befindlichen Zwischenrohr 35, das mit den zwei Steigleitungen 13k und 131 verbunden ist, und einem der oberen Sammelrohre 32. Beide Gruppen erstrecken sich an der Brennraumvorder- und -rückwand jeweils im Wesentlichen bis zur Hälfte des Brennraums, von wo aus die entsprechenden Steigleitungen des gegenüberliegenden Brennraumwand-Dampfkessels 12 beginnen. Somit wird im Wesentlichen die gesamte Brennraumwand zur Dampferzeugung genutzt.The risers 13 form two groups, which are each arranged in a corner of the combustion chamber wall. The first group of risers 13a-13g are each of equal length and extend substantially over the entire height of the combustion chamber wall. The risers 13h-13o of the second group are of different lengths, since a space for a combustion opening 34 must be kept free on the combustion chamber front side. The risers 13h to 131 extend substantially over the entire height of the combustion chamber wall, the riser 13m to 13o, however, extend between an above the firing opening located intermediate tube 35 which is connected to the two risers 13k and 131, and one of the upper manifolds 32nd Both groups extend on the combustion chamber front and rear wall each substantially to half of the combustion chamber, from where start the corresponding risers of the opposite combustion chamber wall steam boiler 12. Thus, essentially the entire combustion chamber wall is used for steam generation.

Die beiden Steigleitungsgruppen eines Brennraumwand-Dampfkessels 12 sind voneinander beabstandet, wobei in der Lücke dazwischen die Steigleitungen 4 der fünf gleichartig ausgebildeten Dampfkessel 3 verlaufen. Am Rahmen 18 sind mehrere Aufnahmen 33 für die Steigrohre 4 der fünf gleichartig ausgebildeten Dampfkesseln 3 vorgesehen.The two riser groups of a combustion chamber wall steam boiler 12 are spaced apart, wherein in the gap between the risers 4 of the five similarly designed steam boiler 3 run. On the frame 18 a plurality of receptacles 33 are provided for the risers 4 of the five similarly designed steam boilers 3.

Der in Fig. 1 bis 4 dargestellte erfindungsgemäße Dampferzeuger ist in der Lage, überhitzten Dampf in zwölf verschiedenen Druckstufen einem Verbraucher zuzuführen. Als Verbraucher kann beispielsweise eine mehrstufige Turbine oder ein mehrstufiger Achsialkolbenmotor angetrieben werden. Zur Erzeugung der unterschiedlichen Dampfqualitäten dienen kaskadierend geschaltete Dampfstrahlverdichter 16, die oberhalb des Brennraums angeordnet sind. Jeder Dampfstrahlverdichter 16 wird über eine Dampfentnahmeleitung 15 mit dem in einem der zwölf Dampfkessel 3, 12 erzeugten Dampf beschickt, wobei der in jedem Dampfkessel erzeugte Dampf im Wesentlichen die gleiche Qualität aufweist, beispielsweise einen Druck von 32 bar und eine Temperatur von etwa 240° C (Sattdampf). Den zweite Eingang des Dampfstrahlverdichters 16 wird mit dem in der nachfolgenden Arbeitsstufe entspannten Dampf beschickt. Dieser teilentspannte Dampf wird dann im Dampfstrahlverdichter 16 mit dem Frischdampf aufbereitet und in ein Überhitzerrohr 17 eingeleitet, in dem der Dampf auf beispielsweise etwa 420°C überhitzt und der nachgeschalteten Arbeitsstufe zugeführt wird. Wie in den Fig. 1 bis 4 zu erkennen ist, sind die Überhitzerrohre 17 der verschiedenen Stufen parallel übereinanderliegend wendelförmig angeordnet, sodass die Gesamtheit der Überhitzerrohre eine Zylinderform ausbilden.The in Fig. 1 to 4 illustrated steam generator according to the invention is able to supply superheated steam in twelve different pressure levels a consumer. As a consumer, for example, a multi-stage turbine or a multi-stage Achsialkolbenmotor be driven. To generate the different steam qualities serve cascaded steam jet compressor 16, which are arranged above the combustion chamber. Each steam jet compressor 16 is fed via a steam extraction line 15 with the steam generated in one of the twelve steam boilers 3, 12, wherein the steam produced in each steam boiler has substantially the same quality, for example a pressure of 32 bar and a temperature of about 240 ° C (saturated steam). The second input of the steam jet compressor 16 is charged with the relaxed in the subsequent stage steam. This partially expanded steam is then treated in the steam jet compressor 16 with the live steam and introduced into a superheater tube 17 in which the steam is superheated to, for example, about 420 ° C and fed to the downstream working stage. As in the Fig. 1 to 4 can be seen, the superheater tubes 17 of the various stages are arranged in parallel helically superimposed, so that the entirety of the superheater tubes form a cylindrical shape.

Die dargestellte Ausführungsform kann Dampf in zwölf unterschiedlichen Druckstufen erzeugen. Es ist jedoch auch problemlos möglich, mehrere Stufen zusammenzufassen und beispielsweise mit je drei parallel zusammengeschalteten Dampfstrahlverdichtern 16 vier unterschiedliche Druckstufen zu erzeugen. Es könnten auch mehrere Dampfentnahmeleitungen 15 zusammengefasst einem Dampfstrahlverdichter 16 zugeleitet werden. Beispielsweise könnten zur Erzeugung von drei Druckstufen jeweils vier Dampfentnahmeleitungen zusammengefasst in einen von insgesamt drei Dampfstrahlverdichtern eingespeist werden. In Fällen, in denen keine unterschiedlichen Dampfstufen benötigt werden, könnte auf die Dampfstrahlverdichter auch gänzlich verzichtet werden, wobei der Dampf von den Dampfentnahmeleitungen 15 direkt in die Überhitzerrohre 17 eingeleitet würde. Es ist auch möglich unterschiedliche Dampfdrücke zu erzeugen, indem den Druck in den einzelnen Dampfkesseln unterschiedliche geregelt wird. Der erfindungsgemäße Dampferzeuger kann somit flexibel an unterschiedliche Bedürfnisse angepasst werden.The illustrated embodiment may generate steam at twelve different pressure levels. However, it is also easily possible to summarize several stages and to produce 16 four different pressure levels, for example, each with three parallel interconnected steam jet compressors. Several steam extraction lines 15 could also be fed together to a steam jet compressor 16. For example, four steam extraction lines could be combined in one of three steam jet compressors to generate three pressure levels. In cases where no different steam levels are needed, the steam jet compressor could also be completely dispensed with, the steam from the steam extraction lines 15 being introduced directly into the superheater tubes 17. It is also possible to generate different vapor pressures by adjusting the pressure in the individual Steam boilers is regulated differently. The steam generator according to the invention can thus be flexibly adapted to different needs.

In Fig. 8 ist eine weitere Ausführungsform des erfindungsgemäßen Dampferzeugers dargestellt, der keinen Überhitzer aufweist. Diese Ausführungsform ist für alle Einsatzbereiche vorteilhaft, bei denen nicht überhitzter Sattdampf benötigt wird, etwa zur Dampfreinigung oder zur Temperaturregelung in der chemischen Industrie und der Nahrungsmittelindustrie (z.B. in Brauereien). Wie in Fig. 8 zu erkennen ist, werden die einzelnen Dampfentnahmeleitungen 15 der zwölf Dampfkessel 3, 12 zu einer einzigen Dampfsammelleitung 36 zusammengefasst und dem Verbraucher zugeleitet. Die weiteren in Fig. 8 gezeigten Bauteile entsprechen im Wesentlichen der in Fig. 1 dargestellten Ausführungsform, sodass keine weiter detaillierte Erläuterung erforderlich ist.In Fig. 8 a further embodiment of the steam generator according to the invention is shown, which has no superheater. This embodiment is advantageous for all applications in which superheated saturated steam is not required, for example for steam cleaning or for temperature control in the chemical industry and the food industry (eg in breweries). As in Fig. 8 can be seen, the individual steam extraction lines 15 of the twelve steam boilers 3, 12 are combined to form a single vapor manifold 36 and fed to the consumer. The others in Fig. 8 components shown substantially correspond to in Fig. 1 illustrated embodiment, so that no further detailed explanation is required.

Fig. 9 zeigt den Dampferzeuger der Fig. 8, wobei jedoch in Fig. 9 auch die Brennraumwände 37 und der Rauchgaskanal 10 dargestellt sind. In den Brennraumwänden 37 ist eine Feuerungsöffnung 34 vorgesehen, in welche der Brenner eingesetzt wird. Die seitliche Öffnung im Rauchgaskanal 10 wird durch eine einfache angeschraubte Abdeckung verschlossen. Fig. 9 shows the steam generator the Fig. 8 , however, in Fig. 9 also the combustion chamber walls 37 and the flue gas channel 10 are shown. In the combustion chamber walls 37, a combustion opening 34 is provided, in which the burner is used. The lateral opening in the flue gas duct 10 is closed by a simple bolted cover.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

  • Brennraum 1Combustion chamber 1
  • Kesselbaugruppe 2Boiler assembly 2
  • Dampfkessel 3Steam boiler 3
  • Steigrohr 4Riser 4
  • Dampfablassrohr 5Steam outlet pipe 5
  • Fallrohr 6Downpipe 6
  • Verbindungsrohr 7Connecting pipe 7
  • Wasserspiegel 8Water level 8
  • Verdampferrohr 9Evaporator tube 9
  • Rauchgaskanal 10Flue gas duct 10
  • Wärmetauscher 11Heat exchanger 11
  • Brennraumwand-Dampfkessel 12Combustion chamber steam boiler 12
  • Steigrohre 13 des Brennraumwand-DampfkesselsRisers 13 of the combustion chamber wall steam boiler
  • Dampfentnahme-Anschluss 14Steam extraction connection 14
  • Dampfentnahmeleitungen 15Steam extraction lines 15
  • Dampfstrahlverdichter 16Steam jet compressor 16
  • Überhitzerrohr 17Superheater tube 17
  • Rahmen 18Frame 18
  • Druckmesseinrichtung 19Pressure measuring device 19
  • Umlenkbleche 20Baffles 20
  • Abzugsöffnung 21Discharge opening 21
  • Zuleitung 22Supply line 22
  • Speisewasserzuführung 23Feedwater supply 23
  • Ausdampfrohr 24Evaporating pipe 24
  • Sicherheitsventil 25Safety valve 25
  • Füllstandssensor 26Level sensor 26
  • Schauglas 27Sight glass 27
  • Füllstandsrohr 28Level tube 28
  • Ablassventil 29Drain valve 29
  • Verteilerrohre 30Distribution pipes 30
  • Zuleitungsrohr 31Supply pipe 31
  • Sammelrohre 32Headers 32
  • Aufnahmen 33Shots 33
  • Feuerungsöffnung 34Burner opening 34
  • Zwischenrohr 35Intermediate pipe 35
  • Dampfsammelleitung 36Steam manifold 36
  • Brennraumwände 37Combustion chamber walls 37

Claims (9)

  1. A steam generator with a combustion chamber (1), at least one flue gas duct (10) and a boiler assembly (2), wherein each boiler assembly (2) comprises a plurality of individual, identically designed steam boilers (3) with a closed water circuit, each of said steam boilers having a pipe construction which comprises at least one riser pipe (4) guided through the combustion chamber (1), a steam discharge pipe (5), a downpipe (6) and a connecting pipe (7) leading from the latter to the riser pipe (4), characterised in that each of these steam boilers (3) is constituted by pipes up to and including a maximum of DN 32 in order to achieve a low risk-potential according to §5 of the Austrian Pressure Equipment Control Order (DGÜW-V), wherein the pressure content product (p x V) amounts to less than 350 [bar x l].
  2. The steam generator according to claim 1, characterised in that a heat exchanger (11) for preheating the feed water is disposed on the flue gas duct (10).
  3. The steam generator according to claim 2, characterised in that the heat exchanger (11) comprises tubes, the tube axes whereof are disposed essentially in the same plane as the pipe axes of the steam boiler (3).
  4. The steam generator according to any one of the preceding claims, characterised in that at least one further steam boiler (12) is provided to cool the combustion chamber walls (37), the riser pipes (13) of said further steam boiler being disposed in the region of the combustion chamber walls.
  5. The steam generator according to any one of the preceding claims, characterised in that the steam removal lines (15) leading away from the respective steam removal connections (14) of the steam boilers (3, 12) emerge in a steam collecting line (36).
  6. The steam generator according to any one of claims 1 to 4, characterised in that the steam removal lines (15) leading away from the respective steam removal connections (14) of the steam boilers (3, 12) in each case emerge, if need be via a steam jet condenser (16) in each case, into a superheater tube (17) disposed in the combustion chamber.
  7. The steam generator according to claim 6, characterised in that the individual superheater tubes (16) are disposed wound in the form of a helix and cylinder-like in the region of the combustion chamber.
  8. The steam generator according to any one of claims 1 to 7, characterised in that the steam boilers (3) comprises a horizontally disposed evaporator tube (9) at the operational level of the water level (8).
  9. The steam generator according to any one of claims 1 to 8, characterised in that the pipe axes of a steam boiler (3) are disposed essentially in the same, preferably vertical plane.
EP12724986.0A 2011-05-30 2012-05-30 Steam generator Active EP2715229B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SI201230344T SI2715229T1 (en) 2011-05-30 2012-05-30 Steam generator
PL12724986T PL2715229T3 (en) 2011-05-30 2012-05-30 Steam generator
HRP20151149TT HRP20151149T1 (en) 2011-05-30 2015-10-29 Steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA790/2011A AT511485B1 (en) 2011-05-30 2011-05-30 STEAM GENERATOR WITH A COMBUSTION CHAMBER, AT LEAST ONE SMOKE GAS CHANNEL AND A BOILER ASSEMBLY
PCT/EP2012/060127 WO2012163961A1 (en) 2011-05-30 2012-05-30 Steam generator

Publications (2)

Publication Number Publication Date
EP2715229A1 EP2715229A1 (en) 2014-04-09
EP2715229B1 true EP2715229B1 (en) 2015-07-29

Family

ID=46201627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12724986.0A Active EP2715229B1 (en) 2011-05-30 2012-05-30 Steam generator

Country Status (8)

Country Link
EP (1) EP2715229B1 (en)
AT (1) AT511485B1 (en)
DK (1) DK2715229T3 (en)
HR (1) HRP20151149T1 (en)
HU (1) HUE026453T2 (en)
PL (1) PL2715229T3 (en)
SI (1) SI2715229T1 (en)
WO (1) WO2012163961A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524791B1 (en) * 2021-12-09 2022-09-15 Andritz Tech & Asset Man Gmbh HEAT TRANSFER ELEMENT AND ITS USE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE499583A (en) *
DE465425C (en) * 1926-11-07 1928-09-24 Schmidt Sche Heissdampf Ges M Steam boilers, especially for pulverized coal combustion, with indirect generation of operating steam
FR1120404A (en) * 1954-05-03 1956-07-05 Siemens Ag High pressure boiler with single or multiple intermediate superheating by gas and fumes
CH349997A (en) * 1956-06-27 1960-11-15 Rossi Giovanni Steam generator
JPS61130705A (en) * 1984-11-30 1986-06-18 三菱重工業株式会社 Boiler device
JPS61191803A (en) * 1985-02-20 1986-08-26 三菱重工業株式会社 Boiler
JPH0692803B2 (en) * 1988-04-26 1994-11-16 株式会社ヒラカワガイダム boiler
US5005530A (en) * 1990-06-08 1991-04-09 Tsai Frank W Furnace radiant sections with vertical heat exchanger tubing, and convection section
FI122210B (en) * 2006-05-18 2011-10-14 Foster Wheeler Energia Oy The cooking surface of a circulating bed boiler

Also Published As

Publication number Publication date
HUE026453T2 (en) 2016-05-30
SI2715229T1 (en) 2015-12-31
WO2012163961A1 (en) 2012-12-06
AT511485A1 (en) 2012-12-15
DK2715229T3 (en) 2015-11-09
PL2715229T3 (en) 2016-04-29
HRP20151149T1 (en) 2015-12-18
AT511485B1 (en) 2013-09-15
EP2715229A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
EP0425717B1 (en) Once-through steam generator
EP2324285B1 (en) Heat recovery steam generator
DE19929088C1 (en) Fossil fuel heated steam generator e.g. for power station equipment
EP1794495B1 (en) Fossil-energy heated continuous steam generator
EP2321578B1 (en) Continuous steam generator
EP2440847A2 (en) Continuous evaporator
EP2715229B1 (en) Steam generator
EP2438352B1 (en) Once-through evaporator
EP1144910B1 (en) Fossil fuel fired steam generator
DE3132659A1 (en) "STEAM POWER PLANT AND STEAM GENERATOR ESPECIALLY FOR SUCH A STEAM POWER PLANT"
WO2008101830A2 (en) Steam turbine system, combined gas and steam turbine power station and steam power station
EP0265908A2 (en) Device for boiling wort
EP3014177B1 (en) Continuous flow steam generator with a two-pass boiler design
EP2676072B1 (en) Method for operating a once-through steam generator
DE102010038883B4 (en) Once-through steam generator
DE874678C (en) Pipe gas heaters, especially for solid fuels, preferably for use in two-stage gas turbine plants
WO2010102869A2 (en) Continuous evaporator
EP3224541B1 (en) Waste heat steam generator
EP1174672A2 (en) Combined- or steam-power-plant
EP4134609A1 (en) Steam creation device
DE914183C (en) Water tube boiler for steam and hot water, especially for medium operating pressure
AT210442B (en) Steam boilers for coal, oil or gas firing
DE102012106121B3 (en) Steam generator with a first container accommodated in a housing
DE202008011709U1 (en) Abkühlanordnung
CH270650A (en) Tubular gas heaters, in particular for solid fuels.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20140102

Extension state: BA

Payment date: 20140102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150226

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 739625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003949

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20151149

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20151102

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND , AT

Free format text: FORMER OWNER: EIDLER, WILLIBALD, AT

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND VERT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003949

Country of ref document: DE

Representative=s name: PUCHBERGER & PARTNER PATENTANWAELTE, AT

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003949

Country of ref document: DE

Representative=s name: PUCHBERGER, BERGER & PARTNER, AT

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012003949

Country of ref document: DE

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND , AT

Free format text: FORMER OWNERS: EIDLER, WILLIBALD, TERNITZ, AT; KOGLBAUER, JOSEF, GRAFENBACH, AT; PAST, ARNO, GRAFENBACH, AT; VOELKERER, KLAUS, DIEPHOLZ, AT

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20151149

Country of ref document: HR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151030

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UNDV, AT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151129

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003949

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E026453

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 20119

Country of ref document: SK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20160502

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND VERT

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: VOELKERER, KLAUS

Effective date: 20160304

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 739625

Country of ref document: AT

Kind code of ref document: T

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND , AT

Effective date: 20161108

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151149

Country of ref document: HR

Payment date: 20170502

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20170519

Year of fee payment: 6

Ref country code: HR

Payment date: 20170502

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20170519

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20151149

Country of ref document: HR

Effective date: 20180530

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180531

Ref country code: NL

Ref legal event code: MM

Effective date: 20180601

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

Ref country code: BE

Ref legal event code: PD

Owner name: VEP UMWELTTECHNIK - NEUMOT - PRODUKTIONS- UND VERT

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), AFFECTATION / CESSION; FORMER OWNER NAME: KOGLBAUER, JOSEF

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 20119

Country of ref document: SK

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230523

Year of fee payment: 12

Ref country code: IT

Payment date: 20230526

Year of fee payment: 12

Ref country code: FR

Payment date: 20230526

Year of fee payment: 12

Ref country code: DE

Payment date: 20230503

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230523

Year of fee payment: 12

Ref country code: CH

Payment date: 20230602

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230519

Year of fee payment: 12

Ref country code: SE

Payment date: 20230519

Year of fee payment: 12

Ref country code: PL

Payment date: 20230428

Year of fee payment: 12

Ref country code: HU

Payment date: 20230523

Year of fee payment: 12

Ref country code: FI

Payment date: 20230523

Year of fee payment: 12

Ref country code: AT

Payment date: 20230502

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 12