EP2705906A2 - Ultrasound system, ultrasound generator and method for operating the same - Google Patents

Ultrasound system, ultrasound generator and method for operating the same Download PDF

Info

Publication number
EP2705906A2
EP2705906A2 EP13181693.6A EP13181693A EP2705906A2 EP 2705906 A2 EP2705906 A2 EP 2705906A2 EP 13181693 A EP13181693 A EP 13181693A EP 2705906 A2 EP2705906 A2 EP 2705906A2
Authority
EP
European Patent Office
Prior art keywords
frequency
excitation
ultrasonic
phase difference
ultrasonic generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13181693.6A
Other languages
German (de)
French (fr)
Other versions
EP2705906B1 (en
EP2705906A3 (en
Inventor
M. Sc. Xenia Brühn
Ralf Broszeit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weber Ultrasonics AG
Original Assignee
Weber Ultrasonics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weber Ultrasonics GmbH filed Critical Weber Ultrasonics GmbH
Publication of EP2705906A2 publication Critical patent/EP2705906A2/en
Publication of EP2705906A3 publication Critical patent/EP2705906A3/en
Application granted granted Critical
Publication of EP2705906B1 publication Critical patent/EP2705906B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit

Definitions

  • the present invention relates to a method according to the preamble of claim 1 for operating an ultrasonic generator for RF power supply of an ultrasonic transducer, in particular for ultrasonic welding or ultrasonic cleaning, which ultrasonic generator has at least one by means of an exciter signal with an excitation frequency electrically energizable resonant circuit, in electrical operative connection with is at least one electro-mechanical vibration system of the ultrasonic transducer whose impedance has a magnitude maximum in a parallel resonance of the oscillating system and a magnitude minimum in a series resonance of the oscillating system.
  • the invention relates to an ultrasonic generator according to the preamble of claim 10 for RF energy supply of an ultrasonic transducer, in particular for ultrasonic welding or ultrasonic cleaning, with at least one by means of an exciter signal with an excitation frequency electrically energizable resonant circuit with at least one electro-mechanical vibration system of an ultrasonic transducer in electrical operative connection can be coupled, the impedance has a magnitude maximum in a parallel resonance of the oscillating system and a magnitude minimum in a series resonance of the oscillating system.
  • the invention relates to an ultrasound system, which ultrasound system has at least one ultrasound generator of the type mentioned in operative connection with at least one ultrasound transducer.
  • Generic objects are for example from the EP 0 662 356 B1 known.
  • the cited document discloses in particular a method for operating a generator for RF power supply of an ultrasonic transducer and its operation in a specific resonance state. Thereby the phase angle between the current and the voltage at the output of the generator becomes measured and used for frequency control of the generator by a voltage proportional to the phase angle between current and voltage is generated, wherein in addition to the phase angle of the current, the voltage and / or the apparent or active power at the RF output of the generator digitally processed as an additional control variable and is associated with the phase angle to determine the desired resonant frequency of the generator.
  • the resonant frequency mentioned is the frequency of the parallel resonance of the ultrasound transducer, for the detection of which a starting frequency above the paraliel resonance is selected and subsequently regulated to the current minimum in order then to operate the ultrasound transducer in the parallel resonance of the impedance curve.
  • the invention has for its object to provide an alternative method for operating an ultrasonic generator and a correspondingly trained ultrasonic generator, which ensure a simpler and more cost-effective way to operate in a predetermined or predeterminable operating point with appropriate output power and vibration amplitude.
  • a method for operating an ultrasound generator for RF energy supply of an ultrasound transducer, in particular for ultrasonic welding or ultrasound cleaning which ultrasound generator has at least one oscillatory circuit which can be electrically excited by means of an exciter signal with an excitation frequency, is in electrical operative connection with at least one electro-mechanical oscillating system of the ultrasound transducer stands, which oscillating system at a first (excitation) frequency a parallel resonance and at a second (excitation) frequency has a series resonance, which is expressed on the basis of a maximum or a minimum of the magnitude of the impedance of the oscillating system, characterized in that a) in the resonant circuit, preferably in front of a parallel throttle contained therein, at least when the oscillatory system oscillates at an initial excitation frequency, the phase difference between the current and the voltage of the exciter signal is determined and used to control the frequency of the ultrasound generator; b) in response to the determined phase difference at a phase difference ⁇ 0 °, the frequency of the initial
  • first measuring means it is not necessary in the context of the present invention for the abovementioned first measuring means to be designed directly for generating and providing a (analog) phase difference signal. Rather, it is alternatively possible to calculate the phase difference from the measured values for current and voltage (digital).
  • An ultrasound system has at least one ultrasound generator according to the invention in operative connection with at least one ultrasound transducer, which ultrasound transducer or its electro-mechanical vibration system has a parallel resonance and a series resonance in its impedance as a function of the excitation frequency.
  • the impedance of an ultrasonic transducer is a complex-valued variable and in FIG. 1 as a function of the frequency f separated by magnitude Z (actually
  • Impedance is the ratio of complex alternating current to complex alternating current and includes for the skilled person the summary of two statements: It gives the ratio of the amplitude of sinusoidal alternating voltage to sinusoidal alternating current, and it indicates the phase shift between these two quantities. This phase shift is referred to herein as the "phase of the impedance" ( ⁇ ).
  • the impedance points, in FIG. 1 Coming from lower frequencies, first an absolute minimum, which corresponds to the minimum impedance of a so-called series resonance SR of the oscillating system. At higher frequencies f, the impedance Z or its magnitude increases sharply, up to an absolute maximum in the so-called parallel resonance PR of the oscillatory system.
  • the phase of the impedance or the phase difference ⁇ between (HF) current and (RF) voltage of the resonant circuit changes when negative voltage (-90 °) to positive occurs when connecting a voltage source when the series resonance SR is reached. + 90 °), and on reaching the parallel resonance PR back to -90 °.
  • the phase angle is zero.
  • the ultrasonic generator regulates the excitation frequency within a frequency band which is defined between the two zero crossings ND1 and ND2 of the phase difference.
  • the said zero crossings ND1, ND2 coincide with respect to the associated frequency with the series resonance SR and the parallel resonance PR of the ultrasonic transducer.
  • the phase angle between (HF) current and (HF) voltage is positive.
  • the phase difference between current and voltage of the excitation signal is now determined in a first step in the resonant circuit of the ultrasonic generator, preferably in front of a parallel choke or inductor contained in the resonant circuit at least when the oscillatory system with an initial excitation frequency - If necessary in the form of a resulting phase difference signal - used for frequency control of the ultrasonic generator as a controlled variable.
  • the current and the voltage are preferably measured in the resonant circuit, from whose temporal progressions the said phase difference can be determined, for example, digitally by means of a suitable processor.
  • the initial excitation frequency is frequency-controlled such that the phase difference becomes substantially zero, with the oscillating system approaching its parallel resonance, which is an absolute maximum the impedance goes along.
  • the corresponding frequency of the excitation signal is presently also called "start frequency" designated.
  • the oscillating system or the ultrasonic transducer is then excited according to the invention at the starting frequency to ultrasonic vibrations.
  • the excitation frequency is controlled such that the phase of the impedance is> 0 °.
  • this means that for frequencies above the parallel resonance to search the start frequency, the frequency is lowered until ⁇ 0 ° (PR).
  • the oscillating system In the context of the present invention, provision is made in this connection for the oscillating system to be operated following the method step d) at an operating point between parallel resonance and series resonance of the oscillating system ( ⁇ > 0 °). It is possible that the operating point is shifted in response to a user input or input, preferably in the direction of the series resonance for larger vibration amplitudes and / or for greater vibration power.
  • the ultrasound generator determines the phase between (HF) current and (RF) voltage in the resonant circuit already at the start or during oscillation of the ultrasonic oscillating system and is thus able to determine whether the set initial Excitation frequency is in the right frequency range.
  • the term "correct frequency range” is understood in particular to mean the frequency band ( ⁇ > 0 °) defined above. This allows the so-called Start frequency, which is predetermined by the resonance property of the ultrasonic transducer or the oscillating system to detect automatically readjust and optimize.
  • the starting frequency is preferably determined by determining that frequency value at which the phase difference or the phase of the impedance vanishes in the parallel resonance or in the series resonance, ie the value zero accepts. This is most preferably done by means of a pre-scan at relatively low power, the initial excitation frequency then being adjusted substantially to the predetermined starting frequency of the excitation signal. In the optimum thus corresponds to the said starting frequency at which the ultrasonic generator tries to swing, just the frequency of the parallel resonance PR or the series resonance SR (see. FIG. 1 ). Depending on the power or amplitude specification, it can then be connected to the frequency of the series resonance SR or the parallel resonance PR (cf. FIG. 1 ). In principle, however, it is also possible, within the scope of a specific power or amplitude specification, to set a corresponding operating-point frequency approximated to the frequency of the series resonance or parallel resonance directly during the oscillation.
  • An extremely preferred development of the method according to the invention provides that, preferably even before the oscillation system is excited, the distance between parallel resonance and series resonance of the oscillatory system is determined by changing the frequency of the exciter signal and determining the two frequency values at which the phase difference (cf. FIG. 1 ) disappears. This can in turn be done by means of a pre-scan at relatively low power.
  • the mentioned (frequency) distance between parallel resonance and series resonance can be used when exciting the oscillating system as a rule basis for the frequency control of the ultrasonic generator.
  • the ultrasound generator can thus detect whether the ultrasound vibration system is a rather narrowband or a relatively broadband system, which represents a measure of the quality of the system.
  • the ultrasonic generator is accordingly able to optimally adapt its control characteristics to the system.
  • control unit is understood to mean the frequency-related resolution between the series resonant station and the parallel resonant station. Due to the adapted control characteristic, the ultrasound generator can optimally find and adjust the desired operating point frequency in said frequency band, wherein the avoidable excitation of undesired secondary resonances of the ultrasound vibration system is reliably avoided.
  • phase difference in addition to the mentioned phase difference, further physical variables can be measured in the resonant circuit and used as controlled variables for the frequency control.
  • quantities HF current, reactive power and active power in the resonant circuit are mentioned in this context by way of example.
  • At least one further property for example voltage and / or current of a primary, serving for generating the exciter signal electrical power supply signal measured and as a control variable for the frequency control and / or for a protective function is used to protect components of the ultrasonic generator.
  • additional measurement data of a primary power supply unit (power supply) which supplies electrical power to an output stage in the ultrasonic generator can be added to the control in order to correct any fluctuation of the primary voltage of the power supply or to protect the output stage from overloading if the primary current is too high ( protection function).
  • a corresponding development of the ultrasonic generator according to the invention provides in this context that in addition to the first measuring means, which are designed to determine the phase difference between the current and voltage of the excitation signal in the resonant circuit, additionally second measuring means are provided which are in electrical communication with the primary electrical power supply unit for generating the excitation signal stand. Said second measuring means are designed to determine at least one property, preferably voltage and / or current, of a primary electrical power supply signal generated by the power supply unit and to feed it back to the frequency control unit of the ultrasonic generator. Additionally or alternatively, the measured values provided by the second measuring means can also be used for the already mentioned protective function, which protective function serves to protect components of the ultrasonic generator from damage, for example the final stage.
  • the frequency control unit of the ultrasonic generator according to the invention may be formed in the course of another development as an "intelligent" unit in the sense of a microprocessor, microcontroller, a digital signal processor or a FPGA (Field Programmable Gate Array) or in the form of another digital computer unit.
  • the frequency control unit may further include a kind of "artificial intelligence", such as a neural network or an expert system, which preferably serves to provide predictions regarding the vibration behavior of the ultrasonic transducer or the ultrasonic vibration system in the course of modeling so positively influencing the control behavior, in particular to accelerate.
  • this is a first device, preferably a software-based or firmware-based device, in particular automatically determining the distance between parallel resonance and series resonance of Having oscillation system by changing the frequency of the excitation signal.
  • this preferably takes place on the basis of the frequency values vanishing phase difference between the current and voltage of the excitation signal and most preferably before the excitation of the oscillatory system by means of a pre-scan at relatively low power.
  • the said distance can then be used as a control basis for the frequency control of the ultrasonic generator, in particular as an influencing variable in the setting of a fineness of the frequency control (control unit, see above) of the ultrasonic generator.
  • a comparably designed second device may be provided for, in particular, automatic determination of the starting frequency. Preferably, this is also done on the basis of the frequency value with vanishing phase difference between current and voltage of the exciter signal in the parallel resonance and most preferably by means of a pre-scan at relatively low power. In this way, the initial excitation frequency is then substantially adjustable to the predetermined start frequency of the excitation signal.
  • this further measuring means for determining at least one of the variables RF current, reactive power and active power in the resonant circuit, which measuring means are in electrical and signaling active connection with the frequency control unit of the ultrasonic generator to the above sizes as a further Use controlled variables for frequency control.
  • the frequency control unit is constructed cascaded.
  • PWM pulse width modulation
  • PBM pulse width modulation
  • FIG. 2 schematically shows a block diagram of an inventive ultrasound system, which is designated in its entirety by the reference numeral 1.
  • the ultrasound system 1 comprises an ultrasound generator 2, to which an ultrasound transducer 3 having an electro-mechanical vibration system is connected in electrical operative connection, which in the present case is shown in the form of an equivalent circuit diagram.
  • the ultrasonic transducer 3 generates according to the ultrasonic generator ultrasonic waves 4, which can be used for machining a workpiece 5, for example, for ultrasonic welding or ultrasonic cleaning, without the present invention would be limited thereto.
  • the ultrasonic transducer 3 or the oscillating system has a frequency-dependent impedance behavior Z (f), which is shown here only symbolically (cf. FIG. 1 ).
  • the ultrasonic transducer 3 With increasing (excitation) frequency f, the ultrasonic transducer 3 initially has a minimum of the impedance Z, followed by an impedance maximum.
  • the impedance minimum coincides with the so-called series resonance SR of the ultrasonic transducer 3, while the impedance maximum coincides with the so-called parallel resonance PR of the ultrasonic transducer 3; whereupon on the basis of FIG. 1 has already been pointed out.
  • the electrical or signal engineering coupling of the ultrasonic transducer 3 and the ultrasonic generator 2 takes place at reference numeral 2a, which designates an output or connection of the ultrasonic generator.
  • the ultrasonic generator 2 comprises the following components: a (primary) power supply unit 2b; an amplifier output stage 2c which is supplied with electric power from the power supply unit 2b; a transformer 2d for transforming a voltage supplied from the power supply unit 2b to the required level; a matching network 2e with at least one inductance (L) or throttle 2f as part of a (total) resonant circuit 3 'in electrical or signal-related operative connection with the transformer 2d and first measuring means 2g, which are designed to measure physical quantities in the matching network 2e or the resonant circuit, wherein at least one first measuring means 2g1 for measuring the current and the voltage in the matching network 2e, ie formed in the resonant circuit 3 'in front of the inductor 2f, to determine therefrom the phase difference between (excitation
  • first measuring means 2g2, 2g3 serve for measuring additional physical quantities within the matching network 2e or the oscillating circuit 3 ', such as reactive power or active power, which will also be discussed in more detail below.
  • a frequency control unit 2h preferably has control means 2h1-2h3 arranged in cascade, which each use the measuring signals of the first measuring means 2g1-2g3 as a controlled variable for the frequency control.
  • Drive means 2i act in accordance with the frequency control unit 2h on the output stage 2c, so that it provides the transformer 2d, the electrical energy of the supply unit 2b in the form of a specific, regulated frequency.
  • the ultrasound generator 2 at 2j comprises further, second measuring means in signal-operative connection with the power supply unit 2b, which second measuring means 2j as the first measuring means 2g are in operative operative connection with the frequency control unit 2h.
  • the second measuring means 2j are used to determine certain properties, such as voltage or current, of the energy supply unit 2b, so that they can also be used as a control variable for the frequency control.
  • the measured properties of the energy supply unit 2b can also be used in the sense of a protective function for components of the ultrasonic generator 2, for example in order to protect the output stage 2c from overloading if the primary current (too high current intensity at the energy supply unit 2b) is too high.
  • the frequency control unit 2h may be formed together with (functional constituent) parts of the first 2g and the second measuring means 2j in the form of a program-controlled or programmable digital processor unit 2k, which is operable by an operator of the ultrasound system 1 by means of external user inputs, the latter being in FIG. 2 was not explicitly shown for reasons of clarity.
  • Such user input includes, for example, inputting a desired amplitude of vibration or desired ultrasound power.
  • the measured values which are measured by the first measuring means 2g on the matching network 2e or on the oscillating circuit 3 ', give the frequency control unit 2h all measuring data which are required for determining and correcting the operating frequency to be output.
  • measurement data supplied by the second measuring means 2j of the primary power or energy supply unit 2b can also be used, which primary power supply unit supplies the final stage 2c with electrical energy. If such further measured values are supplied to the frequency control unit 2h, any fluctuation in the primary voltage of the power supply unit 2b can be compensated. As has already been mentioned, it is additionally possible to protect the output stage 2c against overload when the primary current is too high.
  • the output stage 2c which is driven by the drive unit 2i, gives the transformer 2d the electrical energy of the primary supply unit 2b in the form of a specific frequency (excitation frequency).
  • the transformer 2d transforms the voltage supplied by the power supply unit 2b to the required level and applies this voltage to the oscillating circuit 3 '.
  • the measurement network 2e / the resonant circuit 3 'or the inductance or parallel choke 2f contained there again receives new measurement data (by the first measuring means 2g) which the frequency control unit 2h needs in order to readjust the excitation frequency to the conditions.
  • the conditions mentioned include, in particular, the actual load or vibration state of the ultrasonic transducer 3 or of the oscillating system, the specified operating specifications by an operator and further (physical) parameters of the ultrasound system, for example its heating during operation.
  • the electrical energy passes through the output or terminal 2a in the form of the output Excitation frequency in the ultrasonic vibrator connected to the ultrasonic generator 2 (ultrasonic transducer 3), which converts the electrical excitation energy into mechanical vibrations, which is known in principle to those skilled in the art.
  • the combination of matching network 2e and ultrasonic transducer 3 acts as a resonant circuit 3 ', which has already been pointed out several times.
  • the matching network may also have at least one capacitance (C), which is known to the person skilled in the art and disclosed in US Pat FIG. 2 not shown.
  • FIGS. 3 to 5 Preferred embodiments of the ultrasonic generator 2 in the region of the transformer 2d, the matching network 2e and the first measuring means 2g connected thereto will now be explained in greater detail.
  • like reference numerals designate the same or equivalent elements.
  • FIG. 3 shows a block diagram of an embodiment in which in the matching network 2e of the ultrasonic generator 2 before the inductor 2f a current transformer or current sensor 2g1 is arranged, which generates a corresponding (current) measurement signal SM1 and at the in FIG. 3 not explicitly drawn frequency control unit 2h provides (dashed arrow in FIG. 3 ). Since the inductance 2f according to FIG. 3 is connected in parallel to the output or termination 2a of the ultrasonic generator 2, it is also referred to as a parallel throttle.
  • FIG. 4 shows a development of the circuit arrangement FIG. 3 in which in each case one current transformer or current sensor 2g1 is arranged in front of the parallel throttle 2f and another 2g2 behind the parallel throttle 2f.
  • the current transformer or current sensor 2g2 arranged behind the inductance 2f only measures the current share through the inductance 2f.
  • the current can be calculated by the ultrasound transducer 3, for example by the processor unit 2k, so that in the frequency control unit 2h (cf. FIG. 2 ) in an advantageous manner then a pure active current signal is available for control purposes.
  • FIG. 5 it is in a slight modification of the circuit arrangement FIG. 3 basically also possible to measure the current upstream of the transformer 2d by means of a correspondingly arranged current transformer or current sensor 2g ', which measures a corresponding measurement signal SM' at the frequency regulation unit 2h (cf. FIG. 2 ).
  • a correspondingly arranged current transformer or current sensor 2g ' which measures a corresponding measurement signal SM' at the frequency regulation unit 2h (cf. FIG. 2 ).
  • FIG. 6 shows signal waveforms for the phase signal of the voltage ⁇ U or fU and for the phase signal of the current ⁇ I and fI over the time t.
  • the two signals ⁇ U / fU and ⁇ I / fI are obtained by a corresponding analog processing from the measurements of current and voltage.
  • the mentioned preparation is carried out by the processor 2k (cf. FIG. 2 ) based on the corresponding measurement signals, in particular the current measurement signals SM1, SM2 or SM '( FIGS. 3 to 5 ).
  • the processor 2k can calculate the phase or the phase difference and generate a corresponding phase difference signal.
  • the said phase difference becomes zero when the ultrasonic transducer 3 (see. FIGS. 2 to 5 ) is excited at its parallel resonance or at its series resonance.
  • phase signals according to FIG. 6 it is also possible to use the phase signals according to FIG. 6 to generate a proportional to the phase signals DC voltage and this the processor 2k (see. FIG. 2 ) on an ADC pin.
  • this would disadvantageously be associated with a reduced measuring speed, a reduced measuring accuracy and an increased susceptibility to interference.
  • FIG. 7 shows a flowchart of an embodiment of the inventive method for operating an ultrasonic generator, in particular of the ultrasonic generator 2 according to FIG. 2 , to the high frequency (RF) energy supply of an ultrasonic transducer, in particular of the ultrasonic transducer 3 according to FIG. 2
  • the method preferably proceeds at the instigation of the processor 2k.
  • step S100 for example by an operator operating the ultrasound system 1 or the ultrasound generator 2 according to FIG FIG. 2 starts up.
  • step S102 a determination of the bandwidth of the ultrasound system takes place.
  • this is to be understood as meaning that the (frequency) distance between parallel resonance PR and series resonance SR (cf. FIG. 1 . FIG. 2 ) of the connected ultrasonic transducer or oscillating system is determined.
  • the system remains limited to this area in later operation, in order to avoid unwanted side resonances of the oscillatory system.
  • the determination of the bandwidth takes place in such a way that the distance between the parallel resonance and the series resonance of the oscillating system is determined by changing the frequency of the excitation signal and determining the zero crossings of the phase difference signal, in particular by means of a preliminary scan with relatively low power.
  • the zero crossings ND1, ND2 (cf. FIG. 1 ) of the phase difference or the associated phase difference signal can be determined, as described above with reference to FIG. 6 already discussed in principle.
  • the frequencies of said zero crossings depend on the type of the connected ultrasound transducer or oscillating system and are essentially known after operation of the ultrasound generator following step S102.
  • step S104 the adjustment of the control unit of the frequency control unit.
  • This is understood to mean that, given a relatively small distance between the zero crossings or resonance points, ie a relatively steep profile of the impedance curve in the region between ND1 and ND2 (cf. FIG. 1 ) a relatively fine regulator is required, so that in the context of the present invention, a corresponding adjustment of the frequency control unit 2h (see. FIG. 2 ) he follows. If, on the other hand, the resonance points are relatively far apart, which corresponds to a flat course of the impedance curve in said region, a correspondingly coarser regulator can be used.
  • step S106 the start frequency for exciting the vibration system is searched.
  • step S108 a query is made as to whether the desired starting frequency has already been found. If the query is denied (-) in step S108, the process proceeds to step S106. If the queries are affirmative (+) in step 108, the oscillation system is then acted upon at the start frequency in step S110. Since the starting frequency - as stated - substantially coincides with the frequency of the parallel resonance of the oscillating system, the impedance of the oscillating system is according to FIG. 1 relatively high impedance, so that only little power is delivered and the amplitude of the mechanical vibration is small. It is desirable for reasons of reliability and durability of the system, when the first application of the vibration system takes place in its parallel resonance.
  • step S112 the power is adjusted or increased according to user specification, in particular by increasing the applied voltage and / or current.
  • step S114 in the course of a so-called frequency shifting, the excitation frequency is applied to the frequency of the series resonance SR (cf. FIG. 1 ), which, starting from the parallel resonance PR, is regularly associated with a reduction in the excitation frequency. This happens until the desired operating point of the ultrasound system is reached. This is equivalent to the fact that the ultrasound system delivers the desired output power or oscillation amplitude at the operating point.
  • the corresponding values can be read by an operator on the ultrasound generator 2 (cf. FIG. 2 ) and form corresponding desired values or desired variables for the frequency control unit 2h.
  • step S116 a query is made as to whether the desired operating point (control target value) has already been reached. If this query is answered in the negative (-), the process returns to step S114. If the answer is affirmative (+) in step S116, the set frequency becomes Maintaining step S118, and the ultrasound machine is operated at the selected operating point.
  • step S118 the frequency is readjusted if other system parameters are changed, for example if the system heats up when the system heats up, which as a rule shifts the operating point down to lower frequencies left in FIG. 1 ).
  • Lowering the frequency associated with step S114 includes not lowering the frequency to below the series resonant frequency to avoid exciting undesirable side resonances of the vibratory system.
  • step S120 ends with step S120 following step S118.
  • the starting frequency is also possible to set the starting frequency to the determined frequency of the series resonance and then to increase the frequency, or to directly consult a frequency in the working range (phase greater than zero).
  • This double arrow symbolizes a preferred further embodiment of the processor or the processor unit 2 k, which can be designed as an "intelligent" unit (artificial intelligence) or in the form of an expert system, in order to obtain additional information concerning the vibration or modeling by modeling.
  • the processor unit 2k may be designed to record and evaluate certain measured behavioral parameters of the ultrasound transducer and to derive therefrom assumptions for later reoperation of the ultrasound system 1. In particular, such predictions can serve to predetermine the starting frequency mentioned above as precisely as possible in order to shorten the initial adjustment of the ultrasound generator 3.
  • FIG. 8 shows with reference to a flowchart, another embodiment of the inventive method for operating an ultrasonic generator, in particular of the ultrasonic generator 2 according to FIG. 2 for the high-frequency (HF) energy supply of an ultrasonic transducer, in particular of the ultrasonic transducer 3 according to FIG. 2
  • the method preferably proceeds at the instigation of the processor 2k.
  • step S200 begins with step S200, for example by an operator operating the ultrasound system 1 or the ultrasound generator 2, respectively FIG. 2 starts up.
  • step S202 is followed by a measuring step at reference symbol S202 in order to determine the physical or electrical parameters required for the regulation of the system, in particular using the already described with reference to FIG. 2 explained measuring means 2g, 2j.
  • Measured in this context in particular the RF current and the RF voltage, from which the RF power (by product formation) and the phase, ie the relative phase position or phase difference between the RF current and RF voltage can be determined.
  • phase listed there again denotes the phase of the impedance.
  • frequency change is case-specific, as explained in detail above, as well as the “frequency control”.
  • Power limitation means a specification of the maximum permissible power by the device or by the user.
  • Actual value and “Reference value” stand for corresponding values for power or amplitude - depending on the application. For example, for ultrasonic cleaning applications, performance may be the critical parameter, while welding applications tend to rely on the amplitude of the vibration.
  • step S204 a query is made as to whether the measured HF current is above a predetermined threshold value "overcurrent threshold”. If the answer is affirmative in S204, the generator is turned off to protect the system in the course of a protection function (step S206).
  • step S204 a query is made in a subsequent step S208 as to whether the power effective in the vibration system is greater than a predetermined maximum power. If the query in step S208 is answered in the affirmative, a further query is made in step S210 as to whether the phase difference between the HF current and the HF voltage is less than zero. If the query is answered in the negative in step S210, a control over the frequency is made in step S212 in connection with a power limitation for finding the parallel resonance, and the method returns to step S202. If the query in step S210 is affirmative, a PWM control for power reduction and a phase control to achieve a phase difference of 0 ° (parallel resonance) is performed in step S214.
  • the system has a particularly high impedance, which is why the required power reduction takes place via the pulse width adjustment of the exciter signal (before the adaptation, the exciter signal can have an on-off ratio of 1 to 1, correspondingly less after the power has been reduced.)
  • the method then also returns back to step S202.
  • step S208 a further query is made in step S216 as to whether the phase difference between the HF current and the HF voltage is less than zero. If this query is answered in the affirmative, a frequency change takes place in step S218. Subsequently, the process returns to step S202.
  • step S220 a further query is made in step S220 as to whether the phase difference between the HF current and the HF voltage is zero and whether an actual value of the power / amplitude is smaller than a corresponding desired value. These values can be specified by the user or they are permanently set in the device. If the answer is affirmative in step S220, frequency control is performed to zero phase difference in step S222, and the process returns to step S202.
  • step S220 If the query is denied in step S220, frequency control is performed to a power / amplitude setpoint in step S224, and the method returns to step S202.
  • phase difference between HF current and HF voltage is equivalent to a consideration of the phase of Complex impedance of the repeatedly addressed resonant circuit resulting from the generator's own matching network and the connected ultrasonic transducer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

The method involves connecting a resonant circuit (2e) with an electro-mechanical oscillating system of an ultrasonic transducer (3). The initial excitation frequency of the resonant circuit is determined. The phase difference between current and voltage of excitation signal is detected for the frequency control of an ultrasonic generator. The oscillating system is excited at initial frequency to ultrasonic vibrations. The excitation frequency of the oscillating system is controlled such that the phase of impedance of oscillating system is set to preset range. Independent claims are included for the following: (1) an ultrasonic generator; and (2) an ultrasonic system with ultrasonic generator.

Description

Die vorliegende Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 zum Betreiben eines Ultraschallgenerators zur HF-Energieversorgung eines Ultraschallwandlers, insbesondere zum Ultraschallschweißen oder zur Ultraschallreinigung, welcher Ultraschallgenerator wenigstens einen mittels eines Erregersignals mit einer Erregungsfrequenz elektrisch erregbaren Schwingkreis aufweist, der in elektrischer Wirkverbindung mit wenigstens einem elektro-mechanischen Schwingsystem des Ultraschallwandlers steht, dessen Impedanz bei einer Parallelresonanz des Schwingsystems ein Betragsmaximum und bei einer Serienresonanz des Schwingsystems ein Betragsminimum aufweist.The present invention relates to a method according to the preamble of claim 1 for operating an ultrasonic generator for RF power supply of an ultrasonic transducer, in particular for ultrasonic welding or ultrasonic cleaning, which ultrasonic generator has at least one by means of an exciter signal with an excitation frequency electrically energizable resonant circuit, in electrical operative connection with is at least one electro-mechanical vibration system of the ultrasonic transducer whose impedance has a magnitude maximum in a parallel resonance of the oscillating system and a magnitude minimum in a series resonance of the oscillating system.

Weiterhin betrifft die Erfindung einen Ultraschallgenerator nach dem Oberbegriff des Anspruchs 10 zur HF-Energieversorgung eines Ultraschallwandlers, insbesondere zum Ultraschallschweißen oder zur Ultraschallreinigung, mit wenigstens einem mittels eines Erregersignals mit einer Erregungsfrequenz elektrisch erregbaren Schwingkreis, der mit wenigstens einem elektro-mechanischen Schwingsystem eines Ultraschallwandlers in elektrischer Wirkverbindung koppelbar ist, dessen Impedanz bei einer Parallelresonanz des Schwingsystems ein Betragsmaximum und bei einer Serienresonanz des Schwingsystems ein Betragsminimum aufweist.Furthermore, the invention relates to an ultrasonic generator according to the preamble of claim 10 for RF energy supply of an ultrasonic transducer, in particular for ultrasonic welding or ultrasonic cleaning, with at least one by means of an exciter signal with an excitation frequency electrically energizable resonant circuit with at least one electro-mechanical vibration system of an ultrasonic transducer in electrical operative connection can be coupled, the impedance has a magnitude maximum in a parallel resonance of the oscillating system and a magnitude minimum in a series resonance of the oscillating system.

Außerdem betrifft die Erfindung ein Ultraschallsystem, welches Ultraschallsystem wenigstens einen Ultraschallgenerator der genannten Art in Wirkverbindung mit wenigstens einem Ultraschallwandler aufweist.Moreover, the invention relates to an ultrasound system, which ultrasound system has at least one ultrasound generator of the type mentioned in operative connection with at least one ultrasound transducer.

Gattungsgemäße Gegenstände sind beispielsweise aus der EP 0 662 356 B1 bekannt. Die genannte Druckschrift offenbart insbesondere ein Verfahren zum Betrieb eines Generators zur HF-Energieversorgung eines Ultraschallwandlers sowie dessen Betrieb in einem bestimmten Resonanzzustand. Dabei wird der Phasenwinkel zwischen dem Strom und der Spannung am Ausgang des Generators gemessen und zur Frequenzregelung des Generators verwendet, indem eine dem Phasenwinkel zwischen Strom und Spannung proportionale Spannung erzeugt wird, wobei zusätzlich zum Phasenwinkel der Strom, die Spannung und/oder die Schein- oder Wirkleistung am HF-Ausgang des Generators als zusätzliche Regelgröße digital verarbeitet und mit dem Phasenwinkel verknüpft wird, um die gewünschte Resonanzfrequenz des Generators zu bestimmen. Bei der genannten Resonanzfrequenz handelt es sich um die Frequenz der Parallelresonanz des Ultraschallwandlers, zu deren Auffindung eine Startfrequenz oberhalb der Paralielresonanz gewählt und anschließend auf das Stromminimum geregelt wird, um danach den Ultraschallwandler in der Parallelresonanz der Impedanzkurve zu betreiben.Generic objects are for example from the EP 0 662 356 B1 known. The cited document discloses in particular a method for operating a generator for RF power supply of an ultrasonic transducer and its operation in a specific resonance state. Thereby the phase angle between the current and the voltage at the output of the generator becomes measured and used for frequency control of the generator by a voltage proportional to the phase angle between current and voltage is generated, wherein in addition to the phase angle of the current, the voltage and / or the apparent or active power at the RF output of the generator digitally processed as an additional control variable and is associated with the phase angle to determine the desired resonant frequency of the generator. The resonant frequency mentioned is the frequency of the parallel resonance of the ultrasound transducer, for the detection of which a starting frequency above the paraliel resonance is selected and subsequently regulated to the current minimum in order then to operate the ultrasound transducer in the parallel resonance of the impedance curve.

Ähnliche Gegenstände sind aus der US 7,475,801 B2 und der DE 10 2010 004 468 A1 bekannt.Similar items are from the US 7,475,801 B2 and the DE 10 2010 004 468 A1 known.

Der Erfindung liegt die Aufgabe zugrunde, ein alternatives Verfahren zum Betreiben eines Ultraschallgenerators und einen entsprechend ausgebildeten Ultraschallgenerator anzugeben, welche auf einfachere und kostengünstigere Weise einen Betrieb in einem vorgegebenen oder vorgebbaren Arbeitspunkt mit entsprechender Ausgangsleistung und Schwingungsamplitude gewährleisten.The invention has for its object to provide an alternative method for operating an ultrasonic generator and a correspondingly trained ultrasonic generator, which ensure a simpler and more cost-effective way to operate in a predetermined or predeterminable operating point with appropriate output power and vibration amplitude.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1, durch einen Ultraschallgenerator mit den Merkmalen des Anspruchs 10 sowie durch ein Ultraschallsystem mit den Merkmalen des Anspruchs 16. Vorteilhafte Weiterbildungen der Erfindungsgegenstände sind Gegenstand von Unteransprüchen, deren Wortlaut hiermit durch ausdrückliche Bezugnahme in die Beschreibung aufgenommen wird, um Textwiederholungen zu vermeiden.This object is achieved by a method having the features of claim 1, by an ultrasonic generator with the features of claim 10 and by an ultrasound system having the features of claim 16. Advantageous developments of the subject invention are the subject of claims, the wording hereby by express reference is included in the description to avoid text repetition.

Erfindungsgemäß ist ein Verfahren zum Betreiben eines Ultraschallgenerators zur HF-Energieversorgung eines Ultraschallwandlers, insbesondere zum Ultraschallschweißen oder zur Ultraschallreinigung, welcher Ultraschallgenerator wenigstens einen mittels eines Erregersignals mit einer Erregungsfrequenz elektrisch erregbaren Schwingkreis aufweist, der mit wenigstens einem elektro-mechanischen Schwingsystem des Ultraschallwandlers in elektrischer Wirkverbindung steht, welches Schwingsystem bei einer ersten (Erregungs-)Frequenz eine Parallelresonanz und bei einer zweiten (Erregungs-)Frequenz eine Serienresonanz aufweist, was sich anhand eines Maximums bzw. eines Minimums des Betrags der Impedanz des Schwingsystems ausdrückt, dadurch gekennzeichnet, dass a) in dem Schwingkreis, vorzugsweise vor einer darin enthaltenen Paralleldrossel, zumindest beim Anschwingen des Schwingsystems mit einer anfänglichen Erregungsfrequenz die Phasendifferenz zwischen Strom und Spannung des Erregersignals bestimmt und zur Frequenzregelung des Ultraschallgenerators verwendet wird; b) in Abhängigkeit von der bestimmten Phasendifferenz bei einer Phasendifferenz < 0° die anfängliche Erregungsfrequenz derart in ihrer Frequenz geregelt wird, dass bei Erreichen einer Startfrequenz des Erregungssignals die Phasendifferenz im Wesentlichen Null wird und die Impedanz des Schwingsystems sich ihrem Betragsminimum oder ihrem Betragsmaximum annähert; c) das Schwingsystem bei der Startfrequenz zu Ultraschallschwingungen angeregt wird und d) die Erregungsfrequenz derart geregelt wird, dass die Phase der Impedanz des Schwingsystems > 0° ist. Schritt b) ist gleichbedeutend damit, dass das Schwingsystem sich einer seiner Resonanzstellen (Serien- oder Parallelresonanz) annähert.According to the invention, a method for operating an ultrasound generator for RF energy supply of an ultrasound transducer, in particular for ultrasonic welding or ultrasound cleaning, which ultrasound generator has at least one oscillatory circuit which can be electrically excited by means of an exciter signal with an excitation frequency, is in electrical operative connection with at least one electro-mechanical oscillating system of the ultrasound transducer stands, which oscillating system at a first (excitation) frequency a parallel resonance and at a second (excitation) frequency has a series resonance, which is expressed on the basis of a maximum or a minimum of the magnitude of the impedance of the oscillating system, characterized in that a) in the resonant circuit, preferably in front of a parallel throttle contained therein, at least when the oscillatory system oscillates at an initial excitation frequency, the phase difference between the current and the voltage of the exciter signal is determined and used to control the frequency of the ultrasound generator; b) in response to the determined phase difference at a phase difference <0 °, the frequency of the initial excitation frequency is controlled so that upon reaching a start frequency of the excitation signal, the phase difference becomes substantially zero and the impedance of the oscillating system approaches its magnitude minimum or magnitude maximum; c) the oscillation system is excited to ultrasonic vibrations at the start frequency and d) the excitation frequency is controlled such that the phase of the impedance of the oscillation system is> 0 °. Step b) is synonymous with the fact that the oscillating system approaches one of its resonance points (series or parallel resonance).

Ein erfindungsgemäßer Ultraschallgenerator zur HF-Energieversorgung eines Ultraschallwandlers, insbesondere zum Ultraschallschweißen oder zur Ultraschallreinigung, mit wenigstens einem mittels eines Erregersignals mit einer Erregungsfrequenz elektrisch erregbaren Schwingkreis, der mit wenigstens einem elektro-mechanischen Schwingsystem eines Ultraschallwandlers in elektrischer Wirkverbindung koppelbar ist, welches Schwingsystem bei einer ersten (Erre-gungs-)Frequenz eine Parallelresonanz und bei einer zweiten (Erregungs-)Frequenz eine Serienresonanz aufweist, was sich anhand eines Maximums bzw. eines Minimums des Betrags der Impedanz des Schwingsystems ausdrückt, ist gekennzeichnet durch a) in dem Schwingkreis, vorzugsweise vor einer darin enthaltenen Paralleidrossel, angeordnete erste Messmittel, die dazu ausgebildet sind, die Phasendifferenz zwischen Strom und Spannung des Erregersignals zu bestimmen und die dazu vorgesehen sind, entsprechende Messsignale, vorzugsweise ein entsprechendes Phasendifferenzsignal, an einer Frequenzregelungseinheit des Ultraschallgenerators bereitzustellen; b) in der Frequenzregelungseinheit vorgesehene Frequenzregelmittel, die dazu ausgebildet sind, in Abhängigkeit von der bestimmten Phasendifferenz bei einer Phasendifferenz < 0° die Erregungsfrequenz derart in ihrer Frequenz zu regeln, dass bei Erreichen einer Startfrequenz des Erregungssignals die Phasendifferenz im Wesentlichen Null wird und die Impedanz des Schwingsystems sich ihrem Betragsminimum oder ihrem Betragsmaximum annähert; wobei c) die Frequenzregelmittel weiterhin dazu ausgebildet sind, die Erregungsfrequenz derart zu regeln, dass die Phase der Impedanz des Schwingsystems im Betrieb des Ultraschallwandlers > 0° ist.An inventive ultrasonic generator for RF energy supply of an ultrasonic transducer, in particular for ultrasonic welding or ultrasonic cleaning, with at least one by means of an exciter signal with an excitation frequency electrically energizable resonant circuit which can be coupled with at least one electro-mechanical vibration system of an ultrasonic transducer in electrical operative connection, which oscillating system in a first (excitation) frequency has a parallel resonance and at a second (excitation) frequency has a series resonance, which is expressed by a maximum or a minimum of the magnitude of the impedance of the oscillating system is characterized by a) in the resonant circuit, preferably Before a Paralleidrossel contained therein, arranged first measuring means which are adapted to determine the phase difference between the current and voltage of the exciter signal and which are provided to corresponding measurement signals, preferably a corr real phase difference signal to provide to a frequency control unit of the ultrasonic generator; b) provided in the frequency control unit frequency control means which are adapted to regulate the frequency of excitation in response to the determined phase difference at a phase difference <0 ° in such a way that upon reaching a start frequency of the excitation signal, the phase difference becomes substantially zero and the impedance of the oscillatory system approaches its magnitude minimum or magnitude maximum; wherein c) the frequency control means are further adapted to control the excitation frequency such that the phase of the impedance of the oscillating system in the operation of the ultrasonic transducer is> 0 °.

Es ist im Rahmen der vorliegenden Erfindung nicht erforderlich, dass die genannten ersten Messmittel unmittelbar zum Erzeugen und Bereitstellen eines (analogen) Phasendifferenzsignals ausgebildet sind. Vielmehr ist es alternativ möglich, die Phasendifferenz aus den Messwerten für Strom und Spannung (digital) zu berechnen.It is not necessary in the context of the present invention for the abovementioned first measuring means to be designed directly for generating and providing a (analog) phase difference signal. Rather, it is alternatively possible to calculate the phase difference from the measured values for current and voltage (digital).

Ein erfindungsgemäßes Ultraschallsystem weist wenigstens einen erfindungsgemäßen Ultraschallgenerator in Wirkverbindung mit wenigstens einem Ultraschallwandler auf, welcher Ultraschallwandler oder dessen elektro-mechanisches Schwingsystem in seiner Impedanz in Abhängigkeit von der Erregungsfrequenz eine Parallelresonanz und eine Serienresonanz aufweist.An ultrasound system according to the invention has at least one ultrasound generator according to the invention in operative connection with at least one ultrasound transducer, which ultrasound transducer or its electro-mechanical vibration system has a parallel resonance and a series resonance in its impedance as a function of the excitation frequency.

Die Impedanz eines Ultraschallwandlers ist eine komplexwertige Größe und in Figur 1 in Abhängigkeit von der Frequenz f getrennt nach Betrag Z (eigentlich |Z|) und Phase Δϕ zeichnerisch dargestellt. Die Impedanz ist der Quotient aus komplexer Wechselspannung und komplexem Wechselstrom und beinhaltet für den Fachmann die Zusammenfassung von zwei Aussagen: Sie gibt das Verhältnis der Amplitude von sinusförmiger Wechselspannung zu sinusförmigem Wechselstrom an, und sie gibt die Phasenverschiebung zwischen diesen beiden Größen an. Diese Phasenverschiebung wird vorliegend als "Phase der Impedanz" (Δϕ)bezeichnet. Die Impedanz weist, in Figur 1 von tieferen Frequenzen kommend, zunächst ein Betragsminimum auf, welches Impedanzminimum einer so genannten Serienresonanz SR des Schwingsystems entspricht. Zu höheren Frequenzen f hin steigt die Impedanz Z bzw. deren Betrag stark an, bis zu ei-nem Betragsmaximum bei der sogenannten Parallelresonanz PR des Schwingsystems.The impedance of an ultrasonic transducer is a complex-valued variable and in FIG. 1 as a function of the frequency f separated by magnitude Z (actually | Z |) and phase Δφ shown in the drawing. Impedance is the ratio of complex alternating current to complex alternating current and includes for the skilled person the summary of two statements: It gives the ratio of the amplitude of sinusoidal alternating voltage to sinusoidal alternating current, and it indicates the phase shift between these two quantities. This phase shift is referred to herein as the "phase of the impedance" (Δφ). The impedance points, in FIG. 1 Coming from lower frequencies, first an absolute minimum, which corresponds to the minimum impedance of a so-called series resonance SR of the oscillating system. At higher frequencies f, the impedance Z or its magnitude increases sharply, up to an absolute maximum in the so-called parallel resonance PR of the oscillatory system.

Weiterhin dargestellt ist in Figur 1 die Phase der komplexen Impedanz bzw. der Phasenunterschied Δϕ zwischen der Spannung und dem Strom im Schwingkreis des Ultraschallgenerators, über welchen Schwingkreis der Ultraschallwandler mit elektrischer Energie versorgt wird.Furthermore shown in FIG. 1 the phase of the complex impedance or the phase difference Δφ between the voltage and the current in the resonant circuit of the ultrasonic generator, via which resonant circuit the ultrasonic transducer is supplied with electrical energy.

Die Phase der Impedanz bzw. die Phasendifferenz Δϕ zwischen (HF-)Strom und (HF-)Spannung des Schwingkreises ändert sich bei Anschluss einer Spannungsquelle beim Erreichen der Serienresonanz SR, von niedrigen Frequenzen kommend, von Negativ (-90°) auf Positiv (+90°), und bei Erreichen der Parallelresonanz PR wieder auf -90°. Bei der Frequenz der jeweiligen Resonanz SR, PR ist der Phasenwinkel Null. Im Rahmen der vorliegenden Erfindung bzw. deren Weiterbildungen gemäß den Unteransprüchen regelt der Ultraschallgenerator die Erregungsfrequenz innerhalb eines Frequenzbandes, welches zwischen den beiden Nulldurchgängen ND1 und ND2 der Phasendifferenz definiert ist. Die genannten Nulldurchgänge ND1, ND2 fallen bezüglich der zugehörigen Frequenz mit der Serienresonanz SR und der Parallelresonanz PR des Ultraschallwandlers zusammen. In dem genannten Frequenzband, in welchen der Ultraschallgenerator regelt, ist der Phasenwinkel zwischen (HF-)Strom und (HF- )Spannung positiv.The phase of the impedance or the phase difference Δφ between (HF) current and (RF) voltage of the resonant circuit changes when negative voltage (-90 °) to positive occurs when connecting a voltage source when the series resonance SR is reached. + 90 °), and on reaching the parallel resonance PR back to -90 °. At the frequency of the respective resonance SR, PR, the phase angle is zero. In the context of the present invention or its developments according to the dependent claims, the ultrasonic generator regulates the excitation frequency within a frequency band which is defined between the two zero crossings ND1 and ND2 of the phase difference. The said zero crossings ND1, ND2 coincide with respect to the associated frequency with the series resonance SR and the parallel resonance PR of the ultrasonic transducer. In the mentioned frequency band, in which the ultrasonic generator controls, the phase angle between (HF) current and (HF) voltage is positive.

Im Rahmen der vorliegende Erfindung wird nun in einem ersten Verfahrensschritt in dem Schwingkreis des Ultraschallgenerators, und zwar vorzugsweise vor einer in dem Schwingkreis enthaltenen Paralleldrossel oder -induktivität, zumindest beim Anschwingen des Schwingsystems mit einer anfänglichen Erregungsfrequenz die Phasendifferenz zwischen Strom und Spannung des Erregersignals bestimmt und - ggf.in Form eines resultierenden Phasendifferenzsignals - zur Frequenzregelung des Ultraschallgenerators als Regelgröße verwendet. Zu diesem Zweck werden vorzugsweise in dem Schwingkreis der Strom und die Spannung gemessen, aus deren zeitlichen Verläufen sich die genannte Phasendifferenz ermitteln lässt, beispielsweise digital mittels eines geeigneten Prozessors. In Abhängigkeit von der bestimmten Phasendifferenz wird dann, wenn gilt Δϕ < 0°, im Rahmen der vorliegenden Erfindung die anfängliche Erregungsfrequenz derart in ihrer Frequenz geregelt, dass die Phasendifferenz im Wesentlichen Null wird, wobei das Schwingsystem sich seiner Parallelresonanz annähert, was mit einem Betragsmaximum der Impedanz einhergeht. Die entsprechende Frequenz des Erregungssignals wird vorliegend auch als "Startfrequenz" bezeichnet. Das Schwingsystem bzw. der Ultraschallwandler wird dann erfindungsgemäß bei der Startfrequenz zu Ultraschallschwingungen angeregt. Anschließend wird die Erregungsfrequenz derart geregelt, dass die Phase der Impedanz > 0° ist. Bezogen auf die Figur 1 hießt das konkret, dass für Frequenzen oberhalb der Parallelresonanz zum Aufsuchen der Startfrequenz die Frequenz erniedrigt wird, bis Δϕ = 0° (PR). Für Frequenzen unterhalb der Serienresonanz wird die Frequenz erhöht, bis Δϕ = 0° (SR). Für Frequenzen mit Δϕ > 0° ist grundsätzlich keine Veränderung der Frequenz erforderlich. Allerdings kann durch Veränderung der Frequenz eine Amplituden- oder Leistungsanpassung bezüglich des Schwingsystems vorgenommen werden.In the context of the present invention, the phase difference between current and voltage of the excitation signal is now determined in a first step in the resonant circuit of the ultrasonic generator, preferably in front of a parallel choke or inductor contained in the resonant circuit at least when the oscillatory system with an initial excitation frequency - If necessary in the form of a resulting phase difference signal - used for frequency control of the ultrasonic generator as a controlled variable. For this purpose, the current and the voltage are preferably measured in the resonant circuit, from whose temporal progressions the said phase difference can be determined, for example, digitally by means of a suitable processor. In the context of the present invention, depending on the determined phase difference, if Δφ <0 °, the initial excitation frequency is frequency-controlled such that the phase difference becomes substantially zero, with the oscillating system approaching its parallel resonance, which is an absolute maximum the impedance goes along. The corresponding frequency of the excitation signal is presently also called "start frequency" designated. The oscillating system or the ultrasonic transducer is then excited according to the invention at the starting frequency to ultrasonic vibrations. Subsequently, the excitation frequency is controlled such that the phase of the impedance is> 0 °. Related to the FIG. 1 Specifically, this means that for frequencies above the parallel resonance to search the start frequency, the frequency is lowered until Δφ = 0 ° (PR). For frequencies below the series resonance, the frequency is increased until Δφ = 0 ° (SR). For frequencies with Δφ> 0 °, no change in frequency is required. However, by changing the frequency, an amplitude or power adjustment with respect to the vibration system can be made.

Der besondere Vorteil, der sich ergibt, wenn bei Leistungsabgabe bzw. hoher Amplitude auf die Serienresonanz SR geregelt wird, ist darin zu sehen, dass die Regelung des Ultraschallgenerators nur die Frequenz regeln muss und aufgrund der relativ niederohmigen Impedanz eine hohe Leistung mit weniger Spannung abgegeben werden kann als bei vorbekannten Systemen, welche auf die Parallelresonanz regeln und zusätzlich zur Regelung der kompletten Leistungsabgabe bzw. der Schwingungsamplitude des Ultraschall-Schwingsystems eine Pulsweitenmodulation (PWM) verwenden, wie beispielsweise in EP 0 662 356 B1 beschrieben.The particular advantage that results when the series resonance SR is controlled at power output or high amplitude is the fact that the control of the ultrasonic generator only has to regulate the frequency and delivers high power with less voltage due to the relatively low impedance can be as in prior art systems, which regulate the parallel resonance and in addition to the regulation of the complete power output or the vibration amplitude of the ultrasonic vibration system using a pulse width modulation (PWM), such as in EP 0 662 356 B1 described.

Im Rahmen der vorliegenden Erfindung ist in diesem Zusammenhang vorgesehen, dass das Schwingsystem im Anschluss an den Verfahrensschritt d) in einem Arbeitspunkt zwischen Parallelresonanz und Serienresonanz des Schwingsystems betrieben wird (Δϕ > 0°). Dabei ist es möglich, dass der Arbeitspunkt in Abhängigkeit von einer Benutzervorgabe oder -eingabe verschoben wird, und zwar vorzugsweise in Richtung der Serienresonanz für größere Schwingungsamplituden und/oder für größere Schwingungsleistung.In the context of the present invention, provision is made in this connection for the oscillating system to be operated following the method step d) at an operating point between parallel resonance and series resonance of the oscillating system (Δφ> 0 °). It is possible that the operating point is shifted in response to a user input or input, preferably in the direction of the series resonance for larger vibration amplitudes and / or for greater vibration power.

Im Zuge einer anderen Weiterbildung der vorliegenden Erfindung ermittelt der Ultraschallgenerator bereits beim Start bzw. beim Anschwingen des Ultraschall-Schwingsystems die Phase zwischen (HF-)Strom und (HF-)Spannung im Schwingkreis und ist somit in der Lage festzustellen, ob die eingestellte anfängliche Erregungsfrequenz im richtigen Frequenzbereich liegt. Unter dem Begriff "richtiger Frequenzbereich" ist vorliegend insbesondere das weiter oben definierte Frequenzband (Δϕ > 0°) zu verstehen. Dies ermöglicht es, die sogenannte Startfrequenz, welche durch die Resonanzeigenschaft des Ultraschallwandlers bzw. des Schwingsystems vorgegeben ist, zu erkennen, automatisch nachzuregeln und zu optimieren.In the course of another development of the present invention, the ultrasound generator determines the phase between (HF) current and (RF) voltage in the resonant circuit already at the start or during oscillation of the ultrasonic oscillating system and is thus able to determine whether the set initial Excitation frequency is in the right frequency range. In the present case, the term "correct frequency range" is understood in particular to mean the frequency band (Δφ> 0 °) defined above. This allows the so-called Start frequency, which is predetermined by the resonance property of the ultrasonic transducer or the oscillating system to detect automatically readjust and optimize.

In diesem Zusammenhang kann im Zuge einer wieder anderen Weiterbildung der vorliegenden Erfindung vorgesehen sein, dass die Startfrequenz vorzugsweise durch Ermitteln desjenigen Frequenzwerts bestimmt wird, bei dem die Phasendifferenz bzw. die Phase der Impedanz bei der Parallelresonanz oder bei der Serienresonanz verschwindet, d.h. den Wert Null annimmt. Dies geschieht höchst vorzugsweise mittels eines Vorab-Scans bei relativ niedriger Leistung, wobei die anfängliche Erregungsfrequenz anschließend im Wesentlichen auf die vorab bestimmte Startfrequenz des Erregungssignals eingestellt wird. Im Optimum entspricht also die genannte Startfrequenz, bei welcher der Ultraschallgenerator anzuschwingen versucht, gerade der Frequenz der Parallelresonanz PR oder der Serienresonanz SR (vgl. Figur 1). Sie kann anschließend je nach Leistungs- bzw. Amplitudenvorgabe an die Frequenz der Serienresonanz SR bzw. der Parallelresonanz PR (vgl. Figur 1) angenähert werden. Grundsätzlich ist es jedoch auch möglich, im Rahmen einer bestimmten Leistungs- oder Amplituden-vorgabe eine entsprechende, an die Frequenz der Serienresonanz oder Parallelresonanz angenäherte Arbeitspunkt-Frequenz unmittelbar schon beim Anschwingen einzustellen.In this connection, in the course of yet another development of the present invention, it may be provided that the starting frequency is preferably determined by determining that frequency value at which the phase difference or the phase of the impedance vanishes in the parallel resonance or in the series resonance, ie the value zero accepts. This is most preferably done by means of a pre-scan at relatively low power, the initial excitation frequency then being adjusted substantially to the predetermined starting frequency of the excitation signal. In the optimum thus corresponds to the said starting frequency at which the ultrasonic generator tries to swing, just the frequency of the parallel resonance PR or the series resonance SR (see. FIG. 1 ). Depending on the power or amplitude specification, it can then be connected to the frequency of the series resonance SR or the parallel resonance PR (cf. FIG. 1 ). In principle, however, it is also possible, within the scope of a specific power or amplitude specification, to set a corresponding operating-point frequency approximated to the frequency of the series resonance or parallel resonance directly during the oscillation.

Eine äußerst bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens sieht vor, dass, vorzugsweise schon vor dem Anregen des Schwingsystems, der Abstand zwischen Parallelresonanz und Serienresonanz des Schwingsystems durch Frequenzänderung des Erregersignals und durch Ermitteln der beiden Frequenzwerte bestimmt wird, bei denen die Phasendifferenz (vgl. Figur 1) verschwindet. Dies kann wiederum mittels eines Vorab-Scans bei relativ niedriger Leistung geschehen. Der genannte (Frequenz-)Abstand zwischen Parallelresonanz und Serienresonanz kann beim Anregen des Schwingsystems als Regelgrundlage für die Frequenzregelung des Ultraschallgenerators verwendet werden. Der Ultraschallgenerator kann auf diese Weise erkennen, ob es sich bei dem Ultraschall-Schwingsystem um ein eher schmalbandiges oder um ein relativ breitbandiges System handelt, was ein Maß für die Güte des Systems darstellt. Der Ultraschallgenerator ist entsprechend in der Lage, seine Regelcharakteristik optimal an das System anzupassen. In diesem Zusammenhang sieht eine entsprechende Weiterbildung des erfindungsgemäßen Verfahrens vor, dass der Abstand zwischen Parallelresonanz und Serienresonanz als Einflussgröße bei der Einstellung einer Regelfeinheit der Frequenzregelung des Ultraschallgenerators verwendet wird. Unter "Regelfeinheit" wird vorliegend die frequenzmäßige Auflösung zwischen Serienresonanzstelle und Parallelresonanzstelle verstanden. Durch die angepasste Regelcharakteristik kann der Ultraschallgenerator die gewünschte Arbeitspunkt-Frequenz in dem genannten Frequenzband optimal auffinden und einregeln, wobei das zu vermeidende Anregen unerwünschter Nebenresonanzen des Ultraschall-Schwingsystems sicher vermieden wird.An extremely preferred development of the method according to the invention provides that, preferably even before the oscillation system is excited, the distance between parallel resonance and series resonance of the oscillatory system is determined by changing the frequency of the exciter signal and determining the two frequency values at which the phase difference (cf. FIG. 1 ) disappears. This can in turn be done by means of a pre-scan at relatively low power. The mentioned (frequency) distance between parallel resonance and series resonance can be used when exciting the oscillating system as a rule basis for the frequency control of the ultrasonic generator. The ultrasound generator can thus detect whether the ultrasound vibration system is a rather narrowband or a relatively broadband system, which represents a measure of the quality of the system. The ultrasonic generator is accordingly able to optimally adapt its control characteristics to the system. In this regard, sees a corresponding Further development of the method according to the invention that the distance between parallel resonance and series resonance is used as an influencing variable in the setting of a control unit of the frequency control of the ultrasonic generator. In this case, the term "control unit" is understood to mean the frequency-related resolution between the series resonant station and the parallel resonant station. Due to the adapted control characteristic, the ultrasound generator can optimally find and adjust the desired operating point frequency in said frequency band, wherein the avoidable excitation of undesired secondary resonances of the ultrasound vibration system is reliably avoided.

Eine wieder andere Weiterbildung des erfindungsgemäßen Verfahrens sieht zu diesem Zweck vor, dass die Erregungsfrequenz festgehalten wird, sobald die Frequenz der Serienresonanz des Schwingsystems erreicht wurde. Dies entspricht einer Beschränkung der Erregungsfrequenz auf das bereits mehrfach erwähnte Frequenzband, um das Anregen von Nebenresonanzen zu vermeiden.Yet another development of the method according to the invention provides, for this purpose, that the excitation frequency is recorded as soon as the frequency of the series resonance of the oscillating system has been reached. This corresponds to a restriction of the excitation frequency to the frequency band already mentioned several times in order to avoid the excitation of secondary resonances.

Um die Regelungsgenauigkeit weiter zu verbessern, können zusätzlich zu der angesprochenen Phasendifferenz noch weitere physikalische Größen in dem Schwingkreis gemessen und als Regelgrößen für die Frequenzregelung verwendet werden. Ohne Beschränkung seien in diesem Zusammenhang beispielhaft die Größen HF-Stromstärke, Blindleistung und Wirkleistung im Schwingkreis erwähnt.In order to further improve the control accuracy, in addition to the mentioned phase difference, further physical variables can be measured in the resonant circuit and used as controlled variables for the frequency control. Without limitation, the quantities HF current, reactive power and active power in the resonant circuit are mentioned in this context by way of example.

Als besonders vorteilhaft hat sich herausgestellt, wenn im Zuge einer anderen Weiterbildung des erfindungsgemäßen Verfahrens zusätzlich noch wenigstens eine weitere Eigenschaft, beispielsweise Spannung und/oder Stromstärke eines primären, zur Erzeugung des Erregersignals dienenden elektrischen Energieversorgungssignals gemessen und als Regelgröße für die Frequenzregelung und/oder für eine Schutzfunktion zum Schützen von Komponenten des Ultraschallgenerators verwendet wird. Beispielsweise können zusätzliche Messdaten einer primären Energieversorgungseinheit (Stromversorgung), welche eine in dem Ultraschallgenerator enthaltene Endstufe mit elektrischer Energie versorgt, zur Regelung hinzugefügt werden, um ein etwaiges Schwanken der Primärspannung der Stromversorgung auszuregeln oder um die Endstufe bei zu hohem Primärstrom vor Überlast zu schützen (Schutzfunktion).It has been found to be particularly advantageous if in the course of another development of the method additionally at least one further property, for example voltage and / or current of a primary, serving for generating the exciter signal electrical power supply signal measured and as a control variable for the frequency control and / or for a protective function is used to protect components of the ultrasonic generator. For example, additional measurement data of a primary power supply unit (power supply) which supplies electrical power to an output stage in the ultrasonic generator can be added to the control in order to correct any fluctuation of the primary voltage of the power supply or to protect the output stage from overloading if the primary current is too high ( protection function).

Eine entsprechende Weiterbildung des erfindungsgemäßen Ultraschallgenerators sieht in diesem Zusammenhang vor, dass neben den ersten Messmitteln, welche dazu ausgebildet sind, die Phasendifferenz zwischen Strom und Spannung des Erregersignals im Schwingkreis zu bestimmen, zusätzlich noch zweite Messmittel vorgesehen sind, die in elektrischer Wirkverbindung mit der primären elektrischen Energieversorgungseinheit zur Erzeugung des Erregersignals stehen. Die genannten zweiten Messmittel sind dazu ausgebildet, wenigstens eine Eigenschaft, vorzugsweise Spannung und/oder Stromstärke, eines von der Energieversorgungseinheit erzeugten primären elektrischen Energieversorgungssignals zu bestimmen und zu der Frequenzregelungseinheit des Ultraschallgenerators rückzukoppeln. Zusätzlich oder alternativ können die von den zweiten Messmitteln bereitgestellten Messwerte auch für die bereits erwähnte Schutzfunktion verwendet werden, welche Schutzfunktion dazu dient, Komponenten des Ultraschallgenerators vor Beschädigung zu schützen, beispielsweise die Endstufe.A corresponding development of the ultrasonic generator according to the invention provides in this context that in addition to the first measuring means, which are designed to determine the phase difference between the current and voltage of the excitation signal in the resonant circuit, additionally second measuring means are provided which are in electrical communication with the primary electrical power supply unit for generating the excitation signal stand. Said second measuring means are designed to determine at least one property, preferably voltage and / or current, of a primary electrical power supply signal generated by the power supply unit and to feed it back to the frequency control unit of the ultrasonic generator. Additionally or alternatively, the measured values provided by the second measuring means can also be used for the already mentioned protective function, which protective function serves to protect components of the ultrasonic generator from damage, for example the final stage.

Die Frequenzregelungseinheit des erfindungsgemäßen Ultraschallgenerators kann im Zuge einer anderen Weiterbildung als "intelligente" Einheit im Sinne eines Mikroprozessors, Mikrocontrollers, eines digitalen Signalprozessors oder eines FPGA (Field Programmable Gate Array) oder in Form einer anderen digitalen Rechnereinheit ausgebildet sein. Im Rahmen einer solchen Ausgestaltung kann die Frequenzregelungseinheit weiterhin eine Art "künstlicher Intelligenz" beinhalten, beispielsweise ein neuronales Netz oder ein Expertensystem, welches vorzugsweise dazu dient, im Zuge einer Modellbildung Vorhersagen betreffend das Schwingverhalten des Ultraschallwandlers bzw. des Ultraschall-Schwingsystems zu liefern, um so das Regelungsverhalten positiv zu beeinflussen, insbesondere zu beschleunigen.The frequency control unit of the ultrasonic generator according to the invention may be formed in the course of another development as an "intelligent" unit in the sense of a microprocessor, microcontroller, a digital signal processor or a FPGA (Field Programmable Gate Array) or in the form of another digital computer unit. In the context of such an embodiment, the frequency control unit may further include a kind of "artificial intelligence", such as a neural network or an expert system, which preferably serves to provide predictions regarding the vibration behavior of the ultrasonic transducer or the ultrasonic vibration system in the course of modeling so positively influencing the control behavior, in particular to accelerate.

Insbesondere wenn die Frequenzregelungseinheit im Zuge der vorgenannten Weiterbildung programmgesteuerte Abläufe durchführen kann, ist im Zuge einer wieder anderen Weiterbildung des erfindungsgemäßen Ultraschallgenerators vorgesehen, dass dieser eine erste Einrichtung, vorzugsweise eine softwarebasierte oder firmwarebasierte Einrichtung, zum insbesondere automatischen Ermitteln des Abstands zwischen Parallelresonanz und Serienresonanz des Schwingsystems durch Frequenzänderung des Erregersignals aufweist. Wie bereits beschrieben, geschieht dies vorzugsweise anhand der Frequenzwerte mit verschwindender Phasendifferenz zwischen Strom und Spannung des Erregersignals und höchst vorzugsweise vor dem Anregen des Schwingsystems mittels eines Vorab-Scans bei relativ niedriger Leistung. Der genannte Abstand ist anschließend als Regelgrundlage für die Frequenzregelung des Ultraschallgenerators verwendbar, Insbesondere als Einflussgröße bei der Einstellung einer Feinheit der Frequenzregelung (Regelfeinheit, s.o.) des Ultraschallgenerators.In particular, if the frequency control unit in the course of the aforementioned development can perform program-controlled operations, in the course of yet another development of the ultrasonic generator according to the invention that this is a first device, preferably a software-based or firmware-based device, in particular automatically determining the distance between parallel resonance and series resonance of Having oscillation system by changing the frequency of the excitation signal. As already described, this preferably takes place on the basis of the frequency values vanishing phase difference between the current and voltage of the excitation signal and most preferably before the excitation of the oscillatory system by means of a pre-scan at relatively low power. The said distance can then be used as a control basis for the frequency control of the ultrasonic generator, in particular as an influencing variable in the setting of a fineness of the frequency control (control unit, see above) of the ultrasonic generator.

Zusätzlich oder alternativ kann eine vergleichbar ausgebildete zweite Einrichtung zum insbesondere automatischen Ermitteln der Startfrequenz vorgesehen sein. Vorzugsweise geschieht auch dies anhand des Frequenzwerts mit verschwindender Phasendifferenz zwischen Strom und Spannung des Erregersignals bei der Parallelresonanz und höchst vorzugsweise mittels eines Vorab-Scans bei relativ niedriger Leistung. Auf diese Weise ist die anfängliche Erregungsfrequenz anschließend im Wesentlichen auf die vorab bestimmte Startfrequenz des Erregungssignals einstellbar.Additionally or alternatively, a comparably designed second device may be provided for, in particular, automatic determination of the starting frequency. Preferably, this is also done on the basis of the frequency value with vanishing phase difference between current and voltage of the exciter signal in the parallel resonance and most preferably by means of a pre-scan at relatively low power. In this way, the initial excitation frequency is then substantially adjustable to the predetermined start frequency of the excitation signal.

Im Zuge einer wieder anderen Weiterbildung des erfindungsgemäßen Ultraschallgenerators weist dieser weitere Messmittel zur Bestimmung wenigstens einer der Größen HF-Stromstärke, Blindleistung und Wirkleistung im Schwingkreis auf, welche Messmittel in elektrischer und signaltechnischer Wirkverbindung mit der Frequenzregelungseinheit des Ultraschallgenerators stehen, um die genannten Größen als weitere Regelgrößen für die Frequenzregelung zu verwenden.In the course of yet another development of the ultrasonic generator according to the invention, this further measuring means for determining at least one of the variables RF current, reactive power and active power in the resonant circuit, which measuring means are in electrical and signaling active connection with the frequency control unit of the ultrasonic generator to the above sizes as a further Use controlled variables for frequency control.

Insbesondere wenn die genannten weiteren Messmittel vorhanden sind und somit zusätzliche Messgrößen als weitere Regelgrößen für die Frequenzregelung zur Verfügung stehen, sieht eine andere bevorzugte Weiterbildung des erfindungsgemäßen Ultraschallgenerators vor, dass die Frequenzregelungseinheit kaskadiert aufgebaut ist.In particular, if the said further measuring means are present and thus additional measured variables are available as further controlled variables for the frequency control, another preferred development of the ultrasonic generator according to the invention provides that the frequency control unit is constructed cascaded.

Im Zuge einer äußerst bevorzugten Weiterbildung der vorliegenden Erfindung ist vorgesehen, dass für die Regelung des Ultraschallgenerators nicht nur der (HF-)Strom und die Wirkleistung sondern zusätzliche Regelgrößen, wie Phasenwinkel, Spannung, Blind- und Scheinleistung herangezogen werden. Die Verarbeitung und Verknüpfung dieser Werte kann digital von einem Mikroprozessor oder einer anderen digitalen Recheneinheit erfolgen, die durch ihre Leistungsfähigkeit in der Lage ist, zusätzlich zum (HF-)Strom und zur Wirkleistung nähere weitere Messdaten auszuwerten, beispielsweise über eine Kaskadenregelung, und hieraus die richtige Regelgröße für die Ansteuerung des Ultraschallgenerators zu bilden. Bei einfacheren Systemen ist alternativ eine Realisierung in analoger Bauform möglich.In the course of an extremely preferred development of the present invention, it is provided that not only the (HF) current and the active power but also additional controlled variables such as phase angle, voltage, reactive power and apparent power are used for the regulation of the ultrasound generator. The processing and linking of these values can be done digitally by a microprocessor or other digital processing unit, by their performance is able to evaluate in addition to the (HF) current and the active power closer further measurement data, for example via a cascade control, and from this the correct control variable for the control of the ultrasonic generator to form. In simpler systems, alternatively, an implementation in analog design is possible.

Eine wieder andere Weiterbildung der vorliegenden Erfindung sieht vor, dass dann, wenn der Arbeitspunkt durch äußere Einflüsse (verursacht beispielsweise durch eine Bedienperson und/oder durch Umgebungseinflüsse) die Frequenz der Parallelresonanz erreicht, zusätzlich eine Pulsweitenmodulation (PWM) zur weiteren Minimierung des Stroms bzw. der Leistung zugeschaltet wird. Eine solche Pulsweitenmodulation (oder Pulsbreitenmodulation, PBM) ist dem Fachmann grundsätzlich bekannt. Im Rahmen der vorliegenden Erfindung ist der Einsatz von PWM/PBM jedoch nur als Ergänzung zu der bereits mehrfach beschriebenen Regelung der Erregungsfrequenz auf einen Arbeitspunkt im Frequenzband zwischen Serienresonanz und Parallelresonanz zu verstehen, welche erfindungsgemäß vorrangig zum Einstellen des Stroms bzw. der Leistung eingesetzt wird.Yet another development of the present invention provides that when the operating point by external influences (caused for example by an operator and / or by environmental influences) reaches the frequency of the parallel resonance, in addition a pulse width modulation (PWM) to further minimize the current or the power is switched on. Such pulse width modulation (or pulse width modulation, PBM) is basically known to the person skilled in the art. In the context of the present invention, however, the use of PWM / PBM is to be understood only as a supplement to the already repeatedly described control of the excitation frequency to an operating point in the frequency band between series resonance and parallel resonance, which is used according to the invention primarily for adjusting the current or the power.

Weitere Eigenschaften und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung.

Figur 1
zeigt die Impedanz des Schwingsystems eines Ultraschallwandlers und den sich einstellenden Phasenunterschied zwischen Strom und Spannung an einem mit dem Ultraschallwandler zusammenwirkenden Schwingkreis eines Ultraschallgenerators, jeweils in Abhängigkeit von der Frequenz;
Figur 2
zeigt schematisch anhand eines Blockschaltbilds den Aufbau eines erfindungsgemäßen Ultraschallsystems mit einem Ultraschallgenerator und einem Ultraschallwandler;
Figur 3
zeigt schematisch ein Detailschaltbild einer ersten Ausgestaltung des erfindungsgemäßen Ultraschallsystems;
Figur 4
zeigt schematisch ein Detailschaltbild einer anderen Ausgestaltung des erfindungsgemäßen Ultraschallsystems;
Figur 5
zeigt schematisch ein Detailschaltbild einer wieder anderen Ausgestaltung des erfindungsgemäßen Ultraschallsystems;
Figur 6
zeigt in einem erfindungsgemäßen Wechselstromgenerator gemessene Signalverläufe für Strom und Spannung zur Ermittlung der Phasendifferenz;
Figur 7
zeigt anhand eines Ablaufdiagramms eine Ausgestaltung des erfindungsgemäßen Verfahrens zum Betreiben eines Ultraschallgenerators, insbesondere des Ultraschallgenerators gemäß Figur 2; und
Figur 8
zeigt anhand eines Ablaufdiagramms eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens.
Further features and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the drawing.
FIG. 1
shows the impedance of the vibration system of an ultrasonic transducer and the phase difference between current and voltage on a cooperating with the ultrasonic transducer resonant circuit of an ultrasonic generator, each depending on the frequency;
FIG. 2
schematically shows a block diagram of the structure of an ultrasonic system according to the invention with an ultrasonic generator and an ultrasonic transducer;
FIG. 3
schematically shows a detailed circuit diagram of a first embodiment of the ultrasound system according to the invention;
FIG. 4
schematically shows a detailed circuit diagram of another embodiment of the ultrasound system according to the invention;
FIG. 5
schematically shows a detailed circuit diagram of yet another embodiment of the ultrasound system according to the invention;
FIG. 6
shows in a generator according to the invention measured signal waveforms for current and voltage for determining the phase difference;
FIG. 7
shows a flowchart of an embodiment of the inventive method for operating an ultrasonic generator, in particular of the ultrasonic generator according to FIG. 2 ; and
FIG. 8
shows with reference to a flow chart, a further embodiment of the method according to the invention.

Figur 2 zeigt schematisch anhand eines Blockschaltbilds ein erfindungsgemäßes Ultraschallsystem, welches in seiner Gesamtheit mit dem Bezugszeichen 1 bezeichnet ist. Das Ultraschallsystem 1 umfasst einen Ultraschallgenerator 2, an den in elektrischer Wirkverbindung ein Ultraschallwandler 3 mit einem elektro-mechanischen Schwingsystem angeschlossen ist, welches vorliegend in Form eines Ersatzschaltbilds dargestellt ist. Der Ultraschallwandler 3 erzeugt nach Maßgabe des Ultraschallgenerators Ultraschallwellen 4, welche zur Bearbeitung eines Werkstücks 5 verwendet werden können, beispielsweise zum Ultraschallschweißen oder zur Ultraschallreinigung, ohne dass die vorliegende Erfindung hierauf beschränkt wäre. Der Ultraschallwandler 3 bzw. das Schwingsystem weist ein frequenzabhängiges Impedanzverhalten Z(f) auf, welches hier nur symbolisch dargestellt ist (vgl. Figur 1). Mit zunehmender (Erregungs-)Frequenz f weist der Ultraschallwandler 3 zunächst ein Minimum der Impedanz Z auf, gefolgt von einem Impedanzmaximum. Das Impedanzminimum fällt mit der sogenannten Serienresonanz SR des Ultraschallwandlers 3 zusammen, während das Impedanzmaximum mit der sogenannten Parallelresonanz PR des Ultraschallwandlers 3 zusammenfällt; worauf weiter oben anhand von Figur 1 bereits hingewiesen wurde. FIG. 2 schematically shows a block diagram of an inventive ultrasound system, which is designated in its entirety by the reference numeral 1. The ultrasound system 1 comprises an ultrasound generator 2, to which an ultrasound transducer 3 having an electro-mechanical vibration system is connected in electrical operative connection, which in the present case is shown in the form of an equivalent circuit diagram. The ultrasonic transducer 3 generates according to the ultrasonic generator ultrasonic waves 4, which can be used for machining a workpiece 5, for example, for ultrasonic welding or ultrasonic cleaning, without the present invention would be limited thereto. The ultrasonic transducer 3 or the oscillating system has a frequency-dependent impedance behavior Z (f), which is shown here only symbolically (cf. FIG. 1 ). With increasing (excitation) frequency f, the ultrasonic transducer 3 initially has a minimum of the impedance Z, followed by an impedance maximum. The impedance minimum coincides with the so-called series resonance SR of the ultrasonic transducer 3, while the impedance maximum coincides with the so-called parallel resonance PR of the ultrasonic transducer 3; whereupon on the basis of FIG. 1 has already been pointed out.

Die elektrische bzw. signaltechnische Kopplung von Ultraschallwandler 3 und Ultraschallgenerator 2 erfolgt bei Bezugszeichen 2a, welches einen Ausgang oder Anschluss des Ultraschallgenerators bezeichnet. Weiterhin umfasst der Ultraschallgenerator 2 folgende Bestandteile: eine (Primär-)Energieversorgungseinheit 2b; eine Verstärker-Endstufe 2c, welche von der Energieversorgungseinheit 2b mit elektrischer Energie versorgt wird; einen Transformator 2d zum Transformieren einer von der Energieversorgungseinheit 2b gelieferten Spannung auf die benötigte Höhe; ein Anpassnetzwerk 2e mit wenigstens einer Induktivität (L) oder Drossel 2f als Bestandteil eines (Gesamt-)Schwingkreises 3' in elektrischer bzw. signaltechnischer Wirkverbindung mit dem Transformator 2d und erste Messmittel 2g, die zum Messen physikalischer Größen in dem Anpassnetzwerk 2e bzw. dem Schwingkreis ausgebildet sind, wobei wenigstens ein erstes Messmittel 2g1 zum Messen des Stroms und der Spannung im Anpassnetzwerk 2e, d.h. im Schwingkreis 3' vor der Induktivität 2f ausgebildet ist, um hieraus die Phasendifferenz zwischen (Erregungs-)Spannung und Strom zu bestimmen, beispielsweise analog durch Erzeugen eines entsprechenden Phasendifferenzsignals oder digital mittels eines geeigneten Prozessors. Hierauf wird weiter unten noch genauer eingegangen. Der (Gesamt-)Schwingkreis 3' setzt sich demnach zusammen aus dem Anpassnetzwerk 2e und dem Ultraschallwandler 3 und ist entsprechend teilweise innerhalb und teilweise außerhalb des Generators 2 angeordnet.The electrical or signal engineering coupling of the ultrasonic transducer 3 and the ultrasonic generator 2 takes place at reference numeral 2a, which designates an output or connection of the ultrasonic generator. Furthermore, the ultrasonic generator 2 comprises the following components: a (primary) power supply unit 2b; an amplifier output stage 2c which is supplied with electric power from the power supply unit 2b; a transformer 2d for transforming a voltage supplied from the power supply unit 2b to the required level; a matching network 2e with at least one inductance (L) or throttle 2f as part of a (total) resonant circuit 3 'in electrical or signal-related operative connection with the transformer 2d and first measuring means 2g, which are designed to measure physical quantities in the matching network 2e or the resonant circuit, wherein at least one first measuring means 2g1 for measuring the current and the voltage in the matching network 2e, ie formed in the resonant circuit 3 'in front of the inductor 2f, to determine therefrom the phase difference between (excitation) voltage and current, for example analogously by generating a corresponding phase difference signal or digital by means of a suitable processor. This will be discussed in more detail below. Accordingly, the (overall) oscillating circuit 3 'is composed of the matching network 2e and the ultrasonic transducer 3 and is correspondingly arranged partly inside and partly outside the generator 2.

Weitere erste Messmittel 2g2, 2g3 dienen zum Messen zusätzlicher physikalischer Größen innerhalb des Anpassnetzwerks 2e bzw. des Schwingkreises 3', wie Blindleistung oder Wirkleistung, worauf weiter unten ebenfalls noch genauer eingegangen wird. Eine Frequenzregelungseinheit 2h weist vorzugsweise kaskadiert angeordneten Regelmitteln 2h1-2h3, welche jeweils die Messsignale der ersten Messmittel 2g1-2g3 als Regelgröße für die Frequenzregelung verwenden. Ansteuermittel 2i wirken nach Maßgabe der Frequenzregelungseinheit 2h auf die Endstufe 2c ein, damit diese dem Transformator 2d die elektrische Energie der Versorgungseinheit 2b in Form einer bestimmten, geregelten Frequenz liefert. Zusätzlich umfasst der Ultraschallgenerator 2 bei Bezugszeichen 2j noch weitere, zweite Messmittel in signaltechnischer Wirkverbindung mit der Energieversorgungseinheit 2b, welche zweiten Messmittel 2j wie die ersten Messmittel 2g in signaltechnischer Wirkverbindung mit der Frequenzregelungseinheit 2h stehen. Die zweiten Messmittel 2j dienen zur Bestimmung bestimmter Eigenschaften, wie Spannung oder Stromstärke, der Energieversorgungseinheit 2b, so dass diese ebenfalls als Regelgröße für die Frequenzregelung verwendet werden können. Alternativ oder zusätzlich können die gemessenen Eigenschaften der Energieversorgereinheit 2b auch im Sinne einer Schutzfunktion für Komponenten des Ultraschallgenerators 2 verwendet werden, beispielsweise um die Endstufe 2c bei zu hohem Primärstrom (zu hoher Stromstärke an der Energieversorgungseinheit 2b) vor Überlast zu schützen.Further first measuring means 2g2, 2g3 serve for measuring additional physical quantities within the matching network 2e or the oscillating circuit 3 ', such as reactive power or active power, which will also be discussed in more detail below. A frequency control unit 2h preferably has control means 2h1-2h3 arranged in cascade, which each use the measuring signals of the first measuring means 2g1-2g3 as a controlled variable for the frequency control. Drive means 2i act in accordance with the frequency control unit 2h on the output stage 2c, so that it provides the transformer 2d, the electrical energy of the supply unit 2b in the form of a specific, regulated frequency. In addition, the ultrasound generator 2 at 2j comprises further, second measuring means in signal-operative connection with the power supply unit 2b, which second measuring means 2j as the first measuring means 2g are in operative operative connection with the frequency control unit 2h. The second measuring means 2j are used to determine certain properties, such as voltage or current, of the energy supply unit 2b, so that they can also be used as a control variable for the frequency control. Alternatively or additionally, the measured properties of the energy supply unit 2b can also be used in the sense of a protective function for components of the ultrasonic generator 2, for example in order to protect the output stage 2c from overloading if the primary current (too high current intensity at the energy supply unit 2b) is too high.

Wie die strichpunktierte Box in Figur 2 symbolisch andeutet, kann zumindest die Frequenzregelungseinheit 2h zusammen mit (funktionalen Bestand-)Teilen der ersten 2g und der zweiten Messmittel 2j in Form einer programmgesteuerten oder programmierbaren digitalen Prozessoreinheit 2k ausgebildet sein, welche durch eine Bedienperson des Ultraschallsystems 1 mittels Benutzereingaben von außen bedienbar ist, wobei letzteres in Figur 2 aus Gründen der Übersichtlichkeit nicht explizit dargestellt wurde. Eine derartige Benutzereingabe umfasst beispielsweise das Eingeben einer gewünschten Schwingungsamplitude oder einer gewünschten Ultraschallleistung.Like the dot-dash box in FIG. 2 symbolically indicates, at least the frequency control unit 2h may be formed together with (functional constituent) parts of the first 2g and the second measuring means 2j in the form of a program-controlled or programmable digital processor unit 2k, which is operable by an operator of the ultrasound system 1 by means of external user inputs, the latter being in FIG. 2 was not explicitly shown for reasons of clarity. Such user input includes, for example, inputting a desired amplitude of vibration or desired ultrasound power.

Die Messwerte, welche durch die ersten Messmittel 2g am Anpassnetzwerk 2e bzw. am Schwingkreis 3' gemessen werden, geben der Frequenzregelungseinheit 2h alle Messdaten, die zur Bestimmung und Korrektur der auszugebenden Arbeitsfrequenz erforderlich sind. Wie bereits erwähnt, können außerdem noch von den zweiten Messmitteln 2j gelieferte Messdaten der primären Strom- oder Energieversorgungseinheit 2b herangezogen werden, welche primäre Energieversorgungseinheit die Endstufe 2c mit elektrischer Energie versorgt. Wenn derartige weitere Messwerte der Frequenzregelungseinheit 2h zugeführt werden, kann ein etwaiges Schwanken der Primärspannung der Energieversorgungseinheit 2b ausgeregelt werden. Wie ebenfalls bereits erwähnt wurde, ist es zusätzlich möglich, die Endstufe 2c bei zu hohem Primärstrom vor Überlast zu schützen. Die Endstufe 2c, welche von der Ansteuerungseinheit 2i getrieben wird, gibt dem Transformator 2d die elektrische Energie der Primärversorgungseinheit 2b in Form einer bestimmten Frequenz (Erregungsfrequenz). Der Transformator 2d transformiert die von der Energieversorgungseinheit 2b gelieferte Spannung auf die benötigte Höhe und gibt diese Spannung auf den Schwingkreis 3'. Währenddessen werden am Anpassnetzwerk 2e / dem Schwingkreis 3' bzw. an der dort enthaltenen Induktivität oder Paralleldrossel 2f wieder neue Messdaten aufgenommen (durch die ersten Messmittel 2g), welche die Frequenzregelungseinheit 2h benötigt, um die Erregungsfrequenz den Gegebenheiten nachzuregeln. Zu den genannten Gegebenheiten zählen insbesondere der tatsächliche Last- bzw. Schwingungszustand des Ultraschallwandlers 3 bzw. des Schwingsystems, die genannten Betriebsvorgaben durch eine Bedienperson sowie weitere (physikalische) Parameter des Ultraschallsystems, beispielsweise dessen Erwärmung im laufenden Betrieb. Vom Anpassnetzwerk 2e gelangt die elektrische Energie über den Ausgang oder Anschluss 2a in Form der ausgegebenen Erregungsfrequenz in das mit dem Ultraschallgenerator 2 verbundene Ultraschallschwingsystem (Ultraschallwandler 3), welches die elektrische Anregungsenergie in mechanische Schwingungen umwandelt, was dem Fachmann grundsätzlich bekannt ist. Die Kombination aus Anpassnetzwerk 2e und Ultraschallwandler 3 fungiert dabei als Schwingkreis 3', worauf bereits mehrfach hingewiesen wurde. Das Anpassnetzwerk kann zusätzlich zu der exemplarisch eingezeichneten Induktivität 2f (L) noch zumindest eine Kapazität (C) aufweisen, was dem Fachmann bekannt und in Figur 2 nicht dargestellt ist.The measured values, which are measured by the first measuring means 2g on the matching network 2e or on the oscillating circuit 3 ', give the frequency control unit 2h all measuring data which are required for determining and correcting the operating frequency to be output. As already mentioned, measurement data supplied by the second measuring means 2j of the primary power or energy supply unit 2b can also be used, which primary power supply unit supplies the final stage 2c with electrical energy. If such further measured values are supplied to the frequency control unit 2h, any fluctuation in the primary voltage of the power supply unit 2b can be compensated. As has already been mentioned, it is additionally possible to protect the output stage 2c against overload when the primary current is too high. The output stage 2c, which is driven by the drive unit 2i, gives the transformer 2d the electrical energy of the primary supply unit 2b in the form of a specific frequency (excitation frequency). The transformer 2d transforms the voltage supplied by the power supply unit 2b to the required level and applies this voltage to the oscillating circuit 3 '. Meanwhile, the measurement network 2e / the resonant circuit 3 'or the inductance or parallel choke 2f contained there again receives new measurement data (by the first measuring means 2g) which the frequency control unit 2h needs in order to readjust the excitation frequency to the conditions. The conditions mentioned include, in particular, the actual load or vibration state of the ultrasonic transducer 3 or of the oscillating system, the specified operating specifications by an operator and further (physical) parameters of the ultrasound system, for example its heating during operation. From the matching network 2e, the electrical energy passes through the output or terminal 2a in the form of the output Excitation frequency in the ultrasonic vibrator connected to the ultrasonic generator 2 (ultrasonic transducer 3), which converts the electrical excitation energy into mechanical vibrations, which is known in principle to those skilled in the art. The combination of matching network 2e and ultrasonic transducer 3 acts as a resonant circuit 3 ', which has already been pointed out several times. In addition to the exemplary inductance 2f (L), the matching network may also have at least one capacitance (C), which is known to the person skilled in the art and disclosed in US Pat FIG. 2 not shown.

Bezug nehmend auf die Figuren 3 bis 5 werden nun bevorzugte Ausgestaltungen des Ultraschallgenerators 2 im Bereich des Transformators 2d, des Anpassnetzwerks 2e und der hiermit verbundenen ersten Messmittel 2g näher erläutert. Hierbei und in allen anderen Figuren bezeichnen gleiche Bezugszeichen gleiche oder gleichwirkende Elemente.Referring to the FIGS. 3 to 5 Preferred embodiments of the ultrasonic generator 2 in the region of the transformer 2d, the matching network 2e and the first measuring means 2g connected thereto will now be explained in greater detail. Here and in all other figures, like reference numerals designate the same or equivalent elements.

Figur 3 zeigt anhand eines Blockschaltbilds eine Ausgestaltung, bei der in dem Anpassnetzwerk 2e des Ultraschallgenerators 2 vor der Induktivität 2f ein Stromwandler oder Stromsensor 2g1 angeordnet ist, welcher ein entsprechendes (Strom-)Messsignal SM1 generiert und an der in Figur 3 nicht explizit eingezeichnete Frequenzregelungseinheit 2h zur Verfügung stellt (gestrichelter Pfeil in Figur 3). Da die Induktivität 2f gemäß Figur 3 parallel zum Ausgang oder Abschluss 2a des Ultraschallgenerators 2 geschaltet ist, wird sie auch als Paralleldrossel bezeichnet. FIG. 3 shows a block diagram of an embodiment in which in the matching network 2e of the ultrasonic generator 2 before the inductor 2f a current transformer or current sensor 2g1 is arranged, which generates a corresponding (current) measurement signal SM1 and at the in FIG. 3 not explicitly drawn frequency control unit 2h provides (dashed arrow in FIG. 3 ). Since the inductance 2f according to FIG. 3 is connected in parallel to the output or termination 2a of the ultrasonic generator 2, it is also referred to as a parallel throttle.

Figur 4 zeigt eine Weiterbildung der Schaltungsanordnung aus Figur 3, bei der jeweils ein Stromwandler oder Stromsensor 2g1 vor der Paralleldrossel 2f und ein anderer 2g2 hinter der Paralleldrossel 2f angeordnet ist. Wie der Fachmann erkennt, misst der hinter der Induktivität 2f angeordnete Stromwandler oder Stromsensor 2g2 nur den Stromanteil durch die Induktivität 2f. Durch gemeinsame Auswertung der entsprechenden Messsignale SM1 und SM2 lässt sich der Strom durch den Ultraschallwandler 3 berechnen, beispielsweise durch die Prozessoreinheit 2k, so dass in der Frequenzregelungseinheit 2h (vgl. Figur 2) in vorteilhafterweise anschließend ein reines Wirkstromsignal zu Regelungszwecken zur Verfügung steht. FIG. 4 shows a development of the circuit arrangement FIG. 3 in which in each case one current transformer or current sensor 2g1 is arranged in front of the parallel throttle 2f and another 2g2 behind the parallel throttle 2f. As the person skilled in the art recognizes, the current transformer or current sensor 2g2 arranged behind the inductance 2f only measures the current share through the inductance 2f. By jointly evaluating the corresponding measurement signals SM1 and SM2, the current can be calculated by the ultrasound transducer 3, for example by the processor unit 2k, so that in the frequency control unit 2h (cf. FIG. 2 ) in an advantageous manner then a pure active current signal is available for control purposes.

Gemäß Figur 5 ist es in leichter Abwandlung der Schaltungsanordnung aus Figur 3 grundsätzlich auch möglich, den Strom vor dem Transformator 2d mittels eines entsprechend angeordneten Stromwandlers oder Stromsensors 2g' zu messen, welcher ein entsprechendes Messsignal SM' an der Frequenzregelungseinheit 2h (vgl. Figur 2) bereitstellt. Im Gegensatz zu den Schaltungsanordnungen gemäß Figur 3 und Figur 4 ergibt sich allerdings ein sehr viel höherer Strommesswert.According to FIG. 5 it is in a slight modification of the circuit arrangement FIG. 3 basically also possible to measure the current upstream of the transformer 2d by means of a correspondingly arranged current transformer or current sensor 2g ', which measures a corresponding measurement signal SM' at the frequency regulation unit 2h (cf. FIG. 2 ). In contrast to the circuit arrangements according to FIG. 3 and FIG. 4 However, this results in a much higher current reading.

Figur 6 zeigt Signalverläufe für das Phasensignal der Spannung ϕU bzw. fU und für das Phasensignals des Stroms ϕI bzw. fI über der Zeit t. Die beiden Signale ϕU/fU und ϕI/fI werden durch eine entsprechende analoge Aufbereitung aus den Messungen von Strom und Spannung gewonnen. Die genannte Aufbereitung erfolgt durch den Prozessor 2k (vgl. Figur 2) anhand der entsprechenden Messsignale, insbesondere der Strommesssignale SM1, SM2 oder SM' (Figuren 3 bis 5). Aus dem zeitlichen Abstand Δt bzw. Dt der Phasensignale ϕU/fU und ϕI/fI(Abstand zwischen zwei steigenden Flanken) kann der Prozessor 2k die Phase bzw. die Phasendifferenz berechnen und ein entsprechendes Phasendifferenzsignal erzeugen. Die genannte Phasendifferenz wird Null, wenn der Ultraschallwandler 3 (vgl. Figuren 2 bis 5) bei seiner Parallelresonanz oder bei seiner Serienresonanz angeregt wird. Durch Auswertung der Phasensignale ϕI, ϕU (fU, fl) kann der Prozessor 2k beispielsweise anhand der Flankenabfolge bzw. des Flankenverlaufs bestimmen, bei welchem Arbeitspunkt entlang der Impedanzkurve gemäß Figur 1 sich das Ultraschallsystem gerade befindet. FIG. 6 shows signal waveforms for the phase signal of the voltage φ U or fU and for the phase signal of the current φ I and fI over the time t. The two signals φ U / fU and φ I / fI are obtained by a corresponding analog processing from the measurements of current and voltage. The mentioned preparation is carried out by the processor 2k (cf. FIG. 2 ) based on the corresponding measurement signals, in particular the current measurement signals SM1, SM2 or SM '( FIGS. 3 to 5 ). From the time interval Δt or Dt of the phase signals φ U / fU and φ I / fI (distance between two rising edges), the processor 2k can calculate the phase or the phase difference and generate a corresponding phase difference signal. The said phase difference becomes zero when the ultrasonic transducer 3 (see. FIGS. 2 to 5 ) is excited at its parallel resonance or at its series resonance. By evaluating the phase signals φ I, φ U (FU, FL), the processor 2k example, with reference to the edge or the edge sequence course determine in which operating point along the curve of impedance FIG. 1 the ultrasound system is currently located.

Wie der Fachmann erkennt, ist es auch möglich, aus den Phasensignalen gemäß Figur 6 eine zu den Phasensignalen proportionale Gleichspannung zu generieren und diese dem Prozessor 2k (vgl. Figur 2) an einem ADC-Pin zur Verfügung zu stellen. Dies wäre jedoch in nachteiliger Weise mit einer verringerten Messgeschwindigkeit, einer verringerten Messgenauigkeit und einer erhöhten Störungsanfälligkeit verbunden.As those skilled in the art will recognize, it is also possible to use the phase signals according to FIG. 6 to generate a proportional to the phase signals DC voltage and this the processor 2k (see. FIG. 2 ) on an ADC pin. However, this would disadvantageously be associated with a reduced measuring speed, a reduced measuring accuracy and an increased susceptibility to interference.

Figur 7 zeigt anhand eines Ablaufdiagramms eine Ausgestaltung des erfindungsgemäßen Verfahrens zum Betreiben eines Ultraschallgenerators, insbesondere des Ultraschallgenerators 2 gemäß Figur 2, zur Hochfrequenz (HF)-Energieversorgung eines Ultraschallwandlers, insbesondere des Ultraschallwandlers 3 gemäß Figur 2, wobei das Verfahren vorzugsweise in dem bzw. auf Veranlassung des Prozessors 2k abläuft. FIG. 7 shows a flowchart of an embodiment of the inventive method for operating an ultrasonic generator, in particular of the ultrasonic generator 2 according to FIG. 2 , to the high frequency (RF) energy supply of an ultrasonic transducer, in particular of the ultrasonic transducer 3 according to FIG. 2 The method preferably proceeds at the instigation of the processor 2k.

Das Verfahren beginnt mit Schritt S100, beispielsweise indem eine Bedienperson das Ultraschallsystem 1 bzw. den Ultraschallgenerator 2 gemäß Figur 2 in Betrieb nimmt. Anschließend erfolgt in einem Verfahrensschritt S102 eine Bestimmung der Bandbreite des Ultraschallsystems. Hierunter ist im Rahmen der vorliegenden Beschreibung zu verstehen, dass der (Frequenz-)Abstand zwischen Parallelresonanz PR und Serienresonanz SR (vgl. Figur 1, Figur 2) des angeschlossenen Ultraschallwandlers bzw. Schwingsystems ermittelt wird. Das System bleibt im späteren Betrieb auf diesen Bereich beschränkt, um keine unerwünschten Nebenresonanzen des Schwingsystems anzuregen. Vorteilhafterweise erfolgt die Bestimmung der Bandbreite dergestalt, dass der Abstand zwischen Parallelresonanz und Serienresonanz des Schwingsystems durch Frequenzänderung des Erregersignals und Ermitteln der Nulldurchgänge des Pha-sendifferenzsignals bestimmt wird, insbesondere mittels eines Vorab-Scans mit relativ niedriger Leistung. Die Nulldurchgänge ND1, ND2 (vgl. Figur 1) der Phasendifferenz bzw. des zugehörigen Phasendifferenzsignals lassen sich bestimmen, wie weiter oben anhand von Figur 6 bereits grundsätzlich besprochen. Die Frequenzen der genannten Nulldurchgänge hängen von der Art des angeschlossenen Ultraschallwandlers bzw. Schwingsystems ab und sind im Anschluss an Schritt S102 beim Betrieb des Ultraschallgenerators im Wesentlichen bekannt.The method begins with step S100, for example by an operator operating the ultrasound system 1 or the ultrasound generator 2 according to FIG FIG. 2 starts up. Subsequently, in a method step S102, a determination of the bandwidth of the ultrasound system takes place. In the context of the present description, this is to be understood as meaning that the (frequency) distance between parallel resonance PR and series resonance SR (cf. FIG. 1 . FIG. 2 ) of the connected ultrasonic transducer or oscillating system is determined. The system remains limited to this area in later operation, in order to avoid unwanted side resonances of the oscillatory system. Advantageously, the determination of the bandwidth takes place in such a way that the distance between the parallel resonance and the series resonance of the oscillating system is determined by changing the frequency of the excitation signal and determining the zero crossings of the phase difference signal, in particular by means of a preliminary scan with relatively low power. The zero crossings ND1, ND2 (cf. FIG. 1 ) of the phase difference or the associated phase difference signal can be determined, as described above with reference to FIG. 6 already discussed in principle. The frequencies of said zero crossings depend on the type of the connected ultrasound transducer or oscillating system and are essentially known after operation of the ultrasound generator following step S102.

Anschließend erfolgt in Schritt S104 die Einstellung der Regelungsfeinheit der Frequenzregelungseinheit. Hierunter wird verstanden, dass bei einem relativ geringen Abstand der Nulldurchgänge bzw. Resonanzpunkte, d.h. einem relativ steilen Verlauf der Impedanzkurve im Bereich zwischen ND1 und ND2 (vgl. Figur 1) ein relativ feiner Regler benötigt wird, so dass im Rahmen der vorliegenden Erfindung eine entsprechende Einstellung der Frequenzregelungseinheit 2h (vgl. Figur 2) erfolgt. Wenn dagegen die Resonanzpunkte relativ weit auseinanderliegen, was einem flachen Verlauf der Impedanzkurve in dem genannten Bereich entspricht, kann ein entsprechend gröberer Regler zum Einsatz kommen.Subsequently, in step S104, the adjustment of the control unit of the frequency control unit. This is understood to mean that, given a relatively small distance between the zero crossings or resonance points, ie a relatively steep profile of the impedance curve in the region between ND1 and ND2 (cf. FIG. 1 ) a relatively fine regulator is required, so that in the context of the present invention, a corresponding adjustment of the frequency control unit 2h (see. FIG. 2 ) he follows. If, on the other hand, the resonance points are relatively far apart, which corresponds to a flat course of the impedance curve in said region, a correspondingly coarser regulator can be used.

Danach wird in Schritt S106 die Startfrequenz zum Anregen des Schwingsystems aufgesucht. Diese Startfrequenz wird vorzugsweise derart eingestellt, dass auf die ermittelte Frequenz der Parallelresonanz des Schwingsystems geregelt wird, bei der die Phasendifferenz zwischen Strom und Spannung Null wird. Gemäß der Darstellung in Figur 6 lässt sich dieser Punkt anhand der Phasensignale für Δt=0 (Dt=0) ermitteln. Damit das Aufsuchen der Startfrequenz möglichst wenig Zeit beansprucht, ist es weiterhin vorteilhaft, wenn bekannte (elektrische oder elektro-mechanische) Eigenschaften des Ultraschallwandlers oder des Schwingsystems mitberücksichtigt werden, so dass die Startfrequenz bereits grob voreingestellt werden kann.Thereafter, in step S106, the start frequency for exciting the vibration system is searched. This starting frequency is preferably adjusted in such a way that it is regulated to the determined frequency of the parallel resonance of the oscillating system at which the phase difference between current and voltage becomes zero. As shown in FIG. 6 This point can be determined on the basis of the phase signals for Δt = 0 (Dt = 0). So that the search of the starting frequency takes as little time as possible, it is furthermore advantageous if known (electrical or electro-mechanical) properties of the ultrasonic transducer or of the oscillating system are taken into account, so that the starting frequency can already be roughly preset.

In Schritt S108 erfolgt eine Abfrage dahingehend, ob die gewünschte Startfrequenz bereits gefunden wurde. Wird die Abfrage in Schritt S108 verneint (-), wird das Verfahren mit Schritt S106 fortgeführt. Wird die Abfragen in Schritt 108 bejaht (+), so erfolgt anschließend die Beaufschlagung des Schwingsystems in Schritt S110 mit der Startfrequenz. Da die Startfrequenz - wie ausgeführt - im Wesentlichen mit der Frequenz der Parallelresonanz des Schwingsystems übereinstimmt, ist die Impedanz des Schwingsystems gemäß Figur 1 relativ hochohmig, so dass nur wenig Leistung abgegeben wird und die Amplitude der mechanischen Schwingung klein ist. Es ist aus Gründen der Betriebssicherheit und der Haltbarkeit des Systems wünschenswert, wenn die erste Beaufschlagung des Schwingsystems bei dessen Parallelresonanz erfolgt. Anschließend wird in Schritt S112 die Leistung gemäß Benutzervorgabe angepasst bzw. erhöht, insbesondere durch Erhöhung der angelegten Spannung und/oder Stromstärke. Danach wird in Schritt S114 im Zuge eines so genannten Frequency Shifting die Erregungsfrequenz an die Frequenz der Serienresonanz SR (vgl. Figur 1) angenähert, was ausgehend von der Parallelresonanz PR regelmäßig mit einer Verringerung der Erregungsfrequenz verbunden ist. Dies geschieht solange, bis der gewünschte Arbeitspunkt des Ultraschallsystems erreicht ist. Dies ist gleichbedeutend damit, dass das Ultraschallsystem in dem Arbeitspunkt die gewünschte Ausgangsleistung bzw. Schwingungsamplitude liefert. Die entsprechenden Werte können von einer Bedienperson an dem Ultraschallgenerator 2 (vgl. Figur 2) vorgegeben werden und bilden entsprechende Soll-Werte bzw. Soll-Größen für die Frequenzregelungseinheit 2h.In step S108, a query is made as to whether the desired starting frequency has already been found. If the query is denied (-) in step S108, the process proceeds to step S106. If the queries are affirmative (+) in step 108, the oscillation system is then acted upon at the start frequency in step S110. Since the starting frequency - as stated - substantially coincides with the frequency of the parallel resonance of the oscillating system, the impedance of the oscillating system is according to FIG. 1 relatively high impedance, so that only little power is delivered and the amplitude of the mechanical vibration is small. It is desirable for reasons of reliability and durability of the system, when the first application of the vibration system takes place in its parallel resonance. Subsequently, in step S112, the power is adjusted or increased according to user specification, in particular by increasing the applied voltage and / or current. Thereafter, in step S114, in the course of a so-called frequency shifting, the excitation frequency is applied to the frequency of the series resonance SR (cf. FIG. 1 ), which, starting from the parallel resonance PR, is regularly associated with a reduction in the excitation frequency. This happens until the desired operating point of the ultrasound system is reached. This is equivalent to the fact that the ultrasound system delivers the desired output power or oscillation amplitude at the operating point. The corresponding values can be read by an operator on the ultrasound generator 2 (cf. FIG. 2 ) and form corresponding desired values or desired variables for the frequency control unit 2h.

Entsprechend erfolgt in Schritt S116 eine Abfrage dahingehend, ob der gewünschte Arbeitspunkt (Regelungssollwert) bereits erreicht ist. Wird diese Abfrage verneint (-), kehrt das Verfahren nach Schritt S114 zurück. Falls die Abfrage in Schritt S116 bejaht wird (+), wird die eingestellte Frequenz gemäß Schritt S118 beibehalten, und das Ultraschallgerät wird an dem ausgewählten Arbeitspunkt betrieben.Accordingly, in step S116, a query is made as to whether the desired operating point (control target value) has already been reached. If this query is answered in the negative (-), the process returns to step S114. If the answer is affirmative (+) in step S116, the set frequency becomes Maintaining step S118, and the ultrasound machine is operated at the selected operating point.

Wie der Fachmann erkennt, kann im Zusammenhang mit Schritt S118 selbstverständlich vorgesehen sein, dass bei Veränderung sonstiger Systemparameter eine Nachregelung der Frequenz erfolgt, beispielsweise wenn bei auftretenden Erwärmungen des Systems nachgeregelt wird, was in der Regel eine Verschiebung des Arbeitspunktes hin zu niedrigeren Frequenzen (nach links in Figur 1) zur Folge hat.As the person skilled in the art realizes, in connection with step S118, it can of course be provided that the frequency is readjusted if other system parameters are changed, for example if the system heats up when the system heats up, which as a rule shifts the operating point down to lower frequencies left in FIG. 1 ).

Das Absenken der Frequenz im Zusammenhang mit Verfahrensschritt S114 beinhaltet, dass die Frequenz nicht auf Werte unterhalb der Serienresonanzfrequenz abgesenkt wird, damit keine unerwünschten Nebenresonanzen des Schwingsystems angeregt werden.Lowering the frequency associated with step S114 includes not lowering the frequency to below the series resonant frequency to avoid exciting undesirable side resonances of the vibratory system.

Das Verfahren endet im Anschluss an Schritt S118 mit Schritt S120. Wie bereits ausgeführt wurde, besteht grundsätzlich und abweichend vom Vorstehenden auch die Möglichkeit, die Startfrequenz auf die ermittelte Frequenz der Serienresonanz einzustellen und dann die Frequenz zu erhöhen, oder direkt eine Frequenz im Arbeitsbereich (Phase größer Null) aufzusuchen.The method ends with step S120 following step S118. As already stated, in principle and in deviation from the above, it is also possible to set the starting frequency to the determined frequency of the series resonance and then to increase the frequency, or to directly consult a frequency in the working range (phase greater than zero).

Unter erneuter Bezugnahme auf Figur 2 soll nun noch auf den gestrichelten Doppelpfeil im unteren linken Bereich der Darstellung eingegangen werden. Dieser mit dem Bezugszeichen P bezeichnete Doppelpfeil symbolisiert eine bevorzugte weitere Ausgestaltung des Prozessors oder der Prozessoreinheit 2k, welche als "intelligente" Einheit (künstliche Intelligenz) oder in Form eines Expertensystems ausgebildet sein kann, um durch eine Modellbildung zusätzliche Informationen betreffend das Schwingungs- bzw. Impedanzverhalten des Ultraschallwandlers 3 bzw. des Schwingsystems bereitzustellen. Insbesondere kann die Prozessoreinheit 2k in diesem Zusammenhang dazu ausgebildet sein, bestimmte gemessene Verhaltensparameter des Ultraschallwandlers aufzuzeichnen und auszuwerten und daraus Annahmen für einen späteren erneuten Betrieb des Ultraschallsystems 1 abzuleiten. Insbesondere können solche Voraussagen dazu dienen, die weiter oben erwähnte Startfrequenz möglichst genau vorzugeben, um das anfängliche Einregeln des Ultraschallgenerators 3 abzukürzen.Referring again to FIG. 2 should now be discussed on the dashed double arrow in the lower left area of the presentation. This double arrow, denoted by the reference symbol P, symbolizes a preferred further embodiment of the processor or the processor unit 2 k, which can be designed as an "intelligent" unit (artificial intelligence) or in the form of an expert system, in order to obtain additional information concerning the vibration or modeling by modeling. To provide impedance behavior of the ultrasonic transducer 3 and the vibration system. In particular, in this context, the processor unit 2k may be designed to record and evaluate certain measured behavioral parameters of the ultrasound transducer and to derive therefrom assumptions for later reoperation of the ultrasound system 1. In particular, such predictions can serve to predetermine the starting frequency mentioned above as precisely as possible in order to shorten the initial adjustment of the ultrasound generator 3.

Figur 8 zeigt anhand eines Ablaufdiagramms eine andere Ausgestaltung des erfindungsgemäßen Verfahrens zum Betreiben eines Ultraschallgenerators, insbesondere des Ultraschallgenerators 2 gemäß Figur 2, zur Hochfrequenz (HF)-Energieversorgung eines Ultraschallwandlers, insbesondere des Ultraschallwandlers 3 gemäß Figur 2, wobei das Verfahren vorzugsweise in dem bzw. auf Veranlassung des Prozessors 2k abläuft. FIG. 8 shows with reference to a flowchart, another embodiment of the inventive method for operating an ultrasonic generator, in particular of the ultrasonic generator 2 according to FIG. 2 for the high-frequency (HF) energy supply of an ultrasonic transducer, in particular of the ultrasonic transducer 3 according to FIG FIG. 2 The method preferably proceeds at the instigation of the processor 2k.

Das Verfahren beginnt mit Schritt S200, beispielsweise indem eine Bedienperson das Ultraschallsystem 1 bzw. den Ultraschallgenerator 2 gemäß Figur 2 in Betrieb nimmt. Anschließend folgt bei Bezugszeichen S202 ein Messschritt, um die für die Regelung des Systems benötigten physikalischen bzw. elektrischen Kenngrößen zu bestimmen, insbesondere unter Verwendung der bereits anhand von Figur 2 erläuterten Messmittel 2g, 2j. Gemessen werden in diesem Zusammenhang insbesondere die HF-Stromstärke und die HF-Spannung, woraus sich die HF-Leistung (durch Produktbildung) und die Phase, d.h. die relative Phasenlage bzw. Phasendifferenz zwischen HF-Strom und HF-Spannung ermittelbar sind.The method begins with step S200, for example by an operator operating the ultrasound system 1 or the ultrasound generator 2, respectively FIG. 2 starts up. This is followed by a measuring step at reference symbol S202 in order to determine the physical or electrical parameters required for the regulation of the system, in particular using the already described with reference to FIG. 2 explained measuring means 2g, 2j. Measured in this context, in particular the RF current and the RF voltage, from which the RF power (by product formation) and the phase, ie the relative phase position or phase difference between the RF current and RF voltage can be determined.

In Figur 8 bezeichnet der dort aufgeführte Begriff "Phase" wiederum die Phase der Impedanz. Die "Frequenzänderung" erfolgt fallspezifisch, wie weiter oben bereits detailliert erläutert, ebenso die "Frequenzregelung". Unter "Leistungsbegrenzung" wird eine Vorgabe der maximal zulässigen Leistung durch das Gerät oder durch den Anwender verstanden. "Istwert" und "Sollwert" stehen für entsprechende Werte für Leistung oder Amplitude - je nach Anwendungsfall. Beispielsweise kann für Ultraschallreinigungsanwendungen die Leistung der entscheidende Paramater sein, während Schweißanwendungen eher auf die Amplitude der Schwingung abstellen.In FIG. 8 The term "phase" listed there again denotes the phase of the impedance. The "frequency change" is case-specific, as explained in detail above, as well as the "frequency control". "Power limitation" means a specification of the maximum permissible power by the device or by the user. "Actual value" and "Reference value" stand for corresponding values for power or amplitude - depending on the application. For example, for ultrasonic cleaning applications, performance may be the critical parameter, while welding applications tend to rely on the amplitude of the vibration.

Im nachfolgenden Verfahrensschritt S204 erfolgt eine Abfrage dahingehend, ob der gemessene HF-Strom über einem vorgegebenen Schwellwert "Überstromschwelle" liegt. Wird die Abfrage in S204 bejaht, wird zum Schützen des Systems im Zuge einer Schutzfunktion der Generator abgeschaltet (Schritt S206).In the subsequent method step S204, a query is made as to whether the measured HF current is above a predetermined threshold value "overcurrent threshold". If the answer is affirmative in S204, the generator is turned off to protect the system in the course of a protection function (step S206).

Wird die Abfrage in Schritt S204 verneint, so erfolgt in einem nachfolgenden Schritt S208 eine Abfrage dahingehend, ob die in dem Schwingsystem wirksame Leistung größer als eine vorgegebene maximale Leistung ist. Wird die Abfrage in Schritt S208 bejaht, so erfolgt in Schritt S210 eine weitere Abfrage dahingehend, ob der Phasenunterschied zwischen HF-Strom und HF-Spannung kleiner Null ist. Wird die Abfrage in Schritt S210 verneint, erfolgt in Schritt S212 eine Regelung über die Frequenz in Verbindung mit einer Leistungsbegrenzung zum Auffinden der Parallelresonanz, und das Verfahren kehrt nach Schritt S202 zurück. Wird die Abfrage in Schritt S210 bejaht, erfolgt in Schritt S214 eine PWM-Regelung zur Leistungsreduzierung und einer Phasenregelung zum Erreichen einer Phasendifferenz von 0° (Parallelresonanz). Bei der Parallelresonanz ist das System besonders hochohmig, weshalb die erforderlich Leistungsreduzierung über die Pulsbreitenanpassung des Erregersignals erfolgt (vor der Anpassung kann das Erregersignal ein An-aus-Verhältnis von 1-zu-1 aufweisen, nach Leistungsreduzierung entsprechend weniger. Das Verfahren kehrt anschließend ebenfalls nach Schritt S202 zurück.If the query is answered in the negative in step S204, a query is made in a subsequent step S208 as to whether the power effective in the vibration system is greater than a predetermined maximum power. If the query in step S208 is answered in the affirmative, a further query is made in step S210 as to whether the phase difference between the HF current and the HF voltage is less than zero. If the query is answered in the negative in step S210, a control over the frequency is made in step S212 in connection with a power limitation for finding the parallel resonance, and the method returns to step S202. If the query in step S210 is affirmative, a PWM control for power reduction and a phase control to achieve a phase difference of 0 ° (parallel resonance) is performed in step S214. In the case of parallel resonance, the system has a particularly high impedance, which is why the required power reduction takes place via the pulse width adjustment of the exciter signal (before the adaptation, the exciter signal can have an on-off ratio of 1 to 1, correspondingly less after the power has been reduced.) The method then also returns back to step S202.

Wird die Abfrage in Schritt S208 verneint, erfolgt in Schritt S216 eine weitere Abfrage dahingehend, ob die Phasendifferenz zwischen HF-Strom und HF-Spannung kleiner Null ist. Wird diese Abfrage bejaht, erfolgt in Schritt S218 eine Frequenzänderung. Anschließend kehrt das Verfahren nach Schritt S202 zurück.If the query is answered in the negative in step S208, a further query is made in step S216 as to whether the phase difference between the HF current and the HF voltage is less than zero. If this query is answered in the affirmative, a frequency change takes place in step S218. Subsequently, the process returns to step S202.

Wird die Abfrage in Schritt S216 verneint, erfolgt in Schritt S220 eine weitere Abfrage dahingehend, ob die Phasendifferenz zwischen HF-Strom und HF-Spannung gleich Null ist und ob ein Istwert der Leistung/Amplitude kleiner als ein entsprechender Sollwert ist. Diese Werte kann der Anwender vorgeben, oder sie sind im Gerät fest eingestellt. Wird die Abfrage in Schritt S220 bejaht, erfolgt in Schritt S222 eine Frequenzregelung auf eine Phasendifferenz von Null, und das Verfahren kehrt nach Schritt S202 zurück.If the query is answered in the negative in step S216, a further query is made in step S220 as to whether the phase difference between the HF current and the HF voltage is zero and whether an actual value of the power / amplitude is smaller than a corresponding desired value. These values can be specified by the user or they are permanently set in the device. If the answer is affirmative in step S220, frequency control is performed to zero phase difference in step S222, and the process returns to step S202.

Wird die Abfrage in Schritt S220 verneint, erfolgt in Schritt S224 eine Frequenzregelung auf einen Sollwert für Leistung/Amplitude, und das Verfahren kehrt nach Schritt S202 zurück.If the query is denied in step S220, frequency control is performed to a power / amplitude setpoint in step S224, and the method returns to step S202.

Die Betrachtung der vorstehend erwähnten Phasendifferenz zwischen HF-Strom und HF-Spannung ist gleichbedeutend mit einer Betrachtung der Phase der komplexen Impedanz des mehrfach angesprochenen Schwingkreises, der sich aus dem generatoreigenen Anpassnetzwerk und dem angeschlossenen Ultraschallwandler ergibt.The consideration of the above-mentioned phase difference between HF current and HF voltage is equivalent to a consideration of the phase of Complex impedance of the repeatedly addressed resonant circuit resulting from the generator's own matching network and the connected ultrasonic transducer.

Claims (16)

Verfahren zum Betreiben eines Ultraschallgenerators (2) zur HF-Energieversorgung eines Ultraschallwandlers (3), insbesondere zum Ultraschallschweißen oder zur Ultraschallreinigung, welcher Ultraschallgenerator wenigstens einen elektrisch mittels eines Erregersignals mit einer Erregungsfrequenz (f) erregbaren Schwingkreis (2e) aufweist, der in elektrischer Wirkverbindung mit wenigstens einem elektro-mechanischen Schwingsystem des Ultraschallwandlers steht, dessen Impedanz bei einer Parallelresonanz des Schwingsystems ein Betragsmaximum (PR) und bei einer Serienresonanz des Schwingsystems ein Betragsminimum (SR) aufweist,
dadurch gekennzeichnet, dass a) in dem Schwingkreis (2e), vorzugsweise vor einer darin enthaltenen Paralleldrossel (2f), zumindest beim Anschwingen des Schwingsystems mit einer anfänglichen Erregungsfrequenz (f) die Phasendifferenz (Δϕ) zwischen Strom und Spannung des Erregersignals bestimmt und zur Frequenzregelung des Ultraschallgenerators (2) verwendet wird; b) in Abhängigkeit von der bestimmten Phasendifferenz (Δϕ) bei einer Phasendifferenz < 0° die anfängliche Erregungsfrequenz (f) derart in ihrer Frequenz geregelt wird, dass bei Erreichen einer Startfrequenz des Erregungssignals die Phasendifferenz (Δϕ) im Wesentlichen Null wird und die Impedanz des Schwingsystems sich ihrem Betragsminimum (SR) oder ihrem Betragsmaximum (PR) annähert; c) das Schwingsystem bei der Startfrequenz zu Ultraschallschwingungen angeregt wird und d) die Erregungsfrequenz zur Amplituden- oder Leistungsanpassung des Schwingsystems derart geregelt wird, dass die Phase (Δϕ) der Impedanz des Schwingsystems > 0° ist.
Method for operating an ultrasound generator (2) for RF energy supply of an ultrasound transducer (3), in particular for ultrasonic welding or ultrasound cleaning, which ultrasound generator has at least one oscillating circuit (2e) electrically excitable by means of an exciter signal with an excitation frequency (f), which is in electrical operative connection with at least one electro-mechanical oscillation system of the ultrasonic transducer whose impedance has a magnitude maximum (PR) in a parallel resonance of the oscillation system and a magnitude minimum (SR) in the case of a series resonance of the oscillation system,
characterized in that a) in the resonant circuit (2e), preferably in front of a parallel choke contained therein (2f), at least when oscillating the oscillating system with an initial excitation frequency (f) determines the phase difference (Δφ) between current and voltage of the exciter signal and frequency control of the ultrasonic generator (2 ) is used; b) as a function of the determined phase difference (Δφ) at a phase difference <0 ° the initial excitation frequency (f) is regulated in frequency such that upon reaching a start frequency of the excitation signal, the phase difference (Δφ) is substantially zero and the impedance of the Vibrational system approaches its absolute minimum (SR) or maximum amount (PR); c) the oscillating system is excited at the start frequency to ultrasonic vibrations and d) the excitation frequency to the amplitude or power adjustment of the vibration system is controlled such that the phase (Δφ) of the impedance of the vibration system is> 0 °.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das Schwingsystem im Anschluss an Schritt d) in einem Arbeitspunkt zwischen Parallelresonanz (PR) und Serienresonanz (SR) des Schwingsystems betrieben wird, wobei vorzugsweise der Arbeitspunkt in Abhängigkeit von einer Benutzervorgabe verschoben wird, höchst vorzugsweise in Richtung der Serienresonanz (SR) für größere Schwingungsamplitude und/oder für größere Schwingungsleistung oder in Richtung der Parallelresonanz (PR) für kleinere Schwingungsamplitude und/oder für kleinere Schwingungsleistung.
Method according to claim 1,
characterized in that
the oscillation system following step d) at an operating point between parallel resonance (PR) and series resonance (SR) of the oscillating system Preferably, the operating point is shifted in response to a user default, most preferably in the direction of the series resonance (SR) for greater amplitude and / or greater vibration power or in the direction of parallel resonance (PR) for smaller amplitude and / or lower vibration power ,
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass,
vorzugsweise vor dem Anregen des Schwingsystems in Schritt c), der Abstand zwischen Parallelresonanz (PR) und Serienresonanz (SR) des Schwingsystems durch Frequenzänderung des Erregersignals und Ermitteln von Frequenzwerten (ND1, ND2) mit verschwindender Phasendifferenz (Δϕ) zwischen Strom und Spannung des Erregersignals bestimmt wird, vorzugsweise mittels eines Vorab-Scans bei relativ niedriger Leistung, und beim Anregen des Schwingsystems während Schritt c) und Schritt d) als Regelgrundlage für die Frequenzregelung des Ultraschallgenerators (2) verwendet wird.
Method according to claim 1 or 2,
characterized in that
preferably before the excitation of the oscillatory system in step c), the distance between parallel resonance (PR) and series resonance (SR) of the oscillatory system by changing the frequency of the excitation signal and determining frequency values (ND1, ND2) with vanishing phase difference (Δφ) between current and voltage of the exciter signal is determined, preferably by means of a pre-scan at relatively low power, and when the vibration system during step c) and step d) is used as a rule basis for the frequency control of the ultrasonic generator (2).
Verfahren nach Anspruch 3,
dadurch gekennzeichnet, dass
der Abstand als Einflussgröße bei der Einstellung einer Feinheit der Frequenzregelung des Ultraschallgenerators (2) verwendet wird.
Method according to claim 3,
characterized in that
the distance is used as a parameter in the adjustment of a fineness of the frequency control of the ultrasonic generator (2).
Verfahren nach mindestens einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
die anfängliche Erregungsfrequenz (f), vorzugsweise in Schritt a), anhand bekannter, vorzugsweise elektrischer oder mechanischer Parameter des Schwingsystems im Wesentlichen auf die Startfrequenz des Erregungssignals eingestellt wird.
Method according to at least one of claims 1 to 4,
characterized in that
the initial excitation frequency (f), preferably in step a), is set essentially to the start frequency of the excitation signal on the basis of known, preferably electrical or mechanical, parameters of the oscillatory system.
Verfahren nach mindestens einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Startfrequenz vorab vorzugsweise durch Ermitteln des Frequenzwerts (ND2) mit verschwindender Phasendifferenz (Δϕ) zwischen Strom und Spannung des Erregersignals bei der Parallelresonanz (PR) bestimmt wird, höchst vorzugsweise mittels eines Vorab-Scans bei relativ niedriger Leistung, und die anfängliche Erregungsfrequenz anschließend im Wesentlichen auf die vorab bestimmte Startfrequenz des Erregungssignals eingestellt wird.
Method according to at least one of claims 1 to 5,
characterized in that
the starting frequency preferably determined beforehand by determining the frequency value (ND2) with vanishing phase difference (Δφ) between the current and the voltage of the excitation signal in the parallel resonance (PR) most preferably, by means of a pre-scan at relatively low power, and the initial excitation frequency is then set substantially at the predetermined start frequency of the excitation signal.
Verfahren nach mindestens einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass,
vorzugsweise nach vorheriger Verringerung der Erregungsfrequenz, die Erregungsfrequenz festgehalten wird, sobald das Minimum (SR) der Impedanz bei der Serienresonanz des Schwingsystems erreicht wurde, oder dass,
vorzugsweise nach vorheriger Erhöhung der Erregungsfrequenz, die Erregungsfrequenz festgehalten wird, sobald das Maximum (PR) der Impedanz bei der Parallelresonanz des Schwingsystems erreicht wurde.
Method according to at least one of claims 1 to 6,
characterized in that
preferably after prior reduction of the excitation frequency, the excitation frequency is recorded as soon as the minimum (SR) of the impedance in the series resonance of the oscillating system has been reached, or
preferably after prior increase of the excitation frequency, the excitation frequency is recorded as soon as the maximum (PR) of the impedance in the parallel resonance of the oscillating system has been reached.
Verfahren nach mindestens einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
zusätzlich zu der Phasendifferenz (Δϕ) wenigstes eine der Größen HF-Stromstärke, Blindleistung und Wirkleistung im Schwingkreis (2e) gemessen und als Regelgröße für die Frequenzregelung verwendet wird.
Method according to at least one of claims 1 to 7,
characterized in that
in addition to the phase difference (Δφ) least one of the magnitudes HF current, reactive power and active power in the resonant circuit (2e) is measured and used as a control variable for the frequency control.
Verfahren nach mindestens einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass
zusätzlich noch wenigstens eine Eigenschaft, vorzugsweise Spannung und/oder Stromstärke, eines primären elektrischen Energieversorgungssignals zur Erzeugung des Erregersignals gemessen und als Regelgröße für die Frequenzregelung und/oder für eine Schutzfunktion für Komponenten (2c) des Ultraschallgenerators (2) verwendet wird.
Method according to at least one of claims 1 to 8,
characterized in that
additionally at least one property, preferably voltage and / or current, of a primary electrical power supply signal for generating the exciter signal measured and used as a controlled variable for the frequency control and / or for a protection function for components (2c) of the ultrasonic generator (2).
Ultraschallgenerator (2) zur HF-Energieversorgung eines Ultraschallwandlers (3), insbesondere zum Ultraschallschweißen oder zur Ultraschallreinigung, mit wenigstens einem mittels eines Erregersignals mit einer Erregungsfrequenz (f) elektrisch erregbaren Schwingkreis (2e), der mit wenigstens einem elektro-mechanischen Schwingsystem eines Ultraschallwandlers in elektrischer Wirkverbindung koppelbar ist, dessen Impedanz bei einer Parallelresonanz des Schwingsystems ein Betragsmaximum (PR) und bei einer Serienresonanz des Schwingsystems ein Betragsminimum (SR) aufweist,
gekennzeichnet durch a) in dem Schwingkreis (2e), vorzugsweise vor einer darin enthaltenen Paralleldrossel (2f), angeordnete erste Messmittel (2g), die dazu ausgebildet sind, die Phasendifferenz (Δϕ) zwischen Strom und Spannung des Erregersignals zu bestimmen und die dazu vorgesehen sind, entsprechende Messsignale, vorzugsweise ein entsprechendes Phasendifferenzsignal, an einer Frequenzregelungseinheit (2h) des Ultraschallgenerators (2) bereitzustellen; b) in der Frequenzregelungseinheit (2h) vorgesehene Frequenzregelmittel (2h1-2h3), die dazu ausgebildet sind, in Abhängigkeit von der bestimmten Phasendifferenz (Δϕ) bei einer Phasendifferenz < 0° die Erregungsfrequenz derart in ihrer Frequenz (f) zu regeln, dass bei Erreichen einer Startfrequenz des Erregungssignals die Phasendifferenz (Δϕ) im Wesentlichen Null wird und die Impedanz des Schwingsystems sich ihrem Betragsminimum (SR) oder ihrem Betragsmaximum (PR) annähert; wobei c) die Frequenzregelmittel (2h1-2h3) weiterhin dazu ausgebildet sind, zur Amplituden- oder Leistungsanpassung des Schwingsystems die Erregungsfrequenz (f) derart zu regeln, dass die Phase (Δϕ) der Impedanz des Schwingsystems im Betrieb des Ultraschallwandlers (3) > 0° ist.
Ultrasonic generator (2) for RF energy supply of an ultrasonic transducer (3), in particular for ultrasonic welding or ultrasonic cleaning, with at least one by means of an excitation signal with an excitation frequency (f) electrically excitable resonant circuit (2e), comprising at least one electro-mechanical vibration system of an ultrasonic transducer can be coupled in electrical operative connection, the impedance at a parallel resonance of the oscillating system, a magnitude maximum (PR) and in the case of a series resonance of the oscillation system has a minimum amount (SR),
marked by a) in the resonant circuit (2e), preferably in front of a parallel choke contained therein (2f), arranged first measuring means (2g), which are adapted to determine the phase difference (Δφ) between current and voltage of the exciter signal and which are provided corresponding measurement signals, preferably a corresponding phase difference signal, to a frequency control unit (2h) of the ultrasonic generator (2) to provide; b) in the frequency control unit (2h) provided frequency control means (2h1-2h3), which are adapted depending on the determined phase difference (Δφ) at a phase difference <0 °, the excitation frequency in such a frequency (f) to regulate that at Reaching a start frequency of the excitation signal, the phase difference (Δφ) becomes substantially zero and the impedance of the oscillating system approaches its magnitude minimum (SR) or its magnitude maximum (PR); in which c) the frequency control means (2h1-2h3) are further adapted to regulate the amplitude or power adjustment of the oscillation system, the excitation frequency (f) such that the phase (Δφ) of the impedance of the oscillating system in the operation of the ultrasonic transducer (3)> 0 ° is.
Ultraschallgenerator (2) nach Anspruch 10,
gekennzeichnet durch
zweite Messmittel (2j) in elektrischer Wirkverbindung mit einer primären elektrischen Energieversorgungseinheit (2b) zur Erzeugung des Erregersignals, welche zweite Messmittel dazu ausgebildet sind, wenigstens eine Eigenschaft, vorzugsweise Spannung und/oder Stromstärke, eines von der Energieversorgungseinheit erzeugten primären elektrischen Energieversorgungssignals zu bestimmen und zu der Frequenzregelungseinheit (2h) des Ultraschallgenerators (2) rückzukoppeln und/oder für eine Schutzfunktion zum Schützen von Komponenten (2c) des Ultraschallgenerators (2) zu verwenden.
Ultrasonic generator (2) according to claim 10,
marked by
second measuring means (2j) in electrical communication with a primary electric power supply unit (2b) for generating the exciter signal, which second measuring means are adapted to determine at least one property, preferably voltage and / or current, of a primary electric power supply signal generated by the power supply unit; feed back to the frequency control unit (2h) of the ultrasonic generator (2) and / or for a protective function to protect components (2c) of the ultrasonic generator (2).
Ultraschallgenerator (2) nach Anspruch 10 oder 11,
gekennzeichnet durch
eine erste Einrichtung zum insbesondere automatischen Ermitteln des Abstands zwischen Parallelresonanz (PR) und Serienresonanz (SR) des Schwingsystems durch Frequenzänderung des Erregersignals, vorzugsweise anhand von Frequenzwerten (ND1, ND2) mit verschwindender Phasendifferenz (Δϕ) zwischen Strom und Spannung des Erregersignals und höchst vorzugsweise vor dem Anregen des Schwingsystems mittels eines Vorab-Scans bei relativ niedriger Leistung, welcher Abstand als Regelgrundlage für die Frequenzregelung des Ultraschallgenerators (2) verwendbar ist, insbesondere als Einflussgröße bei der Einstellung der Frequenzregelungseinheit (2h) des Ultraschallgenerators (2); und/oder eine zweite Einrichtung zum insbesondere automatischen Ermitteln der Startfrequenz, vorzugsweise anhand des Frequenzwerts (ND2) mit verschwindender Phasendifferenz (Δϕ) zwischen Strom und Spannung des Erregersignals bei der Parallelresonanz (PR) und höchst vorzugsweise mittels eines Vorab-Scans bei relativ niedriger Leistung, so dass die anfängliche Erregungsfrequenz anschließend im Wesentlichen auf die vorab bestimmte Startfrequenz des Erregungssignals einstellbar ist.
Ultrasonic generator (2) according to claim 10 or 11,
marked by
a first device for particular automatic determination of the distance between parallel resonance (PR) and series resonance (SR) of the oscillatory system by frequency change of the excitation signal, preferably based on frequency values (ND1, ND2) with vanishing phase difference (Δφ) between current and voltage of the excitation signal and most preferably before the oscillation system is excited by means of a preliminary scan at relatively low power, which distance can be used as a control basis for the frequency control of the ultrasonic generator (2), in particular as an influencing variable in the setting of the frequency control unit (2h) of the ultrasonic generator (2); and / or a second device for, in particular, automatic determination of the starting frequency, preferably based on the frequency value (ND2) with vanishing phase difference (Δφ) between current and voltage of the excitation signal in the parallel resonance (PR) and most preferably by means of a preliminary scan at relatively low power such that the initial excitation frequency is then substantially adjustable to the predetermined start frequency of the excitation signal.
Ultraschallgenerator (2) nach mindestens einem der Ansprüche 10 bis 12,
gekennzeichnet durch
weitere Messmittel (2j2-2j3) zur Bestimmung wenigstens einer der Größen HF-Stromstärke, Blindleistung und Wirkleistung im Schwingkreis, welche Messmittel in elektrischer Wirkverbindung mit der Frequenzregelungseinheit (2h) des Ultraschallgenerators (3) stehen, um die genannten Größen als weitere Regelgrößen für die Frequenzregelung zu verwenden.
Ultrasonic generator (2) according to at least one of claims 10 to 12,
marked by
Further measuring means (2j2-2j3) for determining at least one of the variables RF current, reactive power and active power in the resonant circuit, which measuring means in electrical operative connection with the frequency control unit (2h) of the ultrasonic generator (3) to the said variables as further control variables for the Frequency control to use.
Ultraschallgenerator (2) nach mindestens einem der Ansprüche 10 bis 13,
dadurch gekennzeichnet, dass
die Frequenzregelungseinheit (2h) kaskadiert (2h1-2h3) aufgebaut ist.
Ultrasonic generator (2) according to at least one of claims 10 to 13,
characterized in that
the frequency control unit (2h) is cascaded (2h1-2h3).
Ultraschallgenerator (2) nach mindestens einem der Ansprüche 10 bis 14,
gekennzeichnet durch
eine Intelligenzeinheit (2k) oder ein Expertensystem in signaltechnischer Wirkverbindung mit der Frequenzregelungseinheit (2h) oder als zu der Frequenzregelungseinheit übergeordnete Einheit.
Ultrasonic generator (2) according to at least one of claims 10 to 14,
marked by
an intelligence unit (2k) or an expert system in signal communication with the frequency control unit (2h) or as to the Frequency control unit higher-level unit.
Ultraschallsystem (1), aufweisend wenigstens einen Ultraschallgenerator (2) nach mindestens einem der Ansprüche 10 bis 15 in Wirkverbindung mit wenigstens einem Ultraschallwandler (3), welcher Ultraschallwandler (3) oder dessen elektro-mechanisches Schwingsystem in seiner Impedanz (Z) in Abhängigkeit von der Erregungsfrequenz (f) eine Parallelresonanz (PR) und eine Serienresonanz (SR) aufweist.Ultrasonic system (1), comprising at least one ultrasonic generator (2) according to at least one of claims 10 to 15 in operative connection with at least one ultrasonic transducer (3), which ultrasonic transducer (3) or its electro-mechanical vibration system in its impedance (Z) in dependence the excitation frequency (f) has a parallel resonance (PR) and a series resonance (SR).
EP13181693.6A 2012-09-10 2013-08-26 Ultrasound system, ultrasound generator and method for operating the same Active EP2705906B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012215993.2A DE102012215993A1 (en) 2012-09-10 2012-09-10 Ultrasound system, ultrasound generator and method of operating such

Publications (3)

Publication Number Publication Date
EP2705906A2 true EP2705906A2 (en) 2014-03-12
EP2705906A3 EP2705906A3 (en) 2017-12-13
EP2705906B1 EP2705906B1 (en) 2020-06-03

Family

ID=49080676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13181693.6A Active EP2705906B1 (en) 2012-09-10 2013-08-26 Ultrasound system, ultrasound generator and method for operating the same

Country Status (2)

Country Link
EP (1) EP2705906B1 (en)
DE (1) DE102012215993A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108471242A (en) * 2018-03-13 2018-08-31 深圳市大七易科技有限公司 A kind of frequency sweep of ultrasonic bonding supply frequency chases after frequency control method
CN109075760A (en) * 2016-04-25 2018-12-21 南洋理工大学 Vltrasonic device, forming method and its control method
CN110337596A (en) * 2017-02-27 2019-10-15 罗伯特·博世有限公司 Sensor device with the sensor for being detected by sound wave performing environment
CN113899947A (en) * 2021-08-24 2022-01-07 深圳圣诺医疗设备股份有限公司 Method and system for acquiring resonant frequency and calibrating power of ultrasonic transducer
CN114290685A (en) * 2021-12-30 2022-04-08 上海骄成超声波技术股份有限公司 Ultrasonic generator and ultrasonic system
CN114818807A (en) * 2022-04-25 2022-07-29 广东利元亨智能装备股份有限公司 Frequency tracking method, frequency tracking device, electronic equipment and computer readable storage medium
WO2022174661A1 (en) * 2021-02-20 2022-08-25 山东骏腾医疗科技有限公司 Ultrasound-based rapid pathological tissue processing method and device
CN115040200A (en) * 2022-05-20 2022-09-13 以诺康医疗科技(苏州)有限公司 Ultrasonic surgical tool, frequency tracking method thereof, target phase difference determination method thereof and ultrasonic transducer equivalent circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012217318A1 (en) 2012-09-25 2014-05-28 Weber Ultrasonics Gmbh Communication device for an ultrasound device and method for operating such
DE102022105944A1 (en) * 2022-03-15 2023-09-21 Herrmann Ultraschalltechnik Gmbh & Co. Kg System for generating an acoustic ultrasonic vibration with improved amplitude control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662356B1 (en) 1994-01-05 1999-04-07 BRANSON ULTRASCHALL Niederlassung der EMERSON TECHNOLOGIES GmbH & CO. Generator driving method and means for the HF-energy supply of an ultrasound transducer
US7475801B2 (en) 2005-12-29 2009-01-13 Dukane Corporation Systems for providing controlled power to ultrasonic welding probes
DE102010004468A1 (en) 2010-01-13 2011-07-14 Maschinenfabrik Spaichingen GmbH, 78549 Method and apparatus for ultrasonic processing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3625149A1 (en) * 1986-07-25 1988-02-04 Herbert Dipl Ing Gaessler METHOD FOR PHASE-CONTROLLED POWER AND FREQUENCY CONTROL OF AN ULTRASONIC TRANSDUCER, AND DEVICE FOR IMPLEMENTING THE METHOD
US5431664A (en) * 1994-04-28 1995-07-11 Alcon Laboratories, Inc. Method of tuning ultrasonic devices
FR2740572B1 (en) * 1995-10-27 1997-12-26 Lorraine Laminage METHOD AND DEVICE FOR CONTROL OF ULTRA-SOUND POWER ACTUATORS
US8798950B2 (en) * 2010-08-20 2014-08-05 Bio-Rad Laboratories, Inc. System and method for ultrasonic transducer control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662356B1 (en) 1994-01-05 1999-04-07 BRANSON ULTRASCHALL Niederlassung der EMERSON TECHNOLOGIES GmbH & CO. Generator driving method and means for the HF-energy supply of an ultrasound transducer
US7475801B2 (en) 2005-12-29 2009-01-13 Dukane Corporation Systems for providing controlled power to ultrasonic welding probes
DE102010004468A1 (en) 2010-01-13 2011-07-14 Maschinenfabrik Spaichingen GmbH, 78549 Method and apparatus for ultrasonic processing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075760A (en) * 2016-04-25 2018-12-21 南洋理工大学 Vltrasonic device, forming method and its control method
CN109075760B (en) * 2016-04-25 2024-04-02 南洋理工大学 Ultrasonic device, method of forming the same, and method of controlling the same
CN110337596A (en) * 2017-02-27 2019-10-15 罗伯特·博世有限公司 Sensor device with the sensor for being detected by sound wave performing environment
CN110337596B (en) * 2017-02-27 2024-03-12 罗伯特·博世有限公司 Sensor device with a sensor for performing environmental detection by means of sound waves
CN108471242A (en) * 2018-03-13 2018-08-31 深圳市大七易科技有限公司 A kind of frequency sweep of ultrasonic bonding supply frequency chases after frequency control method
WO2022174661A1 (en) * 2021-02-20 2022-08-25 山东骏腾医疗科技有限公司 Ultrasound-based rapid pathological tissue processing method and device
CN113899947A (en) * 2021-08-24 2022-01-07 深圳圣诺医疗设备股份有限公司 Method and system for acquiring resonant frequency and calibrating power of ultrasonic transducer
CN113899947B (en) * 2021-08-24 2024-03-26 深圳圣诺医疗设备股份有限公司 Method and system for acquiring resonant frequency and calibrating power of ultrasonic transducer
CN114290685B (en) * 2021-12-30 2024-02-06 上海骄成超声波技术股份有限公司 Ultrasonic generator and ultrasonic system
CN114290685A (en) * 2021-12-30 2022-04-08 上海骄成超声波技术股份有限公司 Ultrasonic generator and ultrasonic system
CN114818807A (en) * 2022-04-25 2022-07-29 广东利元亨智能装备股份有限公司 Frequency tracking method, frequency tracking device, electronic equipment and computer readable storage medium
CN115040200A (en) * 2022-05-20 2022-09-13 以诺康医疗科技(苏州)有限公司 Ultrasonic surgical tool, frequency tracking method thereof, target phase difference determination method thereof and ultrasonic transducer equivalent circuit
CN115040200B (en) * 2022-05-20 2023-11-03 以诺康医疗科技(苏州)有限公司 Ultrasonic surgical tool, frequency tracking method thereof, target phase difference determining method thereof and ultrasonic transducer equivalent circuit

Also Published As

Publication number Publication date
EP2705906B1 (en) 2020-06-03
DE102012215993A1 (en) 2014-03-13
EP2705906A3 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
EP2705906B1 (en) Ultrasound system, ultrasound generator and method for operating the same
EP1258978B1 (en) Current supply system
DE69723649T2 (en) METHOD AND DEVICE FOR CONTROLLING THE REACTIVE IMPEDANCES OF AN ADAPTING CIRCUIT SWITCHED BETWEEN AN RF SOURCE AND AN RF PLASMA REACTOR
DE69728793T2 (en) FREQUENCY AND POWER CONTROL ARRANGEMENT WITH DOUBLE CIRCLE
DE2648150C2 (en) Arrangement for controlling the speed of an asynchronous motor fed by an intermediate circuit converter
EP2737516B1 (en) Method and apparatus for protecting passive components connected to a radio-frequency generator
EP0662356A2 (en) Generator driving method and means for the HF-energy supply of an ultrasound transducer
DE3331896A1 (en) POWER GENERATOR FOR AN ULTRASONIC transducer
DE10306347A1 (en) Controlling supply of power from AC supply to two consumers in plasma process, by adjusting supplied power if actual power deviates from set value
DE3321531A1 (en) METHOD AND DEVICE FOR CONTROLLING THE CONTROL FREQUENCY OF AN ULTRASONIC TRANSMITTER
EP4040640A1 (en) Method for operating a device for wireless transmission of energy in the direction of an electrical consumer by means of inductive coupling, device and system
EP2892660B1 (en) Method and circuit system for determining a working range of an ultrasonic vibrating unit
DE102010004649A1 (en) Radio frequency (RF) voltage supply system and method for supplying a Mulipolmassenspektrometers with the generation of a Mulipolfelds used HF_Use voltage and parts thereof
EP2838179B1 (en) Device and method for the wireless transmission of energy
DE102005030777B4 (en) Method and circuit arrangement for operating an ultrasonic vibrator
EP3269038A1 (en) Oscillator and inductive proximity switch
WO2017129415A1 (en) Method for exciting piezoelectric transducers and sound-producing arrangement
DE4230491C2 (en) Control circuit for an ultrasonic generator
DE102021201937A1 (en) Impedance matching method, impedance matching arrangement and plasma system
EP3606677B1 (en) Ultrasonic machine tool comprising two sonotrodes and method for operating same
EP2660952B1 (en) Energy transfer system
DE112019005539T5 (en) CONTACTLESS POWER SUPPLY DEVICE
DE3909761C2 (en)
WO2021013649A1 (en) Method and generator for characterizing an oscillatory system
WO2024023244A1 (en) Control device and method for actuating an impedance-matching circuit for a plasma production system and plasma production system of this kind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B06B 1/02 20060101AFI20171106BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180612

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEBER ULTRASONICS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1276488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014753

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014753

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

26N No opposition filed

Effective date: 20210304

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220831

Year of fee payment: 10

Ref country code: GB

Payment date: 20220824

Year of fee payment: 10

Ref country code: AT

Payment date: 20220818

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220824

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230804

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1276488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230826

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831