EP2686278A1 - Substrate for a photovoltaic cell - Google Patents

Substrate for a photovoltaic cell

Info

Publication number
EP2686278A1
EP2686278A1 EP12714772.6A EP12714772A EP2686278A1 EP 2686278 A1 EP2686278 A1 EP 2686278A1 EP 12714772 A EP12714772 A EP 12714772A EP 2686278 A1 EP2686278 A1 EP 2686278A1
Authority
EP
European Patent Office
Prior art keywords
substrate
photovoltaic
glass
substrate according
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12714772.6A
Other languages
German (de)
French (fr)
Inventor
Octavio Cintora
Dominique Sachot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2686278A1 publication Critical patent/EP2686278A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the invention relates to the field of substrates for photovoltaic cells. It relates more specifically substrates for photovoltaic cells comprising at least one float glass sheet provided on one side with at least one electrode.
  • a thin-film photovoltaic material typically CdTe or Cu (In, Ga) Se2 (CIGS)
  • CdTe or Cu (In, Ga) Se2 CdTe
  • CGS In, Ga
  • the material with photovoltaic properties, and generally the electrode are deposited in a thin layer by deposition processes such as evaporation, sputtering, chemical vapor deposition (CVD) or sublimation (CSS) on the glass sheet.
  • CVD chemical vapor deposition
  • SCS sublimation
  • the latter must generally be heated at high temperature, either during the deposition or after the deposition (annealing treatment, selenization, etc.), and therefore undergoes temperatures of the order of 500 ° C. or more.
  • These treatments make it possible, for example, to improve the crystallinity of the layers and therefore their electronic conduction or photovoltaic properties.
  • Glasses of higher thermal resistance have been proposed, but have a high production cost, for example because of the use of raw materials expensive (barium or strontium carriers for example), or particularly high melting temperatures. In addition, some of these glasses are not suitable for forming glass float.
  • the object of the invention is to obviate these drawbacks, by proposing a glass composition having improved thermal resistance making it compatible with the processes used in the manufacture of cells based on thin-film photovoltaic materials, particularly CdTe or Cu (In, Ga) Se2 (CIGS), further allowing to produce a glass float and under very favorable economic conditions.
  • an object of the invention is a photovoltaic cell substrate comprising at least one float glass sheet provided on one side with at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
  • compositions surprisingly make it possible to impart high thermal resistances to glass substrates, characterized in particular by lower annealing temperatures of at least 30 ° C. higher than those of standard glass.
  • the sum of the weight contents of SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 ⁇ 0, K 2 O is preferably at least 95%, especially 98%.
  • the content of SrO, BaO, B 2 O 3 and / or ZrO 2 is advantageously zero so as not to penalize the cost of the glass sheet.
  • the content of antimony and arsenic oxides is also advantageously zero because these oxides are not compatible with the float process.
  • the other constituents of the composition may be impurities originating from the raw materials (in particular iron oxide) or due to the degradation of the refractories of the melting furnace or of the refining agents (in particular SO 3 ).
  • Silica (S10 2 ) is the main formative element of glass. In too low levels, the hydrolytic resistance of the glass, especially in basic medium, would be reduced too much. On the other hand, contents above 70% lead to an increase in the viscosity of the highly detrimental glass.
  • the SiO 2 content is preferably at most 66%, especially 65.5% and even 65% and / or at least 61%, especially 62%, or even 62.5% or 63%.
  • Alumina (Al 2 O 3) makes it possible to increase the hydrolytic resistance of the glass and to reduce its refractive index, this latter advantage being particularly significant when the substrate is intended to constitute the front-face substrate of the photovoltaic cell.
  • the content of Al 2 O 3 is preferably at most 11.5%, especially 11%, even 10% and / or at least 8%, especially 8.5% or 9%.
  • the addition of lime (CaO) has the advantage of reducing the high temperature viscosity of the glass, and thus of facilitating its melting and refining, while increasing the lower annealing temperature, and therefore the thermal stability.
  • the increase in temperature liquidus and the refractive index attributable to this oxide lead however to limit its content.
  • the CaO content is preferably at most 9.5%, especially 9% and / or at least 7%, especially 7.5% or 8%.
  • Magnesia (MgO) is useful for improving the chemical durability of glass and decreasing its viscosity. High levels, however, lead to increased risks of devitrification.
  • the MgO content is preferably at most 5%, especially 4.5% or 4% and / or at least 3%.
  • Soda (Na 2 ⁇ 0) is useful for reducing the viscosity at high temperature and liquidus temperature. Too high levels, however, lead to degrade the hydrolytic strength of the glass and its thermal stability, while increasing the cost.
  • the Na 2 O content is preferably at most 15%, in particular 14.5% or even 14% and / or at least 11%, especially 12% or even 12.5% or 13%.
  • Potash (K 2 O) has the same advantages and disadvantages. Its content is preferably at most 4%, especially 3%. It may be zero in some embodiments.
  • compositions comprise the following components, in one
  • the melting of the glass may be carried out in continuous furnaces, heated with electrodes and / or using burners, aerated and / or immersed and / or arranged in the vault of the oven so that the flame impact the raw materials or the glass bath.
  • the raw materials are generally pulverulent and include natural materials (sand, feldspars, limestone, dolomite, nepheline syenite altogether or artificial (sodium or potassium carbonate, sodium sulphate ).
  • the raw materials are charged and then undergo fusion reactions in the physical sense of the term and various chemical reactions leading to obtaining a glass bath.
  • the molten glass is then fed to a forming step during which the glass sheet will take shape.
  • the forming is carried out in a known manner by floating, that is to say by pouring the molten glass (at a viscosity of the order of 3000 Poises) on a bath of molten tin.
  • the obtained glass ribbon is then carefully annealed in order to eliminate any thermal stresses within it, before being cut to the desired dimensions.
  • the thickness of the glass sheet is typically between 2 and 6 mm, especially between 2.5 and 4 mm.
  • the electrode is preferably in the form of a thin layer deposited on the substrate (generally on the entire face of the substrate), directly in contact with the substrate or in contact with at least one underlayer. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It can still be a thin metal layer, for example molybdenum. Transparent layers are generally used when the substrate is intended to form the front face substrate of the photovoltaic cell, as explained in more detail later in the text. The term "front face" is understood to mean the face traversed first by solar radiation.
  • the electrode in the form of a thin layer may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by a magnetic field (magnetron process).
  • CVD chemical vapor deposition
  • sputtering deposition in particular assisted by a magnetic field (magnetron process).
  • halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer.
  • the advantage of the CVD process is that it can be implemented in the process of forming the glass sheet by floating. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress.
  • the CVD process is particularly suitable for depositing fluorine or antimony doped tin oxide layers.
  • the sputtering process
  • Another object of the invention is a semiconductor device comprising at least one substrate according to the invention and at least one thin layer of a material with photovoltaic properties deposited on said at least one substrate.
  • the material with photovoltaic properties is preferably chosen from compounds of the CdTe type or Cu (In, Ga) Se2 (CIGS).
  • (In, Ga) we mean that the material can comprise In and / or Ga, according to any possible combinations of contents: Ini_ x Ga x , x being able to take any value of 0 to 1. In particular, x can be zero (material of type CIS).
  • the material with photovoltaic properties may also be in amorphous or polycrystalline silicon.
  • the photovoltaic material is deposited on the semiconductor device, above the electrode, and generally in contact therewith.
  • Different deposition techniques are possible, among which examples that may be mentioned are evaporation, sputtering, chemical vapor deposition (CVD), electrolytic deposition or else sublimation (CSS).
  • evaporation evaporation, sputtering, chemical vapor deposition (CVD), electrolytic deposition or else sublimation (CSS).
  • CVD chemical vapor deposition
  • SCS sublimation
  • CIGS-type layers mention may be made of sputtering or electroplating processes (followed by a selenization step) or coevaporation.
  • An additional electrode may be deposited on (and in particular in contact with) the layer of photovoltaic material. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It may still be a metal layer, for example gold or nickel alloy and aluminum.
  • the transparent layers are generally used when the substrate is intended to form the rear-face substrate of the photovoltaic cell, as explained in more detail later in the text. Buffer layers can also be interposed between the layer of photovoltaic material and the additional electrode. In the case of CIGS type materials, it may for example be a layer of CdS.
  • Another object of the invention is a photovoltaic cell comprising a semiconductor device according to the invention.
  • An object of the invention is finally a photovoltaic module comprising a plurality of photovoltaic cells according to the invention.
  • the substrate according to the invention may be the front or rear face substrate of the photovoltaic cell.
  • the CIGS layer is generally deposited on the rear-face substrate (provided with its electrode, typically made of molybdenum). It is therefore the backside substrate which then has a glass sheet having the advantageous chemical composition described above.
  • the photovoltaic material is often deposited on the front-face substrate, so that the aforementioned chemical composition is used for the glass sheet of the front-face substrate.
  • the photovoltaic cell is formed by joining the substrates of the front face and rear face, for example by means of a lamination interlayer of thermosetting plastic material, for example PVB, PU or EVA.
  • the photovoltaic cell according to the invention comprises, as a front-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. not more than 0,02%, in particular 0,015%. In this case, it is important that the optical transmission of the glass is as high as possible.
  • the glass sheet does not include preferably no agent absorbing visible or infrared radiation (especially for a wavelength between 380 and 1000 nm) other than iron oxide (whose presence is unavoidable).
  • the composition of the glass preferably does not contain agents chosen from the following agents, or any of the following agents: transition element oxides such as CoO, CuO, Cr 2 O 3, MnO 2 , oxides of rare earths such as Ce0 2 , La 2 O 3, d 2 O 3, or elemental coloring agents such as Se, Ag, Cu, Au.
  • transition element oxides such as CoO, CuO, Cr 2 O 3, MnO 2
  • oxides of rare earths such as Ce0 2 , La 2 O 3, d 2 O 3, or elemental coloring agents such as Se, Ag, Cu, Au.
  • elemental coloring agents such as Se, Ag, Cu, Au.
  • the redox (defined as the ratio between the ferrous iron content expressed as FeO and the total iron content expressed as Fe 2 O 3) is preferably at most 0 , 2, especially 0.1.
  • the glass sheet is preferably such that its energy transmission (T E ) calculated according to the ISO 9050: 2003 standard is greater than or equal to 90%, in particular 90.5%, even 91% and even 91.5%, for a 3.2 mm thick.
  • the front face substrate may be provided, on the face opposite to that carrying the electrode, with an antireflection coating, for example porous silica or comprising a stack of thin layers alternating high and low refractive index layers.
  • a substrate according to the invention is typically used provided with a doped ITO and / or SnO 2 electrode, a CdTe photovoltaic material, an additional electrode made of gold or a nickel alloy and aluminum.
  • the backside substrate is preferably of standard silico-soda-lime glass.
  • the photovoltaic cell according to the invention comprises, as rear-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. at least 0.05%, in particular ranging from 0.08 to 2%, especially from 0.08 to 0.2%.
  • a substrate according to the invention is typically used provided with a molybdenum electrode, a CIGS photovoltaic material, an additional doped ZnO electrode. High levels of iron oxide (from 0.5% to 2%) can in this case correct the aesthetic appearance due to the presence of molybdenum.
  • the front face substrate is preferably made of extra-clear glass of standard soda-lime-calcium composition.
  • Table 1 illustrates certain compositions according to the invention (Examples 1 to 6) and a standard composition (Comparative Example C1).
  • T2 the temperature at which the glass has a viscosity of 100 Poises
  • the temperature at which the glass has a viscosity of 3162 Poises called T3.5 and expressed in ° C
  • the forming margin called ⁇ and expressed corresponding to the difference between the temperature T3, the liquidus temperature.
  • compositions provide glasses having lower annealing temperatures of about 30 ° C higher than that of standard glass. This results in better mechanical behavior, and glass sheets less able to deform during the manufacturing steps of solar cells. These glass compositions are floatable under good conditions, as evidenced by the positive forming margins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a substrate for a photovoltaic cell, comprising at least one sheet of float glass provided with at least one electrode on one face, characterised in that said glass has a chemical composition comprising the following constituents, in a weight content varying within the limits defined as follows: between 60 and 70% of SiO2, between 7 and 12% of A12O3, between 0 and 5% of MgO, between 6and 10% of CaO, between 10 and 16% of Na2O, and between 0 and 6% of K2O.

Description

SUBSTRAT POUR CELLULE PHOTOVOLTAIQUE  SUBSTRATE FOR PHOTOVOLTAIC CELL
L' invention se rapporte au domaine des substrats pour cellules photovoltaïques . Elle concerne plus précisément des substrats pour cellules photovoltaïques comprenant au moins une feuille de verre flotté munie sur une face d'au moins une électrode. The invention relates to the field of substrates for photovoltaic cells. It relates more specifically substrates for photovoltaic cells comprising at least one float glass sheet provided on one side with at least one electrode.
L'utilisation d'un matériau photovoltaïque en couches minces, typiquement en CdTe ou en Cu(In,Ga)Se2 (CIGS) , permet de remplacer des substrats coûteux en silicium par des substrats comprenant des feuilles de verre. Le matériau à propriétés photovoltaïques, et généralement l'électrode, sont déposés en couche mince par des procédés de dépôt du type évaporation, pulvérisation cathodique, dépôt chimique en phase vapeur (CVD) ou encore sublimation (CSS) sur la feuille de verre. Cette dernière doit généralement être chauffée à haute température, soit pendant le dépôt, soit après le dépôt (traitement de recuit, de sélénisation etc..) , et subit de ce fait des températures de l'ordre de 500°C ou plus. Ces traitements permettent par exemple d'améliorer la cristallinité des couches et donc leurs propriétés de conduction électronique ou photovoltaïques.  The use of a thin-film photovoltaic material, typically CdTe or Cu (In, Ga) Se2 (CIGS), makes it possible to replace expensive substrates made of silicon with substrates comprising glass sheets. The material with photovoltaic properties, and generally the electrode, are deposited in a thin layer by deposition processes such as evaporation, sputtering, chemical vapor deposition (CVD) or sublimation (CSS) on the glass sheet. The latter must generally be heated at high temperature, either during the deposition or after the deposition (annealing treatment, selenization, etc.), and therefore undergoes temperatures of the order of 500 ° C. or more. These treatments make it possible, for example, to improve the crystallinity of the layers and therefore their electronic conduction or photovoltaic properties.
Les hautes températures présentent toutefois l'inconvénient de provoquer une déformation de la feuille de verre lorsqu'elle est en verre silico-sodo-calcique standard .  High temperatures, however, have the disadvantage of causing deformation of the glass sheet when it is standard soda-lime glass.
Des verres de plus haute résistance thermique ont été proposés, mais présentent un coût de production élevé, du fait par exemple de l'utilisation de matières premières coûteuses (porteurs de baryum ou de strontium par exemple) , ou de températures de fusion particulièrement élevées. En outre, certains de ces verres se prêtent mal au formage du verre par flottage. Glasses of higher thermal resistance have been proposed, but have a high production cost, for example because of the use of raw materials expensive (barium or strontium carriers for example), or particularly high melting temperatures. In addition, some of these glasses are not suitable for forming glass float.
L'invention a pour but d'obvier à ces inconvénients, en proposant une composition de verre présentant une résistance thermique améliorée le rendant compatible avec les procédés utilisés lors de la fabrication de cellules à base de matériaux photovoltaïques en couche mince, particulièrement en CdTe ou Cu(In,Ga)Se2 (CIGS) , permettant en outre de produire un verre par flottage et dans des conditions économiques très favorables.  The object of the invention is to obviate these drawbacks, by proposing a glass composition having improved thermal resistance making it compatible with the processes used in the manufacture of cells based on thin-film photovoltaic materials, particularly CdTe or Cu (In, Ga) Se2 (CIGS), further allowing to produce a glass float and under very favorable economic conditions.
A cet effet, un objet de l'invention est un substrat pour cellule photovoltaïque comprenant au moins une feuille de verre flotté munie sur une face d' au moins une électrode, caractérisé en ce que ledit verre possède une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies :  For this purpose, an object of the invention is a photovoltaic cell substrate comprising at least one float glass sheet provided on one side with at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
Si02 60-70% Si0 2 60-70%
A1203 7-12% A1 2 0 3 7-12%
MgO 0-5%  MgO 0-5%
CaO 6-10%  CaO 6-10%
Na20 10-16% Na 2 0 10-16%
K20 0-6%. K 2 0 0-6%.
Ces compositions permettent de manière étonnante de conférer des résistances thermiques élevées aux substrats de verre, caractérisées notamment par des températures inférieures de recuit d'au moins 30°C plus élevées que celles du verre standard. La somme des teneurs pondérales en S1O2, AI2O3, CaO, MgO, Na2<0, K2O est de préférence d'au moins 95%, notamment 98%. La teneur en SrO, BaO, B203 et/ou Zr02 est avantageusement nulle afin de ne pas pénaliser le coût de la feuille de verre. La teneur en oxydes d'antimoine et d'arsenic est également avantageusement nulle car ces oxydes ne sont pas compatibles avec le procédé de flottage. Les autres constituants de la composition peuvent être des impuretés provenant des matières premières (notamment l'oxyde de fer) ou dues à la dégradation des réfractaires du four de fusion ou des agents d'affinage (notamment SO3) . These compositions surprisingly make it possible to impart high thermal resistances to glass substrates, characterized in particular by lower annealing temperatures of at least 30 ° C. higher than those of standard glass. The sum of the weight contents of SiO 2 , Al 2 O 3 , CaO, MgO, Na 2 <0, K 2 O is preferably at least 95%, especially 98%. The content of SrO, BaO, B 2 O 3 and / or ZrO 2 is advantageously zero so as not to penalize the cost of the glass sheet. The content of antimony and arsenic oxides is also advantageously zero because these oxides are not compatible with the float process. The other constituents of the composition may be impurities originating from the raw materials (in particular iron oxide) or due to the degradation of the refractories of the melting furnace or of the refining agents (in particular SO 3 ).
La silice (S1O2) est le principal élément formateur du verre. En de trop faibles teneurs, la résistance hydrolytique du verre, notamment en milieu basique, s'en trouverait trop amoindrie. En revanche, les teneurs au-delà de 70% entraînent une augmentation de la viscosité du verre hautement préjudiciable. La teneur en Si02 est de préférence d'au plus 66%, notamment 65,5% et même 65% et/ou d'au moins 61%, notamment 62%, voire 62,5% ou 63%. Silica (S10 2 ) is the main formative element of glass. In too low levels, the hydrolytic resistance of the glass, especially in basic medium, would be reduced too much. On the other hand, contents above 70% lead to an increase in the viscosity of the highly detrimental glass. The SiO 2 content is preferably at most 66%, especially 65.5% and even 65% and / or at least 61%, especially 62%, or even 62.5% or 63%.
L'alumine (AI2O3) permet d'augmenter la résistance hydrolytique du verre et de diminuer son indice de réfraction, ce dernier avantage étant particulièrement significatif lorsque le substrat est destiné à constituer le substrat de face avant de la cellule photovoltaïque . La teneur en AI2O3 est de préférence d'au plus 11,5%, notamment 11%, voire 10% et/ou d'au moins 8%, notamment 8,5% ou 9%. Alumina (Al 2 O 3) makes it possible to increase the hydrolytic resistance of the glass and to reduce its refractive index, this latter advantage being particularly significant when the substrate is intended to constitute the front-face substrate of the photovoltaic cell. The content of Al 2 O 3 is preferably at most 11.5%, especially 11%, even 10% and / or at least 8%, especially 8.5% or 9%.
L'ajout de chaux (CaO) présente l'avantage de diminuer la viscosité à haute température du verre, et donc de faciliter sa fusion et son affinage, tout en augmentant la température inférieure de recuisson, et donc la stabilité thermique. L'augmentation de la température au liquidus et de l'indice de réfraction attribuables à cet oxyde conduisent toutefois à en limiter la teneur. La teneur en CaO est de préférence d'au plus 9,5%, notamment 9% et/ou d'au moins 7%, notamment 7,5% ou 8%. La magnésie (MgO) est utile pour améliorer la durabilité chimique du verre et diminuer sa viscosité. De fortes teneurs conduisent toutefois à renforcer les risques de dévitrification. La teneur en MgO est de préférence d'au plus 5%, notamment 4,5% ou 4% et/ou d'au moins 3%. The addition of lime (CaO) has the advantage of reducing the high temperature viscosity of the glass, and thus of facilitating its melting and refining, while increasing the lower annealing temperature, and therefore the thermal stability. The increase in temperature liquidus and the refractive index attributable to this oxide lead however to limit its content. The CaO content is preferably at most 9.5%, especially 9% and / or at least 7%, especially 7.5% or 8%. Magnesia (MgO) is useful for improving the chemical durability of glass and decreasing its viscosity. High levels, however, lead to increased risks of devitrification. The MgO content is preferably at most 5%, especially 4.5% or 4% and / or at least 3%.
La soude (Na2<0) est utile pour réduire la viscosité à haute température et la température au liquidus. Des teneurs trop élevées conduisent toutefois à dégrader la résistance hydrolytique du verre et sa stabilité thermique, tout en augmentant le coût. La teneur en Na20 est de préférence d'au plus 15%, notamment 14,5%, voire 14 % et/ou d'au moins 11%, notamment 12%, voire 12,5% ou 13%. La potasse (K20) présente les mêmes avantages et inconvénients. Sa teneur est de préférence d'au plus 4 % , notamment 3%. Elle peut être nulle dans certains modes de réalisation. Soda (Na 2 <0) is useful for reducing the viscosity at high temperature and liquidus temperature. Too high levels, however, lead to degrade the hydrolytic strength of the glass and its thermal stability, while increasing the cost. The Na 2 O content is preferably at most 15%, in particular 14.5% or even 14% and / or at least 11%, especially 12% or even 12.5% or 13%. Potash (K 2 O) has the same advantages and disadvantages. Its content is preferably at most 4%, especially 3%. It may be zero in some embodiments.
Des compositions particulièrement préférées comprennent les constituants suivants, en une  Particularly preferred compositions comprise the following components, in one
pondérale variant dans les limites ci-après définies weighting within the limits defined below
Si02 61-66% Si0 2 61-66%
A1203 8-10% A1 2 0 3 8-10%
MgO 3-5%  MgO 3-5%
CaO 7-9%  CaO 7-9%
Na20 11-15% Na 2 0 11-15%
K20 0-4% La fusion du verre peut être réalisée en fours continus, chauffés à l'aide d'électrodes et/ou à l'aide de brûleurs, aériens et/ou immergés et/ou disposés dans la voûte du four de manière à ce que la flamme vienne impacter les matières premières ou le bain de verre. Les matières premières sont généralement pulvérulentes et comprennent des matières naturelles (sable, feldspaths, calcaire, dolomie, syénite néphélinique...) ou artificielles (carbonate de sodium ou de potassium, sulfate de sodium...) . Les matières premières sont enfournées puis subissent des réactions de fusion au sens physique du terme et diverses réactions chimiques conduisant à l'obtention d'un bain de verre. Le verre en fusion est ensuite acheminé vers une étape de formage pendant laquelle la feuille de verre va prendre sa forme. Le formage est réalisé de manière connue par flottage, c'est-à-dire par déversement du verre fondu (à une viscosité de l'ordre de 3000 Poises) sur un bain d' étain en fusion. Le ruban de verre obtenu est ensuite recuit soigneusement afin d'éliminer toutes contraintes thermiques en son sein, avant d'être découpé aux dimensions voulues. L'épaisseur de la feuille de verre est typiquement comprise entre 2 et 6 mm, notamment entre 2,5 et 4 mm. K 2 0 0-4% The melting of the glass may be carried out in continuous furnaces, heated with electrodes and / or using burners, aerated and / or immersed and / or arranged in the vault of the oven so that the flame impact the raw materials or the glass bath. The raw materials are generally pulverulent and include natural materials (sand, feldspars, limestone, dolomite, nepheline syenite ...) or artificial (sodium or potassium carbonate, sodium sulphate ...). The raw materials are charged and then undergo fusion reactions in the physical sense of the term and various chemical reactions leading to obtaining a glass bath. The molten glass is then fed to a forming step during which the glass sheet will take shape. The forming is carried out in a known manner by floating, that is to say by pouring the molten glass (at a viscosity of the order of 3000 Poises) on a bath of molten tin. The obtained glass ribbon is then carefully annealed in order to eliminate any thermal stresses within it, before being cut to the desired dimensions. The thickness of the glass sheet is typically between 2 and 6 mm, especially between 2.5 and 4 mm.
L'électrode est de préférence sous forme de couche mince déposée sur le substrat (généralement sur l'intégralité d'une face du substrat), directement en contact avec le substrat ou en contact avec au moins une sous-couche. Il peut s'agir d'une couche mince transparente et électroconductrice, par exemple à base d'oxyde d' étain (dopé au fluor ou à l'antimoine), d'oxyde de zinc (dopé à l'aluminium ou au gallium), ou à base d'oxyde d' étain et d' indium (ITO) . Il peut encore s'agir d'une couche mince métallique, par exemple en molybdène. Les couches transparentes sont généralement employées lorsque le substrat est destiné à former le substrat de face avant de la cellule photovoltaïque, comme explicité plus en détail dans la suite du texte. On entend par face avant la face traversée en premier par le rayonnement solaire. The electrode is preferably in the form of a thin layer deposited on the substrate (generally on the entire face of the substrate), directly in contact with the substrate or in contact with at least one underlayer. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It can still be a thin metal layer, for example molybdenum. Transparent layers are generally used when the substrate is intended to form the front face substrate of the photovoltaic cell, as explained in more detail later in the text. The term "front face" is understood to mean the face traversed first by solar radiation.
L'électrode sous forme de couche mince peut être déposée sur le substrat par différents procédés de dépôt, tels que le dépôt chimique en phase vapeur (CVD) ou le dépôt par pulvérisation cathodique, notamment assisté par champ magnétique (procédé magnétron) . Dans le procédé CVD, des précurseurs halogénures ou organométalliques sont vaporisés et transportés par un gaz vecteur jusqu'à la surface du verre chaud, où ils se décomposent sous l'effet de la chaleur pour former la couche mince. L'avantage du procédé CVD est qu' il est possible de le mettre en œuvre au sein du procédé de formage de la feuille de verre par flottage. Il est ainsi possible de déposer la couche au moment où la feuille de verre est sur le bain d'étain, à la sortie du bain d'étain, ou encore dans l'étenderie, c'est- à-dire au moment où la feuille de verre est recuite afin d'éliminer les contraintes mécaniques. Le procédé CVD est particulièrement adapté au dépôt de couches d'oxyde d'étain dopé au fluor ou à l'antimoine. Le procédé de pulvérisation cathodique sera quant à lui préférentiellement employé pour le dépôt de couches de molybdène, d'oxyde de zinc dopé ou encore d'ITO.  The electrode in the form of a thin layer may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by a magnetic field (magnetron process). In the CVD process, halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer. The advantage of the CVD process is that it can be implemented in the process of forming the glass sheet by floating. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress. The CVD process is particularly suitable for depositing fluorine or antimony doped tin oxide layers. The sputtering process will be preferentially used for the deposition of molybdenum layers, doped zinc oxide or ITO.
Un autre objet de l'invention est un dispositif semi-conducteur comprenant au moins un substrat selon l'invention et au moins une couche mince d'un matériau à propriétés photovoltaïques déposée sur ledit au moins un substrat.  Another object of the invention is a semiconductor device comprising at least one substrate according to the invention and at least one thin layer of a material with photovoltaic properties deposited on said at least one substrate.
Le matériau à propriétés photovoltaïques est de préférence choisi parmi les composés de type CdTe ou Cu(In,Ga)Se2 (CIGS) . Par (In, Ga) on entend que le matériau peut comprendre In et/ou Ga, selon toutes combinaisons de teneurs possibles : Ini_xGax, x pouvant prendre toute valeur de 0 à 1. Notamment, x peut être nul (matériau de type CIS) . Le matériau à propriétés photovoltaïques peut également être en silicium amorphe ou polycristallin . The material with photovoltaic properties is preferably chosen from compounds of the CdTe type or Cu (In, Ga) Se2 (CIGS). By (In, Ga) we mean that the material can comprise In and / or Ga, according to any possible combinations of contents: Ini_ x Ga x , x being able to take any value of 0 to 1. In particular, x can be zero (material of type CIS). The material with photovoltaic properties may also be in amorphous or polycrystalline silicon.
Le matériau photovoltaïque est déposé sur le dispositif semi-conducteur, au-dessus de l'électrode, et généralement au contact de celle-ci. Différentes technique de dépôt sont possibles, parmi lesquelles on peut citer à titre d'exemples 1 ' évaporation, la pulvérisation cathodique, le dépôt chimique en phase vapeur (CVD) , les dépôts électrolytiques ou encore la sublimation (CSS) . A titre d'exemple, on peut citer dans le cas des couches de type CIGS les procédés de pulvérisation cathodique ou de dépôt électrolytique (suivis d'une étape de sélénisation) ou la coévaporation . The photovoltaic material is deposited on the semiconductor device, above the electrode, and generally in contact therewith. Different deposition techniques are possible, among which examples that may be mentioned are evaporation, sputtering, chemical vapor deposition (CVD), electrolytic deposition or else sublimation (CSS). By way of example, in the case of CIGS-type layers, mention may be made of sputtering or electroplating processes (followed by a selenization step) or coevaporation.
Une électrode supplémentaire peut être déposée sur (et notamment en contact avec) la couche de matériau photovoltaïque. Il peut s'agir d'une couche mince transparente et électroconductrice, par exemple à base d'oxyde d' étain (dopé au fluor ou à l'antimoine), d'oxyde de zinc (dopé à l'aluminium ou au gallium), ou à base d'oxyde d' étain et d' indium (ITO) . Il peut encore s'agir d'une couche métallique, par exemple en or ou en alliage de nickel et d'aluminium. Les couches transparentes sont généralement employées lorsque le substrat est destiné à former le substrat de face arrière de la cellule photovoltaïque, comme explicité plus en détail dans la suite du texte. Des couches tampon peuvent aussi être interposées entre la couche de matériau photovoltaïque et l'électrode supplémentaire. Dans le cas des matériaux de type CIGS, il peut par exemple s'agir d'une couche de CdS . An additional electrode may be deposited on (and in particular in contact with) the layer of photovoltaic material. It may be a transparent and electroconductive thin layer, for example based on tin oxide (doped with fluorine or antimony), zinc oxide (doped with aluminum or gallium) , or based on tin oxide and indium (ITO). It may still be a metal layer, for example gold or nickel alloy and aluminum. The transparent layers are generally used when the substrate is intended to form the rear-face substrate of the photovoltaic cell, as explained in more detail later in the text. Buffer layers can also be interposed between the layer of photovoltaic material and the additional electrode. In the case of CIGS type materials, it may for example be a layer of CdS.
Un autre objet de l'invention est une cellule photovoltaïque comprenant un dispositif semi-conducteur selon l'invention. Un objet de l'invention est enfin un module photovoltaïque comprenant une pluralité de cellules photovoltaïques selon l'invention.  Another object of the invention is a photovoltaic cell comprising a semiconductor device according to the invention. An object of the invention is finally a photovoltaic module comprising a plurality of photovoltaic cells according to the invention.
Suivant la technologie employée, le substrat selon l'invention peut être le substrat de face avant ou de face arrière de la cellule photovoltaïque. A titre d'exemple, dans le cas des matériaux photovoltaïques à base de CIGS, la couche de CIGS est généralement déposée sur le substrat de face arrière (muni de son électrode, typiquement en molybdène) . C'est donc le substrat de face arrière qui possède alors une feuille de verre ayant la composition chimique avantageuse décrite précédemment. Dans le cas de la technologie CdTe en revanche, le matériau photovoltaïque est souvent déposé sur le substrat de face avant, de sorte que la composition chimique précitée est utilisée pour la feuille de verre du substrat de face avant.  Depending on the technology used, the substrate according to the invention may be the front or rear face substrate of the photovoltaic cell. By way of example, in the case of photovoltaic materials based on CIGS, the CIGS layer is generally deposited on the rear-face substrate (provided with its electrode, typically made of molybdenum). It is therefore the backside substrate which then has a glass sheet having the advantageous chemical composition described above. In the case of CdTe technology on the other hand, the photovoltaic material is often deposited on the front-face substrate, so that the aforementioned chemical composition is used for the glass sheet of the front-face substrate.
La cellule photovoltaïque est formée en réunissant les substrats de face avant et de face arrière, par exemple au moyen d'un intercalaire de feuilletage en matière plastique thermodurcissable, par exemple en PVB, PU ou EVA.  The photovoltaic cell is formed by joining the substrates of the front face and rear face, for example by means of a lamination interlayer of thermosetting plastic material, for example PVB, PU or EVA.
Selon un premier mode de réalisation, la cellule photovoltaïque selon l'invention comprend comme substrat de face avant le substrat selon l'invention, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au plus 0,02%, notamment 0,015%. Dans ce cas, il importe en effet que la transmission optique du verre soit la plus élevée possible. La feuille de verre ne comprend de préférence aucun agent absorbant les rayonnements visibles ou infrarouges (notamment pour une longueur d'ondes comprise entre 380 et 1000 nm) autre que l'oxyde de fer (dont la présence est inévitable) . En particulier, la composition du verre ne contient de préférence pas d'agents choisis parmi les agents suivants, ou aucun des agents suivants : les oxydes d'éléments de transition tels que CoO, CuO, Cr203, Mn02, les oxydes de terres rares tels que Ce02, La2Û3, d2Û3, ou encore les agents colorants à l'état élémentaire tels que Se, Ag, Cu, Au. Ces agents ont bien souvent un effet colorant indésirable très puissant, se manifestant à de très faibles teneurs, parfois de l'ordre de quelques ppm ou moins (1 ppm = 0, 0001%) . Toujours afin de maximiser la transmission optique du verre, le rédox (défini comme le rapport entre la teneur en fer ferreux exprimée sous la forme FeO et la teneur totale en fer exprimée sous la forme Fe2Û3) est de préférence d'au plus 0,2, notamment 0,1. La feuille de verre est de préférence telle que sa transmission énergétique (TE) calculée selon la norme ISO 9050:2003 est supérieure ou égale à 90%, notamment 90,5%, voire 91% et même 91,5%, pour une épaisseur de 3,2 mm. Le substrat de face avant peut être muni, sur la face opposée à celle portant l'électrode, d'un revêtement antireflet, par exemple en silice poreuse ou comprenant un empilement de couches minces alternant des couches à haut et bas indice de réfraction. Dans le cadre de ce mode de réalisation, on utilise typiquement un substrat selon l'invention muni d'une électrode en ITO et/ou en Sn02 dopé, un matériau photovoltaïque en CdTe, une électrode supplémentaire en or ou en alliage de nickel et d'aluminium. Le substrat de face arrière est de préférence en verre silico-sodo-calcique standard. Selon un second mode de réalisation, la cellule photovoltaïque selon l'invention comprend comme substrat de face arrière le substrat selon l'invention, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au moins 0,05%, notamment comprise dans une gamme allant de 0,08 à 2%, notamment de 0,08 à 0,2%. Dans le cadre de ce mode de réalisation, on utilise typiquement un substrat selon l'invention muni d'une électrode en molybdène, un matériau photovoltaïque en CIGS, une électrode supplémentaire en ZnO dopé. De fortes teneurs en oxyde de fer (de 0,5% à 2%) peuvent dans ce cas corriger l'aspect esthétique dû à la présence de molybdène. Le substrat de face avant est de préférence en verre extra-clair, de composition silico-sodo-calcique standard. According to a first embodiment, the photovoltaic cell according to the invention comprises, as a front-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. not more than 0,02%, in particular 0,015%. In this case, it is important that the optical transmission of the glass is as high as possible. The glass sheet does not include preferably no agent absorbing visible or infrared radiation (especially for a wavelength between 380 and 1000 nm) other than iron oxide (whose presence is unavoidable). In particular, the composition of the glass preferably does not contain agents chosen from the following agents, or any of the following agents: transition element oxides such as CoO, CuO, Cr 2 O 3, MnO 2 , oxides of rare earths such as Ce0 2 , La 2 O 3, d 2 O 3, or elemental coloring agents such as Se, Ag, Cu, Au. These agents often have a very powerful undesirable coloring effect, occurring at very low levels, sometimes of the order of a few ppm or less (1 ppm = 0, 0001%). Also in order to maximize the optical transmission of glass, the redox (defined as the ratio between the ferrous iron content expressed as FeO and the total iron content expressed as Fe 2 O 3) is preferably at most 0 , 2, especially 0.1. The glass sheet is preferably such that its energy transmission (T E ) calculated according to the ISO 9050: 2003 standard is greater than or equal to 90%, in particular 90.5%, even 91% and even 91.5%, for a 3.2 mm thick. The front face substrate may be provided, on the face opposite to that carrying the electrode, with an antireflection coating, for example porous silica or comprising a stack of thin layers alternating high and low refractive index layers. In the context of this embodiment, a substrate according to the invention is typically used provided with a doped ITO and / or SnO 2 electrode, a CdTe photovoltaic material, an additional electrode made of gold or a nickel alloy and aluminum. The backside substrate is preferably of standard silico-soda-lime glass. According to a second embodiment, the photovoltaic cell according to the invention comprises, as rear-face substrate, the substrate according to the invention, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content. at least 0.05%, in particular ranging from 0.08 to 2%, especially from 0.08 to 0.2%. In the context of this embodiment, a substrate according to the invention is typically used provided with a molybdenum electrode, a CIGS photovoltaic material, an additional doped ZnO electrode. High levels of iron oxide (from 0.5% to 2%) can in this case correct the aesthetic appearance due to the presence of molybdenum. The front face substrate is preferably made of extra-clear glass of standard soda-lime-calcium composition.
La présente invention sera mieux comprise à la lecture de la description détaillée ci-après d'exemples de réalisation non limitatifs.  The present invention will be better understood on reading the detailed description below of nonlimiting exemplary embodiments.
Le tableau 1 ci-après illustre certaines compositions selon l'invention (exemples 1 à 6) ainsi qu'une composition standard (exemple comparatif Cl).  Table 1 below illustrates certain compositions according to the invention (Examples 1 to 6) and a standard composition (Comparative Example C1).
Outre la composition chimique pondérale, le tableau indique les propriétés physiques suivantes :  In addition to the chemical weight, the table shows the following physical properties:
la température inférieure de recuit, appelée S et exprimée en °C,  the lower annealing temperature, called S and expressed in ° C,
la température à laquelle le verre présente une viscosité de 100 Poises, appelée T2 et exprimée en °C,  the temperature at which the glass has a viscosity of 100 Poises, called T2 and expressed in ° C,
la température à laquelle le verre présente une viscosité de 3162 Poises, appelée T3,5 et exprimée en °C, la marge de formage, appelée ΔΤ et exprimée en correspondant à la différence entre la température T3, la température au liquidus. the temperature at which the glass has a viscosity of 3162 Poises, called T3.5 and expressed in ° C, the forming margin, called ΔΤ and expressed corresponding to the difference between the temperature T3, the liquidus temperature.
Tableau 1  Table 1
Les compositions permettent d'obtenir des verres présentant des températures inférieures de recuit d'environ 30°C plus élevées que celle du verre standard. Il en résulte un meilleur comportement mécanique, et des feuilles de verre moins aptes à se déformer durant les étapes de fabrication des cellules solaires. Ces compositions de verre sont flottables dans de bonnes conditions, comme en témoignent les marges de formage positives. The compositions provide glasses having lower annealing temperatures of about 30 ° C higher than that of standard glass. This results in better mechanical behavior, and glass sheets less able to deform during the manufacturing steps of solar cells. These glass compositions are floatable under good conditions, as evidenced by the positive forming margins.

Claims

REVENDICATIONS
1. Substrat pour cellule photovoltaïque comprenant au moins une feuille de verre flotté munie sur une face d'au moins une électrode, caractérisé en ce que ledit verre possède une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies : 1. Photovoltaic cell substrate comprising at least one float glass sheet provided on one side with at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content varying within the above limits. after defined:
Si02 60-70% Si0 2 60-70%
A1203 7-12% A1 2 0 3 7-12%
MgO 0-5%  MgO 0-5%
CaO 6-10%  CaO 6-10%
Na20 10-16% Na 2 0 10-16%
K20 0-6%. K 2 0 0-6%.
2. Substrat selon la revendication précédente, tel que la somme des teneurs pondérales en Si02, AI2O3, CaO, MgO, a20, K2O est d'au moins 95%, notamment 98%. 2. Substrate according to the preceding claim, such that the sum of the weight contents of Si0 2 , Al 2 O 3 , CaO, MgO, a 2 0, K 2 O is at least 95%, especially 98%.
3. Substrat selon l'une des revendications précédentes, tel que la teneur en S1O2 est d'au moins 61% et d'au plus 66%. 3. Substrate according to one of the preceding claims, such that the content of S10 2 is at least 61% and at most 66%.
4. Substrat selon l'une des revendications précédentes, tel que la teneur en AI2O3 est d' au moins 8~6 et d'au plus 10%. 4. Substrate according to one of the preceding claims, such that the content of Al 2 O 3 is at least 8 ~ 6 and at most 10%.
5. Substrat selon l'une des revendications précédentes, tel que la teneur en CaO est d'au moins 7% et d'au plus 9%. 5. Substrate according to one of the preceding claims, such that the CaO content is at least 7% and at most 9%.
6. Substrat selon l'une des revendications précédentes, tel que la teneur en Na20 est d'au moins 11% et d'au plus 15%. 6. Substrate according to one of the preceding claims, such that the Na 2 0 content is at least 11% and at most 15%.
7. Substrat selon l'une des revendications précédentes, tel que le verre possède une composition chimique comprenant les constituants suivants, en une teneur pondérale variant dans les limites ci-après définies :  7. Substrate according to one of the preceding claims, such that the glass has a chemical composition comprising the following constituents, in a weight content varying within the limits defined below:
Si02 61-66% Si0 2 61-66%
A1203 8-10% A1 2 0 3 8-10%
MgO 3-5%  MgO 3-5%
CaO 7-9%  CaO 7-9%
Na20 11-15% Na 2 0 11-15%
K20 0-4%. K 2 0 0-4%.
8. Substrat selon l'une des revendications précédentes, tel que l'électrode est une couche mince transparente et électroconductrice à base d'oxyde d'étain dopé au fluor ou à l'antimoine, d'oxyde de zinc dopé à l'aluminium ou au gallium, à base d'oxyde d'étain et d' indium ou une couche mince en molybdène.  8. Substrate according to one of the preceding claims, such that the electrode is a transparent and electroconductive thin film based on fluorine or antimony doped tin oxide, zinc oxide doped with aluminum. or gallium, based on tin oxide and indium or a thin layer of molybdenum.
9. Dispositif semi-conducteur comprenant au moins un substrat selon l'une des revendications précédentes et au moins une couche mince d'un matériau à propriétés photovoltaïques déposée sur ledit au moins un substrat.  9. Semiconductor device comprising at least one substrate according to one of the preceding claims and at least one thin layer of a material with photovoltaic properties deposited on said at least one substrate.
10. Dispositif semi-conducteur selon la revendication précédente, tel que le matériau à propriétés photovoltaïques est choisi parmi les composés de type CdTe et Cu ( In, Ga) Se2. 10. Semiconductor device according to the preceding claim, such that the material with photovoltaic properties is chosen from compounds of CdTe and Cu (In, Ga) Se 2 type .
11. Cellule photovoltaïque comprenant un dispositif semi-conducteur selon l'une des revendications de dispositif précédentes. Photovoltaic cell comprising a semiconductor device according to one of the preceding device claims.
12. Cellule photovoltaïque selon la revendication précédente, comprenant comme substrat de face avant un substrat selon l'une des revendications 1 à 8, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au plus 0,02%, notamment 0,015%.  12. Photovoltaic cell according to the preceding claim, comprising as substrate front face a substrate according to one of claims 1 to 8, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content not more than 0,02%, in particular 0,015%.
13. Cellule photovoltaïque selon la revendication 11, comprenant comme substrat de face arrière un substrat selon l'une des revendications 1 à 8, la composition chimique de la feuille de verre dudit substrat comprenant en outre de l'oxyde de fer en une teneur pondérale d'au moins 0,05%, notamment comprise dans une gamme allant de 0,08 à 2%.  13. Photovoltaic cell according to claim 11, comprising as backing substrate a substrate according to one of claims 1 to 8, the chemical composition of the glass sheet of said substrate further comprising iron oxide in a weight content at least 0.05%, in particular ranging from 0.08 to 2%.
14. Cellule photovoltaïque selon la revendication précédente, telle que le matériau à propriétés photovoltaïques est un composé de type Cu ( In, Ga) Se2, l'électrode étant une couche mince en molybdène.  14. Photovoltaic cell according to the preceding claim, such that the material with photovoltaic properties is a compound of Cu (In, Ga) Se2 type, the electrode being a thin layer of molybdenum.
15. Module photovoltaïque comprenant une pluralité de cellules photovoltaïques selon l'une des revendications de cellule précédentes.  Photovoltaic module comprising a plurality of photovoltaic cells according to one of the preceding cell claims.
EP12714772.6A 2011-03-15 2012-03-14 Substrate for a photovoltaic cell Withdrawn EP2686278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1152093A FR2972724B1 (en) 2011-03-15 2011-03-15 SUBSTRATE FOR PHOTOVOLTAIC CELL
PCT/FR2012/050528 WO2012123677A1 (en) 2011-03-15 2012-03-14 Substrate for a photovoltaic cell

Publications (1)

Publication Number Publication Date
EP2686278A1 true EP2686278A1 (en) 2014-01-22

Family

ID=45974397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12714772.6A Withdrawn EP2686278A1 (en) 2011-03-15 2012-03-14 Substrate for a photovoltaic cell

Country Status (8)

Country Link
US (1) US20130313671A1 (en)
EP (1) EP2686278A1 (en)
JP (1) JP6023098B2 (en)
KR (1) KR20140021559A (en)
CN (1) CN103402936A (en)
EA (1) EA024931B1 (en)
FR (1) FR2972724B1 (en)
WO (1) WO2012123677A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084247A (en) * 2014-10-23 2016-05-19 旭硝子株式会社 Glass sheet
JP6191786B2 (en) * 2014-12-02 2017-09-06 旭硝子株式会社 Glass for chemical strengthening, method for producing glass for chemically strengthened, chemically strengthened glass, and image display device including the same
GB201505101D0 (en) * 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
US11680005B2 (en) * 2020-02-12 2023-06-20 Owens-Brockway Glass Container Inc. Feed material for producing flint glass using submerged combustion melting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298389A (en) * 1980-02-20 1981-11-03 Corning Glass Works High transmission glasses for solar applications
JPH0779002A (en) * 1993-06-30 1995-03-20 Sanyo Electric Co Ltd Manufacture of photovoltaic device
US6313053B1 (en) * 1997-10-20 2001-11-06 Ppg Industries Ohio, Inc. Infrared and ultraviolet radiation absorbing blue glass composition
JPH11135819A (en) * 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd Compound thin-film solar cell
US6077722A (en) * 1998-07-14 2000-06-20 Bp Solarex Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
FR2837817B1 (en) * 2002-03-27 2005-02-11 Saint Gobain GLASS COMPOSITION FOR GLAZING MANUFACTURE
JP4446683B2 (en) * 2002-05-24 2010-04-07 Hoya株式会社 Glass substrate for magnetic recording media
JP4656863B2 (en) * 2003-06-06 2011-03-23 Hoya株式会社 Zirconium-containing glass composition, chemically strengthened glass article, glass substrate for magnetic recording medium, and method for producing glass plate
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same
FR2921357B1 (en) * 2007-09-21 2011-01-21 Saint Gobain SILICO-SODO-CALCIUM GLASS COMPOSITION
TW200926422A (en) * 2007-12-12 2009-06-16 wei-hong Luo Nature-light energy cell and its transparent light-transferring layer
EP2299536A4 (en) * 2008-06-17 2011-12-21 Nippon Electric Glass Co Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
DE102008043317B4 (en) * 2008-10-30 2013-08-08 Schott Ag Use of a solarization-resistant glass with a defined slope of the UV edge for a spotlight for weathering systems
FR2942623B1 (en) * 2009-02-27 2012-05-25 Saint Gobain GLASS SHEET
DE102009050987B3 (en) * 2009-05-12 2010-10-07 Schott Ag Planar, curved, spherical or cylindrical shaped thin film solar cell comprises sodium oxide-containing multicomponent substrate glass, which consists of barium oxide, calcium oxide, strontium oxide and zinc oxide
JP5642363B2 (en) * 2009-08-14 2014-12-17 日本板硝子株式会社 Glass substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
EP2508493A1 (en) * 2009-12-04 2012-10-10 Asahi Glass Company, Limited Glass plate and process for production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012123677A1 *

Also Published As

Publication number Publication date
WO2012123677A1 (en) 2012-09-20
JP2014509583A (en) 2014-04-21
FR2972724B1 (en) 2016-09-16
EA024931B1 (en) 2016-11-30
US20130313671A1 (en) 2013-11-28
EA201391307A1 (en) 2014-01-30
CN103402936A (en) 2013-11-20
FR2972724A1 (en) 2012-09-21
KR20140021559A (en) 2014-02-20
JP6023098B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
EP2683665B1 (en) Substrate for a photovoltaic cell
EP2331472B1 (en) Process for obtaining glass
EP2119681B1 (en) Glass substrate for solar battery
EP2401234B1 (en) Glass sheet
US20150166402A1 (en) Glass
EP1952447A1 (en) Solar cell with antireflective coating with graded layer including mixture of titanium oxide and silicon oxide
EP2742010A2 (en) Fusion formable alkali-free intermediate thermal expansion coefficient glass
KR20130100235A (en) Glass substrates for high temperature applications
WO2012123677A1 (en) Substrate for a photovoltaic cell
KR20140061348A (en) Sheet of float glass having high energy transmission
WO2014128421A1 (en) Substrate for device having an organic light-emitting diode
US20130053233A1 (en) Method for producing a sheet of glass
WO2013064774A1 (en) Substrate for a photovoltaic cell
JP6673360B2 (en) Glass substrate for solar cell and solar cell
WO2013068698A1 (en) Glass sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170127

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181002