EP2711414A1 - Stabilisation de systèmes de capsule dans des produits de nettoyage et de lavage - Google Patents

Stabilisation de systèmes de capsule dans des produits de nettoyage et de lavage Download PDF

Info

Publication number
EP2711414A1
EP2711414A1 EP12184985.5A EP12184985A EP2711414A1 EP 2711414 A1 EP2711414 A1 EP 2711414A1 EP 12184985 A EP12184985 A EP 12184985A EP 2711414 A1 EP2711414 A1 EP 2711414A1
Authority
EP
European Patent Office
Prior art keywords
polyacrylate
detergents
acid
capsules
rheology modifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12184985.5A
Other languages
German (de)
English (en)
Other versions
EP2711414B1 (fr
Inventor
Jörn WIEDEMANN
Jörg Dröge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symrise AG
Original Assignee
Symrise AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symrise AG filed Critical Symrise AG
Priority to EP12184985.5A priority Critical patent/EP2711414B1/fr
Priority to CN201380060199.0A priority patent/CN104797698B/zh
Priority to PCT/EP2013/066582 priority patent/WO2014044461A2/fr
Priority to BR112015006017-0A priority patent/BR112015006017B1/pt
Priority to US14/429,568 priority patent/US9631165B2/en
Publication of EP2711414A1 publication Critical patent/EP2711414A1/fr
Application granted granted Critical
Publication of EP2711414B1 publication Critical patent/EP2711414B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0013Liquid compositions with insoluble particles in suspension
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1266Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/382Vegetable products, e.g. soya meal, wood flour, sawdust

Definitions

  • the invention relates to stabilizing systems for capsules in detergents and cleaners, wherein the capsules contain active ingredients or ingredients and have an average particle size distribution of 0.1 nm to 1000 microns.
  • liquid detergents and cleaners can cause problems. For example, incompatibilities between the individual active ingredient components of the liquid detergents and cleaners may occur. This can lead to undesirable discoloration, agglomeration, odor problems and destruction of detergent active ingredients.
  • active ingredients eg bleaches, enzymes, perfumes, dyes, etc.
  • liquid detergents and cleaning agents which, even after storage and transport, develop optimally at the time of use. This implies that the ingredients of the liquid detergent and cleaning agent have previously neither sedimented, decomposed or volatilized.
  • detergents and cleaners may contain the following active ingredients and ingredients which can be encapsulated: softeners, fragrances, pH adjusters, fluorescers, dyes, hydrotopes, silicone oils, anti-redeposition agents, optical brighteners, grayness inhibitors, anti-crease agents, antimicrobial agents, germicides, fungicides , Antioxidants, antistatic agents, ironing aids, repellents and impregnating agents, bleaching agents, acidifying agents and UV absorbers; just to name a few.
  • the stabilization of the capsule in formulations often presents a challenge.
  • Fragrances are an essential ingredient in the formulation for detergents and cleaners. So laundry should have a pleasant and fresh fragrance both in the wet and in the dry state. Therefore, it is expedient that fragrances have a good absorption on the fiber and stick to it, then releasing the fragrances releasing again, so that the laundry over a longer period of time gives off a pleasant fragrance. The demands on fragrances are therefore quite high.
  • the fundamental problem with the use of fragrances is that fragrances are volatile substances. This property, however, also causes its scent effect. It is therefore in the use of fragrances in textile and surface treatment agents with the challenge this to stabilize volatile fumes long enough so that they do not all evaporate within a very short time and no longer produce a fragrance effect.
  • fragrances should evaporate after cleaning within a certain period of time, thereby causing a long-lasting and constant as possible fragrance effect.
  • a problem with fragrances is the fact that the fragrance of a perfume changes over time, because the fragrances that represent the fresh and light notes of the perfume vaporize faster by their high vapor pressure than the fragrances that represent the heart and base notes. Therefore, fragrances are often encapsulated to stabilize the fragrance impression over a longer period of time.
  • the capsules which are such fragrances, but also other ingredients that are common for detergents and cleaners, usually after a long time, sediment or frame and thus destroy the stability of the formulation.
  • ESS external structuring system for the stabilization of aqueous detergents and cleaners.
  • the ESS comprises glyceride crystals, preferably of hardened castor oils, alkanolamines and anions derived from anionic surfactants.
  • liquid aqueous cleaning agents containing at least 2 wt.% Triethanolaminlaurylsulfat, a total of 8 to 50 wt.% Surfactant and 0.1 to 5 wt.% Suspended phase, for example, contain spherical capsules with a diameter of 0.1 to 5 mm, and a pH Value of 5.5 to 11.
  • a homogeneous distribution of the suspended phase is achieved by using water-soluble acrylic acid polymers such as Carbopol 941.
  • One way to suspend particles or capsules in a liquid is to use structured liquids.
  • structured liquids A distinction is made between internal and external structuring.
  • External structuring can be achieved, for example, by using structuring gums such as, for example, xanthan gum, guar gum, locust bean gum, gellan gum, wellan gum or carrageenan or of polyacrylate thickeners.
  • liquid detergents in which the particles are suspended are transparent or at least translucent.
  • structuring gums often leads to cloudy composition.
  • WO 2000/036078 A1 describes transparent / translucent liquid detergents which are capable of suspending particles having a size of 300 to 5000 microns, comprising at least 15 wt .-% of surfactant and 0.01 to 5 wt.% Of a polymeric gum.
  • a disadvantage of using these structurizing or thickening agents is their sensitivity to ionic compounds, in particular to the anionic surfactants which are obligatory in cleaning applications.
  • anionic surfactants which are obligatory in cleaning applications.
  • drastic increases in viscosity can occur, which greatly impair the handling of the detergents and cleaners (for example, pumping, pouring or metering).
  • This stabilization system should not only ensure a good storage stability of the formulation, but also build a network in the formulation that hold the capsules with the active ingredients and ingredients in the balance so that they do not sediment or cream in the formulation.
  • the object was also to provide a stabilization system that can be temporarily suspended by slight mechanical action, and is rebuilt after a short time when the formulation is back in hibernation. This ensures easy dosing without destabilizing the formulation and rapid re-stabilization of the capsules in the formulation once the mechanical action is removed.
  • compositions have been found which are suitable as stabilizing systems for such capsules in detergents and cleaners.
  • the stabilizing systems of the present invention are particularly suitable for capsules having an average particle size distribution of 0.1 nm to 1 mm.
  • a stabilization system according to the invention comprises at least one rheology modifier which is selected from the group consisting of hardened castor oils, cured castor waxes, polyacrylates, sheet silicates or mixtures thereof.
  • the present invention relates to stabilizing systems for capsules in detergents and cleaners containing active ingredients and ingredients, the capsules having an average particle size distribution of 0.1 nm to 1 mm.
  • the stabilizing systems of the invention comprise at least one rheology modifier selected from the group consisting of cured castor oils, cured castor waxes, polyacrylates, layered silicates, or mixtures thereof.
  • Preferred polyacrylates are latex polyacrylates, anionic polyacrylate emulsions, polyacrylate dispersions and polymers of the type ASE or polymers of the HASE type.
  • the core of the capsules preferably comprises active ingredients and ingredients for care, conditioning and / or aftertreatment of textiles and includes, preferably substances selected from the group consisting of fragrances, builders, bleaching agents, bleach activators, enzymes, grayness inhibitors, foam inhibitors, inorganic salts , Solvents, pH adjusters, fluorescers, dyes, hydrotopes, silicone oils, soil release compounds, optical brighteners, grayness inhibitors, wrinkle inhibitors, dye transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, corrosion inhibitors, antistatic agents, swelling and anti-slip agents, UV stabilizers Absorbers, Acidifiers.
  • the capsules have an average particle size distribution of 0.1 nm to 1000 .mu.m, preferably 1 .mu.m to 100 .mu.m, more preferably 5 .mu.m to 75 .mu.m, most preferably 10 .mu.m to 50 .mu.m.
  • These capsules can be stabilized particularly well in softeners and cleaning agents by the stabilizing systems according to the invention.
  • a washing and cleaning agent contains a stabilizing system for capsules which comprises at least one rheology modifier selected from the group consisting of hardened castor oils, hardened castor waxes, polyacrylates, sheet silicates or mixtures thereof.
  • Castor waxes having a melting point range of 60 to 85 ° C. and a saponification number of 175 to 185, an acid number of 2 to 4 and a saponification number of 175 to 185 and an iodine number of about 4 are preferably used as rheology modifiers.
  • Preferred castor oils used as rheology modifiers have a saponification number of 186 to 203, a hydroxyl number of 160 to 168 and an iodine number of 81 to 100.
  • the castor oil consists of a mixture of several compounds, the composition of which is as follows: oleic acid from 3.6 to 9% by weight, linoleic acid from 3 to 5% by weight, linolenic acid to about 4% by weight, ricinoleic acid from 77 to 83% by weight, palmitic acid from 0 to 1.6% by weight, stearic acid from 1.5 to 3% by weight and vaccenic acid, arachidic acid and eicosenoic acid below 1% by weight.
  • the data in percent by weight are based on the total mixture (castor oil).
  • Suitable castor waxes and castor oils which can be used as rheology modifiers in the present invention are available under the tradename Thixcin ® (INCI: 2,3-bis (12-hydroxyoctadecanoloxy) propyl 12-hydroxyoctadecanoate) from Elementis Specialitis and Castor oil or Castor Wax product line from Acme Hardesty Co. (eg Acme Wax 225, Acme Wax 224, Acme Wax TGA etc.).
  • Suitable polyacrylates are, for example, the high molecular weight homopolymers of acrylic acid crosslinked with a polyalkenyl polyether, in particular an allyl ether of sucrose, pentaerythritol or propylene (INCI name according to the International Dictionary of Cosmetic Ingredients of The Cosmetic, Toiletry and Fragrance Association (CTFA): Carbomer ), also referred to as carboxyvinyl polymers.
  • a polyalkenyl polyether in particular an allyl ether of sucrose, pentaerythritol or propylene
  • CFA Cosmetic, Toiletry and Fragrance Association
  • Such polyacrylic acids are obtainable inter alia from Fa.
  • Polygel ® such as Polygel ® 400 and Polygel ® 301 and from Lubrizol under the trade name Carbopol ®, such as Carbopol ® 940 (molecular weight about 4,000,000), Carbopol ® 941 (molecular weight approximately 1,250,000) or Carbopol ® 934 (molecular weight about 3,000,000), Carbopol ® Aqua 30 polymer.
  • Polygel ® 400 and Polygel ® 301 and Carbopol ® Aqua are preferably 30 polymer.
  • Suitable silicates are preferably phyllosilicates, which consists of a mixture of several components.
  • a sheet silicate preferably contains the following composition: 40% to 60% SiO 2, 20% to 30% MgO, 0.3% to 0.9% Li 2 O, 1.5% to 3% Na 2 O, such a sheet silicate preferably having a BET of 345 m 2 / g to 390 m 2 / g.
  • Particularly preferred sheet silicates whose composition consists of 50% to 60% SiO 2, 25% to 28% MgO, 0.5% to 0.8% Li 2 O, 2.0% to 2.8% Na 2 O, and preferably a BET of 355 m 2 / g to 380 m 2 / g has.
  • sheet silicates which consist of 59.5% SiO 2, 27.5% MgO, 0.8% LiO 2 and 2.8% Na 2 O, and has a BET of 370 m 2 / g and a pH of 9.8 (2% suspension).
  • Suitable layer silicates which are used as rheology modifiers in the present invention are available under the trade name Laponite ® OG, Laponite ® EP, Laponite ® RD from Rockwood.
  • the stabilization system according to the invention comprises, as rheology modifier, 2,3-bis (12-hydroxyoctadecanoloxy) propyl 12-hydroxyoctadecanoate or a mixture of phyllosilicates with polyacrylates, in particular HASE polymers or ASE polymers.
  • stabilization system of the invention includes 2,3-bis (12-hydroxyoctadecanoloxy) propyl 12-hydroxyoctadecanoate as a rheology modifier, which is preferably Thixcin ®.
  • the stabilization system according to the invention comprises as a rheology modifier a mixture of a layered silicate with a polyacrylate, wherein the layered silicate preferably has the following composition: about 40 to 60% by weight SiO 2 , about 20 to 30% by weight MgO, about 0.3 to 0.9 wt .-% Li 2 O, about 1.5 to 3 wt .-% Na 2 O, wherein such a layered silicate is preferably a BET of about 345 to 390 m 2 / g.
  • the stabilization system according to the invention comprises as rheology modifier a HASE polymer or an ASE polymer.
  • the polyacrylate (INCI :) is Acrylates / Beneth-25 Methacrylate Copolymer, which is preferably Novethix TM L-10 Polymer.
  • the stabilization system according to the invention comprises, as rheology modifier, a polyacrylate such that a latex is polyacrylate, in particular an anionic polyacrylate emulsion, which is preferably W 301 polyalkylene.
  • the stabilization system of the invention comprises, as a rheology modifier, a polyacrylate which is a polyacrylate emulsion comprising about 30% by weight of active material, which is preferably W400 polyurea.
  • stabilization system of the invention comprises a polyacrylate as a rheology modifier that is a crosslinked polyacrylate which, which is preferably Carbopol ® Aqua is about 30wt.% Active material comprising 30 polymer.
  • the phyllosilicate consists of 59.5% by weight of SiO 2 , 27.5% by weight of MgO, 0.8% by weight of Li 2 O and 2.8% by weight of Na 2 O and has a BET of 370 m 2 / g and a pH of 9.8 (2% suspension).
  • the layered silicate Laponite ® OG to use.
  • the amount of phyllosilicate in relation to the polyacrylate is preferably from 0.025: 1 to 1:50, preferably from 0.05: 1 to 1:20, very particularly preferably from 0.075: 1-1: 13.3.
  • the active substances and ingredients in the capsules to be stabilized are preferably selected from the group consisting of fragrances, builders, bleach activators, enzymes, grayness inhibitors, dyes, hydrotopes, antimicrobial agents, germicides, fungicides, antioxidants.
  • these active substances and ingredients are fragrances, builders and enzymes. Very particular preference is given to containing fragrances in the capsules.
  • the invention further relates to the use of the stabilization system according to the invention, comprising at least one rheology modifier, for the production of detergents and cleaners.
  • the ingredients of the capsules are preferably fragrances which are selected from the group of aldehyde, ketone fragrances, prodrugs or mixtures thereof.
  • the fragrance capsules in the detergent and cleaner are stabilized by the rheology modifier such that the capsules do not sediment or rise, but are held in suspension.
  • the invention also relates to the use of at least one rheology modifier, namely 2,3-bis (12-hydroxyoctadecanoloxy) propyl 12-hydroxyoctadecanoate or a mixture of layered silicates with polyacrylates, preferably HASE polymers or ASE polymers for stabilizing perfume capsules in laundry and cleaning agents.
  • at least one rheology modifier namely 2,3-bis (12-hydroxyoctadecanoloxy) propyl 12-hydroxyoctadecanoate or a mixture of layered silicates with polyacrylates, preferably HASE polymers or ASE polymers for stabilizing perfume capsules in laundry and cleaning agents.
  • the rheology modifier comprises 2,3-bis-propyl 12 hydroxyoctadecanoate (12 hydroxyoctadecanoloxy), which is preferably Thixcin ®.
  • the rheology modifier comprises a mixture of a layered silicate with a polyacrylate, wherein the layered silicate preferably has the following composition: about 40 to 60 wt .-% SiO 2 , about 20 to 30 wt .-% MgO, about 0.3 to 0.9 wt .-% Li 2 O, about 1.5 to 3 wt .-% Na 2 O, wherein such a layered silicate is preferably a BET of about 345 to 390 m 2 / g.
  • the polyacrylate is a HASE polymer or an ASE polymer.
  • the polyacrylate (INCI :) is Acrylates / Beneth-25 Methacrylate Copolymer, which is preferably Novethix TM L-10 Polymer.
  • the polyacrylate is a latex polyacrylate, in particular an anionic polyacrylate emulsion, which is preferably the W 301 polymer.
  • the polyacrylate is a polyacrylate emulsion comprising about 30% by weight of active material, which is preferably W400 polyurea.
  • the polyacrylate is a crosslinked polyacrylate dispersion comprising about 30 wt .-% of active material, the preferred Carbopol ® Aqua 30 polymer.
  • the layered silicate consists of 59.5 wt .-% SiO 2 , 27.5 wt .-% MgO, 0.8 wt .-% Li 2 O and 2.8% Na 2 O and has a BET of about 370 m 2 / g and a pH of 9.8 (2% suspension).
  • the Schichsilikat Laponite ® OG to use.
  • the present invention also relates to detergents and cleaners which comprise at least one rheology modifier for stabilizing capsules having an average particle size distribution of 0.1 nm to 1 mm.
  • the rheology modifier is preferably selected from the group consisting of cured castor oils, cured castor waxes, layered silicates, polyacrylates, or mixtures thereof, wherein the polyacrylates are preferably latex polyacrylates, polyacrylate emulsions, polyacrylate dispersions, or hare or ASE polymers.
  • Detergents and cleaning agents according to the invention are preferably present as liquid emulsions, suspensions or dispersions and contain Rheology modifier in the range of 0.01% by weight to 40% by weight, preferably in the range of 0.1% by weight to 30% by weight, and most preferably in the range of 0.15% by weight to 25% by weight, on the whole Preparation.
  • Preferred liquid detergents and cleaners contain the polyacrylate in an amount of about 0.01 to 10 wt .-%, and preferably about 0.15 to 5 wt .-%.
  • the ratio of phyllosilicates to polyacrylate in the detergents and cleaners of the invention is preferably from about 0.025: 1 to 1:50, preferably from about 0.05: 1 to 1:20, most preferably from about 0.075: 1-1: 13.3.
  • detergents and cleaners according to the invention may contain a solvent component comprising dipropylene glycol.
  • the solvent component comprises dipropylene glycol and 1,2-propanediol.
  • the ratio of dipropylene glycol to 1,2-propanediol is advantageously between 3: 1 and 1: 3 and is most preferably 1: 1.
  • the amount of the solvent component based on the total amount of the detergent and cleaning agent is about 0.5 to 15 Wt .-% and preferably about 2 to 9 wt .-%.
  • the detergents and cleaners are particularly preferably aqueous, that is to say they have a water content of greater than 5% by weight, preferably greater than 15% by weight and more preferably greater than 25% by weight.
  • active ingredients and ingredients contained in the detergents and cleaning agents according to the invention are described in detail below. However, the list of such active ingredients and ingredients is not limiting and may include other active ingredients and ingredients that are not further discussed below.
  • perfumes or perfume oils which can be incorporated into the compositions are not subject to any restrictions.
  • perfumes individual fragrance compounds, both synthetic or natural compounds of the ester type, ethers, aldehydes, ketones, alcohols, hydrocarbons, acids, carbonic esters, aromatic hydrocarbons, aliphatic hydrocarbons, saturated and / or unsaturated hydrocarbons and mixtures thereof can be used.
  • As fragrant aldehydes orWketone thereby all usual fragrance aldehydes and fragrance ketones can be used, which are typically used to bring about a pleasant fragrance sensation.
  • Suitable fragrance aldehydes and fragrance ketones are well known to those skilled in the art.
  • the fragrance ketones can all comprise ketones which can impart a desired fragrance or sensation of freshness.
  • the ketone may be selected from the group consisting of buccoxime, iso-jasmon, methyl-beta-naphthyl ketone, musk indanone, tartaloid / musk plus, alpha-damascone, beta-damascone, delta-damascone, iso-damascone, damascenone, damarose, Methyl dihydrojasmonate, menthone, carvone, camphor, fenchone, alphalons, beta-ionone, dihydro-beta-ionone, gamma-methyl so-called ionone, fleuramon, dihydrojasmon, cis-jasmone, iso-e-super, methyl-cedrenyl ketone or methyl-cedrylon, acetophenone, methyl-acetophenone, para-methoxy-aceto
  • the ketones may be selected from alpha damascone, delta damascone, iso damascone, carvone, gamma-methyl-ionone, iso-E-super, 2,4,4,7-tetramethyl-oct-6-en-3-one, benzylacetone , Beta Damascone, Damascenone, Methyl Dihydrojasmonate, Methyl Cedrylon, Hedione and mixtures thereof.
  • Suitable fragrance aldehydes may be any aldehydes which, in accordance with the fragrance ketones, impart a desired fragrance or sensation of freshness. In turn, they may be individual aldehydes or aldehyde mixtures. Suitable aldehydes are, for example, Melonal, Triplal, Ligustral, Adoxal, Anisaldehyde, Cymal, Ethylvanillin, Florhydral, Floralozon, Helional, Heliotropin, Hydroxycitronellal, Koavon, Laurinaldehyde, Canthoxal, Lyral, Lilial, Adoxal, Anisaldehyde, Cumal Methyl-nonyl-acetaldehyde, Citronellal , Citronellyloxyacetaldehyde, Cyclamenaldehyde, Bourgeonal, p, t-Bucinal, Phenylacetaldehyde, Undecylenaldehyde, Vanillin; 2,6,
  • the fragrance aldehydes and fragrance ketones may have an aliphatic, cycloaliphatic, aromatic, ethylenically unsaturated structure or a combination of these structures. There may also be further heteroatoms or polycyclic structures. The structures may have suitable substituents such as hydroxyl or amino groups.
  • suitable fragrances selected from Aldehydes and ketones is on Steffen Arctander "Published 1960 and 1969, respectively, Reprinted 2000 ISBN: Aroma Chemicals Vol. 1: 0-931710-37-5 . Aroma Chemicals Vol. 2: 0-931710-38-3 ", directed.
  • Suitable fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate (DMBCA), phenylethylacetate, benzylacetate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate, benzylsalicylate, cyclohexylsalicylate, floramate, melusate and jasmacyclate.
  • Fragrance compounds of the hydrocarbon type are known e.g.
  • Suitable fragrances of the ether type are, for example, benzyl ethyl ether and ambroxan.
  • Suitable perfume alcohols are, for example, 10-undecen-1-ol, 2,6-dimethylheptan-2-ol, 2-methylbutanol, 2-methylpentanol, 2-phenoxyethanol, 2-phenylpropanol, 2-tert-butycyclohexanol, 3,5,5- Trimethylcyclohexanol, 3-hexanol, 3-methyl-5-phenylpentanol, 3-octanol, 1-octen-3-ol, 3-phenylpropanol, 4-heptenol, 4-isopropylcyclohexanol, 4-tert-butycyclohexanol, 6,8-dimethyl 2-nonanol, 6-nonen-1-ol, 9-decen-1-ol, alpha-methylbenzyl alcohol
  • Fragrances or perfume oils can also be natural fragrance mixtures, as are obtainable from plant sources, for example pine, citrus, jasmine, patchouli, rose or ylang-ylang oil. Also suitable are Muscat sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden flower oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil, and orange blossom oil, neroli oil, orange peel oil and sandalwood oil.
  • Essential oils such as angelica root oil, aniseed oil, arnica blossom oil, basil oil, bay oil, champacabell oil, fir pine oil, pinecone oil, elemi oil, eucalyptus oil, fennel oil, pine needle oil, galbanum oil, geranium oil, ginger grass oil, guaiac wood oil, gurdybum oil, helichrysum oil, Ho oil, ginger oil, iris oil, cajeput oil, calamus oil, camomile oil, camphor oil, kanga oil, cardamom oil, cassia oil, pine oil, copaiba balsam, coriander oil, spearmint oil, caraway oil, cumin oil, lavender oil, lemongrass oil, lime oil, tangerine oil, lemon balm oil, musk nut oil, myrrh oil, Clove oil, Neroli oil, Niaouli oil, Olibanum oil, Origanum oil, Palmarosa oil, Patchouli oil, Peru balsam
  • perfume precursors are compounds which release a desired odor and / or perfume molecule by the breaking of a chemical bond, for example by hydrolysis.
  • a desired perfume raw material is chemically combined with a carrier, preferably a slightly volatile or moderately volatile carrier.
  • the combination results in a less volatile and more hydrophobic perfume precursor with improved attachment to fabrics.
  • the perfume is then released by breaking the bond between the perfume raw material and the carrier, for example, by a change in pH (eg, by perspiration upon wear), humidity, heat and / or sunlight during storage or drying on the skin Clothes line.
  • the perfume raw material for use in perfume precursors are typically saturated or unsaturated volatile compounds containing an alcohol, an aldehyde and / or a ketone group. Fragrance raw materials useful herein include any fragrant substances or mixtures of substances already described above.
  • R is hydrogen, linear C 1 -C 8 -alkyl, branched C 3 -C 20 -alkyl, cyclic C 3 -C 20 -alkyl, branched cyclic C 6 -C 20 -alkyl, linear C 6 -C 20 -alkenyl, branched C 6 -C 20 alkenyl, cyclic C 6 -C 20 alkenyl, branched cyclic C 6 -C 20 alkenyl, substituted or unsubstituted C 6 -C 20 aryl, and mixtures thereof; R 1 , R 2 and R 3 are independently linear, branched or substituted C 1 -C 20 alkyl; linear, branched or substituted C 2 -C 20 alkenyl; substituted or unsubstituted C 3 -C 20 cyclic alkyl; substituted or substitute
  • usable perfume precursors are acetals or ketals, preferably obeying the formula (IV) RC (R 1 ) (OR 3 ) -OR 2 (IV) wherein R is linear C 1 -C 20 alkyl, branched C 3 -C 20 -alkyl, cyclic C 6 -C 20 -alkyl, branched cyclic C 6 -C 20 -alkyl, linear C 2 -C 20 -alkenyl, branched C 3 -C 20 alkenyl, C 6 -C 20 cyclic alkenyl, branched cyclic C 6 -C 20 -aryl is C 6 -C 20 alkenyl, and mixtures thereof, substituted or unsubstituted; R 1 is hydrogen or R; R 2 and R 3 are each independently selected from the group consisting of linear C 1 -C 20 alkyl, branched C 3 -C 20 alkyl, cyclic C 3 -C 20 alkyl,
  • usable fragrance precursor obey the formula (V) R 4 OC (OR 1 ) (OR 3 ) -OR 2 (V) wherein R 1, R 2, R 3 and R 4 are independently linear, branched or substituted C 1 -C 20 alkyl; linear, branched or substituted C 2 -C 20 alkenyl; substituted or unsubstituted C 5 -C 20 cyclic alkyl; substituted or unsubstituted C 6 -C 20 -aryl, substituted or unsubstituted C 2 -C 40 -alkyleneoxy; substituted or unsubstituted C 3 -C 40 alkyleneoxyalkyl; substituted or unsubstituted C 6 -C 40 alkylene aryl; substituted or unsubstituted C 6 -C 32 -aryloxy; substituted or unsubstituted C 6 -C 40 alkyleneoxyaryl; C 6 -C 40 oxyalkylene aryl; and mixtures
  • the fragrances used comprise silicic acid ester mixtures.
  • Silica esters are represented, for example, by the formula (V) R - (- O-Si (OR) 2 -) n -OR (V) wherein R independently of one another is selected from the group which contains H, straight-chain or branched, saturated or unsaturated, substituted or unsubstituted C 1 -C 6 -hydrocarbon radicals and the perfume alcohol radicals and / or biocide alcohol radicals, and m values from the range 1 to 20 and n assumes values from the range 2 to 100.
  • the silicic acid esters of the formulas preferably contain at least one perfume alcohol residue and / or biocide alcohol residue.
  • the silicic ester mixtures can be encapsulated, but also used without encapsulation.
  • the presence of silicic ester mixtures often leads to the fact that the achievable fragrance impression, both in terms of pleasure and intensity, can be further improved.
  • the fragrance impression is not only qualitative, d. H. As far as pleasing, better, but also longer.
  • the silicic acid ester mixtures may also be contained in the microcapsules. If the silicic acid ester mixtures in the microcapsules preferably make up at least 2% by weight of the total encapsulated amount of fragrance,% by weight, based on the amount of the encapsulated fragrances, a preferred embodiment of the invention provides a further improvement in the desired fragrance effect causes the drying.
  • Particularly suitable perfume precursors are reaction products of compounds comprising at least one primary and / or secondary amine group, for example, an amino-functional polymer, especially an amino-functional silicone, and a perfume ingredient selected from ketone, aldehyde, and mixtures thereof.
  • an amino-functional polymer especially an amino-functional silicone
  • a perfume ingredient selected from ketone, aldehyde, and mixtures thereof is particularly suitable.
  • the total amount of fragrances in the washing and cleaning agent according to the invention is preferably between 0.01 and 5 wt.%, Particularly preferably between 0.1 and 3 wt.% And most preferably between 0.5 and 2 wt.% Based on the total amount of the composition.
  • the total amount of the at least one perfume is the amount of all the perfumes in the mixture together relative to the total amount of the agent.
  • fragrances and perfume oils are preferably encapsulated, so that the stabilizing system according to the invention for capsules is used thereon.
  • the liquid detergents may contain further commercial constituents, such as, for example, surfactants, builders, bleaches, bleach activators, thickeners, enzymes, electrolytes, pH adjusters, dyes and fragrances, foam inhibitors, antiredeposition agents, optical brighteners, grayness inhibitors, anti-crease agents, antimicrobial agents, preservatives, Antioxidants, antistatic agents, UV adsorbers, heavy metal complexing agents and the like.
  • surfactants builders, bleaches, bleach activators, thickeners, enzymes, electrolytes, pH adjusters, dyes and fragrances
  • foam inhibitors antiredeposition agents, optical brighteners, grayness inhibitors, anti-crease agents, antimicrobial agents, preservatives, Antioxidants, antistatic agents, UV adsorbers, heavy metal complexing agents and the like.
  • anionic, cationic, amphoteric and / or nonionic surfactants and branched alkyl sulfates can be used in addition to the nonionic surfactants.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of native origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C12-14 alcohols with 3 EO, 4 EO or 7 EO, C9-11 alcohol with 7 EO, C13-5 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C12 Alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C12-4 alcohol with 3 EO and C12-8 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution
  • nonionic surfactants include fatty alcohols with more than 12 EO. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Nonionic surfactants containing EO and PO groups together in the molecule can also be used according to the invention.
  • block copolymers with EO-PO block units or PO-EO block units can be used, but also EO-PO-EO copolymers or PO-EO-PO copolymers.
  • mixed alkoxylated nonionic surfactants in which EO and PO units are not distributed in blocks, but randomly. Such products are available by the simultaneous action of ethylene and propylene oxide on fatty alcohols.
  • alkylpolyglycosides Another class of nonionic surfactants which can be used to advantage for the production of detergents or cleaners are the alkylpolyglycosides (APG).
  • APG alkylpolyglycosides
  • Usable Alkypolyglycoside satisfy the general formula RO (G) Z, in which R is a linear or branched, especially in the 2-position methyl-branched, saturated or unsaturated, aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the Is a symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of glycosidation z is between 1.0 and 4.0, preferably between 1.0 and 2.0 and in particular between 1.1 and 1.4.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable for the preparation of the detergents or cleaners.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • polyhydroxy fatty acid amides of the formula R-CO-N (R1) - [Z] in which RCO is an aliphatic acyl radical having 6 to 22 carbon atoms, R1 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z ] represents a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula R-CO-N (R 1 -O-R 2 [Z] in which R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 is a linear, branched or cyclic one Alkyl radical or an aryl radical having 2 to 8 carbon atoms and R2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, wherein C1-4-alkyl or phenyl radicals are preferred and [Z] is is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this radical.
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branche
  • [Z] is preferably obtained by reductive amination of a sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or Xylose
  • a sugar for example glucose, fructose, maltose, lactose, galactose, mannose or Xylose
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be prepared by reaction with fatty acid methyl esters in Presence of an alkoxide can be converted as a catalyst into the desired polyhydroxy fatty acid amides.
  • the content of nonionic surfactants is the liquid detergents and cleaners preferably 5 to 30 wt.%, Preferably 7 to 20 wt.% And in particular 9 to 15 wt.%, Each based on the total agent.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • surfactants of the sulfonate type are preferably C9-3-alkylbenzenesulfonates, Olefinsulfonate, i. Mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as obtained for example from C12-8 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation, into consideration.
  • alkanesulfonates which are obtained from C 12-8 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of alpha-sulfo fatty acids for example the alpha-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • sulfonation of unsaturated fatty acids for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3 wt .-%.
  • unsaturated fatty acids for example oleic acid
  • alpha-sulfofatty acid alkyl esters which have an alkyl chain with not more than 4 C atoms in the ester group, for example methyl ester, ethyl ester, propyl ester and butyl ester.
  • the methyl esters of the alpha - sulfo fatty acids (MES), but also their saponified disalts are used.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides). Particularly preferred are the sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C12-C18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C10-C20 oxo alcohols and those half esters secondary Alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C12-C16 alkyl sulfates and C12-C15 alkyl sulfates and C14-C15 alkyl sulfates are preferred.
  • 2,3-Alkyl sulfates which can be obtained, for example, as commercial products of the Shell Oil Company under the name DAN (R), are suitable anionic surfactants.
  • sulfuric monoesters of ethoxylated with 1 to 6 moles of ethylene oxide straight-chain or branched C7-21 alcohols such as 2-methyl-branched C9-11 alcohols with im Average 3.5 moles of ethylene oxide (EO) or C12-18 fatty alcohols with 1 to 4 EO are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C8-18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which in themselves constitute nonionic surfactants (see description below).
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Particularly preferred anionic surfactants are soaps.
  • Suitable are saturated and unsaturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, (hydrogenated) erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel, olive oil or tallow fatty acids.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the content of preferred liquid detergents and cleaners to anionic surfactants is 1 to 30 wt.%, Preferably 4 to 25 wt.% And in particular 5 to 22 wt.%, Each based on the total agent. It is particularly preferred that the amount of fatty acid soap is at least 2% by weight and more preferably at least 3% by weight and especially preferably at least 4% by weight.
  • gemini surfactants which may be used to prepare the detergents or cleaners according to the invention are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups and two hydrophobic groups per molecule. These groups are usually separated by a so-called "spacer". This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart for them to act independently of each other. Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. In exceptional cases, however, the term gemini surfactants is understood to mean not only dimeric but also trimeric surfactants.
  • Gemini surfactants for the preparation of detergents or cleaners are, for example, sulfated hydroxy mixed ethers according to the German patent application DE-A-43 21 022 or dimer alcohol bis- and tri-alcohol tris-sulfates and ether sulfates according to the German patent application DE-A-195 03 061 , End-capped dimeric and trimeric mixed ethers according to the German patent application DE-A-195 13 391 They are characterized by their bi- and multi-functionality. So possess the mentioned end disabilityver constaen Surfactants good wetting properties and are low in foam, so that they are particularly suitable for use in machine washing or cleaning processes.
  • the total surfactant content of the liquid washing and cleaning agent is preferably below 40% by weight and more preferably below 35% by weight, based on the total liquid detergent and cleaning agent.
  • Suitable builders or builders which may be present in the liquid detergents and cleaners are, in particular, silicates, aluminum silicates (in particular zeolites), carbonates, organic cobuilders, phosphates, salts of organic di- and polycarboxylic acids and mixtures of these substances.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 * H2O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3.
  • both beta and delta sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays which have a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, with values of up to a maximum of 50 nm and in particular up to a maximum of 20 nm being preferred. Such so-called X-ray amorphous silicates also have a dissolution delay compared with the conventional water glasses. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • a useful fine crystalline, synthetic and bound water-containing zeolite is preferably zeolite A and / or P.
  • zeolite P zeolite MAP TM (commercial product of Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • Commercially available and preferably usable in the context of the present invention is, for example, a cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ) marketed by the company SASOL under the trade name VEGOBOND AX (R) and by the formula n Na 2 O * (1-n) K 2 O * Al 2 O 3. (2-2.5) * SiO 2.
  • the zeolite can be used as a spray-dried powder or else as undried, still moist, stabilized suspension of its preparation.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols having 2 to 5 ethylene oxide groups, C 12 -C 14 fatty alcohols containing 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons.
  • Suitable builders are organic cobuilders, in particular polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins and also phosphonates.
  • Polymeric polycarboxylates are, for example, the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • biodegradable polymers of more than two different monomer units for example those containing as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers Salts of acrylic acid and 2-Alkylallylsulfonsaeure and sugar derivatives.
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • polyaspartic acids or their salts and derivatives which, in addition to co-builder properties, also have a bleach-stabilizing action.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized at C6 of the saccharide ring may be particularly advantageous.
  • a preferred dextrin is in the British patent application GB 9,419,091 B1 described.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and methods of their preparation are, for example, from the European patent applications EP 032202 A . EP 0427349 A . EP 0472042 A and EP 0542496 A as well as the international patent applications WO 1992/018542 A . WO 1993/008251 A . WO 1994/028030 A . WO 1995/007303 A . WO 1995/012619 A and WO 1995/020608 A known.
  • a product oxidized to C 6 of the saccharide ring may be particularly advantageous.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context, as described, for example, in US Pat US 4,524,009 . US 4,639,325 In the European patent application EP 0150930 A and Japanese Patent Application JP 1993/339896 A to be discribed.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such co-builders are described, for example, in the international patent application WO 1995/020029 A described.
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a cobuilder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular when the detergents and cleaners also contain bleach, it is preferable to use aminoalkane phosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned for the preparation of the compositions.
  • polycarboxylic acids which can be used in the form of their sodium salts
  • polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • these are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents and / or cleaning agents.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • bleach activators may be incorporated into the detergents and cleaners be incorporated.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2 , 5-dihydrofuran.
  • TAED tetraacetylethylened
  • bleach catalysts can also be incorporated into the fabric treatment agents.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with nitrogen-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • a liquid detergent and cleanser may contain a thickener.
  • the thickener may include, for example, a polyacrylate thickener, xanthan gum, gellan gum, guar gum, alginate, carrageenan, carboxymethyl cellulose, bentonites, wellan gum, locust bean gum, agar-agar, tragacanth, gum arabic, pectins, polyoses, starch, dextrins, gelatin and casein include.
  • modified natural substances such as modified starches and celluloses, exemplified here carboxymethyl cellulose and other cellulose ethers, called hydroxyethyl and propyl cellulose and gum ethers, can be used as a thickener.
  • the polyacrylic and polymethacrylic thickeners include, for example, the high molecular weight homopolymers of acrylic acid crosslinked with a polyalkenyl polyether, in particular an allyl ether of sucrose, pentaerythritol or propylene (INCI name according to the International Dictionary of Cosmetic Ingredients of The Cosmetic, Toiletry and Fragrance Association (CTFA) ": carbomer), also referred to as carboxyvinyl polymers.
  • CFA Cosmetic, Toiletry and Fragrance Association
  • Such polyacrylic acids are obtainable inter alia from Fa. 3V Sigma under the tradename Polygel ® such as Polygel DA, and by the company.
  • Carbopol ® for example, Carbopol 940 (molecular weight about 4,000,000), Carbopol 941 (molecular weight 1,250,000) or Carbopol 934 (molecular weight about 3,000,000).
  • acrylic acid copolymers are included: (i) Copolymers of two or more monomers from the group of acrylic acid, methacrylic acid and their simple, preferably with C1- 4-alkanols formed esters (INCI AcrylatesCopolymer), which include about the copolymers of methacrylic acid, butyl acrylate and methyl methacrylate (CAS designation according to Chemical Abstracts Service: 25035-69-2) or of butyl acrylate and methyl methacrylate (CAS 25852-37-3) and which are, for example, by the company.
  • ICI AcrylatesCopolymer which include about the copolymers of methacrylic acid, butyl acrylate and methyl methacrylate (CAS designation according to Chemical Abstracts Service: 25035-69-2) or of butyl acrylate and methyl methacrylate (CAS 25852-37-3) and which are, for example, by the company.
  • Carbopol ® eg the hydrophobic Carbopol ETD 2623 and Carbopol 1382 (INCI Acrylates / C10-30Alkyl Acrylate Crosspolymer) and Carbopol Aqua 30 (formerly Carbopol EX 473).
  • xanthan gum a microbial anionic heteropolysaccharide produced by xanthomonascampestris and some other species under aerobic conditions and having a molecular weight of 2 to 15 million daltons.
  • Xanthan is formed from a chain of beta-1,4-linked glucose (cellulose) with side chains.
  • the structure of the subgroups consists of glucose, mannose, glucuronic acid, acetate and pyruvate, the number of pyruvate units determining the viscosity of the xanthan gum.
  • a fatty alcohol is also suitable as thickener. Fatty alcohols may be branched or unbranched, of native or of petrochemical origin.
  • Preferred fatty alcohols have a C chain length of 10 to 20 C atoms, preferably 12 to 18. Preference is given to using mixtures of different C chain lengths, such as tallow fatty alcohol or coconut oil fatty alcohol. Examples are Lorol® ® Special (C12-14 ROH) or Lorol® ® Technical (C12-18 ROH) (both ex Cognis).
  • Preferred liquid detergents and cleaners contain 0.01 to 3% by weight, and preferably 0.1 to 1% by weight, of thickening agent, based on the total agent. The amount of thickener used depends on the type of thickener and the desired degree of thickening.
  • the detergents and cleaning agents may contain enzymes in encapsulated form and / or directly in the washing and cleaning agent.
  • Suitable enzymes are, in particular, those from the classes of the hydrolases, such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases, hemicellulases, cutinases, beta-glucanases, oxidases, peroxidases, perhydrolases and / or laccases and mixtures the enzymes mentioned in question. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains and graying.
  • cellulases and other glycosyl hydrolases contribute to color retention and to increasing the softness of the fabric by removing pilling and microfibrils.
  • Oxireductases can also be used for bleaching or inhibiting color transfer.
  • Particularly suitable are bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus and Humicolainsolens derived enzymatic agents.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytic acting enzymes are the known cutinases. Peroxidases or oxidases have also proved suitable in some cases.
  • Suitable amylases include, in particular, alpha-amylases, iso-amylases, pullulanases and pectinases.
  • Cellulases used are preferably cellobiohydrolases, endoglucanases and p-glucosidases, which are also cellobiases, or mixtures of these. Since different cellulase types differ by their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes may be adsorbed to carriers to protect against premature degradation.
  • the proportion of enzymes, of the enzyme liquid formulation (s) or of the enzyme granules directly in detergents and cleaners can be, for example, about 0.01 to 5% by weight, preferably 0.12 to about 2.5% by weight.
  • washing and cleaning agent contains no enzymes.
  • electrolytes from the group of inorganic salts a wide number of different salts can be used.
  • Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates. From a manufacturing point of view, the use of NaCl or MgCl 2 in the detergents and cleaners is preferred.
  • the proportion of electrolytes in the washing and cleaning agent is usually 0.1 to 5 wt .-%.
  • Non-aqueous solvents which can be used in the liquid detergents and cleaners, for example, from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided they are miscible with water in the specified concentration range.
  • the solvents are selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerol, diglycol, propyl or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether Propylene glycol methyl, ethyl or propyl ether, dipropylene glycol monomethyl or ethyl ether, di-isopropylene glycol monomethyl or ethyl ether, methoxy, ethoxy or Butoxytriglykol, 1-butoxyethoxy-2-propanol, 3-methyl-3-methoxybutanol, propylene glycol t-butyl ether and mixtures of these solvent
  • the viscosity of the detergents and cleaners in liquid form can be measured by conventional standard methods (for example Brookfield LVT-II viscosimeter at 20 rpm and 20 ° C., spindle 3) and is preferably in the range of 500 for liquid detergents up to 5000 mPas.
  • Preferred liquid detergents and cleaners have viscosities of 700 to 4000 mPas, with values between 1000 and 3000 mPas being particularly preferred.
  • the viscosity of fabric softeners is preferably 20 to 4000 mPas, with values between 40 and 2000 mPas being particularly preferred.
  • the viscosity of fabric softeners is particularly preferably from 40 to 1000 mPas.
  • the pH of liquid detergents and cleaners is preferably between 4 and 10, and preferably between 5.5 and 8.5.
  • the pH of liquid fabric softeners is preferably between 1 and 6 and preferably between 1.5 and 3.5.
  • dyes In order to improve the aesthetic impression of the textile treatment agents, they can be dyed with suitable dyes.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of detergents and cleaning agents and to light and no pronounced substantivity to textile fibers so as not to stain them.
  • Suitable soil-release polymers which are also referred to as "antiredeposition agents" are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a methoxy group content of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, based in each case on nonionic cellulose ethers and the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene and / or polypropylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof.
  • Suitable derivatives include the sulfonated derivatives of the phthalic and terephthalic acid polymers.
  • Optical brighteners can be added to the detergents and cleaning agents in order to eliminate graying and yellowing of the treated textile fabrics. These substances are absorbed by the fiber and cause lightening and fake bleaching by transforming invisible ultraviolet radiation into visible long wavelength light, with the ultraviolet light absorbed from the sunlight being emitted as faint bluish fluorescence and the gray of the gray or yellowed laundry results in pure white.
  • Suitable compounds are derived, for example, from the substance classes of 4,4'-diamino-2,2'-stilbenedisulphonic acids (flavonic acids), 4,4'-distyrylbiphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalic acid imides, benzoxazole, Benzisoxazole and benzimidazole systems and substituted by heterocycles pyrene derivatives.
  • the optical brighteners are usually used in amounts of between 0% and 0.3% by weight, based on the finished detergent and cleaner.
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • water-soluble colloids are mostly of organic nature, for example glue, gelatin, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches, etc. Polyvinylpyrrolidone is also useful.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof in amounts of from 0.1 to 5% by weight, based on the detergents and cleaners.
  • the detergents and cleaners may contain synthetic crease inhibitors. These include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, - alkylol esters, -alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester.
  • the detergents and cleaning agents may contain antimicrobial agents.
  • antimicrobial agents Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostatic agents and bactericides, fungistatics and fungicides, etc.
  • Important substances from these groups are, for example, benzalkonium chlorides, alkylarylsulfonates, halophenols and phenolmercuric acetate, and the detergents and cleaning agents according to the invention can be completely dispensed with.
  • the detergents and cleaners according to the invention may contain preservatives, it being preferred to use only those which have no or only a low skin-sensitizing potential.
  • preservatives examples are sorbic acid and its salts, benzoic acid and its salts, salicylic acid and its salts, phenoxyethanol, 3-iodo-2-propynyl butylcarbamate, sodium N- (hydroxymethyl) glycinate, biphenyl-2-ol and mixtures thereof.
  • a suitable preservative provides the solvent-free, aqueous combination of diazolidinyl urea, sodium benzoate and potassium sorbate (available as Euxyl K ® 500ex Schulke and Mayr), which can be used in a pH range up. 7
  • preservatives based on organic acids and / or their salts are suitable for preserving the skin-friendly detergents and cleaners according to the invention.
  • the detergents and cleaners may contain antioxidants.
  • This class of compounds includes, for example, substituted phenols, hydroquinones, catechols and aromatic amines, as well as organic sulfides, polysulfides, dithiocarbamates, phosphites, phosphonates and vitamin E.
  • Antistatic agents increase the surface conductivity and thus allow an improved drainage of formed charges.
  • Antistatic agents are generally substances with at least one hydrophilic molecule ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be subdivided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents.
  • Lauryl (or stearyl) dimethylbenzylammonium chlorides are suitable as antistatic agents for textile fabrics or as an additive to detergents and cleaners, wherein a softening effect is additionally achieved.
  • silicone derivatives may be used in the fabric treatment agents. These additionally improve the rinsing behavior of the detergents and cleaning agents by their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylaryl siloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which may optionally be derivatized and are then amino-functional or quaternized or Si-OH, Si-H and / or Have Si-Cl bonds.
  • the viscosities of the preferred silicones are in the range between 100 and 100,000 mPas at 25 ° C, wherein the silicones in amounts between 0.2 and 5 wt .-%, based on the total detergent and cleaning agent can be used.
  • the detergents and cleaners may also contain UV absorbers which wick onto the treated fabrics and improve the lightfastness of the fibers.
  • Compounds exhibiting these desired properties include, for example, the non-radiative deactivation compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position. Also suitable are substituted benzotriazoles, phenyl-substituted acrylates (cinnamic acid derivatives) in the 3-position, optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanic acid.
  • Suitable heavy metal complexing agents are, for example, the alkali metal salts of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid (NTA) and alkali metal salts of anionic polyelectrolytes such as polymaleates and polysulfonates.
  • EDTA ethylenediaminetetraacetic acid
  • NTA nitrilotriacetic acid
  • a preferred class of complexing agents are the phosphonates, which are contained in preferred textile treatment agents in amounts of from 0.01 to 2.5% by weight, preferably 0.02 to 2% by weight and in particular from 0.03 to 1.5% by weight.
  • organophosphonates such as, for example, hydroxyethane-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenetriaminepenta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane-1,2, 4-tricarboxylic acid (PBS-AM), which are mostly used in the form of their ammonium or alkali metal salts.
  • organophosphonates such as, for example, hydroxyethane-1,1-diphosphonic acid (HEDP), aminotri (methylenephosphonic acid) (ATMP), diethylenetriaminepenta (methylenephosphonic acid) (DTPMP or DETPMP) and 2-phosphonobutane-1,2, 4-tricarboxylic acid (PBS-AM), which are mostly used in the form of their ammonium or alkali metal salts.
  • liquid detergents are prepared by customary and known methods and processes in which, for example, the constituents are simply mixed in stirred kettles, whereby water, nonaqueous solvents and surfactants are expediently introduced and the further constituents are added in portions.
  • liquid detergents and cleaners can be prepared by the acidic components such as the linear alkyl sulfonates, citric acid, boric acid, phosphonic acid, the fatty alcohol ether sulfates, etc. and the nonionic surfactants are presented.
  • the solvent component is preferably also added at this time, but the addition may also be made at a later time. To these components is added the polyacrylate.
  • a base such as NaOH, KOH, triethanolamine or monoethanolamine is added followed by the fatty acid, if any.
  • the remaining ingredients and the remaining solvents of the aqueous liquid detergent and cleaner are added to the mixture and the pH is adjusted to about 8.5.
  • the particles to be dispersed are added and distributed homogeneously in the aqueous liquid detergent and cleaner by mixing.
  • compositions according to the invention are preferably detergents which are suitable both for manual or machine washing, in particular for textiles. It can also be detergents or cleaning agents for industrial or household use. Cleaning agents can also be used, for example, for cleaning hard surfaces. These may be, for example, dishwashing detergents used for manual or automatic dishwashing. It can also be common industrial or household cleaners, which are used to clean hard surfaces such as furniture surfaces, tiles, tiles, wall and floor coverings. In addition to tableware, all other hard surfaces, in particular of glass, ceramic, plastic or metal, in household and in trade are also considered hard surfaces.
  • the detergents and cleaning agents are preferably liquid formulations, which may be solutions, emulsions, dispersions, suspensions, microemulsions, gels or pastes.
  • the composition may accordingly contain conventional ingredients of detergents in conventional amounts.
  • surface treatment agents may contain as cleaning agents, alkyl ether sulfates, alkyl and / or aryl sulfonates, alkyl sulfates, amphoteric surfactants, anionic surfactants, nonionic surfactants, cationic surfactants, solvents, thickeners, dicarboxylic acid (salts) and other auxiliaries and additives.
  • auxiliaries and additives especially in hand dishwashing detergents and cleaners for hard surfaces, in particular UV stabilizers, perfume, pearlescing agents (INCI Opacifying Agents, for example glycol distearate, eg Cutina AGS ® the company Henkel KGaA, or mixtures containing this, eg the Euperlane ® from.
  • ICI Opacifying Agents for example glycol distearate, eg Cutina AGS ® the company Henkel KGaA, or mixtures containing this, eg the Euperlane ® from.
  • proteases eg BLAP (Henkel), Savinase (NOVO), Durazym (NOVO), Maxapemm, etc.
  • amylases eg Fermamyl (NOVO), etc.
  • lipases eg Lipolase (NOVO), etc.
  • Peroxidases gluconases, cellulases, mannases, etc., in amounts of preferably 0.001 to 1.5 wt.% And particularly preferably less than 0.5 wt.%.
  • the stabilizing system of the present invention is applied to capsules containing active ingredients and ingredients.
  • the capsules in the present invention may be particles, microcapsules or speckles, but also granules, compounds and fragrance beads, with microcapsules or speckles being preferred.
  • microcapsule is understood to mean aggregates which contain at least one solid or liquid core which is enclosed by at least one continuous shell, in particular a shell of polymer (s). These are usually finely dispersed liquid or solid phases coated with film-forming polymers, during the production of which the polymers precipitate on the material to be enveloped after emulsification and coacervation or interfacial polymerization.
  • the microscopic capsules can be dried like powder.
  • multinuclear aggregates also called microspheres, are known, which contain two or more cores distributed in the continuous shell material.
  • Mono- or polynuclear microcapsules can also be enclosed by an additional second, third, etc., sheath.
  • the shell may be made of natural, semi-synthetic or synthetic materials.
  • Natural shell materials are, for example, gum arabic, agar agar, agarose, maltodextrins, alginic acid or its salts, e.g. Sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatin, albumin, shellac, polysaccharides such as starch or dextran, sucrose and waxes.
  • Semisynthetic shell materials include chemically modified celluloses, especially cellulose esters and ethers, e.g.
  • Synthetic envelope materials are, for example, polymers such as polyacrylates, polyamides, polyvinyl alcohol or polyvinylpyrrolidone.
  • the capsules are microcapsules which comprise a water-insoluble wall material, preferably polyurethanes, polyolefins, polyamides, polyesters, polysaccharides, epoxy resins, silicone resins and / or polycondensation products of carbonyl compounds and compounds containing NH groups.
  • a water-insoluble wall material preferably polyurethanes, polyolefins, polyamides, polyesters, polysaccharides, epoxy resins, silicone resins and / or polycondensation products of carbonyl compounds and compounds containing NH groups.
  • microcapsule preparation as such is well known to those skilled in the art. Suitable methods for microcapsule preparation are familiar to the expert and are for.
  • US 3,870,52 in US 3,516,941 , in US 3,415,758 or in EP 0026914 A1 described.
  • the latter describes the production of microcapsules by acid-induced condensation of melamine-formaldehyde precondensates and / or their C 1 -C 4 alkyl ethers in water in which the forming the capsule core hydrophobic material is dispersed, in the presence of a protective colloid.
  • melamine-urea-formaldehyde microcapsules or melamine-formaldehyde microcapsules or urea-formaldehyde microcapsules can be used, for. Available from 3M Corporation or BASF.
  • Suitable microcapsules are z. B. also in WO 2001/049817 A2 described.
  • microcapsules are accessible by methods known in the art, with coacervation and interfacial polymerization being the most important.
  • all surfactant-stable microcapsules available on the market can be used for example, the commercial products (in each case the shell material) Hallcrest Microcapsules (gelatin, gum arabic), Coletica Thalaspheres (marine collagen), Lipotec Millicapseln (alginic acid, agar-agar), Induchem Unispheres (lactose, microcrystalline cellulose, hydroxypropylmethylcellulose) ; Unicerin C30 (lactose, microcrystalline cellulose, hydroxypropyl methylcellulose), Kobo Glycospheres (modified starch, fatty acid esters, phospholipids), Softspheres (modified Agar Agar) and Kuhs Probiol Nanospheres (phospholipids).
  • particles which have no core-shell structure but in which the active substance is distributed in a matrix of a matrix-forming material. Such particles are also referred to as "speckles”.
  • a preferred matrix-forming material is alginate.
  • an aqueous alginate solution which also contains the active ingredient or the active ingredients to be entrapped is dripped and then cured in a precipitation bath containing Ca.sup.2 + ions or Al.sub.3.sup. + Ions. It may be advantageous that the alginate-based speckles are subsequently washed with water and then washed in an aqueous solution with a complexing agent to free Ca 2+ ions or free Al 3+ ions, which undesirable interactions with ingredients of the liquid detergent and cleaning agent, For example, the fatty acid soaps, can enter, wash out.
  • matrix-forming materials can be used instead of alginate.
  • matrix-forming materials include polyethylene glycol, polyvinyl pyrrolidone, polymethacrylate, polylysine, poloxamer, polyvinyl alcohol, polyacrylic acid, polyethylene oxide, Polyethoxyoxazolin, albumin, gelatin, acacia, chitosan, cellulose, dextran, Ficoll ®, starch, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, hyaluronic acid, Carboxymethylcellulose, carboxymethylcellulose, deacetylated chitosan, dextran sulfate and derivatives of these materials.
  • the matrix formation in these materials takes place for example via gelation, polyanion-polycation interactions or polyelectrolyte-metal ion interactions and
  • the particles can be stably dispersed in the aqueous liquid detergent and cleaner.
  • Stable means that the compositions are stable at room temperature and at 40 ° C for a period of at least 4 weeks, and preferably at least 6 weeks, without the medium creaming or sedimenting
  • the capsules may have any shape in the production-related framework, but they are preferably approximately spherical. Their diameter along their greatest spatial extent may be between 0.1 nm (not visually recognizable as a capsule) and 1000 ⁇ m, depending on the components contained in their interior and the application.
  • Preferably usable microcapsules have average diameters in the range of 0.1 to 1,000 .mu.m, preferably between 1 and 100 .mu.m, in particular between 5 and 75 .mu.m, z. B. 10-50 microns.
  • the shell of the microcapsules surrounding the core or (filled) cavity has an average thickness in the range of between about 75 and 300 nm, preferably between about 80 nm and about 250 nm, in particular between about 90 nm and about 200 nm.
  • Microcapsules, the fulfill the aforementioned parameters are particularly well stabilized in detergents and cleaners and thus show good results in the context of the invention.
  • the capsules may include, for example, optical brighteners, surfactants, complexing agents, bleaches, bleach activators, dyes and fragrances, antioxidants, builders, enzymes, enzyme stabilizers, antimicrobial agents, graying inhibitors, anti redeposition agents, pH adjusters, electrolytes, foam inhibitors and UV absorbers are located.
  • the capsules of the aqueous liquid detergents and cleaners may contain cationic surfactants, vitamins, proteins, preservatives, detergency boosters or pearlescers.
  • the fillings of the capsules may be solids or liquids in the form of solutions or emulsions or suspensions.
  • the release of the active ingredients from the capsules is usually carried out during the application of the agents containing them by destruction of the shell or the matrix due to mechanical, thermal, chemical or enzymatic action.
  • the liquid detergents and cleaners contain identical or different capsules in amounts of from 0.01 to 10% by weight, in particular from 0.03 to 5% by weight and very preferably from 0.05 to 2.5% by weight.
  • liquid detergents and cleaners according to the invention with capsules are cloudy and have no sediment.
  • the present invention also encompasses a process for preparing laundry detergents and cleaners which comprises mixing a mixture of different fragrances which are encapsulated and at least one rheology modifier selected from the group consisting of hardened castor oils, cured castor waxes, layered silicates, polyacrylates or mixtures incorporated into a detergent and cleaning agent.
  • the invention comprises a process for the production of detergents and cleaners, wherein the rheology modifier is stirred in a solvent from castor oils and / or castor waxes in a first step (a).
  • Suitable solvents are aqueous solutions, such as surfactant solutions and / or alcoholic.
  • the complete amount of rheology modifier is stirred into the solvent and then in a second step b) the mixture is heated to the melting point of the rheology modifier.
  • the mixture is heated to at least 85 ° C, preferably from 85 ° C to 90 ° C or from 85 ° C to 88 ° C.
  • the rheology modifier is then preferably melted in the solvent at these temperatures. Subsequently, in a step c), the mixture is cooled to 40 ° C. with stirring and then, in a step d), the mixture is added to a detergent formulation.
  • the process steps can also be modified, for example by first stirring only part of the rheology modifier in the solvent, heating it and thus predissolving it. Further modifications may be in the duration of the heating period, the cooling period, and the stirring rate of the mixture, which, however, lead to the same result, namely a mixture with a pre-dissolved rheology modifier.
  • this mixture may be added to either a detergent formulation or, conversely, the detergent formulation be added to the mixture. The order of addition is not limited here.
  • the present invention comprises a composition comprising a mixture of a layered silicate with a polyacrylate, for the stabilization of perfume capsules in detergents and cleaners.
  • layered silicate is a mixture that has the following composition: about 40 to 60 wt .-% SiO 2, about 20 to 30 wt .-% MgO, about 0.3 to 0.9 wt .-% Li 2 O, about 1.5 to 3 wt .-% Na 2 O, wherein such a layered silicate preferably has a BET of about 345 to 390 m 2 / g.
  • suitable silicates consist of a mixture of several components, preferably about 50 to 60 wt .-% SiO 2 , 25 to 28 wt .-% MgO, about 0.5 to 0.8 wt .-% Li 2 O, about 2.0 to 2.8 wt.
  • % Na 2 O and preferably have a BET of about 355 to 380 m 2 / g.
  • Very particular preference is given to phyllosilicates which consist of 59.5% by weight SiO 2 , 27.5% by weight MgO, 0.8% by weight Li 2 O and 2.8% Na 2 O, and a BET of 370 m 2 / g and a pH Value of 9.8 (2% suspension).
  • Such compositions are known from Rockwood under the trade name Laponite ®, particularly preferably for the inventive composition, the product Laponite ® OG or RD is.
  • the polyacrylate is a component selected from the group consisting of HASE polymer, ASE polymer, latex polyacrylate, anionic polyacrylate emulsion or polyacrylate dispersion.
  • the HASE polymer Acrylates / Beneth-25 Methacrylate Copolymer preferably the product Thixcin ® and the latex polyacrylate, preferably the Polygel W 301 and the polyacrylate is preferably Polygel W400 and the polyacrylate preferably Carbopol ® Aqua 30 polymer.
  • Such mixtures of Laponite ® OG with polyacrylates have pronounced synergistic effect in the stabilization of capsules having an average particle size of 0.1 nm to 1000 .mu.m, preferably, the capsules have an average particle size of 1 to 100 .mu.m, particularly preferably 5 to 75 .mu.m, very particularly preferably 10 to 50 ⁇ m.
  • the detergent samples were stored in 30 ml glass bottles at 23 ° C, 5 ° C and 40 ° C. After 1, 2, 3 and 4 weeks, the samples were visually assessed for separation of the (perfume) capsules. When separations were observed, the formulation was rated unstable. If no separations were observed, the sample was rated stable.
  • the rheological properties of the samples were carried out with the aid of a rheometer.
  • Measurement conditions 23 ° C, cone / plate C60 / 2 ° Ti, CR log 0.011 / s-40.00 1 / s, CR log 40.00 1 / s-0.011 / s.
  • the lower curve shows the comparative experiment (designated as V 1.1) and the upper curve shows the formulation according to the invention (designated as V 3.2).
  • the rheology measurement shows the increase of the required force at the beginning and the decrease of the force to the middle of the measurement, followed by a rise to the end. This shows that the sample has a high viscosity during the rest phase, which falls rapidly due to the action of force (shearing action) and recovers in the subsequent rest phase.
  • Table 1 ⁇ / b> Basic recipe for detergents basic formulation Sodium benzenesulfonate (about 50%) 10.00% Fatty alcohol ethoxylate C12-18 9EO 3.00% Sodium lauryl ether sulfate (about 28%) 40.00% Sodium lauryl sulfate (approx.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Fats And Perfumes (AREA)
EP12184985.5A 2012-09-19 2012-09-19 Stabilisation de systèmes de capsule dans des produits de nettoyage et de lavage Active EP2711414B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12184985.5A EP2711414B1 (fr) 2012-09-19 2012-09-19 Stabilisation de systèmes de capsule dans des produits de nettoyage et de lavage
CN201380060199.0A CN104797698B (zh) 2012-09-19 2013-08-07 在洗涤和清洁组成物中的胶囊剂***的稳定
PCT/EP2013/066582 WO2014044461A2 (fr) 2012-09-19 2013-08-07 Stabilisation de systèmes de capsules dans des détergents et des nettoyants
BR112015006017-0A BR112015006017B1 (pt) 2012-09-19 2013-08-07 Estabilização de sistemas de cápsulas em produtos de lavagem e outros produtos de limpeza
US14/429,568 US9631165B2 (en) 2012-09-19 2013-08-07 Stabilization of capsule systems in laundry detergents and other cleaning products with one or more rheology modifiers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12184985.5A EP2711414B1 (fr) 2012-09-19 2012-09-19 Stabilisation de systèmes de capsule dans des produits de nettoyage et de lavage

Publications (2)

Publication Number Publication Date
EP2711414A1 true EP2711414A1 (fr) 2014-03-26
EP2711414B1 EP2711414B1 (fr) 2019-05-15

Family

ID=46924319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12184985.5A Active EP2711414B1 (fr) 2012-09-19 2012-09-19 Stabilisation de systèmes de capsule dans des produits de nettoyage et de lavage

Country Status (5)

Country Link
US (1) US9631165B2 (fr)
EP (1) EP2711414B1 (fr)
CN (1) CN104797698B (fr)
BR (1) BR112015006017B1 (fr)
WO (1) WO2014044461A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184619A1 (fr) 2015-12-22 2017-06-28 The Procter & Gamble Company Compositions détergentes structurées

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201413859D0 (en) * 2014-08-05 2014-09-17 Reckitt Benckiser Brands Ltd New automatic washing machine and method
EP3061500B1 (fr) * 2015-02-25 2019-07-10 Symrise AG Dispersions stables
WO2017066400A1 (fr) 2015-10-13 2017-04-20 The Sun Products Corporation Système à plusieurs étages d'administration d'un agent bénéfique
JP6925168B2 (ja) * 2016-05-31 2021-08-25 ライオン株式会社 繊維製品用の液体洗浄剤組成物
CN109234033A (zh) * 2018-11-08 2019-01-18 北京斯泰博环保科技有限责任公司 一种洗涤剂用杀菌剂微胶囊及其制备方法
BR112021014315A2 (pt) * 2019-01-22 2021-09-21 Ecolab Usa Inc. Composição de detergente líquido, e, métodos de lavagem de têxteis e de dispensa de uma composição de detergente líquido para lavar têxteis
WO2020212779A1 (fr) 2019-04-16 2020-10-22 3M Innovative Properties Company Article abrasif et son procédé de fabrication
EP4103356A1 (fr) 2020-02-10 2022-12-21 3M Innovative Properties Company Article abrasif revêtu et procédé de fabrication d'un tel article
WO2022023879A1 (fr) 2020-07-28 2022-02-03 3M Innovative Properties Company Article abrasif revêtu et procédé de fabrication d'un tel article
CN112391834B (zh) * 2020-09-28 2022-11-01 广州立白企业集团有限公司 除菌祛异味持久留香的组合物及其制备方法
WO2022074474A1 (fr) 2020-10-08 2022-04-14 3M Innovative Properties Company Article abrasif revêtu et procédé de fabrication de celui-ci
EP4225533A1 (fr) 2020-10-09 2023-08-16 3M Innovative Properties Company Article abrasif et son procédé de fabrication
CN112625807B (zh) * 2020-12-18 2022-02-18 广州立白企业集团有限公司 洗碗机机体洗涤剂固体组合物及制备方法
WO2023186333A1 (fr) 2022-03-30 2023-10-05 Symrise Ag Rouleau de papier faisant office de système de commande de diffusion de parfum
US20240101930A1 (en) * 2022-09-09 2024-03-28 Henkel Ag & Co. Kgaa Liquid Composition With Encapsulated Fragrance And Alcohol Ethoxylate Suitable For Use With Unit Dose Packages

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US387052A (en) 1888-07-31 Spring-vehicle
US3415758A (en) 1960-03-09 1968-12-10 Ncr Co Process of forming minute capsules en masse
US3516941A (en) 1966-07-25 1970-06-23 Minnesota Mining & Mfg Microcapsules and process of making
GB1471406A (en) 1974-05-21 1977-04-27 Unilever Ltd Detergent composition
EP0026914A1 (fr) 1979-10-08 1981-04-15 BASF Aktiengesellschaft Procédé de fabrication de microcapsules, microcapsules obtenues selon ce procédé, utilisation des microcapsules pour la préparation de papiers d'enregistrement sensibles à la pression et système d'enregistrement sensible à la pression
EP0032202A1 (fr) 1979-12-17 1981-07-22 Bayer Ag Procédé pour la préparation d'esters aryliques neutres de l'acide phosphoreux
US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
EP0150930A2 (fr) 1984-01-31 1985-08-07 A.E. Staley Manufacturing Company Dérivés de glycérol
US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
EP0427349A2 (fr) 1989-11-10 1991-05-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procédé pour la préparation de polydicarboxysaccharides
EP0472042A1 (fr) 1990-08-13 1992-02-26 NOVAMONT S.p.A. Agents séquestrants du calcium à base de carbohydrates oxydés et leur utilisation comme renforçateurs pour détergents
WO1992018542A1 (fr) 1991-04-12 1992-10-29 Novamont S.P.A. Procede d'oxydation de glucides
WO1993008251A1 (fr) 1991-10-23 1993-04-29 Henkel Kommanditgesellschaft Auf Aktien Produit de lavage et de nettoyage a systemes selectionnes d'adjuvants
EP0542496A1 (fr) 1991-11-14 1993-05-19 The Procter & Gamble Company Amidon oxydé à C6/C2-C3 utilisé comme ingrédient pour détergent
JPH05339896A (ja) 1992-06-03 1993-12-21 Arakawa Chem Ind Co Ltd 紙用サイズ剤および紙サイジング方法
WO1994028030A1 (fr) 1993-05-26 1994-12-08 Henkel Kommanditgesellschaft Auf Aktien Fabrication de polycarboxylates a base de polysaccharides
DE4321022A1 (de) 1993-06-24 1995-01-05 Henkel Kgaa Sulfatierte Hydroxymischether
WO1995007303A1 (fr) 1993-09-07 1995-03-16 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procede d'oxydation des glucides
WO1995012619A1 (fr) 1993-11-04 1995-05-11 Instituut Voor Agrotechnologisch Onderzoek (Ato-Dlo) Procede d'oxydation de glucides
WO1995020029A1 (fr) 1994-01-25 1995-07-27 Henkel Kommanditgesellschaft Auf Aktien Adjuvant pour detergents et nettoyants
WO1995020608A1 (fr) 1994-01-31 1995-08-03 Henkel Kommanditgesellschaft Auf Aktien Procede d'oxydation en lit fluidise pour la fabrication de polycarboxylates a base de polysaccharides
DE19503061A1 (de) 1995-02-01 1996-08-08 Henkel Kgaa Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate
DE19513391A1 (de) 1995-04-08 1996-10-10 Henkel Kgaa Bi- und multifunktionelle Mischether
WO2000036078A1 (fr) 1998-12-16 2000-06-22 Unilever N.V. Composition detergente liquide, transparente/translucide et semi-solide, a particules suspendues
EP1502944A1 (fr) * 2003-08-01 2005-02-02 The Procter & Gamble Company Composition détergente aqueuse liquide comprenant des particules visibles
US20100150975A1 (en) * 2008-10-20 2010-06-17 Jiten Odhavji Dihora Structured Composition Comprising an Encapsulated Active
WO2011031940A1 (fr) 2009-09-14 2011-03-17 The Procter & Gamble Company Systeme de structuration externe pour composition liquide de detergent a lessive
WO2011120772A1 (fr) * 2010-03-31 2011-10-06 Unilever Plc Incorporation de microcapsules dans des détergents liquides structurés

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0106560D0 (en) * 2001-03-16 2001-05-02 Quest Int Perfume encapsulates
US6645511B2 (en) * 2002-01-16 2003-11-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Wet-skin treatment compositions
IL152486A0 (en) * 2002-10-25 2003-05-29 Meir Eini Alcohol-free cosmetic and pharmaceutical foam carrier
US20050226900A1 (en) * 2004-04-13 2005-10-13 Winton Brooks Clint D Skin and hair treatment composition and process for using same resulting in controllably-releasable fragrance and/or malodour counteractant evolution
EP1786351A1 (fr) * 2004-09-10 2007-05-23 Ciba Specialty Chemicals Holding Inc. Compositions blanchissantes, fluorescentes, encapsulees et leurs utilisations dans des applications de soins personnels
US7994112B2 (en) * 2009-01-26 2011-08-09 Procter & Gamble Comany Fabric softening laundry detergent
MX2012011475A (es) * 2010-04-01 2012-11-16 Procter & Gamble Composiciones que comprenden organosiliconas.
US20110269657A1 (en) * 2010-04-28 2011-11-03 Jiten Odhavji Dihora Delivery particles
EP2737040A1 (fr) * 2011-07-27 2014-06-04 The Procter and Gamble Company Composition de détergent liquide polyphasique
US20130123162A1 (en) * 2011-11-10 2013-05-16 The Procter & Gamble Company Consumer products

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US387052A (en) 1888-07-31 Spring-vehicle
US3415758A (en) 1960-03-09 1968-12-10 Ncr Co Process of forming minute capsules en masse
US3516941A (en) 1966-07-25 1970-06-23 Minnesota Mining & Mfg Microcapsules and process of making
GB1471406A (en) 1974-05-21 1977-04-27 Unilever Ltd Detergent composition
EP0026914A1 (fr) 1979-10-08 1981-04-15 BASF Aktiengesellschaft Procédé de fabrication de microcapsules, microcapsules obtenues selon ce procédé, utilisation des microcapsules pour la préparation de papiers d'enregistrement sensibles à la pression et système d'enregistrement sensible à la pression
EP0032202A1 (fr) 1979-12-17 1981-07-22 Bayer Ag Procédé pour la préparation d'esters aryliques neutres de l'acide phosphoreux
US4524009A (en) 1984-01-31 1985-06-18 A. E. Staley Manufacturing Company Detergent builder
EP0150930A2 (fr) 1984-01-31 1985-08-07 A.E. Staley Manufacturing Company Dérivés de glycérol
US4639325A (en) 1984-10-24 1987-01-27 A. E. Staley Manufacturing Company Detergent builder
EP0427349A2 (fr) 1989-11-10 1991-05-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procédé pour la préparation de polydicarboxysaccharides
EP0472042A1 (fr) 1990-08-13 1992-02-26 NOVAMONT S.p.A. Agents séquestrants du calcium à base de carbohydrates oxydés et leur utilisation comme renforçateurs pour détergents
WO1992018542A1 (fr) 1991-04-12 1992-10-29 Novamont S.P.A. Procede d'oxydation de glucides
WO1993008251A1 (fr) 1991-10-23 1993-04-29 Henkel Kommanditgesellschaft Auf Aktien Produit de lavage et de nettoyage a systemes selectionnes d'adjuvants
EP0542496A1 (fr) 1991-11-14 1993-05-19 The Procter & Gamble Company Amidon oxydé à C6/C2-C3 utilisé comme ingrédient pour détergent
JPH05339896A (ja) 1992-06-03 1993-12-21 Arakawa Chem Ind Co Ltd 紙用サイズ剤および紙サイジング方法
WO1994028030A1 (fr) 1993-05-26 1994-12-08 Henkel Kommanditgesellschaft Auf Aktien Fabrication de polycarboxylates a base de polysaccharides
DE4321022A1 (de) 1993-06-24 1995-01-05 Henkel Kgaa Sulfatierte Hydroxymischether
WO1995007303A1 (fr) 1993-09-07 1995-03-16 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procede d'oxydation des glucides
WO1995012619A1 (fr) 1993-11-04 1995-05-11 Instituut Voor Agrotechnologisch Onderzoek (Ato-Dlo) Procede d'oxydation de glucides
WO1995020029A1 (fr) 1994-01-25 1995-07-27 Henkel Kommanditgesellschaft Auf Aktien Adjuvant pour detergents et nettoyants
WO1995020608A1 (fr) 1994-01-31 1995-08-03 Henkel Kommanditgesellschaft Auf Aktien Procede d'oxydation en lit fluidise pour la fabrication de polycarboxylates a base de polysaccharides
DE19503061A1 (de) 1995-02-01 1996-08-08 Henkel Kgaa Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate
DE19513391A1 (de) 1995-04-08 1996-10-10 Henkel Kgaa Bi- und multifunktionelle Mischether
WO2000036078A1 (fr) 1998-12-16 2000-06-22 Unilever N.V. Composition detergente liquide, transparente/translucide et semi-solide, a particules suspendues
EP1502944A1 (fr) * 2003-08-01 2005-02-02 The Procter & Gamble Company Composition détergente aqueuse liquide comprenant des particules visibles
US20100150975A1 (en) * 2008-10-20 2010-06-17 Jiten Odhavji Dihora Structured Composition Comprising an Encapsulated Active
WO2011031940A1 (fr) 2009-09-14 2011-03-17 The Procter & Gamble Company Systeme de structuration externe pour composition liquide de detergent a lessive
WO2011120772A1 (fr) * 2010-03-31 2011-10-06 Unilever Plc Incorporation de microcapsules dans des détergents liquides structurés

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AROMA CHEMICALS, vol. 2, 2000
STEFFEN ARCTANDER, AROMA CHEMICALS, vol. 1, 1960

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184619A1 (fr) 2015-12-22 2017-06-28 The Procter & Gamble Company Compositions détergentes structurées
WO2017112384A1 (fr) 2015-12-22 2017-06-29 The Procter & Gamble Company Compositions détergentes structurées

Also Published As

Publication number Publication date
BR112015006017A2 (pt) 2017-07-04
CN104797698B (zh) 2019-03-05
US20150232791A1 (en) 2015-08-20
CN104797698A (zh) 2015-07-22
WO2014044461A2 (fr) 2014-03-27
WO2014044461A3 (fr) 2014-08-14
US9631165B2 (en) 2017-04-25
BR112015006017B1 (pt) 2021-11-23
EP2711414B1 (fr) 2019-05-15

Similar Documents

Publication Publication Date Title
EP2711414B1 (fr) Stabilisation de systèmes de capsule dans des produits de nettoyage et de lavage
EP1863895B1 (fr) Produit nettoyant ou detergent transparent a limite d'ecoulement
EP2001986B1 (fr) Composition solide de soin des textiles comprenant un polymere hydrosoluble
EP1781766B1 (fr) Detergent ou nettoyant clair, a limite d'ecoulement
EP2291504B1 (fr) Additif de detergents se presentant sous forme de particules
EP1989282B1 (fr) Agent nettoyant liquide inhibant le grisonnement
EP2956534B1 (fr) Détergent inhibant le grisonnement
DE102007056525A1 (de) Polyoxyalkylenamine zur verbesserten Duftausbeute
DE102005043189A1 (de) Verbrauchsprodukte mit Duftvielfalt
WO2008128826A1 (fr) Particules contenant un matériau photocatalytique
EP2061864B1 (fr) Composition solide, textile et/ou de soin de la peau
EP2046927A1 (fr) Esterquats contenant des groupes oh pour rendements améliorés de substances odorantes
WO2007113326A1 (fr) Composition solide, permettant de prendre soin des textiles comprenant un polymère soluble dans l'eau
WO2018055124A1 (fr) Corps fusible parfumé à dissolution rapide
DE102007019374A1 (de) Photokatalytisches Material enthaltende Flüssigsysteme
WO2021078554A1 (fr) Détergents anti-redéposition
EP4130219A1 (fr) Capsules de parfum à force adhésive pour surfaces
WO2021078577A1 (fr) Détergents anti-redéposition
DE102005060006B4 (de) Sichere Festkörpersprühparfümierung
DE10335455A1 (de) Geschirrspülmittel mit verbesserter Duftwahrnehmung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140924

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20151009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014773

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190816

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014773

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

26N No opposition filed

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1133437

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120919

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 12

Ref country code: DE

Payment date: 20230919

Year of fee payment: 12