EP2709124A1 - Transformator - Google Patents

Transformator Download PDF

Info

Publication number
EP2709124A1
EP2709124A1 EP12006409.2A EP12006409A EP2709124A1 EP 2709124 A1 EP2709124 A1 EP 2709124A1 EP 12006409 A EP12006409 A EP 12006409A EP 2709124 A1 EP2709124 A1 EP 2709124A1
Authority
EP
European Patent Office
Prior art keywords
core
transformer
winding
leg
transformer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12006409.2A
Other languages
English (en)
French (fr)
Other versions
EP2709124B1 (de
Inventor
Frank Cornelius
Jiahua ZHANG
Martin Carlen
Thorsten Steinmetz
Benjamin Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Technology AG filed Critical ABB Technology AG
Priority to ES12006409.2T priority Critical patent/ES2532363T3/es
Priority to EP12006409.2A priority patent/EP2709124B1/de
Priority to CN201380047350.7A priority patent/CN104603891B/zh
Priority to PCT/EP2013/002451 priority patent/WO2014040682A1/de
Publication of EP2709124A1 publication Critical patent/EP2709124A1/de
Application granted granted Critical
Publication of EP2709124B1 publication Critical patent/EP2709124B1/de
Priority to US14/632,400 priority patent/US20150170821A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support

Definitions

  • the invention relates to a transformer, comprising a transformer core having at least one core leg and a arranged around the respective core legs in a hollow cylinder-like winding region main and thus electrically connected core arranged additional winding.
  • transformers are used in electrical power distribution networks to couple power supplies of different voltage levels together.
  • Such transformers are often designed as dry transformers in a consumer or near-generator voltage level and have, for example nominal voltages in the range of 1 kV to 6kV on the low side and rated voltages in the range of 10kV to 30kV on the upper side, with corresponding power ratings in the range of, for example, 0.5 MVA to 10 MVA lie.
  • the rated power of a transformer depends on the performance of an associated wind turbine.
  • the low-voltage windings are often designed wound from a strip conductor, the width of a strip conductor usually corresponds to the complete axial length of a respective transformer winding.
  • the number of undervoltage-side windings for example, in the range of ten turns, in particular also in applications for wind turbines, where the generator generated voltage is correspondingly low and is set by the transformer to a higher operating level.
  • the active part of a transformer has a closed iron circuit and at least one upper and lower voltage winding with integer, closed turns around the respective core leg.
  • the induced voltage per closed conductor loop depends on the mains frequency, flux density and core cross section.
  • the disadvantage is, on the one hand, that a high-voltage side arranged tap changer is very complex to manufacture due to the high voltage stress and that the regulation of the voltage can be minimal in that voltage grading, which corresponds to the induced voltage of a complete turn. With voltage regulation, the minimum control level is therefore limited to the voltage difference between two turns. This is particularly disadvantageous in the aforementioned undervoltage band windings, because due to the relatively low total number of turns, for example in the range of ten, a fine control in the range of, for example, +/- 15% in, for example, 1.5% steps around the nominal ratio not possible.
  • a transformer of the aforementioned type This is characterized in that the cross section of the core leg and / or a trained core yoke of the transformer core has at least two areas separated transversely from each other in a cross-sectional plane imagined transversely to their respective extension, and that at least a turn of the respective additional winding is guided through the opening
  • the basic idea of the invention is to reduce the induced voltage of a complete turn, which is intended for control purposes, by not enclosing the cross section of the complete core leg or a core yoke of the transformer core, but only a part of the cross section.
  • the invention provides that the core leg cross-section or the core yoke cross-section have at least two regions in a cross-sectional plane which is transversal to their respective extent, which are separated from one another by an opening.
  • the extension is to be understood in the longitudinal direction of a respective leg or yoke section.
  • a breakthrough can be realized for example by means of a bore, which is guided by the core leg or the core yoke.
  • a channel-like opening for a roundish conductor for example, can also be created by means of corresponding recesses in a sheet-metal layer area.
  • the opening is designed as a gap, which extends along the core leg extends. Such a gap can be implemented particularly easily, depending on the transformer core type.
  • the subdivision can be arbitrary in principle to meet the requirements of controllability, z. B. 1/3, or 1/4.
  • Specific voltage levels can also be realized by placing several turns around a part of the leg, for example 3 turns around 1/4 of the core leg cross section, 4 turns around 1/5 of the core leg cross section or 9 turns around 1/10 of the core leg cross section. If the windings are placed separately around a part of the core leg cross-section, the wiring can be used by the choice of the winding sense or the polarity of the (additional) winding in order to make it appear either additive or subtractive. This makes it possible to reduce the number of (additional) turns required for the voltage controllability.
  • the stress can be regulated in +/- 25% steps of the full turn tension by dividing the core leg cross-sectional area into three areas whose contents are 50%, 25% and 25% of the total cross-sectional area. This achieves +/- 25%, +/- 50% and +/- 75% full turn steps.
  • At least the additional winding is formed by a ribbon conductor, but ideally also the main winding.
  • a ribbon cable is due to its high filling factor in a special way for a low-voltage transformer winding, where at relatively low rated voltages in the range of, for example, some 100V to over 1 kV is expected to correspondingly high currents, which may well exceed 1000 A.
  • a ribbon conductor manufacturing technology is also particularly easy to guide through a gap according to the invention, which separates two core leg portions from each other.
  • such a ribbon conductor has a width which corresponds to the total axial height of the respective winding, so that a conductor layer in each case comprises exactly one turn.
  • the gap winding conductor For safe electrical insulation of the guided through the gap winding conductor, it is inventively provided that this is surrounded at least in the region of the gap of an additional layer of an electrical insulation material.
  • the gap is formed by the typically grounded transformer core and therefore isolation technology of particular importance, especially because - depending on the current interconnection of the auxiliary winding - in the guided through the gap winding (s) and the full nominal voltage can be applied.
  • isolation technology of particular importance, especially because - depending on the current interconnection of the auxiliary winding - in the guided through the gap winding (s) and the full nominal voltage can be applied.
  • the additional winding is provided with several accessing to different turns taps.
  • the auxiliary winding has a fine graduation region which is characterized by taps of turns of the additional winding guided through the respective gap of a core limb. These each have an induced voltage, which is lower than the induced voltage of the respective core leg completely comprehensive turn.
  • a coarse graduation range can be provided, which is characterized by taps of the core legs in each case completely comprehensive turns.
  • transformer switching means are provided to selectively connect the main winding with one of the taps of the auxiliary winding, so that the number of active turns of the electrically connected main and auxiliary winding is thus adaptable.
  • separate switching means are provided for coarse and fine grading range of the auxiliary winding.
  • the switching means comprise a tap changer and / or power electronic components.
  • Tap changers have proved their worth for the selective selection and connection of taps of a transformer winding as a standard component.
  • power electronic components such as thyristors or IGBTs are also provided.
  • the invention can be applied to any type of transformer core, in particular to three-core cores, five-limbed cores or even a transformer with a triangular plan. These may for example be layered or wound. However, some special embodiments are to be presented in more detail below.
  • the transformer core is formed from a rectangular-like outer core ring disk and at least two rectangular-shaped inner core ring disks enclosed by the latter, wherein a respective gap is formed in the leg region between adjoining sections of the core ring disks.
  • the basic structure of such a transformer core corresponds - apart from the respective columns - in principle, the construction of an Evans transformer core.
  • the core ring discs are preferably made of each wound strip material.
  • amorphous strip material can be used for this example, however, a layering of the sheet-like core material is possible.
  • a further variant of the transformer according to the invention is characterized in that the transformer core is formed from three rectangular-shaped core ring disks arranged in a triangle, wherein a respective gap is formed in the leg region between adjoining sections of the core ring disks. Again, it is possible to wrap a core ring disc either from a band-like material or even to layer a sheet-like material.
  • the transformer core is a toroidal core, by which the at least one core leg is formed.
  • the entire toroidal core is then to be regarded as a bent transformer core leg, at least two toroidal core modules being provided to form the gap running along the toroidal core according to the invention.
  • a further winding which is galvanically separated therefrom is arranged radially around the main winding.
  • the main winding is on the low side and the other winding is connected on the high side.
  • the transmission ratio of the transformer is determined. This is carried out in accordance with a further embodiment, three-phase. This is particularly useful when used in an energy distribution network.
  • the main winding arranged around a transformer core leg is electrically connected in series with an additional winding which is arranged around the same core leg.
  • the main winding arranged around a transformer core leg is electrically connected in series with an additional winding which is arranged around an adjacent transformer core leg.
  • a phase shift of 120 ° or 240 ° results between the voltage induced in the main winding and the auxiliary winding.
  • an oblique control with a 60 ° angle can be realized.
  • Fig. 1 shows an exemplary cross section of a first core leg 10, which is formed by two similar core leg modules each having the same cross-sectional areas 12, 14, wherein between a gap 16 is formed, which separates the cross-sectional areas 12 and 14 from each other.
  • a first cross-sectional area 12 which constitutes 50% of the total cross-sectional area of the core leg 10
  • two exemplary windings 18, 20 of a ribbon conductor are arranged, which are guided through the gap 16 and form part of an exemplary additional winding. Accordingly, since each of the two windings embraces only 50% of the total core leg cross-section, the voltage induced during operation in a respective winding is only 50% of the voltage of a conductor which encompasses the entire core leg cross-section. In this way, a finer voltage gradation of the taps is realized, which are identified by the reference numerals 22 and 24. These are intended to be connected to a tap changer, not shown, which in turn is connected to a main winding, not shown.
  • Fig. 2 shows an exemplary cross section of a second core leg 30, which is formed by two core leg modules, the cross-sectional areas 32 and 34 are divided approximately in the ratio 1: 3.
  • the first cross-sectional region 32 which makes up about 25% of the total core leg cross-sectional area, is encompassed by a first winding 38 of an additional winding guided through a gap 36, a second winding 40 of the additional winding embracing the entire core leg cross-section. Accordingly, the magnitude of the voltage induced in operation in the first winding 38 is 25% of the voltage induced in operation in the second winding 40.
  • the reference numerals 42 and 44 are intended to be connected to a tap changer, not shown, which in turn is connected to a main winding, not shown.
  • FIG. 3 shows an exemplary first transformer core 50 in a sectional view.
  • a rectangular-like outer core ring disk 52 for example, with a width of 2m and a height of 1.5m, encloses two also rectangular-like inner core ring disks 54, 56, so that a transformer core with three core legs 64 is formed, each core leg 64 in turn is formed from two adjacent leg portions of respective core ring discs. Between the leg portions, a respective gap 58 is formed, which is provided so that one or more winding conductors of a radially inwardly arranged around the respective core leg and not shown additional winding are passed through this.
  • Such a gap 58 can be realized very simply in that the sum of the outer widths of the inner core ring disks is smaller than the inner width of the outer core ring disk encompassing them.
  • Kernringusionn can be made for example of wound strip material or even from layered sheet metal.
  • Fig. 4 shows an exemplary second transformer core 70 in a sectional view top view.
  • Three rectangular-like core ring disks 72, 74, 76 are disposed adjacent in an equilateral triangle with adjacent leg portions forming a respective core leg 78, 80 with a respective gap 82 therebetween.
  • an exemplary first turn 84 of an auxiliary winding which encompasses 50% of the cross sectional area of the corresponding core leg and into which a correspondingly reduced voltage is induced during operation.
  • a second exemplary turn 86 of the auxiliary winding encompasses the entire cross-sectional area of the same core leg.
  • the additional winding is connectable by means of the terminals 88, 90, for example, with a tap changer, not shown, a main winding, not shown.
  • Fig. 5 shows an exemplary transformer 100, which is designed as a toroidal transformer.
  • the ring-like transformer core has a ring-like radially outer first part 102 and a ring-like radially inner part 104, wherein a gap is formed therebetween.
  • the transformer core it is also possible to form the transformer core not exactly circular, but also, for example, polygonal.
  • Two exemplary main windings 106a, b and two exemplary auxiliary windings 108a, b are provided along the ring-like extension of the transformer core and embracing them, which are connected to a low-side winding, as not shown.
  • the additional windings 108a, b encompass only a portion of the core cross-section and it is induced during operation, a correspondingly lower voltage per turn. In combination with corresponding taps and with, for example, a tap changer results in a fine-level control option of the low-voltage winding. Also arranged on the ring core are two further galvanically isolated windings 107a, b, which are connected to a high-voltage winding.
  • Fig. 6 1 shows an exemplary series connection of a main winding 112 and an additional winding 114 to a low-side winding with respective terminals 120, 122.
  • the auxiliary winding has a plurality of taps 116, wherein between adjacent taps in each case a winding guided according to the invention through a gap of an associated transformer core not shown, which encompasses, for example, in each case 1/6 of a respective core leg cross-section.
  • a tap changer 118 is provided to make electrical contact with a respectively selected tap 116 and to make a series connection of main winding 112 to the corresponding part of the auxiliary winding 114.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Die Erfindung betrifft einen Transformator, umfassend einen Transformatorkern (50, 70) mit wenigstens einem Kernschenkel (10, 30, 64, 78, 80, 102 + 104) sowie eine um den jeweiligen Kernschenkel (10, 30, 64, 78, 80, 102 + 104) in einem hohlzylinderähnlichen Wicklungsbereich (62) angeordnete Haupt- (106a,b, 112) und eine damit elektrisch verbundene kernnah angeordnete Zusatzwicklung (108a,b, 114). Der Querschnitt des Kernschenkels (10, 30, 64, 78, 80, 102 + 104) und/oder eines ausgebildeten Kernjochs des Transformatorkerns (50, 70) weisen in einer quer zu deren jeweiliger Erstreckung gedachten Querschnittsebene wenigstens zwei durch einen Durchbruch getrennte Bereiche (12, 14, 32, 34) auf und wenigstens eine Windung (18, 20, 38, 40, 84, 86) der jeweiligen Zusatzwicklung (108a,b, 114) ist durch den Durchbruch geführt.

Description

  • Die Erfindung betrifft einen Transformator, umfassend einen Transformatorkern mit wenigstens einem Kernschenkel sowie eine um den jeweiligen Kernschenkel in einem hohlzylinderähnlichen Wicklungsbereich angeordnete Haupt- und eine damit elektrisch verbundene kernnah angeordnete Zusatzwicklung.
  • Es ist allgemein bekannt, dass in elektrischen Energieverteilungsnetzen Transformatoren eingesetzt werden, um Netzteile unterschiedlicher Spannungsebenen miteinander zu koppeln. Derartige Transformatoren sind in einer verbraucher- beziehungsweise erzeugernahen Spannungsebene häufig als Trockentransformatoren ausgeführt und weisen beispielsweise Nennspannungen im Bereich von 1 kV bis 6kV unterspannungsseitig und Nennspannungen im Bereich von 10kV bis 30kV oberspannungsseitig auf, wobei entsprechende Nennleistungen im Bereich von beispielsweise 0,5 MVA bis 10 MVA liegen. Aber auch im Bereich von Windkraftanlagen finden derartige Transformatoren Anwendung, wobei sich hier die Nennleistung eines Transformators nach der Leistung einer zugehörigen Windkraftanlage richtet. Aufgrund der hohen Nennströme im Unterspannungsbereich, welche beispielsweise einige 100A betragen können, sind die Unterspannungswicklungen häufig aus einem Bandleiter gewickelt ausgeführt, wobei die Breite eines Bandleiters zumeist der kompletten axialen Länge einer jeweiligen Transformatorwicklung entspricht. Je nach Ausführungsform und Anforderungen des Transformators liegt die Anzahl an unterspannungsseitigen Windungen beispielsweise im Bereich um zehn Windungen, insbesondere auch bei Anwendungen für Windkraftanlagen, wo die generatorseits erzeugte Spannung entsprechend gering ist und durch den Transformator auf ein höheres Arbeitsniveau zu setzen ist.
  • Zu Regelungszwecken ist es eine bekannte Vorgehensweise, vorzugsweise die oberspannungsseitige(n) Wicklung(en) eines Transformators mit mehreren Anzapfungen zu versehen, welche beispielsweise mittels eines jeweiligen Stufenschalters anwählbar sind, so dass das Übersetzungsverhältnis des Transformators damit in einem Regelbereich veränderbar ist. Eine erhöhte Regelbarkeit ist bei Anwendungen für Windkraftanlagen erforderlich, um eine Anpassung des Transformators auf die aus unterschiedlichen Windverhältnissen resultierenden Randbedingungen sicher zu stellen.
  • Der Aktivteil eines Transformators weist einen geschlossenen Eisenkreis und wenigstens eine Ober- und Unterspannungswicklung mit ganzzahligen, geschlossenen Windungen um den jeweiligen Kernschenkel auf. Die induzierte Spannung je geschlossener Leiterschleife ist abhängig von Netzfrequenz, Flussdichte und Kernquerschnitt.
  • Nachteilig ist, einerseits, dass ein oberspannungsseitig angeordneter Stufenschalter aufgrund der hohen Spannungsbeanspruchung sehr komplex zu fertigen ist und dass die Regelung der Spannung minimal in derjenigen Spannungsstufung erfolgen kann, welche der induzierten Spannung einer kompletten Windung entspricht. Bei einer Spannungsreglung ist die minimale Regelstufe daher auf den Spannungsunterschied zwischen zwei Windungen limitiert. Dies ist insbesondere bei den zuvor erwähnten unterspannungsseitigen Bandwicklungen von Nachteil, weil aufgrund der relativ niedrigen Gesamtzahl an Windungen, beispielsweise im Bereich von zehn, eine feine Regelung im Bereich von beispielsweise +/- 15% in beispielsweise Schritten von 1,5% um die Nennübersetzung nicht möglich ist.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, einen Transformator bereitzustellen, welcher unterspannungsseitig eine Regelung der Spannung in kleineren Spannungsschritten ermöglicht, wobei ein entsprechender Stufenschalter aufgrund der dann geringeren Spannungsbeanspruchung einfacher zu fertigen ist.
  • Diese Aufgabe wird gelöst durch einen Transformator der eingangs genannten Art. Dieser ist dadurch gekennzeichnet, dass der Querschnitt des Kernschenkels und/oder eines ausgebildeten Kernjochs des Transformatorkerns in einer quer zu deren jeweiliger Erstreckung gedachten Querschnittsebene wenigstens zwei durch einen Durchbruch getrennte Bereiche aufweist und dass wenigstens eine Windung der jeweiligen Zusatzwicklung durch den Durchbruch geführt ist
  • Die Grundidee der Erfindung besteht darin, die induzierte Spannung einer kompletten Windung, welche zu Regelzwecken vorgesehen ist, dadurch zu reduzieren, dass diese nicht den Querschnitt des kompletten Kernschenkels beziehungsweise eines Kernjoches des Transformatorkerns sondern nur einen Teil des Querschnitts umschließt. Dadurch wird auch nur ein Teil des Flusses durch den Kernschenkel beziehungsweise durch das Kernjoch umgriffen und die in eine solche Windung induzierte Spannung ist entsprechend verringert. Hierzu ist erfindungsgemäß vorgesehen, dass der Kernschenkelquerschnitt beziehungsweise der Kernjochquerschnitt in einer quer zu deren jeweiliger Erstreckung gedachten Querschnittsebene wenigstens zwei Bereiche aufweisen, die durch einen Durchbruch voneinander getrennt sind. Die Erstreckung ist in Längsrichtung eines jeweiligen Schenkel- oder Jochabschnittes zu verstehen. In welchem Winkel innerhalb der Querschnittsebene ein Durchbruch verläuft ist prinzipiell unerheblich, maßgeblich sind die fertigungstechnischen Randbedingungen. Dieser Durchbruch ermöglicht es, eine oder auch mehrere Windungen der Zusatzwicklung hindurch zu führen, womit der Spannungshub der jeweiligen Windung verringert ist. Hierdurch ist in vorteilhafter Weise eine feinere Abstufung der Spannung der Zusatzwicklung erreicht.
  • Ein Durchbruch kann beispielsweise mittels einer Bohrung realisiert sein, welche durch den Kernschenkel oder das Kernjoch geführt ist. Bei einem geschichteten Transformatorkern kann durch entsprechende Aussparungen in einem Blechlagenbereich ebenfalls ein kanalähnlicher Durchbruch für einen beispielsweise rundlichen Leiter geschaffen werden. Entsprechend einer weiteren Ausgestaltungsform der Erfindung ist der Durchbruch als Spalt ausgeführt, welcher sich längs des Kernschenkels erstreckt. Ein derartiger Spalt lässt sich je nach Transformatorkerntyp besonders einfach realisieren.
  • Selbstverständlich ist es auch möglich, eine entsprechend höhere Anzahl an Spalten und damit auch an Querschnittsbereichen vorzusehen. Die Unterteilung kann prinzipiell beliebig sein um die Anforderungen an die Regelbarkeit zu erfüllen, z. B. 1/3, oder 1/4. Spezifische Spannungsstufen lassen sich aber auch realisieren, indem mehrere Windungen um einen Teil des Schenkels gelegt werden, beispielsweise 3 Windungen um 1/4 des Kernschenkelquerschnittes, 4 Windungen um 1/5 des Kernschenkelquerschnittes oder 9 Windungen um 1/10 des Kernschenkelquerschnittes. Werden die Wicklungen separat um einen Teil des Kernschenkelquerschnitts gelegt, kann die Beschaltung durch die Wahl des Wickelsinns beziehungsweise der Polarität der (Zusatz-) Windung genutzt werden, um diese entweder additiv oder subtraktiv wirken zu lassen. Damit ist es möglich, die für die Spannungsregelbarkeit notwendige Anzahl der (Zusatz-) Windungen zu reduzieren.
  • Dies soll anhand des Beispiels von 4 (Zusatz-) Windungen um 1/5 des Kernschenkelquerschnittes erläutert werden. Ohne Polaritätswechsel ergibt sich eine einstellbare Windungszahl von:
    1, = 1
    1 + 1/5 = 1,2,
    1 + 2/5 = 1,4,
    1 + 3/5 = 1,6,
    1 + 4/5 = 1,8,
    2 = 2.
  • Für einen darüber hinaus gehenden Regelbereich bietet es sich an, Anzapfungen von Windungen der Zusatzwicklung zu verwenden, welche den gesamten Kernschenkelquerschnitt umschließen. So werden die durch einen jeweiligen Spalt geführten Windungen letztendlich ausschließlich für die Feinregelstufen genutzt.
  • Mit Polaritätswechsel ergibt sich bei 2 (Zusatz-) Windungen um 1/5 des Kernschenkelquerschnittes unter Berücksichtigung eines Polaritätswechsels folgendes Beispiel:
    1, = 1,
    1 + 1/5 = 1,2,
    1 + 2/5 = 1,4,
    2 - 2/5 = 1.6,
    2 - 1/5 = 1,8,
    2 = 2.
  • Es aber ist auch möglich, gleichzeitig (Zusatz-) Windungen vorzusehen, welche unterschiedlich große Teile des Kernschenkelquerschnitts umschließen, z.B. 1/2 und 1/4. Beispielsweise lässt sich die Spannung in +/- 25% Schritten der Spannung einer vollen Windung regulieren, indem die Kernschenkelquerschnittsfläche in drei Bereiche unterteilt wird, deren Inhalte 50%, 25% und 25% der gesamten Querschnittsfläche betragen. Hiermit werden +/-25%, +/-50% und +/-75% Schritte der vollen Spannung einer Windung erzielt.
  • Entsprechend einer besonders bevorzugten Ausgestaltungsform des erfindungsgemäßen Transformators ist zumindest die Zusatzwicklung durch einen Flachbandleiter gebildet, idealerweise aber auch die Hauptwicklung. Ein Flachbandleiter eignet sich aufgrund seines hohen Füllfaktors in besonderer Weise für eine unterspannungsseitige Transformatorwicklung, wo bei relativ geringen Nennspannungen im Bereich von beispielsweise einigen 100V bis auch über 1 kV mit entsprechend hohen Strömen zu rechnen ist, welche durchaus 1000 A übersteigen können. Darüber hinaus ist ein Flachbandleiter fertigungstechnisch auch besonders einfach durch einen erfindungsgemäßen Spalt zu führen, welcher zwei Kernschenkelbereiche voneinander trennt. Typischerweise weist ein derartiger Flachbandleiter eine Breite auf, welche der gesamten axialen Höhe der jeweiligen Wicklung entspricht, so dass eine Leiterlage jeweils genau eine Windung umfasst.
  • Zur sicheren elektrischen Isolation des durch den Spalt geführten Wicklungsleiters ist es erfindungsgemäß vorgesehen, dass dieser zumindest im Bereich des Spaltes von einer zusätzlichen Schicht aus einem elektrischen Isolationsmaterial umgeben ist. Der Spalt ist durch den typischerweise geerdeten Transformatorkern gebildet und daher isolationstechnisch von besonderer Bedeutung, insbesondere weil - je nach aktueller Verschaltung der Zusatzwicklung - in den durch den Spalt geführten Windung(en) auch die volle Nennspannung anliegen kann. Optional ist es aber auch möglich, die Spaltwandungen von einer zusätzlichen Schicht Isolationsmaterial zu umgeben.
  • Entsprechend einer besonders bevorzugten Ausgestaltungsform des erfindungsgemäßen Transformators ist die Zusatzwicklung mit mehreren auf unterschiedliche Windungen zugreifenden Anzapfungen versehen. Idealerweise weist die Zusatzwicklung einen Feinabstufungsbereich auf, welcher durch Anzapfungen von durch den jeweiligen Spalt eines Kernschenkels geführten Windungen der Zusatzwicklung gekennzeichnet ist. Diese weisen jeweils eine induzierte Spannung auf, welche geringer ist als die induzierte Spannung einer den jeweiligen Kernschenkel komplett umfassenden Windung. Darüber hinaus kann ein Grobabstufungsbereich vorgesehen sein, welcher durch Anzapfungen von den Kernschenkel jeweils komplett umfassenden Windungen gekennzeichnet ist. Durch entsprechende Reihenschaltung des Grob- und des Feinabstufungsbereiches lässt sich eine Feinabstufung über einen weiten Bereich erzielen.
  • Gemäß einer weiteren erfindungsgemäßen Variante des Transformators sind Schaltmittel vorgesehen, um die Hauptwicklung wahlweise mit einer der Anzapfungen der Zusatzwicklung zu verbinden, so dass die Anzahl der aktiven Windungen der elektrisch verbundenen Haupt- und Zusatzwicklung damit anpassbar ist. Gegebenenfalls sind für Grob- und Feinabstufungsbereich der Zusatzwicklung separate Schaltmittel vorgesehen.
  • Entsprechend einer weiteren Ausgestaltungsform des Transformators umfassen die Schaltmittel einen Stufenschalter und/oder leistungselektronische Komponenten. Stufenschalter haben sich für die wahlweise Anwahl und Verschaltung von Anzapfungen einer Transformatorwicklung als Standardkomponente bewährt. Bedarfsweise sind auch leistungselektronische Komponenten wie Thyristoren oder IGBT vorgesehen.
  • Prinzipiell ist die Erfindung auf jeden beliebigen Transformatorkerntyp anwendbar, insbesondere auch auf Dreischenkelkerne, Fünfschenkelkerne oder auch einen Transformator mit dreieckförmigem Grundriss. Diese können beispielsweise geschichtet oder auch gewickelt sein. Einige besondere Ausgestaltungsformen sollen aber nachfolgend detaillierter dargestellt werden.
  • Gemäß einer weiteren Variante des erfindungsgemäßen Transformators ist der Transformatorkern aus einer rechteckähnlichen äußeren Kernringscheibe und wenigstens zwei von dieser umschlossenen rechteckähnlichen inneren Kernringscheiben gebildet, wobei im Schenkelbereich zwischen aneinander grenzenden Abschnitten der Kernringscheiben ein jeweiliger Spalt gebildet ist. Der Grundaufbau eines derartigen Transformatorkerns entspricht - abgesehen von den jeweiligen Spalten - prinzipiell dem Aufbau eines Evans Transformatorkern. Die Kernringscheiben sind vorzugsweise aus jeweils gewickeltem Bandmaterial gefertigt. Neben Standardtransformatorblech kann hierfür beispielsweise auch amorphes Bandmaterial verwendet werden. Selbstverständlich ist aber auch eine Schichtung des flächigen Kernmaterials möglich.
  • Eine weitere Variante des erfindungsgemäßen Transformators ist dadurch gekennzeichnet, dass der Transformatorkern aus drei rechteckähnlichen in einem Dreieck angeordneten Kernringscheiben gebildet ist, wobei im Schenkelbereich zwischen aneinander grenzenden Abschnitten der Kernringscheiben ein jeweiliger Spalt gebildet ist. Auch hier ist es möglich, eine Kernringscheibe entweder aus einem bandähnlichen Material zu wickeln oder aber auch aus einem blechähnlichen Material zu schichten.
  • Gemäß einer weiteren Ausgestaltungsform des erfindungsgemäßen Transformators ist der Transformatorkern ein Ringkern, durch welchen der wenigstens eine Kernschenkel gebildet ist. Der gesamte Ringkern ist dann als gebogener Transformatorkernschenkel anzusehen, wobei zur Bildung des erfindungsgemäßen längs des Ringkerns verlaufenden Spaltes wenigstens zwei Ringkernmodule vorgesehen sind.
  • Gemäß einer weiteren erfindungsgemäßen Ausgestaltung des Transformators ist radial um die Hauptwicklung eine galvanisch davon getrennte weitere Wicklung angeordnet. Hierbei ist die Hauptwicklung unterspannungsseitig und die weitere Wicklung oberspannungsseitig verschaltet. Durch das Verhältnis der jeweils aktiven ober- und unterspannungsseitigen Windungen zueinander ist das Übersetzungsverhältnis des Transformators bestimmt. Dieser ist gemäß einer weiteren Ausgestaltungsform dreiphasig ausgeführt. Dies ist insbesondere beim Einsatz in einem Energieverteilungsnetz sinnvoll.
  • Einer weiteren Ausgestaltungsform der Erfindung folgend ist die um einen Transformatorkernschenkel angeordnete Hauptwicklung elektrisch in Reihe geschaltet ist mit einer Zusatzwicklung, welche um denselben Kernschenkel angeordnet ist. Hierdurch entspricht die Phasenlage der in der Zusatzwicklung induzierten Spannung der Phasenlage der in der Hauptwicklung induzierten Spannung, beziehungsweise sie ist bei entsprechender Verschaltung mit Polaritätswechsel um 180° versetzt und in Phasenopposition. Hierdurch ist eine Längsregelung der Spannung erreicht.
  • Einer weiteren Ausgestaltungsform entsprechend ist die um einen Transformatorkernschenkel angeordnete Hauptwicklung elektrisch in Reihe geschaltet mit einer Zusatzwicklung, welche um einen benachbarten Transformatorkernschenkel angeordnet ist. Somit ergibt sich bei einem dreiphasigen Transformator eine Phasenverschiebung von 120° beziehungsweise 240° zwischen der in der Haupt- und der Zusatzwicklung induzierten Spannung. Bei einer entsprechenden Verschaltung mit Polaritätswechsel lässt sich so eine Schrägregelung mit einem 60° Winkel realisieren.
  • Weitere vorteilhafte Ausgestaltungsmöglichkeiten sind den weiteren abhängigen Ansprüchen zu entnehmen.
  • Anhand der in den Zeichnungen dargestellten Ausführungsbeispiele sollen die Erfindung, weitere Ausführungsformen und weitere Vorteile näher beschrieben werden.
  • Es zeigen:
  • Fig. 1
    einen exemplarischer Querschnitt eines ersten Kernschenkels,
    Fig. 2
    einen exemplarischer Querschnitt eines zweiten Kernschenkels,
    Fig. 3
    einen exemplarischen ersten Transformatorkern,
    Fig. 4
    einen exemplarischen zweiten Transformatorkern,
    Fig. 5
    einen exemplarischen Transformator sowie
    Fig. 6
    eine exemplarische Reihenschaltung von Haupt- und Zusatzwicklung.
  • Fig. 1 zeigt einen exemplarischer Querschnitt eines ersten Kernschenkels 10, welcher durch zwei gleichartige Kernschenkelmodule mit jeweils gleichen Querschnittsbereichen 12, 14 gebildet ist, wobei dazwischen ein Spalt 16 ausgeprägt ist, der die Querschnittsbereiche 12 und 14 voneinander trennt. Um den ersten Querschnittsbereich 12 herum, welcher 50% der Gesamtquerschnittsfläche des Kernschenkels 10 ausmacht, sind zwei exemplarische Windungen 18, 20 eines Bandleiters angeordnet, welche durch den Spalt 16 geführt und Teil einer exemplarischen Zusatzwicklung sind. Da jede der beiden Windungen nur 50% des gesamten Kernschenkelquerschnitts umgreift, beträgt dementsprechend die im Betrieb in eine jeweilige Windung induzierte Spannung nur 50% der Spannung eines Leiters, welcher den gesamten Kernschenkelquerschnitt umgreift. Auf diese Weise ist eine feinere Spannungsabstufung der Anzapfungen realisiert, welche mit den Bezugszeichen 22 und 24 gekennzeichnet sind. Diese sind dafür vorgesehen, mit einem nicht gezeigten Stufenschalter verbunden zu werden, welcher seinerseits mit einer nicht gezeigten Hauptwicklung verbunden ist.
  • Fig. 2 zeigt einen exemplarischen Querschnitt eines zweiten Kernschenkels 30, welcher durch zwei Kernschenkelmodule gebildet ist, deren Querschnittsbereiche 32 und 34 in etwa im Verhältnis 1:3 aufgeteilt sind. Der erste Querschnittsbereich 32, welcher etwa 25% der gesamten Kernschenkelquerschnittsfläche ausmacht, ist von einer ersten durch einen Spalt 36 geführten Windung 38 einer Zusatzwicklung umgriffen, wobei eine zweite Windung 40 der Zusatzwicklung den kompletten Kernschenkelquerschnitt umgreift. Dementsprechend beträgt die Höhe der im Betrieb in der ersten Windung 38 induzierten Spannung 25% der im Betrieb in der zweiten Windung 40 induzierten Spannung. Auf diese Weise ist eine feinere Spannungsabstufung der Anzapfungen realisiert welche mit den Bezugszeichen 42 und 44 gekennzeichnet sind. Diese sind dafür vorgesehen, mit einem nicht gezeigten Stufenschalter verbunden zu werden, welcher seinerseits mit einer nicht gezeigten Hauptwicklung verbunden ist.
  • Fig. 3 zeigt einen exemplarischen ersten Transformatorkern 50 in einer Schnittdarstellung. Eine rechteckähnliche äußere Kernringscheibe 52, beispielsweise mit einer Breite von 2m und einer Höhe von 1,5m, umschließt zwei ebenfalls rechteckähnliche innere Kernringscheiben 54, 56, so dass ein Transformatorkern mit drei Kernschenkeln 64 gebildet ist, wobei jeder Kernschenkel 64 seinerseits aus zwei aneinander grenzenden Schenkelabschnitten von jeweiligen Kernringscheiben gebildet ist. Zwischen den Schenkelabschnitten ist ein jeweiliger Spalt 58 ausgeprägt, welcher dafür vorgesehen ist, dass einer oder auch mehrere Wicklungsleiter einer radial innen um den jeweiligen Kernschenkel angeordneten und nicht gezeigten Zusatzwicklung durch diesen hindurchgeführt werden. Ein derartiger Spalt 58 lässt sich sehr einfach dadurch realisieren, dass die Summe der äußeren Breiten der inneren Kernringscheiben geringer ist als die innere Breite der diese umgreifenden äußeren Kernringscheibe. Kernringscheiben können beispielsweise aus gewickeltem Bandmaterial gefertigt sein oder aber auch aus geschichtetem Blech.
  • Fig. 4 zeigt einen exemplarischen zweiten Transformatorkern 70 in einer Schnittdarstellungsdraufsicht. Drei rechteckähnliche Kernringscheiben 72, 74, 76 sind benachbart in einem gleichseitigen Dreieck angeordnet, wobei aneinander grenzende Schenkelabschnitte einen jeweiligen Kernschenkel 78, 80 mit einem jeweiligen Spalt 82 dazwischen bilden. Um einen der beiden Schenkelabschnitte eines Kernschenkels 78, 80 herum und durch einen dazwischen liegenden Spalt hindurch ist eine exemplarische erste Windung 84 einer Zusatzwicklung geführt, welche 50% der Querschnittsfläche des entsprechenden Kernschenkels umgreift und in welche beim Betrieb eine entsprechend verringerte Spannung induziert wird. Eine zweite exemplarische Windung 86 der Zusatzwicklung umgreift die gesamte Querschnittsfläche desselben Kernschenkels. Die Zusatzwicklung ist mittels der Anschlüsse 88, 90 beispielsweise mit einem nicht gezeigten Stufenschalter einer nicht gezeigten Hauptwicklung verbindbar.
  • Fig. 5 zeigt einen exemplarischen Transformator 100, welcher als Ringkerntransformator ausgeführt ist. Der ringähnliche Transformatorkern weist einen ringähnlichen radial äußeren ersten Teil 102 und einen ringähnlichen radial inneren Teil 104 auf, wobei dazwischen ein Spalt ausgeprägt ist. Selbstverständlich ist es auch möglich, den Transformatorkern nicht exakt kreisförmig, sondern auch beispielsweise polygonal auszugestalten. Längs der ringähnlichen Erstreckung des Transformatorkerns und diesen umgreifend sind zwei exemplarische Hauptwicklungen 106a,b und zwei exemplarische Zusatzwicklungen 108a,b vorgesehen, welche - wie nicht dargestellt - zu einer unterspannungsseitigen Wicklung verschaltet sind. Die Zusatzwicklungen 108a,b umgreifen lediglich einen Teil des Kernquerschnitts und es wird im Betrieb eine entsprechend geringere Spannung je Windung induziert. In Kombination mit entsprechenden Anzapfungen und mit beispielsweise einem Stufenschalter ergibt sich eine feinstufige Regelmöglichkeit der unterspannungsseitigen Wicklung. Ebenfalls auf dem Ringkern angeordnet sind zwei weitere galvanisch getrennte Wicklungen 107a,b, welche zu einer Oberspannungswicklung verschaltet sind.
  • Fig. 6 zeigt eine exemplarische Reihenschaltung einer Hauptwicklung 112 und einer Zusatzwicklung 114 zu einer unterspannungsseitigen Wicklung mit jeweiligen Anschlüssen 120, 122. Die Zusatzwicklung weist mehrere Anzapfungen 116 auf, wobei zwischen benachbarten Anzapfungen jeweils eine erfindungsgemäß durch einen Spalt eines nicht gezeigten zugehörigen Transformatorkerns geführte Windung angeordnet ist, welche beispielsweise jeweils 1/6 eines jeweiligen Kernschenkelquerschnittes umgreift. Ein Stufenschalter 118 ist dafür vorgesehen, einen elektrischen Kontakt mit einer jeweils ausgewählten Anzapfung 116 herzustellen und eine Reihenschaltung von Hauptwicklung 112 mit dem entsprechenden Teil der Zusatzwicklung 114 herzustellen.
  • Bezugszeichenliste
  • 10
    exemplarischer Querschnitt eines ersten Kernschenkels
    12
    erster Bereich des Querschnitts des ersten Kernschenkels
    14
    zweiter Bereich des Querschnitts des ersten Kernschenkels
    16
    erster Spalt
    18
    erste Windung der Zusatzwicklung um ersten Kernschenkel
    20
    zweite Windung der Zusatzwicklung um ersten Kernschenkel
    22
    erste Anzapfung der Zusatzwicklung um ersten Kernschenkel
    24
    zweite Anzapfung der Zusatzwicklung um ersten Kernschenkel
    30
    exemplarischer Querschnitt eines zweiten Kernschenkels
    32
    erster Bereich des Querschnitts des zweiten Kernschenkels
    34
    zweiter Bereich des Querschnitts des zweiten Kernschenkels
    36
    zweiter Spalt
    38
    erste Windung der Zusatzwicklung um zweiten Kernschenkel
    40
    zweite Windung der Zusatzwicklung um zweiten Kernschenkel
    42
    erste Anzapfung der Zusatzwicklung um zweiten Kernschenkel
    44
    zweite Anzapfung der Zusatzwicklung um zweiten Kernschenkel
    50
    exemplarischer erster Transformatorkern
    52
    äußere Kernringscheibe
    54
    erste innere Kernringscheibe
    56
    zweite innere Kernringscheibe
    58
    dritter Spalt
    60
    vierter Spalt
    62
    hohlzylinderähnlicher Wicklungsbereich
    64
    dritter Kernschenkel
    70
    exemplarischer zweiter Transformatorkern
    72
    erste Kernringscheibe
    74
    zweite Kernringscheibe
    76
    dritte Kernringscheibe
    78
    vierter Kernschenkel
    80
    fünfter Kernschenkel
    82
    fünfter Spalt
    84
    erste Windung der Zusatzwicklung
    86
    zweite Windung von Zusatzwicklung
    88
    erster Anschluss von Zusatzwicklung
    90
    zweiter Anschluss von Zusatzwicklung
    100
    exemplarischer Transformator
    102
    erster Teil des Transformatorkerns
    104
    zweiter Teil des Transformatorkerns
    106a,b
    Hauptwicklung
    107a,b
    galvanisch getrennte weitere Wicklung
    108a,b
    Zusatzwicklung
    110
    exemplarische Reihenschaltung von Haupt- und Zusatzwicklung
    112
    Hauptwicklung
    114
    Zusatzwicklung
    116
    Anzapfungen
    118
    Stufenschalter
    120
    erster Anschluss
    122
    zweiter Anschluss

Claims (14)

  1. Transformator, umfassend einen Transformatorkern (50, 70) mit wenigstens einem Kernschenkel (10, 30, 64, 78, 80, 102 + 104) sowie eine um den jeweiligen Kernschenkel (10, 30, 64, 78, 80, 102 + 104) in einem hohlzylinderähnlichen Wicklungsbereich (62) angeordnete Haupt- (106a,b, 112) und eine damit elektrisch verbundene kernnah angeordnete Zusatzwicklung (108a,b, 114),
    dadurch gekennzeichnet,
    dass der Querschnitt des Kernschenkels (10, 30, 64, 78, 80, 102 + 104) und/oder eines ausgebildeten Kernjochs des Transformatorkerns (50, 70) in einer quer zu deren jeweiliger Erstreckung gedachten Querschnittsebene wenigstens zwei durch einen Durchbruch getrennte Bereiche (12, 14, 32, 34) aufweist und dass wenigstens eine Windung (18, 20, 38, 40, 84, 86) der jeweiligen Zusatzwicklung (108a,b, 114) durch den Durchbruch geführt ist.
  2. Transformator nach Anspruch 1, dadurch gekennzeichnet, dass der Durchbruch ein Spalt ist, welcher sich längs des Kernschenkels (10, 30, 64, 78, 80, 102 + 104) erstreckt.
  3. Transformator nach Anspruch 2, dadurch gekennzeichnet, dass zumindest die Zusatzwicklung (108a,b, 114) durch einen Flachbandleiter gebildet ist.
  4. Transformator nach einem Anspruch 3, dadurch gekennzeichnet, dass der Flachbandleiter zumindest im Bereich des Durchbruchs (16, 36, 58, 60, 82) von einer zusätzlichen Schicht aus elektrischem Isolationsmaterial umgeben ist.
  5. Transformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Zusatzwicklung (108a,b, 114) mit mehreren auf unterschiedliche Windungen (18, 20, 38, 40, 84, 86) der Zusatzwicklung (108a,b, 114) zugreifenden Anzapfungen (22, 24, 42, 44, 116) versehen ist.
  6. Transformator nach Anspruch 4, dadurch gekennzeichnet, dass Schaltmittel vorgesehen sind, um die Hauptwicklung wahlweise mit einer der Anzapfungen (22, 24, 42, 44, 116) zu verbinden, so dass die Anzahl der aktiven Windungen der elektrisch verbundenen Haupt- (106a,b, 112) und Zusatzwicklung (108a,b, 114) damit anpassbar ist.
  7. Transformator nach Anspruch 6, dadurch gekennzeichnet, dass die Schaltmittel einen Stufenschalter (118) und/oder leistungselektronische Komponenten umfassen.
  8. Transformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Transformatorkern (50, 70) aus einer rechteckähnlichen äußeren Kernringscheibe (52) und wenigstens zwei von dieser umschlossenen rechteckähnlichen inneren Kernringscheiben (54, 56) gebildet ist, wobei im Schenkelbereich zwischen aneinander grenzenden Abschnitten der Kernringscheiben (52, 54, 56) ein jeweiliger Spalt (16, 36, 58, 60, 82) gebildet ist.
  9. Transformator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Transformatorkern (50, 70) aus drei rechteckähnlichen in einem Dreieck angeordneten Kernringscheiben (72, 74, 76) gebildet ist, wobei im Schenkelbereich zwischen aneinander grenzenden Abschnitten der Kernringscheiben (72, 74, 76) ein jeweiliger Spalt (16, 36, 58, 60, 82) gebildet ist.
  10. Transformator nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Transformatorkern (50, 70) ein Ringkern ist, durch welchen der wenigstens eine Kernschenkel (10, 30, 64, 78, 80, 102 + 104) gebildet ist.
  11. Transformator nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass radial um die Hauptwicklung (106a,b, 112) eine galvanisch getrennte weitere Wicklung (107a,b) angeordnet ist.
  12. Transformator nach Anspruch 11, dadurch gekennzeichnet, dass dieser dreiphasig ausgeführt ist.
  13. Transformator nach Anspruch 12, dadurch gekennzeichnet, dass die um einen Transformatorkernschenkel (10, 30, 64, 78, 80) angeordnete Hauptwicklung (106a,b, 112) elektrisch in Reihe geschaltet ist mit einer Zusatzwicklung (108a,b, 114), welche um denselben Kernschenkel (10, 30, 64, 78, 80, 102 + 104) angeordnet ist.
  14. Transformator nach Anspruch 12, dadurch gekennzeichnet, dass die um einen Transformatorkernschenkel (10, 30, 64, 78, 80, 102 + 104) angeordnete Hauptwicklung (106, 112) elektrisch in Reihe geschaltet ist mit einer Zusatzwicklung (106a,b, 114), welche um einen benachbarten Transformatorkernschenkel (10, 30, 64, 78, 80, 102 + 104) angeordnet ist.
EP12006409.2A 2012-09-12 2012-09-12 Transformator Active EP2709124B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES12006409.2T ES2532363T3 (es) 2012-09-12 2012-09-12 Transformador
EP12006409.2A EP2709124B1 (de) 2012-09-12 2012-09-12 Transformator
CN201380047350.7A CN104603891B (zh) 2012-09-12 2013-08-14 变压器
PCT/EP2013/002451 WO2014040682A1 (de) 2012-09-12 2013-08-14 Transformator
US14/632,400 US20150170821A1 (en) 2012-09-12 2015-02-26 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12006409.2A EP2709124B1 (de) 2012-09-12 2012-09-12 Transformator

Publications (2)

Publication Number Publication Date
EP2709124A1 true EP2709124A1 (de) 2014-03-19
EP2709124B1 EP2709124B1 (de) 2015-01-07

Family

ID=46939451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12006409.2A Active EP2709124B1 (de) 2012-09-12 2012-09-12 Transformator

Country Status (5)

Country Link
US (1) US20150170821A1 (de)
EP (1) EP2709124B1 (de)
CN (1) CN104603891B (de)
ES (1) ES2532363T3 (de)
WO (1) WO2014040682A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183378A (zh) * 2014-09-10 2014-12-03 许玉蕊 一种线包品字形排列的三相变压器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383034B1 (ja) * 2017-03-13 2018-08-29 ファナック株式会社 リアクトル
CN107170567B (zh) * 2017-04-18 2023-06-09 重庆祥龙电气股份有限公司 一种同期隔离变压器
DE102017126473A1 (de) * 2017-11-10 2019-05-16 Abb Schweiz Ag Transformator zur Verwendung in einem Schienenfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050432A1 (de) * 1980-10-03 1982-04-28 Ford Motor Company Limited Transformator
WO1999014771A1 (en) * 1997-09-17 1999-03-25 Daxin Xie Transforming apparatus
DE10042283A1 (de) * 2000-08-29 2002-03-14 Fachhochschule Konstanz Fachbe Drosselspule
EP1852892A1 (de) * 2004-12-22 2007-11-07 Jin Li Kombinierter magnetenergiegenerator und magnetenergielampe des innen-durch-typs
US20100103585A1 (en) * 2008-10-29 2010-04-29 General Electric Company Inductive and capacitive components integration structure
WO2011099976A1 (en) * 2010-02-12 2011-08-18 Cramer Coil & Transformer Co. Integrated common mode, differential mode audio filter inductor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2078688A (en) * 1935-11-29 1937-04-27 Westinghouse Electric & Mfg Co Variable voltage transformer
US2276032A (en) * 1940-07-31 1942-03-10 Westinghouse Electric & Mfg Co Adjustable reactance transformer
US4307334A (en) * 1978-12-14 1981-12-22 General Electric Company Transformer for use in a static inverter
JPS63253608A (ja) * 1987-04-10 1988-10-20 Hitachi Ltd 高周波加熱用電源装置
TR199802475T2 (xx) * 1996-05-29 1999-03-22 Asea Brown Boveri Ab D�ner elektrik makinesi tesisleri.
US6856230B2 (en) * 2003-05-27 2005-02-15 Weimin Lu Harmonic filtering circuit with special transformer
US7864013B2 (en) * 2006-07-13 2011-01-04 Double Density Magnetics Inc. Devices and methods for redistributing magnetic flux density
AT506454B1 (de) * 2008-02-22 2015-10-15 Egston System Electronics Eggenburg Gmbh Wandleranordnung
EP2277183B1 (de) * 2008-05-13 2011-09-07 ABB Technology AG Modularer ringkern
KR101026357B1 (ko) * 2010-09-10 2011-04-05 주식회사 케이피 일렉트릭 3상 델타형 변압기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0050432A1 (de) * 1980-10-03 1982-04-28 Ford Motor Company Limited Transformator
WO1999014771A1 (en) * 1997-09-17 1999-03-25 Daxin Xie Transforming apparatus
DE10042283A1 (de) * 2000-08-29 2002-03-14 Fachhochschule Konstanz Fachbe Drosselspule
EP1852892A1 (de) * 2004-12-22 2007-11-07 Jin Li Kombinierter magnetenergiegenerator und magnetenergielampe des innen-durch-typs
US20100103585A1 (en) * 2008-10-29 2010-04-29 General Electric Company Inductive and capacitive components integration structure
WO2011099976A1 (en) * 2010-02-12 2011-08-18 Cramer Coil & Transformer Co. Integrated common mode, differential mode audio filter inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183378A (zh) * 2014-09-10 2014-12-03 许玉蕊 一种线包品字形排列的三相变压器

Also Published As

Publication number Publication date
CN104603891A (zh) 2015-05-06
EP2709124B1 (de) 2015-01-07
WO2014040682A1 (de) 2014-03-20
ES2532363T3 (es) 2015-03-26
CN104603891B (zh) 2017-08-08
US20150170821A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
EP2462596B1 (de) Stromkompensierte drossel und verfahren zur herstellung einer stromkompensierten drossel
EP3430715B1 (de) Umrichteranordnung mit sternpunktbildner
EP2428967B1 (de) Transformatorwicklung
EP2709124B1 (de) Transformator
DE3718383A1 (de) Hochfrequenz-leistungsuebertrager
EP2528072B1 (de) Transformatorwicklung
EP2863403B1 (de) Transformator
EP1529296B1 (de) Wicklungsanordnung
WO2013124298A2 (de) Multiphasenwandler
EP1722997A1 (de) Magnetpol für magnetschwebefahrzeug
WO2009146835A2 (de) Transformator
DE3108161A1 (de) Wicklung fuer eine statische induktionsvorrichtung
DE102014117551B4 (de) Mehrfachdrossel und Leistungswandler mit einer Mehrfachdrossel
EP3363055B1 (de) Hochenergie-stossstrombegrenzer
EP3420570B1 (de) Elektrisches hochspannungsgerät mit einer regelwicklungsgruppe
EP2863402A1 (de) Bandwicklung für Hochspannungstransformatoren
WO1995011514A1 (de) Leistungstransformator
EP0163907A1 (de) Hochspannungswicklung mit gesteuerter Spannungsverteilung für Transformatoren
EP1183696B1 (de) Kapazitiv gesteuerte hochspannungswicklung
CH208632A (de) Anordnung zur Schliessung und Unterbrechung eines Wechselstromkreises.
EP0017019B1 (de) Transformator oder Drossel mit einer Wicklung mit Anzapfungen
EP3526889A1 (de) Umrichteranordnung mit sternpunktbildner
WO2009138099A1 (de) Koppelung von transformatorwicklungsmodulen
DE2841592C2 (de) Stufenwicklung für Transformatoren und Drosseln für sehr große Ströme
DE3126972A1 (de) Schaltungsanordnung fuer die wicklungen von doppelstocktransformatoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140818

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 27/38 20060101ALI20140903BHEP

Ipc: H01F 27/24 20060101AFI20140903BHEP

Ipc: H01F 30/12 20060101ALI20140903BHEP

Ipc: H01F 27/28 20060101ALI20140903BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141017

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 706238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012001996

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2532363

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150326

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150507

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012001996

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150912

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ABB SCHWEIZ AG

Effective date: 20171218

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180426 AND 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 706238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ABB POWER GRIDS SWITZERLAND AG

Effective date: 20210520

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211104 AND 20211110

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: HITACHI ENERGY SWITZERLAND AG

Effective date: 20220526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012001996

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012001996

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240718 AND 20240724