EP2707126A1 - Nanostructured membranes and uses thereof - Google Patents

Nanostructured membranes and uses thereof

Info

Publication number
EP2707126A1
EP2707126A1 EP12731021.7A EP12731021A EP2707126A1 EP 2707126 A1 EP2707126 A1 EP 2707126A1 EP 12731021 A EP12731021 A EP 12731021A EP 2707126 A1 EP2707126 A1 EP 2707126A1
Authority
EP
European Patent Office
Prior art keywords
thickness
membrane
polymer substrate
ion
membranes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12731021.7A
Other languages
German (de)
French (fr)
Inventor
Marie-Claude Clochard
Travis Wade
Haad Bessbousse
Enrico GALLINO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Ecole Polytechnique
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Ecole Polytechnique, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2707126A1 publication Critical patent/EP2707126A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0032Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/042Nanopores, i.e. the average diameter being smaller than 0,1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to nanostructured membranes, their process of preparation and their use as an ion exchange membrane, as separating electrode:
  • an electrode for voltammetric analysis and more particularly as an electrode for anodic redissolution.
  • H + exchange membranes such as those sold under the name Nafion®. These membranes are expensive and very thick, which results in a fairly high electrical resistance. Moreover, these membranes usually have a poorly defined porous structure [2a] which tends to limit the ionic diffusion within these membranes.
  • Ion exchange membranes can also be an alternative to separating electrodes implemented in batteries, especially lithium batteries. These membranes are generally quite thick and have problems of degradation, which can cause overheating problems difficult to control.
  • the ion selective electrodes described to date in the literature involve membranes which are generally prepared by incorporating specific detection chemical compounds (ionophores) into a monomer mixture, polymerizing and then drying the mixture. This leads to obtaining so-called “zero current fluxes” phenomena which limit their detection threshold [1]. These membranes generally have a thickness greater than 100 ⁇ , which induces slow response times and high strengths. Thus, these electrodes are generally not sensitive enough to detect low concentrations or have problems of loss of sensitivity due to interferences between different ionic analytes.
  • Electrodes for voltammetric analysis acceptable for the environment generally have unsatisfactory sensitivity to water quality standards.
  • New non-toxic electrodes manufactured with functionalized nanoporous membranes can overcome this sensitivity problem [4a, b].
  • the object described in this invention is a variant of these measures.
  • New anodic redissolution electrodes to replace mercury drop electrodes are fabricated with functionalized nanoporous membranes. But, they generally have a too large pore depth, making it difficult to clean them for reuse [4a, b],
  • these membranes may comprise an extremely thin ion-passing zone that allows an extremely rapid return to equilibrium.
  • the effective zone for passing ions may be between 0.5 ⁇ and 9 ⁇ .
  • the invention relates to a method for preparing a nanostructured membrane, said method comprising the steps of:
  • nanostructured membrane comprising:
  • nanopores whose depth (p) is less than the thickness of the polymer substrate (e), and
  • the process according to the invention optionally comprises a step of recovering the nanostructured membrane obtained.
  • nanostructured membranes designates latent-track membranes due to the passage of heavy ions ("ion tracks”), these latent traces being partially revealed or chemically etched (“partially etched ion tracks membranes”). To form nanopores.
  • nanopores small pores, the depth of which is generally between 10 nm and 10 ⁇ m and in particular between 100 nm and 5 ⁇ m, depending on the thickness (e) of the polymer substrate and the chemical revealing conditions. .
  • Processes comprising steps of irradiation, chemical revelation and functionalization of polymeric films have already been described in the prior art [2,4-11].
  • Figure 1 is a schematic representation of this method. However, this process leads to the formation of a network of cylindrical nanotubes passing through both sides of the thickness of the polymer substrate.
  • FIG. 2 The process according to the invention is illustrated in FIG. 2. It differs from the process of the prior art, in particular in that the step of chemical revelation is partial.
  • this process thus makes it possible to form nanopores of defined and controlled size while preserving a more or less thick efficient passage zone of ions, which can be functionalized, in particular for ion exchange.
  • the method of the invention comprises a step of irradiating a polymer substrate, this irradiation step having the function of creating free radicals in the constituent polymer of the substrate, this creation of free radicals being a consequence of the transfer of energy of the irradiation to said substrate.
  • the irradiation step of the polymer substrate can be carried out according to the methods described in the prior art [2,4a-11].
  • the polymer substrate can be irradiated with accelerated heavy ions.
  • heavy ions are ions whose atomic mass is greater than that of carbon. Generally, these are ions selected from Krypton ( 78 Kr I5 + , 78 Kr 31+ ), Xenon ( , 29 Xe 29+ , 129 Xe 54+ ), Lead ( 23S Pb 56+ ) or Nickel ( 58 Ni 25+ ).
  • Such "moderately" heavy ions advantageously make it possible to control the nanostructuration of the membranes during the process of the invention, that is to say to control the pore volume, in particular their depth (p) and / or the thickness the effective zone of ion passage (e).
  • this step may consist in bombarding the polymer substrate with a heavy ion beam, under an inert atmosphere, with a mean energy flow of 10 7 to 10 cm -2 at room temperature [2, 5-7 , 9, 11]
  • This irradiation leads to the formation of free radicals in the passage of ions, ie to latent traces of the passage of ions.
  • the heavy energy vector ion passes through the matrix, its speed decreases.
  • the ion gives up its energy, creating damaged areas, whose shape is approximately cylindrical. These areas are called latent traces and include two regions: the heart and the halo of the trace.
  • the core of the trace is a totally degraded zone, namely an area where there is rupture of the constituent bonds of the polymer material generating free radicals.
  • This core is also the region where the heavy ion transmits a considerable amount of energy to the electrons of the polymeric material. Then, from this heart, there is emission of secondary electrons, which will cause defects far from the heart, thus generating a halo.
  • the energy deposition is distributed according to the irradiation angle and is inhomogeneous. It is possible to create traces arranged in a predetermined pattern, and thereby to induce grafting of compounds only in the above-mentioned traces. Thus, it is possible to induce different grafting patterns by modulating the irradiation angle with respect to the normal of the faces of the polymer substrate.
  • the polymer substrate may be chosen from fluoropolymers including polyvinylidene fluoride (PVDF), poly (difluoride divinylidene-co-hexafluoropropylene, P (VDF-co-HFP) and polyimides such as those sold under the name Kapton®.
  • PVDF polyvinylidene fluoride
  • P (VDF-co-HFP) polyimides
  • Kapton® polyimides
  • Polymeric substrates based on fluoropolymers are advantageous in that they are resistant to corrosion, have good mechanical properties and low gas permeation. They are therefore particularly suitable for constituting fuel cell membranes.
  • the polymer is polyvinylidene fluoride (PVDF)
  • the thickness (e) of the polymer substrate is generally between 5 ⁇ and 25 ⁇ , and is preferably of the order of 10 ⁇ .
  • This step generally comprises contacting the irradiated polymer substrate obtained in step i) with a chemical revealing solution, generally a solution of a reagent able to hydrolyze the latent traces so as to to form nanopores (partial revelation) or even hollow channels (total revelation), instead of these.
  • a chemical revealing solution generally a solution of a reagent able to hydrolyze the latent traces so as to to form nanopores (partial revelation) or even hollow channels (total revelation), instead of these.
  • the latent traces generated have short chains of polymers formed by splitting existing chains during the passage of the ion in the material during irradiation.
  • the rate of hydrolysis during the revelation is greater than that of the non-irradiated parts.
  • the reagents capable of ensuring the revelation of the latent traces are a function of the constituent polymer of the substrate.
  • This solution generally comprises an oxidizing agent such as potassium permanganate (KMnO) or perchloric acid (HClO 4 ) and a strong base, such as an alkali metal or alkaline-earth metal hydroxide, in aqueous solution, in particular hydroxide hydroxide. potassium.
  • oxidizing agent such as potassium permanganate (KMnO) or perchloric acid (HClO 4 )
  • a strong base such as an alkali metal or alkaline-earth metal hydroxide
  • this chemical revelation step can be carried out in the presence of KOH (10 N) and KMnO 4 (0.25 M) as an oxidizing agent when the polymer substrate is a PVDF-based substrate. [8b], or of HC10 4 (2 N) as an oxidizing agent when the polymer substrate is a polyimide-based substrate [8c],
  • the pH of this solution is generally strongly basic, in particular greater than or equal to 9, in particular greater than or equal to 15.
  • the membrane After contacting with the revealing solution, the membrane is generally rinsed with an aqueous solution, for example a solution of sodium disulphite. The membrane is then generally dried under vacuum at a temperature usually between 40 and 60 ° C.
  • an aqueous solution for example a solution of sodium disulphite.
  • p max e / 2 in the case of a total revelation, from both surfaces of the polymer substrate subjected to the same conditions of revelation, where e is the thickness of the irradiated film.
  • can vary depending on the chemical revelation conditions, especially as a function of the concentration of the revealing solution, the nature of the ion incident during of the irradiation step and the temperature [5], this duration can be readily determined by those skilled in the art, for example by determining in advance the minimum time necessary to obtain a complete revelation.
  • the revelation of these latent traces is partial, the only part of each of these traces is revealed, so as to form nanopores of depth (p) ⁇ (e), the crossing not the thickness of the membrane, the other part being kept in the latent trace state, of thickness (t).
  • this step is performed over a time ⁇ sufficiently short to avoid the formation of cylindrical nanopores through the entire thickness of the membrane.
  • This chemical revelation can be visualized by field scanning electron microscopy (FESEM) and / or followed by ionic conductivity.
  • the depth of each of the nanopores (p) and the thickness (t) of each of the latent traces are directly proportional to the revelation time ⁇ .
  • This chemical revelation step can be carried out on a single surface or on both surfaces of the polymer substrate, under identical or different conditions, especially during identical or different revelation times.
  • the process according to the invention advantageously makes it possible to control the porous structure of the membrane, while allowing access to symmetrical ( Figure 2) or asymmetrical nanostructured membranes.
  • the chemical development step is carried out on both surfaces of the polymer substrate, under the same conditions, so as to obtain symmetrical nanostructured membranes.
  • the depth of each nanopore (p) is between 0.25 and 4.75 ⁇ , in particular between 0.25 and 2.25 ⁇ for a membrane of 10 ⁇ of thickness (e).
  • the thickness (t) of the residual latent traces is between 0.5 and 9.5 ⁇ , for a membrane with a thickness of 10 ⁇ (e).
  • the invention furthermore comprises a step iii), subsequent to step ii), of radiografting functionalization of the nanostructured membranes obtained.
  • radiografting functionalization consists of a step of grafting the polymer substrate by radical reaction with at least one appropriate compound.
  • this step comprises contacting said polymer substrate obtained in step ii) with said compound, which comprises:
  • At least one ion exchanger or complexing group at least one ion exchanger or complexing group.
  • group capable of reacting by radical reaction to form a covalent bond mention may in particular be made of unsaturated alkyl groups, such as alkenyl or alkynyl groups.
  • ion exchange and / or complexing group means chemical groups capable of interacting with ionic species, either via electrostatic interactions and the formation of ionic bonds, in the case of ion exchange groups, either via orbital complexation, in the case of ion complexing groups.
  • the ion exchange groups are in particular positively or negatively charged groups capable of forming an ionic bond with negatively and positively charged ions, respectively.
  • ion exchange groups mention may be made especially of the group -SO 3 H.
  • Examples of ion complexing groups include crown ethers.
  • the nanostructured membranes are preferably functionalized with charged polymers and / or ionophore molecules.
  • the covalent grafting of charged polymers and / or ionophore molecules in the traces is radio-induced.
  • the grafting of the polymers can thus be carried out by radical polymerization of vinyl monomers in the traces.
  • the ionophore molecules can be additionally attached by a covalent bond to the radio-grafted polymer
  • the charged polymers may especially be anionic polymers, useful for producing cation exchange membranes, such as polycrylic acid, polystyrene, sulfonic acid and modified polydiglycidyl methacrylate (DMGA).
  • anionic polymers useful for producing cation exchange membranes, such as polycrylic acid, polystyrene, sulfonic acid and modified polydiglycidyl methacrylate (DMGA).
  • Li / ion batteries a lithiation step is necessary after the sulfonic acid grafting. This step is done with Li salt as LiOH [20c].
  • the charged polymers may be cationic polymers such as polymers containing ammonium groups -NH 3 + , polyamines and polyimines. These polymers are especially useful for the preparation of anion exchange membranes.
  • the ionophore molecules in the sense of the present description are molecules capable of complexing ions, including in particular crown ethers and cryptands.
  • ions including in particular crown ethers and cryptands.
  • glucose oxidase [21] 4-tert-butylcalix [4] arene-tetrakis (N, N'-dimethylthioacetamide) [22], and dibenzyl-14-cro n-4 [ 23], valinomycin [24], polyazamacrocycle with carbamoyl arms (TETRAM) [24a], ethylenediamine tetraacetic acid (EDTA), dipicolamine and the derivatives of these compounds.
  • TTRAM polyazamacrocycle with carbamoyl arms
  • EDTA ethylenediamine tetraacetic acid
  • the method may comprise an additional step of electron irradiation, after step ii) of partial chemical revelation on the one hand, and before step iii) of functionalization, on the other hand.
  • This step may involve subjecting the polymer substrate to an electron beam. More particularly, this step may consist of scanning the matrix of the polymer substrate with an accelerated electron beam, this beam may be emitted by an electron accelerator (for example, a Van de Graaf accelerator, 2.5 MeV).
  • an electron accelerator for example, a Van de Graaf accelerator, 2.5 MeV.
  • the energy deposition is homogeneous, which means that the free radicals created by this irradiation will be evenly distributed in the volume of the matrix.
  • This electron irradiation advantageously makes it possible to re-insufflate radicals and thus make the membrane even more active with respect to radio-grafting, which then becomes, however, less localized.
  • the method according to the present application comprises a step iv), subsequent to step ii), depositing a layer of a conductive material on the surface of the polymer substrate, this layer being sufficiently thin to do not obstruct the nanopores.
  • This step iv) can be, if necessary, carried out before or after step iii) of functionalization of the residual latent traces. Preferably, this step iv) is carried out after step iii).
  • the conductive material may be deposited on the surface of the polymer substrate by sputtering or evaporation.
  • the material obtained can be analyzed by field effect scanning electron microscopy (SEM) to verify that the nanopores are not obstructed by the layer of deposited conductive material.
  • the thickness of the layer of conductive material may be between 30 nm and 60 nm, in particular between 40 nm and 50 nm.
  • the conductive material may be a material based on metal or carbon, in particular amorphous carbon. It is preferably chosen from metals which can be deposited by evaporation or sputtering.
  • the conductive material may be selected from silver, gold, platinum, carbon, nickel, cobalt or cobalt oxide.
  • the invention relates to a nanostructured membrane that can be obtained according to the method of the invention.
  • the invention relates to a nanostructured membrane based on a polymer substrate of thickness (e) comprising:
  • Nanopores whose depth (p) is less than the thickness of the polymer substrate (e);
  • membrane based on a polymer substrate is meant a membrane comprising or consisting of a polymer substrate.
  • the invention relates to the use of a nanostructured membrane as an ion exchange membrane, in particular for electrodialysis, in ion-specific electrodes, as separating electrodes in fuel cells or batteries, in particular lithium batteries, or as working electrode in anodic redissolution devices.
  • the ion exchange membranes according to the invention are particularly useful as ion selective electrodes, in that they allow access to very fast response times because of their small thickness, generally order of 5 to 25 ⁇ , and in particular of the order of 10 ⁇ , including 0.5 to 9 ⁇ thick for the effective zone of ion passage. Moreover, since the thickness (t) of the functionalized zone, i.e. the ion exchange domain, is even smaller, it makes it possible to considerably reduce the electrical resistance of the membrane. Finally, the ionophore molecules are covalently bound to the membrane to reduce the phenomena of "passive diffusion" and thus improve the detection.
  • the use of the membranes according to the present invention as ion exchange membrane in fuel cells also offers several advantages.
  • the membranes according to the present invention are indeed less expensive than those usually used. Their lower thickness also makes it possible to reduce the electrical resistance, in particular by reducing the distance separating the electrodes from the ohmic resistance of the membrane.
  • the regularity of the size of the nanopores makes it possible to improve the diffusion of the ionic species.
  • membranes according to the present invention as a separating electrode in batteries also has many advantages.
  • the small thickness of the membranes according to the invention combined with a controlled porosity makes it possible to obtain good thermal stability and "shutdown" properties, ie a closure of the nanopores by thermal expansion to avoid short circuits between the anode and the cathode.
  • the thickness of the membranes reduces the electrical resistance and thus improves the efficiency of the battery [3].
  • the membranes according to the present invention are also particularly useful as a separating membrane in Anodic Stripping Voltammetry (ASV) sensors (i.e. Anodic Cyclic Voltammetry).
  • ASV Anodic Stripping Voltammetry
  • the nanopores of the membranes according to the invention are relatively deep so that they can be more effectively cleaned by anodic stripping [4].
  • Figure 1 a) Irradiation of a polymer film leading to the formation of latent traces ("ion tracks"). (b) Functioning of latent traces; (c) Chemical detection of latent traces leading to a nanoporous membrane. d) Functionalization of latent traces, e) Scanning electron microscope (SEM) image of a cross-section of a "track-etched” membrane having pore diameter 40 nm and thickness 9 ⁇ . f) Fluorescein isothiocyanate labeling revealing the presence of amine groups, the surface oxidation and hydrazine labeling Alexa Fluor R revealing the presence of carboxylic groups, i.e poly acrylic acid (PAA).
  • PPAA poly acrylic acid
  • FIG. 2 a) to f) Diagram a) and photos scanning electron microscope (SEM) bf) partially revealed latent traces and (nanopores) of depth "p". g) Functionalisation of the residual latent traces of thickness "t". h) Thin layer of metal or carbon film on the membrane: it is a layer thin enough not to obstruct the pores.
  • the SEM photos correspond to a PVDF membrane 25 ⁇ thick (e) irradiated with 5gNi 25+ at a flow rate of 10 9 cm- 2
  • the chemical attack is carried out with KOH (10 M) and KMnO 4 (0.25 M) for 2 h at 65 ° C. Nanopores of depth "p” equal to 6 ⁇ and residual latent traces of thickness "t” equal to 13 ⁇ are obtained, from which it can be deduced that the revealing speed
  • Figure 4 Selective ion electrode with a membrane functionalized at residual latent traces for anion exchanges.
  • Figure 5 Selective electrode of Pb ions using a polyazamacrocyl type ionophore with carbamoyl arms [20b].
  • Figure 6 Working electrode for analysis by the anodic stripping technique.
  • Figure 7 Separating electrode in a fuel cell.
  • Figure 8 Separating electrode in a lithium battery.
  • Figure 9 Diagram of a nanostructured membrane according to the invention with nine different patterns corresponding to nine different ionophores.
  • PVDF polyvinylidene fluoride
  • the PVDF films are extracted with toluene for 24 hours. Accelerated heavy ion irradiations were carried out at GANIL, Caen. The films were irradiated with Kr or Ni ions (10.37 Mev / amu, fluence 10 7 to 10 cm- 2 ) under He atmosphere In both cases, the samples were stored at -20 ° C under Argon atmosphere until chemical revelation and radiografting.
  • PVDF film irradiated by heavy ions SNI 5 25+ (10.9MeV / amu) were partially revealed using a permanganate solution (0.25 M) in a strongly basic medium (KOH, 10M) at 65 ° C with different revelation times ranging from 0.5 to 3 hours.
  • the resulting membranes obtained were washed with a solution of potassium disulphite (15%) and then dried at 50 ° C under vacuum. Under these conditions, the revelation is about 50 rpm / min.
  • the revelation times of less than 8.33 hours are considered to lead to a "partial revelation".
  • PVDF films irradiated with heavy ions of 78 Kr 31+ (10 MeV / uma) were chemically revealed using a solution of permanganate (0.25 M) in a strongly basic medium (KOH, 10M) at 65 ° C.
  • the resulting membranes obtained were washed with a solution of potassium disulphite (15%) and then dried at 50 ° C under vacuum. Under these conditions, the revelation time is about 300 nm / minute.
  • the revelation times of less than 30 minutes are considered to lead to a "partial revelation”.
  • the initial size PVDF film 20x20 mm 2 was weighed. The film was then immersed at room temperature in a radio-grafting solution containing acrylic acid and Mohr salt (0.25% w / w). After 15 minutes of nitrogen bubbling at room temperature, the samples were introduced into an aqueous bath thermostated at 60 ° C for 1 hour. The membranes were then washed with water and then extracted ("Soxhlet extract") with water to boil to extract the ungrafted homopolymer. The functionalized membranes were then dried at 50 ° C. under vacuum and characterized by FESEM (FIG. 3). EXAMPLE 1 Selective Electrode with a Functionalized Membrane for anion Exchanges at the Residual Latent Traces (FIG.
  • a partially disclosed membrane functionalized for anion exchange was prepared.
  • Such a membrane contains a thin layer of silver (about 50 nm) sprayed on each side of the polymer substrate.
  • the membrane coated with a silver layer was then immersed in a 1 molar solution of KCl to form a layer of AgCl.
  • One of the surfaces of the membrane was then immersed in a solution of Ag in order to electrodeposit a very thick layer of Ag (about 1 micron) which was then protected by an insulating tape, so that this surface works as a reference electrode.
  • the potential of the battery is:
  • a change of one decade in concentration [CL] causes a potential change of 59 mV.
  • FIG. 5 is a schematic representation of a Pb ion selective electrode using a polyazamacrocyl ionophore with carbamoyl arms [20b].
  • the potential across the membranes is sensitive to the external concentration of Pb 2+ ions.
  • Figure 6 corresponds to a partially revealed membrane functionalized with a gold layer 35 nm thick, sprayed on one of the surfaces of the polymer substrate.
  • This gold layer acts as the working electrode for ASV analysis of the ions absorbed by the polyacrylic acid in the pores of the membrane, from the aqueous solutions according to reference 4.
  • Example 4 Separating electrode in a fuel cell.
  • Figure 7 illustrates the use of the nanostructured membranes according to the invention as fuel cell separating electrodes.
  • the application to fuel cells is identical to that described in reference 2, except that all of the electrical resistance of the battery and therefore the ohmic drop is reduced, the wetting times are reduced ("wetting times"), the surface area is increased, and the electrical contacts are improved.
  • Example 5 Separating electrode in a lithium battery.
  • FIG. 8 illustrates a lithium battery with a nano-structured membrane according to the invention functionalized with SO 3 H groups dipped in LiOH as electrolyte [4b]. The migration of Li + ions through the membrane is possible. discharge
  • Example 6 Diagram of a nanostructured membrane according to the invention with nine different patterns corresponding to nine different ionophores.
  • Figure 9 shows that through a mask, electrodes can be deposited on a membrane according to the invention which has been functionalized with, for example, ion exchange functions such as sulfonic acid. Then, at each electrode, a different ionophore was absorbed on the membrane functionalized. The nine patterns correspond to nine different ionophores. Each electrode is addressable by individual contacts (see line in the figure). The signal at each electrode can then be measured independently.
  • ion exchange functions such as sulfonic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a method for producing a nanostructured membrane, comprising the steps of: i) irradiating a polymer substrate with heavy ions such that latent ion tracks are formed through the entire thickness (e) of the polymer substrate; and ii) partially etching said latent tracks so as to obtain a nanostructured membrane comprising nanopores that are less deep (p) than the thickness (e) of the polymer substrate as well as unetched residual latent tracks.

Description

MEMBRANES NANOSTRUCTUREES ET LEURS UTILISATIONS  NANOSTRUCTURED MEMBRANES AND USES THEREOF
La présente demande concerne des membranes nanostructurées, leur procédé de préparation et leur utilisation à titre de membrane échangeuse d'ions, comme électrode séparatrice : The present application relates to nanostructured membranes, their process of preparation and their use as an ion exchange membrane, as separating electrode:
- dans des piles à combustibles,  - in fuel cells,
- dans des batteries, notamment au lithium,  - in batteries, especially lithium,
- dans des capteurs d'ions spécifiques, ou  - in specific ion sensors, or
- comme électrode pour l'analyse voltammétrique et plus particulièrement comme électrode pour redissolution anodique.  as an electrode for voltammetric analysis and more particularly as an electrode for anodic redissolution.
Suivant les applications, les problématiques sont les suivantes :  Depending on the applications, the issues are as follows:
Les membranes échangeuse s d'ions généralement mises en œuvre dans les piles à combustible sont des membranes échangeuses de H+, telles que celles commercialisées sous la dénomination Nafion®. Ces membranes sont onéreuses et très épaisses, ce qui se traduit par une résistance électrique assez élevée. Par ailleurs, ces membranes présentent habituellement une structure poreuse mal définie [2a] qui tend à limiter la diffusion ionique au sein de ces membranes. The ion exchange membranes generally used in fuel cells are H + exchange membranes, such as those sold under the name Nafion®. These membranes are expensive and very thick, which results in a fairly high electrical resistance. Moreover, these membranes usually have a poorly defined porous structure [2a] which tends to limit the ionic diffusion within these membranes.
Les membranes échangeuses d'ions peuvent également être une alternative aux électrodes séparatrices mises en œuvre dans les batteries, notamment les batteries au lithium. Ces membranes sont en général assez épaisses et présentent des problèmes de dégradation, pouvant occasionner des problèmes de surchauffe difficilement contrôlables.  Ion exchange membranes can also be an alternative to separating electrodes implemented in batteries, especially lithium batteries. These membranes are generally quite thick and have problems of degradation, which can cause overheating problems difficult to control.
Par ailleurs, les électrodes sélectives d'ions décrites à ce jour dans la littérature impliquent des membranes qui sont généralement préparées en incorporant des composés chimiques de détection spécifique (ionophores) dans un mélange monomère, en polymérisant puis en séchant le mélange. Ceci conduit à l'obtention de phénomènes dits de « diffusion passive » (« zéro current fluxes ») qui limitent leur seuil de détection [1]. Ces membranes ont généralement une épaisseur supérieure à 100 μηι, laquelle induit des temps de réponse assez lents et des résistances élevées. Ainsi, ces électrodes ne sont généralement pas assez sensibles pour détecter de faibles concentrations ou présentent des problèmes de perte de sensibilité du fait des interférences entie différents analytes ioniques.  In addition, the ion selective electrodes described to date in the literature involve membranes which are generally prepared by incorporating specific detection chemical compounds (ionophores) into a monomer mixture, polymerizing and then drying the mixture. This leads to obtaining so-called "zero current fluxes" phenomena which limit their detection threshold [1]. These membranes generally have a thickness greater than 100 μηι, which induces slow response times and high strengths. Thus, these electrodes are generally not sensitive enough to detect low concentrations or have problems of loss of sensitivity due to interferences between different ionic analytes.
Les électrodes pour l'analyse voltammétrique acceptables pour l'environnement (hors gouttes de Mercure) présentent généralement une sensibilité insatisfaisante aux normes qualité de l'eau. De nouvelles électrodes non toxiques fabriquées avec les membranes nanoporeuses fonctionnalisées permettent de remédier à ce problème de sensibilité [4a,b]. L'objet décrit dans cette invention est une variante de ce dispositif. Les nouvelles électrodes de redissolution anodique pour remplacer les électrodes de goutte de mercure sont fabriquées avec les membranes nanoporeuses fonctionnalisées. Mais, elles présentent généralement une profondeur de pores trop importante, rendant difficile leur nettoyage pour une réutilisation [4a,b], Electrodes for voltammetric analysis acceptable for the environment (out of Mercury drops) generally have unsatisfactory sensitivity to water quality standards. New non-toxic electrodes manufactured with functionalized nanoporous membranes can overcome this sensitivity problem [4a, b]. The object described in this invention is a variant of these measures. New anodic redissolution electrodes to replace mercury drop electrodes are fabricated with functionalized nanoporous membranes. But, they generally have a too large pore depth, making it difficult to clean them for reuse [4a, b],
II a maintenant été mis au point un procédé permettant d'accéder à des membranes échangeuses d'ions plus fines, notamment de 10 μιη d'épaisseur, de porosité régulière et contrôlée permettant ainsi de réduire la résistance électrique, la chute ohmique et les temps de diffusion ionique. En outre, en permettant d'accéder à des membranes plus minces, cela permet de réduire la taille des dispositifs rendant ainsi possible leur éventuelle miniaturisation. L'ingénierie de ces membranes est d'une importance cruciale pour certains paramètres tels que l'épaisseur, la durabilité, la résistance ohmique ou la porosité.  It has now been developed a method allowing access to thinner ion exchange membranes, in particular of 10 μιη in thickness, of regular and controlled porosity, thus making it possible to reduce the electrical resistance, the ohmic drop and the times. ionic diffusion. In addition, by allowing access to thinner membranes, this reduces the size of the devices thus making possible their possible miniaturization. The engineering of these membranes is of crucial importance for certain parameters such as thickness, durability, ohmic resistance or porosity.
Par ailleurs, ces membranes peuvent comprendre une zone efficace de passage d'ions, extrêmement mince, permettant un retour à l'équilibre extrêmement rapide. A titre d'exemple, pour une membrane de 10 μηι d'épaisseur, la zone efficace de passage d'ions pourra être comprise entre 0,5 μηι et 9 μηι.  In addition, these membranes may comprise an extremely thin ion-passing zone that allows an extremely rapid return to equilibrium. By way of example, for a membrane with a thickness of 10 μm, the effective zone for passing ions may be between 0.5 μηι and 9 μηι.
Ainsi, selon un premier aspect, l'invention concerne un procédé de préparation d'une membrane nanostructurée, ledit procédé comprenant les étapes de :  Thus, according to a first aspect, the invention relates to a method for preparing a nanostructured membrane, said method comprising the steps of:
i) Irradiation aux ions lourds d'un substrat polymère, ce par quoi des traces latentes dues au passage d'ions à travers toute l'épaisseur (e) du substrat polymère sont formées ;  i) heavy ion irradiation of a polymeric substrate, whereby latent traces due to the passage of ions through the entire thickness (e) of the polymeric substrate are formed;
ii) Révélation chimique partielle desdites traces latentes, ce par quoi on obtient une membrane nanostructurée comprenant :  ii) partial chemical revelation of said latent traces, whereby a nanostructured membrane is obtained comprising:
- des nanopores dont la profondeur (p) est inférieure à l'épaisseur du substrat polymère (e), et  nanopores whose depth (p) is less than the thickness of the polymer substrate (e), and
des traces latentes résiduelles non révélées.  residual latent traces not revealed.
Le procédé selon l'invention comprend éventuellement une étape de récupération de la membrane nanostructurée obtenue.  The process according to the invention optionally comprises a step of recovering the nanostructured membrane obtained.
Au sens de la présente description, l'expression « membranes nanostructurées » désigne des membranes à traces latentes dues au passage d'ions lourds (« ion tracks »), ces traces latentes étant partiellement révélées ou attaquées chimiquement (« partially etched ion tracks membranes ») pour former des nanopores.  For the purposes of the present description, the term "nanostructured membranes" designates latent-track membranes due to the passage of heavy ions ("ion tracks"), these latent traces being partially revealed or chemically etched ("partially etched ion tracks membranes"). To form nanopores.
Par « nanopores », on entend des pores de petite taille, dont la profondeur est généralement comprise entre 10 nm et 10 μιιι et notamment entre 100 nm et 5 μηι, selon l'épaisseur (e) du substrat polymère et les conditions de révélation chimique. Des procédés comprenant des étapes d'irradiation, de révélation chimique et de fonctionnalisation de films polymères ont déjà été décrits dans l'art antérieur [2,4a- 11]. La figure 1 est une représentation schématique de ce procédé. Toutefois, ce procédé conduit à la formation d'un réseau de nanotubes cylindriques traversant de part et d'autre l'épaisseur du substrat polymère. By "nanopores" is meant small pores, the depth of which is generally between 10 nm and 10 μm and in particular between 100 nm and 5 μm, depending on the thickness (e) of the polymer substrate and the chemical revealing conditions. . Processes comprising steps of irradiation, chemical revelation and functionalization of polymeric films have already been described in the prior art [2,4-11]. Figure 1 is a schematic representation of this method. However, this process leads to the formation of a network of cylindrical nanotubes passing through both sides of the thickness of the polymer substrate.
Le procédé selon l'invention est illustré par la figure 2. Il se différencie du procédé de l'art antérieur notamment en ce que l'étape de révélation chimique est partielle. Avantageusement, ce procédé permet ainsi de former des nanopores de taille définie et contrôlée tout en préservant une zone efficace de passage d'ions plus ou moins épaisse, pouvant être fonctionnalisée, notamment pour l'échange d'ions.  The process according to the invention is illustrated in FIG. 2. It differs from the process of the prior art, in particular in that the step of chemical revelation is partial. Advantageously, this process thus makes it possible to form nanopores of defined and controlled size while preserving a more or less thick efficient passage zone of ions, which can be functionalized, in particular for ion exchange.
Les étapes du procédé selon l'invention sont décrites plus en détails ci-après. Etape i)  The steps of the process according to the invention are described in more detail below. Step i)
Le procédé de l'invention comprend une étape d'irradiation d'un substrat polymère, cette étape d'irradiation ayant pour fonction de créer des radicaux libres dans le polymère constitutif du substrat, cette création de radicaux libres étant une conséquence du transfert d'énergie de l'irradiation audit substrat..  The method of the invention comprises a step of irradiating a polymer substrate, this irradiation step having the function of creating free radicals in the constituent polymer of the substrate, this creation of free radicals being a consequence of the transfer of energy of the irradiation to said substrate.
L'étape d'irradiation du substrat polymère peut être réalisée selon les méthodes décrites dans l'art antérieur [2,4a-l l], En particulier, le substrat polymère peut être irradié par des ions lourds accélérés. On précise que par ions lourds, on entend des ions dont la masse atomique est supérieure à celle du carbone. Généralement, il s'agit d'ions choisis parmi le Krypton (78KrI5+, 78Kr31+), le Xénon ( ,29Xe29+, 129Xe54+), le Plomb ( 23SPb56+) ou le Nickel (58Ni25+). The irradiation step of the polymer substrate can be carried out according to the methods described in the prior art [2,4a-11]. In particular, the polymer substrate can be irradiated with accelerated heavy ions. It is specified that heavy ions are ions whose atomic mass is greater than that of carbon. Generally, these are ions selected from Krypton ( 78 Kr I5 + , 78 Kr 31+ ), Xenon ( , 29 Xe 29+ , 129 Xe 54+ ), Lead ( 23S Pb 56+ ) or Nickel ( 58 Ni 25+ ).
De préférence, il s'agit d'ions lourds ayant une masse atomique inférieure à celle du Krypton, plus préférentiellement des ions Nickel. De tels ions « moyennement » lourds, permettent avantageusement de contrôler la nanostructuration des membranes lors du procédé de l'invention, c'est-à-dire de contrôler le volume des pores, notamment leur profondeur (p) et/ou l'épaisseur de la zone efficace de passage d'ions (e).  Preferably, these are heavy ions having a lower atomic mass than Krypton, more preferably nickel ions. Such "moderately" heavy ions advantageously make it possible to control the nanostructuration of the membranes during the process of the invention, that is to say to control the pore volume, in particular their depth (p) and / or the thickness the effective zone of ion passage (e).
Plus particulièrement, cette étape peut consister à bombarder le substrat polymère avec un faisceau d'ions lourds, sous atmosphère inerte, avec un flux moyen d'énergie de 107 à 1010 cm"2, à température ambiante [2, 5-7, 9, 11]. Cette irradiation conduit à la formation de radicaux libres au niveau du passage des ions, i.e à des traces latentes du passage d'ions. D'un point de vue mécanistique, lorsque l'ion lourd vecteur d'énergie traverse la matrice, sa vitesse diminue. L'ion cède son énergie, en créant des zones endommagées, dont la forme est approximativement cylindrique. Ces zones sont appelées traces latentes et comprennent deux régions : le coeur et le halo de la trace. Le coeur de la trace est une zone totalement dégradée, à savoir une zone où il y a rupture des liaisons constitutives du matériau polymère générant des radicaux libres. Ce coeur est également la région où l'ion lourd transmet une quantité considérable d'énergie aux électrons du matériau polymère. Puis, à partir de ce coeur, il y a émission d'électrons secondaires, qui vont provoquer des défauts loin du coeur, générant ainsi un halo. More particularly, this step may consist in bombarding the polymer substrate with a heavy ion beam, under an inert atmosphere, with a mean energy flow of 10 7 to 10 cm -2 at room temperature [2, 5-7 , 9, 11] This irradiation leads to the formation of free radicals in the passage of ions, ie to latent traces of the passage of ions. From a mechanistic point of view, when the heavy energy vector ion passes through the matrix, its speed decreases. The ion gives up its energy, creating damaged areas, whose shape is approximately cylindrical. These areas are called latent traces and include two regions: the heart and the halo of the trace. The core of the trace is a totally degraded zone, namely an area where there is rupture of the constituent bonds of the polymer material generating free radicals. This core is also the region where the heavy ion transmits a considerable amount of energy to the electrons of the polymeric material. Then, from this heart, there is emission of secondary electrons, which will cause defects far from the heart, thus generating a halo.
Dans le cas de l'irradiation par ions lourds, le dépôt d'énergie se répartit en fonction de l'angle d'irradiation et est inhomogène. Il est possible de créer des traces disposées selon un schéma prédéterminé, et d'induire ainsi par voie de conséquence le greffage de composés uniquement dans les traces susmentionnées. Ainsi, il est possible d'induire différents schémas de greffage, en modulant l'angle d' irradiation par rapport à la normale des faces du substrat polymère.  In the case of heavy ion irradiation, the energy deposition is distributed according to the irradiation angle and is inhomogeneous. It is possible to create traces arranged in a predetermined pattern, and thereby to induce grafting of compounds only in the above-mentioned traces. Thus, it is possible to induce different grafting patterns by modulating the irradiation angle with respect to the normal of the faces of the polymer substrate.
Le substrat polymère peut être choisi parmi les fluoropolymères dont le polyfluorure de vinylidène (PVDF), le poly(difluorure divinylidène-co- hexafluoropropylène, P(VDF-co-HFP) et les polyimides tels que ceux commercialisés sous la dénomination Kapton®.  The polymer substrate may be chosen from fluoropolymers including polyvinylidene fluoride (PVDF), poly (difluoride divinylidene-co-hexafluoropropylene, P (VDF-co-HFP) and polyimides such as those sold under the name Kapton®.
Les substrats polymères à base de polymères fluorés sont avantageux, en ce sens qu'ils sont résistants à la corrosion, présentent de bonnes propriétés mécaniques et une faible perméation aux gaz. Ils sont donc particulièrement adaptées pour constituer des membranes de piles à combustible.  Polymeric substrates based on fluoropolymers are advantageous in that they are resistant to corrosion, have good mechanical properties and low gas permeation. They are therefore particularly suitable for constituting fuel cell membranes.
De préférence, le polymère est le polyfluorure de vinylidène (PVDF)  Preferably, the polymer is polyvinylidene fluoride (PVDF)
[2,4a-l l]. [2,4a-1].
L'épaisseur (e) du substrat polymère est généralement comprise entre 5 μηι et 25 μηι, et est de préférence de l'ordre de 10 μιη.  The thickness (e) of the polymer substrate is generally between 5 μηι and 25 μηι, and is preferably of the order of 10 μιη.
Etape ii) Step ii)
Ces traces latentes subissent, dans une deuxième étape du procédé selon l'invention, une révélation chimique pour que le polymère situé au niveau de ces traces latentes soit retiré. Cette révélation peut être réalisée selon des méthodes conventionnelles [8b].  These latent traces undergo, in a second step of the process according to the invention, a chemical revelation so that the polymer located at these latent traces is removed. This revelation can be performed according to conventional methods [8b].
Cette étape comprend généralement la mise en contact du substrat polymère irradié obtenu à l'étape i) avec une solution de révélation chimique, généralement une solution d'un réactif apte à hydrolyser les traces latentes de manière à former des nanopores (révélation partielle) voire des canaux creux (révélation totale), à la place de celles-ci. This step generally comprises contacting the irradiated polymer substrate obtained in step i) with a chemical revealing solution, generally a solution of a reagent able to hydrolyze the latent traces so as to to form nanopores (partial revelation) or even hollow channels (total revelation), instead of these.
Ainsi, suite à l'irradiation du substrat polymère par des ions lourds, les traces latentes générées présentent des chaînes courtes de polymères formées par scission des chaînes existantes lors du passage de l'ion dans la matière durant l'irradiation. Dans ces traces latentes, la vitesse d'hydrolyse lors de la révélation est plus importante que celle des parties non irradiées. Ainsi, il est possible de procéder à une révélation sélective. Les réactifs susceptibles d'assurer la révélation des traces latentes sont fonction du polymère constitutif du substrat.  Thus, following the irradiation of the polymer substrate with heavy ions, the latent traces generated have short chains of polymers formed by splitting existing chains during the passage of the ion in the material during irradiation. In these latent traces, the rate of hydrolysis during the revelation is greater than that of the non-irradiated parts. Thus, it is possible to carry out a selective revelation. The reagents capable of ensuring the revelation of the latent traces are a function of the constituent polymer of the substrate.
Cette solution comprend généralement un agent oxydant tel que le permanganate de potassium (KMn0 ) ou l'acide perchlorique (HC104) et une base forte, tel qu'un hydroxyde de métal alcalin ou alcalino -terreux, en solution aqueuse, notamment hydroxyde de potassium. This solution generally comprises an oxidizing agent such as potassium permanganate (KMnO) or perchloric acid (HClO 4 ) and a strong base, such as an alkali metal or alkaline-earth metal hydroxide, in aqueous solution, in particular hydroxide hydroxide. potassium.
A titre d'exemple, cette étape de révélation chimique peut être réalisée en présence de KOH (10 N), et de KMn04 (0,25 M) à titre d'agent oxydant lorsque le substrat polymère est un substrat à base de PVDF [8b], ou bien de HC104 (2 N) à titre d'agent oxydant lorsque le substrat polymère est un substrat à base de polyimide [8c], By way of example, this chemical revelation step can be carried out in the presence of KOH (10 N) and KMnO 4 (0.25 M) as an oxidizing agent when the polymer substrate is a PVDF-based substrate. [8b], or of HC10 4 (2 N) as an oxidizing agent when the polymer substrate is a polyimide-based substrate [8c],
Le pH de cette solution est généralement fortement basique, notamment supérieur ou égal à 9, en particulier supérieur ou égal à 15.  The pH of this solution is generally strongly basic, in particular greater than or equal to 9, in particular greater than or equal to 15.
Typiquement, on opère à une température supérieure à 50°C, notamment de 65 °C environ.  Typically, one operates at a temperature above 50 ° C, in particular about 65 ° C.
Après mise en contact avec la solution de révélation, la membrane est généralement rincée avec une solution aqueuse, par exemple une solution de disulfite de sodium. La membrane est ensuite généralement séchée sous vide à une température habituellement comprise entre 40 et 60°C.  After contacting with the revealing solution, the membrane is generally rinsed with an aqueous solution, for example a solution of sodium disulphite. The membrane is then generally dried under vacuum at a temperature usually between 40 and 60 ° C.
Le temps de révélation chimique τ varie selon l'équation : The chemical revelation time τ varies according to the equation:
où p représente la profondeur de trace révélée, et  where p represents the revealed trace depth, and
v(p), la vitesse d'attaque dans la trace.  v (p), the attack speed in the trace.
pmax=e/2 dans le cas d'une révélation totale, à partir des deux surfaces du substrat polymère soumises aux mêmes conditions de révélation, où e est l'épaisseur du film irradié. p max = e / 2 in the case of a total revelation, from both surfaces of the polymer substrate subjected to the same conditions of revelation, where e is the thickness of the irradiated film.
Selon cette équation, si v(p) est constant, alors p est simplement proportionnel à T. τ peut varier en fonction des conditions de révélation chimique, notamment en fonction de la concentration de la solution révélatrice, la nature de l'ion incident lors de l'étape d'irradiation et de la température [5], Cette durée peut être aisément déterminée par l'homme du métier, par exemple en déterminant préalablement la durée minimale nécessaire pour obtenir une révélation complète. According to this equation, if v (p) is constant, then p is simply proportional to T. τ can vary depending on the chemical revelation conditions, especially as a function of the concentration of the revealing solution, the nature of the ion incident during of the irradiation step and the temperature [5], this duration can be readily determined by those skilled in the art, for example by determining in advance the minimum time necessary to obtain a complete revelation.
Dans le cadre de la présente invention, la révélation de ces traces latentes est partielle, Le qu'une partie seulement de chacune de ces traces est révélée, de manière à former des nanopores de profondeur (p) < (e), Le ne traversant pas l'épaisseur de la membrane, l'autre partie étant conservée à l'état de trace latente, d'épaisseur (t).  In the context of the present invention, the revelation of these latent traces is partial, the only part of each of these traces is revealed, so as to form nanopores of depth (p) <(e), the crossing not the thickness of the membrane, the other part being kept in the latent trace state, of thickness (t).
Ainsi, cette étape est réalisée sur une durée τ suffisamment courte pour éviter la formation de nanopores cylindriques traversant toute l'épaisseur de la membrane. Cette révélation chimique peut être visualisée par microscopie électronique à balayage à effet de champs (FESEM) et/ou suivie par conductimétrie ionique.  Thus, this step is performed over a time τ sufficiently short to avoid the formation of cylindrical nanopores through the entire thickness of the membrane. This chemical revelation can be visualized by field scanning electron microscopy (FESEM) and / or followed by ionic conductivity.
Ainsi, la profondeur de chacun des nanopores (p) et l'épaisseur (t) de chacune des traces latentes sont directement proportionnels à la durée de révélation τ.  Thus, the depth of each of the nanopores (p) and the thickness (t) of each of the latent traces are directly proportional to the revelation time τ.
Cette étape de révélation chimique peut être réalisée sur une seule surface ou sur les deux surfaces du substrat polymère, dans des conditions identiques ou différentes, notamment pendant des durées de révélations identiques ou différentes. Ainsi, le procédé selon l'invention permet avantageusement de contrôler la structure poreuse de la membrane, tout en permettant d'accéder à des membranes nanostructurées symétriques (Figure 2) ou asymétriques.  This chemical revelation step can be carried out on a single surface or on both surfaces of the polymer substrate, under identical or different conditions, especially during identical or different revelation times. Thus, the process according to the invention advantageously makes it possible to control the porous structure of the membrane, while allowing access to symmetrical (Figure 2) or asymmetrical nanostructured membranes.
De préférence, l'étape de révélation chimique est réalisée sur les deux surfaces du substrat polymère, dans les mêmes conditions, de manière à obtenir des membranes nanostructurées symétriques. L'épaisseur (t) de chacune des traces latentes résiduelles {Le non révélées) est telle que t+2p =e, p désignant la profondeur du nanopore.  Preferably, the chemical development step is carried out on both surfaces of the polymer substrate, under the same conditions, so as to obtain symmetrical nanostructured membranes. The thickness (t) of each of the latent residual traces {Le not revealed) is such that t + 2p = e, p denoting the depth of the nanopore.
Selon un mode de réalisation, la profondeur de chaque nanopore (p) est comprise entre 0,25 et 4,75 μτη, notamment entre 0,25 et 2,25 μπι pour une membrane de 10 μπι d'épaisseur (e).  According to one embodiment, the depth of each nanopore (p) is between 0.25 and 4.75 μτη, in particular between 0.25 and 2.25 μπι for a membrane of 10 μπι of thickness (e).
Selon une variante, l'épaisseur (t) des traces latentes résiduelles est comprise entre 0,5 et 9,5 μπι, pour une membrane de 10 μηι d'épaisseur (e). Etape iii) : Etape de fonctionnalisation des traces latentes résiduelles According to one variant, the thickness (t) of the residual latent traces is between 0.5 and 9.5 μπι, for a membrane with a thickness of 10 μηι (e). Step iii): Functionalization step of residual latent traces
Selon un aspect préféré, l'invention comprend en outre une étape iii), subséquente à l'étape ii), de fonctionnalisation par radiogreffage des membranes nanostructurées obtenues. According to a preferred aspect, the invention furthermore comprises a step iii), subsequent to step ii), of radiografting functionalization of the nanostructured membranes obtained.
Au sens de la présente invention, la fonctionnalisation par radiogreffage consiste en une étape de greffage du substrat polymère par réaction radicalaire avec au moins un composé approprié. Plus particulièrement, cette étape consiste en la mise en contact dudit substrat polymère obtenu à l'étape ii) avec ledit composé, lequel comprend : For the purpose of the present invention, radiografting functionalization consists of a step of grafting the polymer substrate by radical reaction with at least one appropriate compound. In particular, this step comprises contacting said polymer substrate obtained in step ii) with said compound, which comprises:
un groupe apte à réagir par réaction radicalaire pour former une liaison covalente avec le substrat polymère, et  a group capable of reacting by radical reaction to form a covalent bond with the polymer substrate, and
- au moins un groupe échangeur ou complexant d'ions.  at least one ion exchanger or complexing group.
Comme exemples de groupe apte à réagir par réaction radicalaire pour former une liaison covalente, on peut citer notamment les groupements alkyles insaturés, tels que les groupes alcényles ou alcynyles.  As examples of group capable of reacting by radical reaction to form a covalent bond, mention may in particular be made of unsaturated alkyl groups, such as alkenyl or alkynyl groups.
Par « groupe échangeur et/ou complexant d'ions », on entend, au sens de la présente description, des groupements chimiques capables d' interagir avec des espèces ioniques, soit via des interactions électrostatiques et la formation de liaisons ioniques, dans le cas des groupes échangeurs d'ions, soit via une complexation orbitalaire, dans le cas des groupes complexants d'ions.  For the purposes of the present description, the term "ion exchange and / or complexing group" means chemical groups capable of interacting with ionic species, either via electrostatic interactions and the formation of ionic bonds, in the case of ion exchange groups, either via orbital complexation, in the case of ion complexing groups.
Les groupes échangeurs d'ions sont notamment des groupes chargés positivement ou négativement, susceptibles de former une liaison ionique avec des ions chargés négativement et positivement, respectivement. Comme exemple de groupes échangeurs d'ions, on peut citer notamment le groupement -S03H. The ion exchange groups are in particular positively or negatively charged groups capable of forming an ionic bond with negatively and positively charged ions, respectively. As an example of ion exchange groups, mention may be made especially of the group -SO 3 H.
Comme exemples de groupes complexants d'ions, on peut notamment citer les éthers couronne.  Examples of ion complexing groups include crown ethers.
Cette fonctionnalisation a lieu plus précisément au niveau des nanopores formés, Le des traces latentes révélées, d'une part, et des traces latentes résiduelles non révélées, (« radical tracks »), d'autre part.  This functionalisation takes place more precisely at the level of the nanopores formed, the revealed latent traces, on the one hand, and the residual unrevealed latent traces, ("radical tracks"), on the other hand.
Les membranes nanostructurées sont de préférence fonctionnalisées par des polymères chargés et/ou des molécules ionophores.  The nanostructured membranes are preferably functionalized with charged polymers and / or ionophore molecules.
Le greffage covalent des polymères chargés et/ou des molécules ionophores dans les traces est radio-induit. Le greffage des polymères peut ainsi être réalisé par polymérisation radicalaire de monomères vinyliques dans les traces. Les molécules ionophores peuvent être par ailleurs attachées par une liaison covalente sur le polymère radio-greffé  The covalent grafting of charged polymers and / or ionophore molecules in the traces is radio-induced. The grafting of the polymers can thus be carried out by radical polymerization of vinyl monomers in the traces. The ionophore molecules can be additionally attached by a covalent bond to the radio-grafted polymer
Les polymères chargés peuvent être notamment des polymères anioniques, utiles pour la réalisation de membranes échangeuses de cations, tels que l'acide poly crylique, le polystyrène, l'acide sulfonique et le polydiglycidyl méthacrylate modifié (DMGA).  The charged polymers may especially be anionic polymers, useful for producing cation exchange membranes, such as polycrylic acid, polystyrene, sulfonic acid and modified polydiglycidyl methacrylate (DMGA).
Pour les batteries Li/ion une étape de lithiation est nécessaire après le greffage de l'acide sulfonique. Cette étape se fait avec un sel de Li comme LiOH [20c].  For Li / ion batteries a lithiation step is necessary after the sulfonic acid grafting. This step is done with Li salt as LiOH [20c].
Les polymères chargés peuvent être des polymères cationiques tels que des polymères contenant des groupements ammonium -NH3 +, les polyamines et les polyimines. Ces polymères sont notamment utiles pour la préparation de membranes échangeuses d'anions. The charged polymers may be cationic polymers such as polymers containing ammonium groups -NH 3 + , polyamines and polyimines. These polymers are especially useful for the preparation of anion exchange membranes.
Les molécules ionophores au sens de la présente description sont des molécules capables de complexer des ions, incluant notamment les éthers couronne et les cryptands. A titre d'exemple, on peut citer la glucose oxydase [21], le 4-tert- butylcalix[4]arène-tetrakis(N,N'-dimethylthioacetamide) [22], le dibenzyl-14-cro n-4 [23], la valinomycine [24], le polyazamacrocycle à bras carbamoyles (TETRAM) [24a], l'acide éthylènediamine tétraacétique (EDTA), la dipicolamine, ainsi que les dérivés de ces composés.  The ionophore molecules in the sense of the present description are molecules capable of complexing ions, including in particular crown ethers and cryptands. By way of example, mention may be made of glucose oxidase [21], 4-tert-butylcalix [4] arene-tetrakis (N, N'-dimethylthioacetamide) [22], and dibenzyl-14-cro n-4 [ 23], valinomycin [24], polyazamacrocycle with carbamoyl arms (TETRAM) [24a], ethylenediamine tetraacetic acid (EDTA), dipicolamine and the derivatives of these compounds.
Le nombre de ionophores différents qui peuvent être radiogreffés ou qui peuvent réagir avec des molécules ou polymères déjà radiogreffés dans les traces latentes résiduelles, afin de fonctionnaliser les traces latentes résiduelles sont très vastes et de nouveaux ionophores sont décrits chaque année [13-20b],  The number of different ionophores that can be radiografted or that can react with molecules or polymers already radiografted in the residual latent traces, in order to functionalize the residual latent traces are very large and new ionophores are described each year [13-20b],
Selon une variante de l'invention, le procédé peut comprendre une étape additionnelle d'irradiation électronique, après l'étape ii) de révélation chimique partielle d'une part, et avant l'étape iii) de fonctionnalisation, d'autre part. Cette étape peut consiste à soumettre le substrat polymère à un faisceau d'électrons. Plus particulièrement, cette étape peut consister à balayer la matrice du substrat polymère avec un faisceau d'électrons accélérés, ce faisceau pouvant être émis par un accélérateur d'électrons (par exemple, un accélérateur Van de Graaf, 2,5 MeV). Dans le cas de l'irradiation par faisceau d'électrons, le dépôt d'énergie est homogène, ce qui signifie que les radicaux libres créés par cette irradiation seront répartis uniformément dans le volume de la matrice.  According to a variant of the invention, the method may comprise an additional step of electron irradiation, after step ii) of partial chemical revelation on the one hand, and before step iii) of functionalization, on the other hand. This step may involve subjecting the polymer substrate to an electron beam. More particularly, this step may consist of scanning the matrix of the polymer substrate with an accelerated electron beam, this beam may be emitted by an electron accelerator (for example, a Van de Graaf accelerator, 2.5 MeV). In the case of electron beam irradiation, the energy deposition is homogeneous, which means that the free radicals created by this irradiation will be evenly distributed in the volume of the matrix.
Cette irradiation électronique permet avantageusement de ré-insuffler des radicaux et de rendre ainsi la membrane encore plus active vis-à-vis du radiogreffage, qui devient alors cependant, moins localisé.  This electron irradiation advantageously makes it possible to re-insufflate radicals and thus make the membrane even more active with respect to radio-grafting, which then becomes, however, less localized.
Etape iv) de dépôt d'une couche de matériau conducteur Step iv) deposition of a layer of conductive material
Selon un autre aspect, le procédé selon la présente demande, comprend une étape iv), subséquente à l'étape ii), de dépôt d'une couche d'un matériau conducteur à la surface du substrat polymère, cette couche étant suffisamment mince pour ne pas obstruer les nanopores.  In another aspect, the method according to the present application comprises a step iv), subsequent to step ii), depositing a layer of a conductive material on the surface of the polymer substrate, this layer being sufficiently thin to do not obstruct the nanopores.
Cette étape iv) peut être, le cas échéant, réalisée avant ou après l'étape iii) de fonctionnalisation des traces latentes résiduelles. De préférence, cette étape iv) est réalisée après l'étape iii).  This step iv) can be, if necessary, carried out before or after step iii) of functionalization of the residual latent traces. Preferably, this step iv) is carried out after step iii).
Le matériau conducteur peut être déposé à la surface du substrat polymère par pulvérisation cathodique ou évaporation. Le matériau obtenu peut être analysé par microscopie électronique à balayage à effet de champs (MEB) afin de contrôler que les nanopores ne soient pas obstrués par la couche de matériau conducteur déposée. The conductive material may be deposited on the surface of the polymer substrate by sputtering or evaporation. The material obtained can be analyzed by field effect scanning electron microscopy (SEM) to verify that the nanopores are not obstructed by the layer of deposited conductive material.
L'épaisseur de la couche de matériau conducteur peut être comprise entre 30 nm et 60 nm, notamment entre 40 nm et 50 nm.  The thickness of the layer of conductive material may be between 30 nm and 60 nm, in particular between 40 nm and 50 nm.
Le matériau conducteur peut être un matériau à base de métal ou de carbone, notamment de carbone amorphe. Il est de préférence choisi parmi les métaux susceptibles d'être déposés par évaporation ou pulvérisation cathodique.  The conductive material may be a material based on metal or carbon, in particular amorphous carbon. It is preferably chosen from metals which can be deposited by evaporation or sputtering.
A titre d'exemple, le matériau conducteur peut être choisi parmi l'argent, l'or, le platine, le carbone, le nickel, le cobalt ou l'oxyde de cobalt.  For example, the conductive material may be selected from silver, gold, platinum, carbon, nickel, cobalt or cobalt oxide.
Selon un autre aspect, l'invention concerne une membrane nanostructurée susceptible d'être obtenue selon le procédé de l'invention.  According to another aspect, the invention relates to a nanostructured membrane that can be obtained according to the method of the invention.
Selon encore un autre aspect, l'invention concerne une membrane nanostructurée à base d'un substrat polymère d'épaisseur (e) comprenant :  According to yet another aspect, the invention relates to a nanostructured membrane based on a polymer substrate of thickness (e) comprising:
- Des nanopores dont la profondeur (p) est inférieure à l'épaisseur du substrat polymère (e) ; et  Nanopores whose depth (p) is less than the thickness of the polymer substrate (e); and
Des traces latentes résiduelles dues au passage d'ions lourds formant une zone efficace de passage d'ions d'épaisseur (t).  Residual latent traces due to the passage of heavy ions forming an effective ion passage zone of thickness (t).
Par « membrane à base d'un substrat polymère » on entend une membrane comprenant ou consistant en un substrat polymère.  By "membrane based on a polymer substrate" is meant a membrane comprising or consisting of a polymer substrate.
Selon encore un autre aspect, l'invention concerne l'utilisation d'une membrane nanostructurée à titre de membrane échangeuse d'ions, en particulier pour l' électrodialyse, dans des électrodes spécifiques d'ions, à titre d'électrodes séparatrices dans des piles à combustible ou les batteries, en particulier les batteries au lithium, ou encore à titre d'électrode de travail dans des dispositifs de redissolution anodique.  According to yet another aspect, the invention relates to the use of a nanostructured membrane as an ion exchange membrane, in particular for electrodialysis, in ion-specific electrodes, as separating electrodes in fuel cells or batteries, in particular lithium batteries, or as working electrode in anodic redissolution devices.
Les membranes échangeuses d'ions selon l'invention sont particulièrement utiles à titre d'électrodes sélectives d'ions, en ce qu'elles permettent d'accéder à des temps de réponse très rapides du fait de leur faible épaisseur, généralement de l'ordre de 5 à 25 μιη, et notamment de l'ordre de 10 μιη, dont 0,5 à 9 μηι d'épaisseur pour la zone efficace de passage d'ions. Par ailleurs, l'épaisseur (t) de la zone fonctionnalisée, i.e. le domaine d'échange d'ions, étant encore plus réduite, elle permet de diminuer considérablement la résistance électrique de la membrane. Enfin, les molécules ionophores sont liées de façon covalente à la membrane permettant de réduire les phénomènes de « diffusion passive » et ainsi améliorer la détection.  The ion exchange membranes according to the invention are particularly useful as ion selective electrodes, in that they allow access to very fast response times because of their small thickness, generally order of 5 to 25 μιη, and in particular of the order of 10 μιη, including 0.5 to 9 μηι thick for the effective zone of ion passage. Moreover, since the thickness (t) of the functionalized zone, i.e. the ion exchange domain, is even smaller, it makes it possible to considerably reduce the electrical resistance of the membrane. Finally, the ionophore molecules are covalently bound to the membrane to reduce the phenomena of "passive diffusion" and thus improve the detection.
L'utilisation des membranes selon la présente invention à titre de membrane échangeuse d'ions dans les piles à combustible offre par ailleurs plusieurs avantages. Les membranes selon la présente invention sont en effet moins coûteuses que celles habituellement utilisées. Leur épaisseur moindre permet en outre de diminuer la résistance électrique, notamment en réduisant la distance séparant les électrodes et la résistance ohmique de la membrane. Enfin, la régularité de la taille des nanopores permet d'améliorer la diffusion des espèces ioniques. The use of the membranes according to the present invention as ion exchange membrane in fuel cells also offers several advantages. The membranes according to the present invention are indeed less expensive than those usually used. Their lower thickness also makes it possible to reduce the electrical resistance, in particular by reducing the distance separating the electrodes from the ohmic resistance of the membrane. Finally, the regularity of the size of the nanopores makes it possible to improve the diffusion of the ionic species.
L'utilisation des membranes selon la présente invention à titre d'électrode séparatrice dans des batteries présente également de nombreux avantages.  The use of membranes according to the present invention as a separating electrode in batteries also has many advantages.
La faible épaisseur des membranes selon l'invention, associée à une porosité contrôlée permet d'obtenir une bonne stabilité thermique et des propriétés « shutdown », i.e une fermeture des nanopores par dilatation thermique pour éviter les courts-circuits entre l'anode et la cathode. En outre, l'épaisseur des membranes permet de réduire la résistance électrique et donc d'améliorer l'efficacité de la pile [3].  The small thickness of the membranes according to the invention, combined with a controlled porosity makes it possible to obtain good thermal stability and "shutdown" properties, ie a closure of the nanopores by thermal expansion to avoid short circuits between the anode and the cathode. In addition, the thickness of the membranes reduces the electrical resistance and thus improves the efficiency of the battery [3].
Les membranes selon la présente invention sont également particulièrement utiles à titre de membrane séparatrice dans les capteurs de redissolution anodique (ASV pour « Anodic Stripping Voltammetry », i.e Voltammétrie Cyclique Anodique).  The membranes according to the present invention are also particularly useful as a separating membrane in Anodic Stripping Voltammetry (ASV) sensors (i.e. Anodic Cyclic Voltammetry).
En effet, contrairement aux membranes habituellement utilisées dans ces capteurs, dont les pores traversent la membrane de part en part, c'est-à-dire de sorte que la membrane soit complètement percée, les nanopores des membranes selon l'invention sont relativement peu profonds de sorte qu'ils peuvent être plus efficacement nettoyés par redissolution anodique [4].  In fact, unlike the membranes usually used in these sensors, the pores of which pass through the membrane from one side to the other, ie so that the membrane is completely pierced, the nanopores of the membranes according to the invention are relatively deep so that they can be more effectively cleaned by anodic stripping [4].
Figures  figures
Figure 1 : a) Irradiation d'un film polymère conduisant à la formation de traces latentes (« ion tracks »). b) Fonctionnait sation des traces latentes, c) Révélation chimique des traces latentes conduisant à une membrane nanoporeuse. d) Fonctionnalisation des traces latentes, e) Image microscope électronique à balayage (MEB) d'une section transversale d'une membrane « track-etched » ayant des pore de diamètre de 40 nm et une épaisseur de 9μπι. f) Marquage à l'isothiocyanate de fluorescéine révélant la présence de groupements aminé, Le une oxydation de surface et marquage à l'hydrazine Alexa Fluor R révélant la présence de groupements carboxyliques, i.e l'acide poly acrylique (PAA).  Figure 1: a) Irradiation of a polymer film leading to the formation of latent traces ("ion tracks"). (b) Functioning of latent traces; (c) Chemical detection of latent traces leading to a nanoporous membrane. d) Functionalization of latent traces, e) Scanning electron microscope (SEM) image of a cross-section of a "track-etched" membrane having pore diameter 40 nm and thickness 9μπι. f) Fluorescein isothiocyanate labeling revealing the presence of amine groups, the surface oxidation and hydrazine labeling Alexa Fluor R revealing the presence of carboxylic groups, i.e poly acrylic acid (PAA).
Figure 2 : a) à f) Diagramme a) et photos microscope électronique à balayage (MEB) b-f) des traces latentes partiellement révélées et (nanopores) de profondeur « p ». g) Fonctionnalisation des traces latentes résiduelles d'épaisseur « t ». h) Couche mince de métal ou film de carbone sur la membrane : il s'agit d'une couche suffisamment fine pour ne pas obstruer les pores. Les photos MEB correspondent à une membrane PVDF de 25 μηι d'épaisseur (e) irradiée par 5gNi25+ à un flux de 109 cm"2. L'attaque chimique est réalisée avec KOH (10 M) et KMn04 (0,25 M) pendant 2 h à 65 °C. Des nanopores de profondeur « p » égale à 6 μηι et des traces latentes résiduelles d'épaisseur « t » égale à 13 μηι sont obtenues. On en déduit que la vitesse de révélation Figure 2: a) to f) Diagram a) and photos scanning electron microscope (SEM) bf) partially revealed latent traces and (nanopores) of depth "p". g) Functionalisation of the residual latent traces of thickness "t". h) Thin layer of metal or carbon film on the membrane: it is a layer thin enough not to obstruct the pores. The SEM photos correspond to a PVDF membrane 25 μηι thick (e) irradiated with 5gNi 25+ at a flow rate of 10 9 cm- 2 The chemical attack is carried out with KOH (10 M) and KMnO 4 (0.25 M) for 2 h at 65 ° C. Nanopores of depth "p" equal to 6 μηι and residual latent traces of thickness "t" equal to 13 μηι are obtained, from which it can be deduced that the revealing speed
Figure 3 : Attaque partielle d'un film de PVDF irradié selon le procédé de la figure 2 et fonctionnalisation par radiogreffage d'acide acrylique ([AA]=100%, [Sel de Mohr]=0.25N, 60°C, 1 h sous atmosphère d'azote) FIG. 3: Partial attack of an irradiated PVDF film according to the process of FIG. 2 and functionalization by radiografting of acrylic acid ([AA] = 100%, [Mohr salt] = 0.25N, 60 ° C., 1 h under nitrogen atmosphere)
Figure 4 : Electrode sélective d'ions avec une membrane fonctionnalisée au niveau des traces latentes résiduelles pour des échanges d'anions. Figure 4: Selective ion electrode with a membrane functionalized at residual latent traces for anion exchanges.
Figure 5 : Electrode sélective d'ions Pb utilisant un ionophore de type polyazamacrocyle avec des bras carbamoyles [20b] . Figure 5: Selective electrode of Pb ions using a polyazamacrocyl type ionophore with carbamoyl arms [20b].
Figure 6 : Electrode de travail pour analyse par la technique de redissolution anodique. Figure 7 : Electrode séparatrice dans une pile à combustible. Figure 6: Working electrode for analysis by the anodic stripping technique. Figure 7: Separating electrode in a fuel cell.
Figure 8 : Electrode séparatrice dans une batterie au lithium. Figure 8: Separating electrode in a lithium battery.
Figure 9 : Schéma d'une membrane nanostructurée selon l'invention avec neuf motifs différents correspondants à neuf ionophores différents. Figure 9: Diagram of a nanostructured membrane according to the invention with nine different patterns corresponding to nine different ionophores.
Exemples Examples
Préparation de membranes nanostructurées selon l 'invention : Irradiation, révélation chimique et fonctionnalisation des membranes β-PVDF.  Preparation of nanostructured membranes according to the invention: Irradiation, chemical revelation and functionalization of β-PVDF membranes.
A. Matériel :  A. Material:
Les films de fluorure de poly(vinylidène) (PVDF) ont été fournis par PiezoTech SA, Saint Louis (France).  The polyvinylidene fluoride (PVDF) films were supplied by PiezoTech SA, Saint Louis (France).
Le toluène, l'hydroxyde de potassium, le permanganate de potassium, le disulfite de potassium, l'acide acrylique (AA), le sel de Mohr (( FL^FetSC^^ôHkO), l'acide sulfurique, l'EDC (C8H17N3HC1), le tampon phosphate (PBS), le tBuOK (C4H9OK 95%) ont été fourni par Sigma-Aldrich. L'Alexa Fluor R 488 hydrazide (C2iHj5N4NaOioS2) a été fourni par Invitrogen. B. Méthodes Toluene, potassium hydroxide, potassium permanganate, potassium disulphite, acrylic acid (AA), Mohr salt ((FL ^ FetSC ^^ 6HkO), sulfuric acid, EDC ( C 8 H 17 N 3 HCl), phosphate buffer (PBS), tBuOK (C4H9OK 95%) were provided by Sigma-Aldrich, Alexa R4 R880 hydrazide (C 2 HH 5 N4NaOiS2) was provided by Invitrogen. . B. Methods
a. Irradiations  at. irradiation
Avant de procéder aux irradiations, les films de PVDF sont extraits au toluène pendant 24 heures. Les irradiations aux ions lourds accélérés ont été réalisées au GANIL, Caen. Les films ont été irradiés avec des ions Kr ou Ni (10,37 Mev/amu, fluence 107 à 1010 cm"2) sous atmosphère He. Dans les deux cas, les échantillons ont été stockés à -20°C sous une atmosphère d'argon jusqu'à révélation chimique et radiogreffage. Before irradiation, the PVDF films are extracted with toluene for 24 hours. Accelerated heavy ion irradiations were carried out at GANIL, Caen. The films were irradiated with Kr or Ni ions (10.37 Mev / amu, fluence 10 7 to 10 cm- 2 ) under He atmosphere In both cases, the samples were stored at -20 ° C under Argon atmosphere until chemical revelation and radiografting.
b. Révélations chimiques  b. Chemical revelations
- Irradiation par ions 58Ni2S+ (10.9MeV/uma) - Irradiation with 58 Ni 2S + ions (10.9 MeV / uma)
Les films de PVDF irradiés par les ions lourds de 5sNi25+ (10.9MeV/uma) ont été partiellement révélés en utilisant une solution de permanganate (0,25 M) dans un milieu fortement basique (KOH, 10M) à 65°C avec différents temps de révélation allant de 0,5 à 3 heures. Les membranes révélées obtenues ont été lavées avec une solution de disulfite de potassium (15%) et ensuite séchées à 50°C sous vide. Dans ces conditions, la révélation est d'environ 50 rrm/minute. Afin de révéler entièrement les membranes β-PVDF irradiées d'épaisseur 25 μπι, à partir des deux côtés, requiert 8,33 h minutes. Par conséquent, les durées de révélation inférieures à 8,33 h minutes sont considérées comme conduisant à une « révélation partielle ». PVDF film irradiated by heavy ions SNI 5 25+ (10.9MeV / amu) were partially revealed using a permanganate solution (0.25 M) in a strongly basic medium (KOH, 10M) at 65 ° C with different revelation times ranging from 0.5 to 3 hours. The resulting membranes obtained were washed with a solution of potassium disulphite (15%) and then dried at 50 ° C under vacuum. Under these conditions, the revelation is about 50 rpm / min. In order to fully reveal irradiated β-PVDF membranes of 25 μπι thickness, from both sides, requires 8.33 h minutes. Therefore, the revelation times of less than 8.33 hours are considered to lead to a "partial revelation".
- Irradiation par ions 78Kr31+ (10MeV/uma) - Irradiation with ions 78 Kr 31+ (10 MeV / uma)
Les films de PVDF irradiés par les ions lourds de 78Kr31+ (10MeV/uma) ont été chimiquement révélés en utilisant une solution de permanganate (0,25 M) dans un milieu fortement basique (KOH, 10M) à 65°C. Les membranes révélées obtenues ont été lavées avec une solution de disulfite de potassium (15%) et ensuite séchées à 50°C sous vide. Dans ces conditions, le temps de révélation est d'environ 300 nm/minute. Afin de révéler entièrement les membranes β-PVDF irradiées d'épaisseur 9 000 nm, à partir des deux côtés, requiert 30 minutes. Par conséquent, les durées de révélation inférieures à 30 minutes sont considérées comme conduisant à une « révélation partielle ». c. Fonctionnalisation par radiogreffage PVDF films irradiated with heavy ions of 78 Kr 31+ (10 MeV / uma) were chemically revealed using a solution of permanganate (0.25 M) in a strongly basic medium (KOH, 10M) at 65 ° C. The resulting membranes obtained were washed with a solution of potassium disulphite (15%) and then dried at 50 ° C under vacuum. Under these conditions, the revelation time is about 300 nm / minute. In order to fully reveal irradiated β-PVDF membranes 9,000 nm thick, from both sides, requires 30 minutes. Therefore, the revelation times of less than 30 minutes are considered to lead to a "partial revelation". vs. Functionalization by radiografting
Le film de PVDF de dimension initiale 20x20 mm2 a été pesé. Le film a été ensuite immergé à température ambiante dans une solution de radiogreffage contenant de l'acide acrylique et le sel de Mohr (0,25% poids/poids). Après 15 minutes de bullage d'azote à température ambiante, les échantillons ont été introduits dans un bain aqueux thermostaté à 60°C pendant 1 heure. Les membranes ont ensuite été lavées avec de l'eau puis extraites (« extrait Soxhlet ») avec de l'eau à ébullition afin d'extraire Phomopolymère non greffé. Les membranes fonctionnalisées ont ensuite été séchées à 50°C sous vide et caractérisées par FESEM (Figure 3), Exemple 1 : Electrode sélective d'ions avec une membrane fonctionnalisée pour des échanges d'anions au niveau des traces latentes résiduelles (Figure 4} The initial size PVDF film 20x20 mm 2 was weighed. The film was then immersed at room temperature in a radio-grafting solution containing acrylic acid and Mohr salt (0.25% w / w). After 15 minutes of nitrogen bubbling at room temperature, the samples were introduced into an aqueous bath thermostated at 60 ° C for 1 hour. The membranes were then washed with water and then extracted ("Soxhlet extract") with water to boil to extract the ungrafted homopolymer. The functionalized membranes were then dried at 50 ° C. under vacuum and characterized by FESEM (FIG. 3). EXAMPLE 1 Selective Electrode with a Functionalized Membrane for anion Exchanges at the Residual Latent Traces (FIG.
Une membrane, partiellement révélée, fonctionnalisée pour Γ échange d'anions, a été préparée. Une telle membrane contient une couche mince d'argent (environ 50 nm) pulvérisé de chaque côté du substrat polymère. La membrane recouverte d'une couche d'argent a ensuite été immergée dans une solution 1 molaire de KCl pour former une couche d'AgCl. L'une des surfaces de la membrane a ensuite été immergée dans une solution d'Ag de manière à électrodéposer une couche très épaisse d'Ag (environ 1 micron) qui a ensuite été protégée par un ruban isolant, de sorte que cette surface fonctionne comme une électrode référence.  A partially disclosed membrane functionalized for anion exchange was prepared. Such a membrane contains a thin layer of silver (about 50 nm) sprayed on each side of the polymer substrate. The membrane coated with a silver layer was then immersed in a 1 molar solution of KCl to form a layer of AgCl. One of the surfaces of the membrane was then immersed in a solution of Ag in order to electrodeposit a very thick layer of Ag (about 1 micron) which was then protected by an insulating tape, so that this surface works as a reference electrode.
Les deux côtés de la membrane ont ensuite été connectés au moyen d'un voltamètre et mis dans une solution avec une concentration inconnue en ions [Cl"] pour former la cellule 1. Le potentiel de la cellule 1 dépend de la concentration en ions [Cr] [12]. Both sides of the membrane were then connected by means of a voltameter and placed in a solution with an unknown concentration of [Cl - ] ions to form cell 1. The potential of cell 1 depends on the concentration of ions [ Cr] [12].
AglAgCl(s)IKCr(aq,a=l)ilCl-(aq)!AgCl(s)IAg (cellule 1) AglAgCl (s) IKCr (aq, a = 1) ilCl- (aq)! AgCl (s) IAg (cell 1)
La réaction du côté gauche est :The reaction on the left side is:
La réaction du côté droit est :  The reaction on the right side is:
AgCl(s) + e" => Ag(s) + Cf(aq) AgCl (s) + e " => Ag (s) + Cf (aq)
La réaction totale est :  The total reaction is:
Cl"(aq,a=l) => Cr(aq) Cl " (aq, a = 1) => Cr (aq)
Le potentiel de la pile est:  The potential of the battery is:
E = E° - (RT/F)ln(a/1)  E = E ° - (RT / F) ln (a / 1)
E° = 0 à 25°C  E ° = 0 to 25 ° C
E = +0,0592 V pCl  E = +0.0592 V pCl
Un changement d'une décade en concentration [CL] provoque un changement de potentiel de 59 mV.  A change of one decade in concentration [CL] causes a potential change of 59 mV.
Exemple 2 : Electrode sélective d'ions Pb utilisant un ionophore de type polyazamacrocyle avec des bras carbamoyles f20bj. La figure 5 est une représentation schématique d'une électrode sélective d'ions Pb utilisant un ionophore de type polyazamacrocyle avec des bras carbamoyles [20b]. Example 2: Selective Pb 2 Electr ion electrode using a polyazamacrocyl type ionophore with carbamoyl f20bj arms. FIG. 5 is a schematic representation of a Pb ion selective electrode using a polyazamacrocyl ionophore with carbamoyl arms [20b].
Le potentiel à travers les membranes est sensible à la concentration extérieure en ions Pb2+. The potential across the membranes is sensitive to the external concentration of Pb 2+ ions.
Exemple 3 : Electrode de travail pour une analyse ASV (Voltammétrie cyclique anodique) Example 3: Working Electrode for ASV Analysis (Anodic Cyclic Voltammetry)
La figure 6 correspond à une membrane partiellement révélée fonctionnalisée avec une couche d'or de 35 nm d'épaisseur, pulvérisée sur l'une des surfaces du substrat polymère. Cette couche d'or joue le rôle de l'électrode de travail pour l'analyse ASV des ions absorbés par l'acide polyacrylique dans les pores de la membrane, à partir des solutions aqueuses selon la référence 4. Exemple 4 : Electrode séparatrice dans une vile à combustible.  Figure 6 corresponds to a partially revealed membrane functionalized with a gold layer 35 nm thick, sprayed on one of the surfaces of the polymer substrate. This gold layer acts as the working electrode for ASV analysis of the ions absorbed by the polyacrylic acid in the pores of the membrane, from the aqueous solutions according to reference 4. Example 4: Separating electrode in a fuel cell.
La figure 7 illustre l'utilisation des membranes nanostructurées selon l'invention en tant qu'électrodes séparatrices de piles à combustible. L'application aux piles à combustible est identique à celle décrite dans la référence 2, sauf que l'ensemble de la résistance électrique de la pile et donc la chute ohmique est diminuée, les temps de mouillage sont réduits (« wetting times »), la surface spécifique est augmentée, et les contacts électriques sont améliorés.  Figure 7 illustrates the use of the nanostructured membranes according to the invention as fuel cell separating electrodes. The application to fuel cells is identical to that described in reference 2, except that all of the electrical resistance of the battery and therefore the ohmic drop is reduced, the wetting times are reduced ("wetting times"), the surface area is increased, and the electrical contacts are improved.
Exemple 5 : Electrode séparatrice dans une batterie au lithium. Example 5: Separating electrode in a lithium battery.
La figure 8 illustre une batterie au lithium avec une membrane nano structurée selon l'invention fonctionnalisée avec des groupements SO3H trempés dans LiOH en tant qu'électrolyte [4b]. La migration des ions Li+ à travers la membrane est possible. décharge FIG. 8 illustrates a lithium battery with a nano-structured membrane according to the invention functionalized with SO 3 H groups dipped in LiOH as electrolyte [4b]. The migration of Li + ions through the membrane is possible. discharge
C6Lix + Li1-xCo02 4 * C6 + LiCo02 C 6 Li x + Li 1-x CoO 2 4 * C 6 + LiCoO 2
charge  charge
Exemple 6: Schéma d'une membrane nanostructurée selon l 'invention avec neuf motifs différents correspondants à neuf ionophores différents. Example 6 Diagram of a nanostructured membrane according to the invention with nine different patterns corresponding to nine different ionophores.
La figure 9 montre qu'à travers un masque, des électrodes peuvent être déposées sur une membrane selon l'invention qui a été fonctionnalisée avec, par exemple, des fonctions échangeuses d'ions telles que l'acide sulfonique. Ensuite, au niveau de chaque électrode, un ionophore différent a été absorbé sur la membrane fonctionnalisée. Les neuf motifs correspondent à neuf ionophores différents. Chaque électrode est adressable par des contacts individuels (Cf ligne sur la figure). Le signal à chaque électrode peut être ensuite mesuré indépendamment. Figure 9 shows that through a mask, electrodes can be deposited on a membrane according to the invention which has been functionalized with, for example, ion exchange functions such as sulfonic acid. Then, at each electrode, a different ionophore was absorbed on the membrane functionalized. The nine patterns correspond to nine different ionophores. Each electrode is addressable by individual contacts (see line in the figure). The signal at each electrode can then be measured independently.
Références bibliographiques Bibliographical references
[1] Martin Pûntener, Tamàs Vigassy, Ellen Baier, Alan Ceresa, Ernô Pretsch "Improving the lower détection limit of potentiometric sensors by convalently binding the ionophore to a polymer backbone" Analytica Chemica Acta 503 (2004) 187- 194  [1] Martin Pûntener, Tamàs Vigassy, Ellen Baier, Alan Ceresa, Ernô Pretsch "Improving the lower detection of potentiometric sensors by convalently binding the ionophore to a polymer backbone" Analytica Chemica Acta 503 (2004) 187-194
[2a] M.-C. Clochard, T. Berthelot, C. Baudin, N. Betz, E. Balanzat, G. Gébel, A. Morin "Ion track grafting - A way to produce low-cost and highly proton conductive membranes for fuel cell applications" Journal of Power s Sources 195 (2010) 223-231.  [2a] M.-C. Clochard, T. Berthelot, C. Baudin, N. Betz, E. Balanzat, G. Gébel, A. Morin "Ion track grafting - A way to produce low-cost and highly proton conductive membranes for fuel cell applications "Journal of Power's Sources 195 (2010) 223-231.
th  th
[2b] EG&G Fuel-Cell Handbook 5 ed. EG&G Services Parsons, Inc., [2b] EG & G Fuel-Cell Handbook 5 ed. EG & G Services Parsons, Inc.,
2000, p. 58. 2000, p. 58.
[3] Pankaj Arora, Zhengming Zhang "Battery Separators" Chemical Reviews 104 (2004) 4419-4462.  [3] Pankaj Arora, Zhang Zhengming "Battery Separators" Chemical Reviews 104 (2004) 4419-4462.
[4a] Travis WADE, Marie-Claude CLOCHARD, "Ion spécifie nanoporous extraction membranes with two independent électrodes on each side for electro chemical détection and quantification", WO 2009/147244.  [4a] Travis WADE, Marie-Claude CLOCHARD, "Ion specifies nanoporous extraction membranes with two independent electrodes for chemical detection and quantification", WO 2009/147244.
[4b] Bessbouse et al. Tunctionalized Nanoporous Track-Etched β- PVDF Membrane Electrodes for Lead(II) Détermination by Square Wave Anodic Stripping Voltammetry' in press ref no. Anal. Methods, DOI:10.1039/C1AY05038A Anal. Methods, DOI: 10.1039/C1AY05038A.  [4b] Bessbouse et al. Tunctionalized Nanoporous Track-Etched β- PVDF Membrane Electrodes for Lead (II) Determination by Square Wave Anodic Voltammetry Stripping 'in press ref no. Anal. Methods, DOI: 10.1039 / C1AY05038A Anal. Methods, DOI: 10.1039 / C1AY05038A.
[4c] H.-Y. Liang, X.-P. QIU1, S.-C. Zhang, W.-T. Zhu and L.-Q. Chen "Study of lithiated Nafion ionomer for lithium batteries" Journal of Applied Electrochemistry 34 2004, pl211-1214.  [4c] H.-Y. Liang, X.-P. QIU1, S.C. Zhang, W.-T. Zhu and L.-Q. Chen "Study of Lithiated Nafion Ionomer for Lithium Batteries" Journal of Applied Electrochemistry 34 2004, p1111-1214.
[5] O. Cuscito, M.-C. Clochard, S. Esnouf, N. Betz, D. Lairez "Nanoporous β-PVDF with selectively functionalized pores" Nuclear Instruments and Methods in Physics Research B 265 (2007) 309-313. Dossier de déclaration d'invention 16/02/2011  [5] O. Cuscito, M.-C. Clochard, S. Esnouf, N. Betz, D. Lairez "Nanoporous β-PVDF with selectively functionalized pores" Nuclear Instruments and Methods in Physics Research B 265 (2007) 309-313 . Declaration of invention file 16/02/2011
[6] Mazzei R, Bermudez GG, Betz N, Cabanillas E. "Swift heavy ion induced graft polymerization in track etched membranes' submicroscopic pores" Nucl. Inst. Meth. B 226 (2004) 4, 575-584.  [6] Mazzei R, Bermudez GG, Betz N, Cabanillas E. "Swift heavy ion induced graft polymerization in track etched membranes 'submicroscopic pores' Nucl. Inst. Meth. B 226 (2004) 4, 575-584.
[7] Clochard M-C, Bègue J., Lafon A., Betz N., Caldemaison D., Bittencourt C, Pireaux J-J. "Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF" Polymers 45 (2004) 26, 8683-8694.  [7] Clochard M-C, Begue J., Lafon A., Betz N., Caldemaison D., Bittencourt C, Pireaux J-J. "Polymers 45 (2004) 26, 8683-8694," "Tailoring bulk and surface grafting of poly (acrylic acid) in electron-irradiated PVDF".
[8a] Grasselli M., Betz N. "Electron Beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF" Nucl. Inst. Meth B 236 (2005) 201- 207.  [8a] Grasselli M., Betz N. "Electron Beam induced RAFT-graft polymerization of poly (acrylic acid) onto PVDF" Nucl. Inst. Meth B 236 (2005) 201-207.
[8b] Grasselli M., Betz N. "Making porous membranes by chemical etching of heavy-ion tracks in beta-PVDF films" 6th International Symposium on Ionizing Radiation and Polymers (IRaP 2004), September 25-30, 2004 Houffalize BELGIUM Nucl. Inst. Meth. B 236 (2005) 501-507. [8b] Grasselli M., Betz N. "Making porous membranes by chemical etching of heavy-ion tracks in beta-PVDF films" 6th International Symposium on Ionizing Radiation and Polymers (IRaP 2004), September 25-30, 2004 Houffalize BELGIUM Nucl. Inst. Meth. B 236 (2005) 501-507.
[8c] Trautmann, C; Bruchle, W; Spohr, R, Vetter, J. Angert, N. "Pore eometry of etched ions tracks in polyimide" Nucl. Inst. Meth. B 111(1-2) (1996) 70-74.  [8c] Trautmann, C; Bruchle, W; Spohr, R, Vetter, J. Angert, N. "Pore eometry of etched ions tracks in polyimide" Nucl. Inst. Meth. B 111 (1-2) (1996) 70-74.
[8d] Spohr, R "Ion Tracks and Microtechnology, Principles and [8d] Spohr, R "Ion Tracks and Microtechnology, Principles and
Applications" Ed. K. Bethge, Book Publisher: Friedr. Vieweg & Sohn Applications "Ed. K. Bethge, Book Publisher: Friedr Vieweg & Sohn
Verlagsgesellschaft mbH, Braunschweig 1990 (ISBN 3-528-06330-0) p.148 Verlagsgesellschaft mbH, Braunschweig 1990 (ISBN 3-528-06330-0) p.148
[9] Betz N., Le Moel A., Pireaux J-J. "Ionizing radiation & polymers - Editorial" Nucl. Inst. Meth. B 236 (2005) VII- VIII.  [9] Betz N., The Moel A., Pireaux J-J. "Ionizing radiation & polymers - Editorial" Nucl. Inst. Meth. B 236 (2005) VII-VIII.
[10] Clochard M-C, Betz N., Goncalves M., Bittencourt C, Pireaux J- [10] Clochard M-C, Betz N., Goncalves M., Bittencourt C, Pireaux J-
J., Gionnet K., Deleris G., Le Moel A. "Peptide immobilization onto radiation grafted PVDF-g-poly(acrlyic acid) films" Nucl. Inst. Meth. B 236 (2005) 208-215. J., Gionnet K., Deleris G., Moel A. Peptide immobilization onto radiation grafted PVDF-g-poly (acrylic acid) films. Inst. Meth. B 236 (2005) 208-215.
[11] M.-C. Clochard, C. Baudin, N. Betz, A. Le Moel, C. Bittencourt, L. Houssiau, J.-J.Pireaux, Daniel Caldemaison "New sulfonated pyrrole and pyrrole 3- carboylic acid copolymer membranes via trck-etched templates" Reactive & Functional Polymers 66 (2006) 1296-1305.  [11] M.-C. Clochard, C. Baudin, N. Betz, A. Le Moel, C. Bittencourt, L. Houssiau, J.-J.Pireaux, Daniel Caldemaison "New sulfonated pyrrole and pyrrole 3- carboylic acid copolymer membranes via trck-etched templates "Reactive & Functional Polymers 66 (2006) 1296-1305.
[12] Philip H. Rieger "Electrochemistry" Prentice-Hall, Inc. Englewood Cliffs NJ (1987) 40-45.  [12] Philip H. Rieger "Electrochemistry" Prentice-Hall, Inc. Englewood Cliffs NJ (1987) 40-45.
[13] M. Miyashita, N. Ito, S. Ikeda, T. Murayama, K. Oguma, and J. Kimura, Biosensors & Bioelectronics 24:1336 (2009).  [13] M. Miyashita, N. Ito, S. Ikeda, T. Murayama, K. Oguma, and J. Kimura, Biosensors & Bioelectronics 24: 1336 (2009).
[14] M. Pesavento, G. Alberti, and R. Biesuz, Analytica Chimica Acta [14] M. Pesavento, G. Alberti, and R. Biesuz, Analytica Chimica Acta
631: 129 (2009). 631: 129 (2009).
[15] M. R. Huang, X. W. Rao, and X. G. Li, Chinese Journal Of Analytical Chemistry 36: 1735 (2008).  [15] R. Huang, X. W. Rao, and X. G. Li, Chinese Journal of Analytical Chemistry 36: 1735 (2008).
[16] K. N. Mikhel'son, Russian Journal Of General Chemistry [16] K. N. Mikhel'son, Russian Journal Of General Chemistry
78:2445 (2008). 78: 2445 (2008).
[17] E. Bakker and E. Pretsch, Trac- Trends In Analytical Chemistry [17] E. Bakker and E. Pretsch, Trac- Trends in Analytical Chemistry
27:612 (2008). 27: 612 (2008).
[18] T. P. Rao and R. Kala, Talanta 76:485 (2008).  [18] T. P. Rao and R. Kala, Talanta 76: 485 (2008).
[ 19] D. Wei and A. Ivaska, Analytica Chimica Acta 607: 126 (2008).  [19] D. Wei and A. Ivaska, Analytica Chimica Acta 607: 126 (2008).
[20] F. Faridbod, M. R. Ganjali, R. Dinarvand, P. Norouzi, and S. Riahi, Sensors 8:1645 (2008).  [20] F. Faridbod, R. Ganjali, R. Dinarvand, P. Norouzi, and S. Riahi, Sensors 8: 1645 (2008).
[20b] Nasraoui, R; Floner, D; Geneste, F « Improvement in performance of a flow electrochemical sensor by using carbamoyl-arms polyazamacrocycle for the preconcentration of lead ions onto the électrode" Electrochemistry Communications 12(1), 2010 p 98-100. [20c] Sunil Sachan, Cameron A. Ray, and Stephen A. Perusich " Lithium Ion Transport Nonaqueous Perfluoroionomeric Membranes" Polymer Engineering and Science 42 (7), 1469-1480, 2002. [20b] Nasraoui, R; Floner, D; Geneste, F "Improvement in performance of a flow electrochemical sensor by using carbamoyl-arms polyazamacrocycle for the preconcentration of lead ions on the electrode" Electrochemistry Communications 12 (1), 2010 p 98-100. [20c] Sunil Sachan, Cameron A. Ray, and Stephen A. Perusich "Lithium Ion Transport Nonaqueous Perfluoroionomeric Membranes" Polymer Engineering and Science 42 (7), 1469-1480, 2002.
[21] Arkady A. Karyakin, Lydia V. Lukachova, Elena E. Karyakina, Andrey V. Orlov, Galina P. Karpachova "The improved potentiometric pH response of électrodes modified with processible polyaniline. Application to glucose biosensor" Anatytical Communications 36 (1999) 153-156.  [21] Arkady A. Karyakin, Lydia V. Lukachova, Elena E. Karyakina, Andrey V. Orlov, Galina Karpachova P. "The improved potentiometric pH response of polyaniline processible electrodes." Application to glucose biosensor "Anatytical Communications 36 (1999) ) 153-156.
[22] Martin Pûntener, Tamàs Vigassy, Ellen Baier, Alan Ceresa, Ernô Pretsch "Improving the lower détection limit of potentiometric sensors by convalently binding the ionophore to a polymer backbone" Analytica Chemica Acta 503 (2004) 187- 194  [22] Martin Pûntener, Tamàs Vigassy, Ellen Baier, Alan Ceresa, Ernô Pretsch "Improving the lower detection of potentiometric sensors by convalently binding the ionophore to a polymer backbone" Analytica Chemica Acta 503 (2004) 187-194
[23] Martial Berger, Nathalie Costarramone, Alain Castetbon "Lithium Ion-Selective Membrane" United States Patent Application US 2009/0218237, Sep. 3, 2009.  [23] Martial Berger, Nathalie Costarramone, Alain Castetbon "Lithium Ion-Selective Membrane" United States Patent Application US 2009/0218237, Sep. 3, 2009.
[24] Peter C. Hauser, David W. L. Chiang, Graham A. Wright "A potassium-ion sélective électrode with valinomycin based poly(vinyl chloride) membrane and a poly(vinyl ferrocene solid contact)" Analytica Chimica Acta 302 (1995) 241-248.  [24] Peter C. Hauser, David WL Chiang, Graham A. Wright "A selective potassium-ion electrode with valinomycin-based poly (vinyl chloride) membrane and a poly (vinyl ferrocene solid contact)" Analytica Chimica Acta 302 (1995) 241 -248.
[24a] Rihab Nasraoui, Didier Floner, and Florence Geneste "Improvement in performance of a flow electrochemical sensor by using carbamoyl- arm polyazamacroyle for the preconcentration of lead ions onto the électrode" Electrochemistry Communications 12 (2010) 98-100.  [24a] Rihab Nasraoui, Didier Floner, and Florence Geneste "Improvement in performance of a flow electrochemical sensor by using carbamoyl polyazamacroyle for the preconcentration of lead ions on the electrode" Electrochemistry Communications 12 (2010) 98-100.

Claims

Revendications claims
1. Procédé de préparation d'une membrane nano structurée, ledit procédé comprenant les étapes de :  A process for preparing a nano-structured membrane, said method comprising the steps of:
i) Irradiation aux ions lourds d'un substrat polymère, ce par quoi des traces latentes du passage d'ions à travers toute l'épaisseur (e) du substrat polymère sont formées ; et  i) heavy ion irradiation of a polymeric substrate, whereby latent traces of the ion pass through the entire thickness (e) of the polymeric substrate are formed; and
ii) Révélation chimique desdites traces latentes réalisée sur une durée suffisamment courte pour éviter la formation de nanopores traversant toute l'épaisseur du substrat polymère (e), ce par quoi on obtient une membrane nanostructurée comprenant : ii) Chemical detection of said latent traces carried out for a sufficiently short time to avoid the formation of nanopores crossing the entire thickness of the polymer substrate (e), whereby a nanostructured membrane comprising:
- des nanopores dont la profondeur (p) est inférieure à l'épaisseur du substrat polymère (e) ; nanopores whose depth (p) is less than the thickness of the polymer substrate (e);
- des traces latentes résiduelles non révélées.  - latent residual traces not revealed.
2. Procédé selon la revendication 1 , comprenant en outre une étape iii), subséquente à l'étape ii), de fonctionnalisation par radiogreffage de la membrane nanostructurée obtenue.  2. The method of claim 1, further comprising a step iii), subsequent to step ii), functionalization by radiografting the nanostructured membrane obtained.
3. Procédé selon la revendication 2, dans lequel la membrane nanostructurée est fonctionnalisée par des polymères chargés ou des molécules ionophores.  3. The method of claim 2, wherein the nanostructured membrane is functionalized by charged polymers or ionophoric molecules.
4. Procédé selon la revendication 3, dans lequel les polymères sont choisis parmi l'acide polyacrylique, le polystyrène sulfonique acide et le polyglycidyl méthacrylate modifié DMGA, les polymères contenant des groupements ammonium - NH3 +, les polyamine et les polyimine. 4. Process according to claim 3, in which the polymers are chosen from polyacrylic acid, polystyrene sulphonic acid and polyglycidyl methacrylate modified DMGA, polymers containing ammonium groups - NH 3 + , polyamine and polyimine.
5. Procédé selon la revendication 3, dans lequel les molécules ionophores sont choisies parmi la glucose oxydase, le 4-tert-butylcalix[4]arène- tetrakis(N,N'-dimethylthioacetamide), le dibenzyl-14-éther couronne-4, la valinomycine, le polyazamarcro cycle à bras carbamoyles (TETRAM), l'acide éthylènediaminetétraacétique (EDTA), ou la dipicolamine..  5. Process according to claim 3, in which the ionophore molecules are chosen from glucose oxidase, 4-tert-butylcalix [4] arenetetrakis (N, N'-dimethylthioacetamide) and dibenzyl-14-crown-4-ether. , valinomycin, polyazamarcro ring carbamoyl (TETRAM), ethylenediaminetetraacetic acid (EDTA), or dipicolamine.
6. Procédé selon l'une quelconque des revendications 1 à 5, comprenant une étape subséquente à l'étape ii) de dépôt d'une couche d'un matériau conducteur à la surface du substrat polymère, cette couche étant suffisamment mince pour ne pas obstruer les nanopores.  6. A method according to any one of claims 1 to 5, comprising a step subsequent to step ii) depositing a layer of a conductive material on the surface of the polymer substrate, this layer being sufficiently thin not to obstruct the nanopores.
7. Procédé selon la revendication 6, dans lequel l'étape de dépôt d'une couche d'un matériau conducteur est effectuée après une étape de fonctionnalisation iii).  7. The method of claim 6, wherein the step of depositing a layer of a conductive material is performed after a functionalization step iii).
8. Procédé selon l'une quelconque des revendications 6 ou 7, dans lequel le matériau conducteur est un matériau à base de métal ou de carbone. The method of any of claims 6 or 7, wherein the conductive material is a metal or carbon material.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel le substrat polymère est le polyfluorure de vinylidène. The process of any of the preceding claims, wherein the polymeric substrate is polyvinylidene fluoride.
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'épaisseur (e) du substrat polymère est comprise entre 5 μπι et 25 μηι.  10. Method according to any one of the preceding claims, wherein the thickness (e) of the polymer substrate is between 5 μπι and 25 μηι.
11. Procédé selon l'une quelconque des revendications précédentes, dans lequel la profondeur des nanopores (p) est comprise entre 0,25 et 12,25 μηι.  11. Method according to any one of the preceding claims, wherein the depth of the nanopores (p) is between 0.25 and 12.25 μηι.
12. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'épaisseur (t) des traces latentes résiduelles est comprise entre 0,5 et 24,5 μη .  12. Method according to any one of the preceding claims, wherein the thickness (t) of the residual latent traces is between 0.5 and 24.5 μη.
13. Membrane nanostructurée susceptible d'être obtenue selon le procédé défini aux revendications 1 à 12.  13. Nanostructured membrane obtainable by the process defined in claims 1 to 12.
14. Membrane nanostructurée à base d'un substrat polymère d'épaisseur (e) comprenant :  14. Nanostructured membrane based on a polymer substrate of thickness (e) comprising:
Des nanopores dont la profondeur (p) est inférieure à l'épaisseur du substrat polymère (e) ; et  Nanopores whose depth (p) is less than the thickness of the polymer substrate (e); and
Des traces latentes résiduelles dues au passage d'ions lourds formant une zone efficace de passage d'ions d'épaisseur (t).  Residual latent traces due to the passage of heavy ions forming an effective ion passage zone of thickness (t).
15. Membrane nanostructurée selon la revendication 14, dans laquelle les traces latentes résiduelles sont radiogreffées par des polymères chargés ou des molécules ionophores.  The nanostructured membrane of claim 14, wherein the residual latent traces are radiografted by charged polymers or ionophore molecules.
16. Utilisation d'une membrane nanostructurée selon l'une quelconque des revendications 13 à 15 à titre de membrane échangeuse d'ions.  16. Use of a nanostructured membrane according to any one of claims 13 to 15 as ion exchange membrane.
17. Utilisation selon la revendication 16, pour électrodialyse, dans des électrodes spécifiques d'ions, à titre d'électrode séparatrice dans des piles à combustible ou batteries, ou à titre d'électrode de travail dans des dispositifs de voltammétrie cyclique anodique.  17. Use according to claim 16, for electrodialysis, in ion-specific electrodes, as a separating electrode in fuel cells or batteries, or as a working electrode in anode cyclic voltammetry devices.
EP12731021.7A 2011-05-09 2012-05-04 Nanostructured membranes and uses thereof Withdrawn EP2707126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153977A FR2975019B1 (en) 2011-05-09 2011-05-09 NANOSTRUCTURED MEMBRANES AND USES THEREOF
PCT/FR2012/051002 WO2012153050A1 (en) 2011-05-09 2012-05-04 Nanostructured membranes and uses thereof

Publications (1)

Publication Number Publication Date
EP2707126A1 true EP2707126A1 (en) 2014-03-19

Family

ID=46420337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12731021.7A Withdrawn EP2707126A1 (en) 2011-05-09 2012-05-04 Nanostructured membranes and uses thereof

Country Status (3)

Country Link
EP (1) EP2707126A1 (en)
FR (1) FR2975019B1 (en)
WO (1) WO2012153050A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008586A1 (en) * 2014-07-18 2016-01-21 Sartorius Stedim Biotech Gmbh Membrane with performance enhancing multi-level macroscopic cavities
FR3036536B1 (en) 2015-05-18 2017-05-19 Commissariat Energie Atomique METHOD FOR MANUFACTURING A PIEZOELECTRIC NANOGENERATOR, PIEZOELECTRIC NANOGENERATOR OBTAINED BY THIS METHOD AND DEVICE COMPRISING SUCH A PIEZOELECTRIC NANOGENERATOR
EP4331712A1 (en) * 2022-08-31 2024-03-06 Oxyphen GmbH Gas-tight track-etched membranes for emergency venting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780307B2 (en) * 2001-10-12 2004-08-24 The United States Of America As Represented By The Secretary Of The Navy Ion selective electrodes for direct organic drug analysis in saliva, sweat, and surface wipes
US7597815B2 (en) * 2003-05-29 2009-10-06 Dressel Pte. Ltd. Process for producing a porous track membrane
US8329766B2 (en) * 2005-02-24 2012-12-11 Japan Atomic Energy Agency Functional membrane and production method thereof, and electrolyte membrane for use in fuel cell and production method thereof
FR2900064B1 (en) 2006-04-24 2008-12-12 Electricite De France LITHIUM ION SELECTIVE MEMBRANE FOR MEASURING THE LITHIUM CONCENTRATION IN A FLUID SUCH AS THE PRIMARY COOLING SYSTEM FLUID OF A REACTOR OF A PRESSURIZED WATER NUCLEAR POWER PLANT
EP2131189B1 (en) 2008-06-06 2016-12-14 Ecole Polytechnique Method of using a nanoporous membrane for the detection and quantification of heavy metal ions in a fluid by anodic stripping voltammetry

Also Published As

Publication number Publication date
FR2975019A1 (en) 2012-11-16
WO2012153050A1 (en) 2012-11-15
FR2975019B1 (en) 2013-05-24

Similar Documents

Publication Publication Date Title
JP2005522692A (en) Analyte sensor
Moretto et al. Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography
KR20150097471A (en) Electropolymerization of a coating onto an electrode material
Oztekin et al. Phenanthroline derivatives electrochemically grafted to glassy carbon for Cu (II) ion detection
Cottis et al. Metal-free oxygen reduction electrodes based on thin PEDOT films with high electrocatalytic activity
EP2707126A1 (en) Nanostructured membranes and uses thereof
EP2922987B1 (en) Method for coating the surface of an organic or metal material with particular organic compounds by means of a pulsed-current electrochemical reduction of the diazonium ions of said organic compounds
Dash et al. Electroanalysis of As (III) at nanodendritic Pd on PEDOT
US20170033372A1 (en) Stainless-steel foil for separator of polymer electrolyte fuel cell
JPS5983352A (en) Manufacture of electrode for fuel cell
FR2921518A1 (en) PROCESS FOR PRODUCING FUEL CELL PROTONS CONDUCTIVE MEMBRANES BY RADIOGRAPHY
BE1011218A3 (en) PROCESS FOR THE MANUFACTURE OF AN ION EXCHANGE MEMBRANE FOR USE AS A SEPARATOR IN A FUEL CELL.
Daifuku et al. Analysis of current-potential curves for mediated electron-transfer reactions at rotating disk electrodes: Electrocatalysis by polypyridine osmium and ruthenium complexes confined to tin oxide electrodes as a Langmuir-Blodgett monomolecular layer
FR2876299A1 (en) ION-EXCHANGING MEMBRANES STRUCTURED IN THE THICKNESS AND METHOD FOR MANUFACTURING THESE MEMBRANES
Kaya et al. Preparation of nanopores and their application for the detection of metals
Tucceri Practical applications of poly (o-aminophenol) film electrodes
Debiemme‐Chouvy et al. Characterization of a very thin overoxidized polypyrrole membrane: application to H2O2 determination
FR2974582A1 (en) PROCESS FOR GROWING METALLIC PARTICLES BY ELECTRODEPOSITION WITH IN SITU INHIBITION
WO2012168447A1 (en) Method for the treatment, by percolation, of a felt element by means of electrodeposition
Nishimura et al. Electrodialytic transport properties of cation exchange membranes prepared from poly (vinyl alcohol) and poly (vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid)
WO2018214722A1 (en) Ion-selective nanochannel membrane and preparation method therefor
CN113567531B (en) Composite material N-Co-MOF@PDA-Ag and preparation method and application thereof
EP2471138A1 (en) Proton-conducting membranes for a fuel cell, and method for preparing such membranes
WO2004091026A2 (en) Micro fuel cell, particularly for use with portable electronic devices and telecommunication devices
US20220119261A1 (en) Electrochemical method for the production of graphene composites and cell for conducting the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: WADE, TRAVIS

Inventor name: GALLINO, ENRICO

Inventor name: BESSBOUSSE, HAAD

Inventor name: CLOCHARD, MARIE-CLAUDE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161201