EP2683853B1 - Semi-bright nickel plating bath and method of using same - Google Patents

Semi-bright nickel plating bath and method of using same Download PDF

Info

Publication number
EP2683853B1
EP2683853B1 EP12754802.2A EP12754802A EP2683853B1 EP 2683853 B1 EP2683853 B1 EP 2683853B1 EP 12754802 A EP12754802 A EP 12754802A EP 2683853 B1 EP2683853 B1 EP 2683853B1
Authority
EP
European Patent Office
Prior art keywords
nickel
plating bath
deposit
diol
nickel plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP12754802.2A
Other languages
German (de)
French (fr)
Other versions
EP2683853A4 (en
EP2683853A1 (en
Inventor
Robert A. TREMMEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacDermid Acumen Inc
Original Assignee
MacDermid Acumen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46798512&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2683853(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MacDermid Acumen Inc filed Critical MacDermid Acumen Inc
Publication of EP2683853A1 publication Critical patent/EP2683853A1/en
Publication of EP2683853A4 publication Critical patent/EP2683853A4/en
Application granted granted Critical
Publication of EP2683853B1 publication Critical patent/EP2683853B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/16Acetylenic compounds

Definitions

  • the present invention relates generally to semi-bright nickel plating baths that provide good properties with respect to leveling, ductility and stress and that are virtually sulfur-free.
  • Bright nickel plating baths are used in the automotive, electrical, appliance, hardware and other industries. The most important functions of bright nickel plating are as an undercoating for chromium plating, helping finishers achieve a smooth bright finish and providing a significant amount of corrosion protection.
  • semi-bright nickel deposits are almost always used in conjunction with subsequent deposits of bright nickel and chromium.
  • the semi-bright nickel deposit is typically between about 60 and 70 percent of the total nickel deposited on the part, which offers the highest level of basis metal corrosion protection with the lowest total nickel thickness and the best appearance.
  • the most common nickel plating bath is a sulfate bath known as a Watts bath.
  • a typical Watts bath contains about 20-40 oz/gal nickel sulfate, 3-12 oz/gal nickel chloride, and 4-6 oz/gal boric acid and operates at a pH in the range of about 2.0-5.2, a temperature in the range of 90-160°F and a current density in the range of about 1.0-60 ASF.
  • the large amount of nickel sulfate provides the necessary concentration of nickel ions, nickel chloride improves anode corrosion and increases conductivity, and boric acid is used as a weak buffer to maintain pH.
  • a semi-bright nickel finish is semi-lustrous, as the name implies, but it was specifically developed for its ease of polishing and buffing. In the alternative, if subsequently bright nickel is plated, buffing can be eliminated. Brightness and smoothness are dependent on operating conditions.
  • the structure of the deposit is columnar, whereas the structure of a bright nickel finish is plate-like (lamellar).
  • the structure of the deposit can be changed with various additives, a change in pH, current density or an increase in solution agitation, which is not a problem unless it affects properties of the deposit such as internal stress.
  • Internal stress of the plated nickel deposit can be compressive or tensile. Compressive stress is where the deposit expands to relieve the stress. In contrast, tensile stress is where the deposit contracts. Highly compressed deposits can result in blisters, warping or cause the deposit to separate from the substrate, while deposits with high tensile stress can also cause warping in addition to cracking and reduction in fatigue strength.
  • coumarin as an additive in nickel electroplating baths, especially semi-bright nickel processes, to produce ductile, lustrous deposits with excellent leveling is well known. It is also known that the degree of leveling obtained is generally proportional to the concentration of coumarin in the plating bath.
  • a full coumarin bath typically contains about 150 to about 200 mg/L of coumarin and about 30 mg/L of formaldehyde. Thus, it can be seen that a high concentration of coumarin in the bath gives the best leveling.
  • an aqueous acidic nickel electroplating bath comprising a coumarin compound and an aryl hydroxyl carboxylic acid compound in a combined amount, as described for example in U.S. Patent No. 4,441,969 to Tremmel, the subject matter of which is herein incorporated by reference in its entirety.
  • the bath described in Tremmel still requires a relatively high concentration of coumarin to provide good leveling characteristics. While the bath required less frequent batch carbon treatments, the need for said treatments was not eliminated.
  • Another problem with coumarin is odor. The amount of coumarin required for a plating bath produces an offensive odor that can irritate eyes and mucous membranes.
  • Leveling refers to the ability of the deposit to fill in and smooth out surface defects such as scratches or polish lines. It is also important to provide these highly leveled deposits without sacrificing deposit ductility and stress. It is further preferable that the nickel deposit contain less than 0.004% sulfur.
  • the present invention relates to a nickel plating bath according to claim 1.
  • the present invention also relates to a method according to claim 8.
  • nickel plating bath for plating a semi-bright nickel deposit on a substrate, the nickel plating bath comprising:
  • nickel plating bath for plating a semi-bright nickel deposit on a substrate, the nickel plating bath comprising:
  • Also described herein is a method of plating a substrate to produce a sulfur-free semi-bright nickel deposit thereon comprising the steps of:
  • a nickel plating bath that includes a halide substituted (i) acetic acid, (ii) propionic acid, or (iii) salts of any of the foregoing, or a soluble salt of chloroacetic acid, acetic acid, glycolic acid, propionic acid, benzoic acid, salicylic acid or chlorobenzoic acid in combination with hexyne diol and/or butyne diol and that is able to provide good leveling characteristics without the addition of coumarin.
  • the present invention relates generally to a coumarin-free nickel plating bath which provides the leveling characteristics that are achievable with a coumarin-containing nickel plating bath.
  • nickel plating bath for plating a semi-bright nickel deposit on a substrate, the nickel plating bath comprising:
  • the nickel plating bath contains nickel sulfate and nickel chloride.
  • boric acid is typically added to control the pH of the solution.
  • the present invention describes a plating bath containing a halide substituted (i) acetic acid, (ii) propionic acid or (iii) salts thereof. Monochloroacetic acid is preferred, however dichloroacetic acid or trichloroacetic acid are also suitable.
  • the aforementioned acids are generally added as sodium, potassium, lithium, magnesium and nickel salts because the addition of the acids tends to make the pH of the bath too low.
  • the concentration of the soluble salt, such as sodium mono chloroacetate is preferably between about 2.0 to 4.0 g/l but can range from as little as 0.5 g/l to as much as 20 g/l.
  • the hexyne diol concentration should preferably be between 100 to 200 mg/l, but can range from 50 mg/l to 500 mg/l.
  • the preferred range for the butyne diol is 60 to 120 mg/l but can range from 30 to 300 mg/l.
  • both hexyne diol and butyne diol are used together, however, the inclusion of one of the two will work well. Even higher concentrations of these compounds can be used if they are used alone. If both diols are used the aggregate concentration can range from 50 mg/l to 600 mg/l.
  • Supplementary additives include ethoxylated (or propoxylated) butyne diol, ethoxylated (or propoxylated) hexyne diol, ethoxylated (or propoxylated) acetylenic alcohols, and/or acetylenic alcohols.
  • the present invention relates to a nickel plating bath comprising:
  • the soluble salt of salicylic acid is preferably sodium salicylate.
  • the aforementioned acid is generally added as sodium, potassium, lithium, magnesium and nickel salts because the addition of the acids would make the pH of the bath too low.
  • the concentration of the soluble salt, such as sodium salicylate is preferably between about 1.0 to 2.0 g/l but can range from as little as 0.3 g/l to as much as 20 g/l.
  • the semi-bright nickel plating bath is substantially free of coumarin and is most preferably free of coumarin. What is meant by substantially free is that the bath contains no functional amounts of coumarin. Free of coumarin means that no detectible amounts of coumarin have been added to the bath.
  • aldehydes are not required in the nickel plating bath to provide acceptable STEP results.
  • STEP is an acronym for "simultaneous thickness and electrolytic potential” and is measured with a special device called a STEP tester, which measures not only the thickness of the given deposits but also the electrical potential difference between the bright and semi-bright nickel layers. This difference is very important because it relates to the corrosion protection of these duplex nickel layers.
  • a STEP of at least 100 mV is required and 120 mV or higher is desirable. Normally, the addition of aldehydes is used to accomplish this end.
  • the plating bath described herein is substantially free of aldehydes, and most preferably is free of aldehydes. What is meant by substantially free is that the bath contains no functional amounts of aldehydes. Free of aldehydes means that no detectible amounts of aldehydes have been added to the bath.
  • the semi-bright nickel plating bath described herein also provides a nickel deposit that exhibits perfect ductility of 0.5 according to the Chrysler ductility method and exceptionally low internal stress ranging from about 1,000 compressive to about 4,000 tensile.
  • the leveling of deposits plated from the plating bath of the invention are comparable to a freshly made coumarin/formaldehyde bath.
  • leveling characteristics of various processes there have been no coumarin-free plating processes that have come close to the leveling of a fresh coumarin bath.
  • Stress of the deposit is measured using various methods and is typically desired to be within the range of 1.03 x 10 8 N/m 2 (15,000 psi) tensile or less. The lower the internal stress, the better.
  • Ductility is normally measured using the Chrysler ductility method.
  • a stock semi-bright nickel bath was prepared having 40 oz/gal nickel sulfate hexahydrate, 4.5 oz/gal nickel chloride hexahydrate and 5.5 oz/gal of boric acid.
  • the solution was carbon and peroxide treated and filtered and the pH adjusted to 3.8 to 4.0. Thereafter, 0.3% v/v of a solution of 6% by weight di-hexylsulfosuccinate was added to prevent pitting in the subsequent deposits.
  • a scratched hull cell panel is one where the bottom 0.75 inch of the panel has been polished with a 200 grit belt. This leaves polishing lines and allows the researcher to evaluate leveling across a wide current density range.
  • the overall deposit was over-lustrous semi-bright from about 0 to 50 ASF and slightly dull above 50 ASF and very dull along the HCD edge.
  • This panel was then plated in a bright nickel bath directly across from the anode (not a hull cell) at 25 ASF for 5 minutes.
  • the bright nickel under these conditions did not provide much leveling but made the deposit bright enough to evaluate leveling of the initial nickel deposit.
  • the leveling of the deposit was about 65% of a commercial coumarin bath. It should be noted that the HCD area of the panel was still cloudy because the semi-bright deposit was dull.
  • a fresh semi-bright stock solution was added to the air agitated hull cell. Thereafter, 2.0 g/l of sodium mono chloroacetate was added to the bath and 0.2% of the mixture of hexyne diol and butyne diol was added such that the aggregate concentration was 0.30 g/l.
  • a scratched brass panel was plated at 2 amps for 15 minutes. The resulting deposit was overall lustrous semi-bright with some slight dullness in the extreme HCD edge of the panel. The panel was over-plated with 5 minutes of bright as described above in Example 1 and the leveling was about 65% of a commercial coumarin bath.
  • Example 2 was repeated but the bath pH was increased to 4.6. The resulting deposit was a little brighter than that in Example 2. It was over-plated with bright nickel as above and leveling evaluated. The leveling of the deposit was almost equal to one plated from a full coumarin bath. The concentration of the mixture of hexyne diol and butyne diol was increased such that the aggregate concentration was 0.45 g/l. The leveling of the deposit was now equal to one plated from a commercial coumarin bath.
  • Example 1 was repeated at a bath pH of 4.6, and the results were the same.
  • Example 3 A one liter solution of the bath of Example 3 was placed in a beaker equipped with air agitation. A foil was plated from this bath which had a thickness of about 1.0 mil. This was done by plating the deposit on a stainless steel panel at an average current density of 40 ASF. Because the substrate is passive, the deposit is readily removed by cutting the edges of the panel which releases the deposit. This allows the plater to cut strips of foil and measure the ductility. The ductility (T/2R value) of this deposit was 0.5.
  • Example 3 A one liter solution of the bath in Example 3 was again placed in an air agitation beaker. This time, stress was measured using the strip method. This is done by measuring the deflection of a beryllium - copper strip before and after plating and plugging the data into a formula which uses deposit thickness, deflection and a constant to determine stress in units of pounds per square inch (psi). The stress of the deposit was determined to be 1.08 x 10 7 N/m 2 (1560 psi) tensile. As mentioned above, the lower the stress, the better, and most semi-bright nickel deposits have stress values of about 5.52 x 10 7 to about 1.03 x 10 8 N/m 2 (8,000 to about 15,000 psi) tensile.
  • Example 1 was repeated using 2 g/l of sodium formate in place of the sodium acetate.
  • the resulting deposit with the diols was overall lustrous over the entire current density range but the deposit had fair to poor leveling. While increasing the pH improved leveling, leveling was still less than 50% of a commercial coumarin bath.
  • a stock semi-bright nickel bath was prepared having 40 oz/gal nickel sulfate hexahydrate, 4.5 oz/gal nickel chloride hexahydrate and 5.5 oz/gal of boric acid.
  • the solution was carbon and peroxide treated and filtered and the pH adjusted to 3.8 to 4.0. Thereafter, 0.3% v/v of a solution of 6% by weight di-hexylsulfosuccinate was added to prevent pitting in the subsequent deposits.
  • a scratched hull cell panel is one where the bottom 0.75 inch of the panel has been polished with a 200 grit belt. This leaves polishing lines and allows the researcher to evaluate leveling across a wide current density range.
  • the overall deposit was over-lustrous semi-bright from about 0 to 80 ASF and dull above 80 ASF and somewhat dull along the HCD edge.
  • This panel was then plated in a bright nickel bath directly across from the anode (not a hull cell) at 25 ASF for 5 minutes.
  • the bright nickel under these conditions did not provide much leveling but made the deposit bright enough to evaluate leveling of the initial nickel deposit.
  • the leveling of the deposit was about 65% of a commercial coumarin bath.
  • a fresh semi-bright stock solution was added to the air agitated hull cell. Thereafter, 2.0 g/l of sodium salicylate was added to the bath and 0.2% of the mixture of hexyne diol and butyne diol was added such that the aggregate concentration was 0.35 g/l.
  • a scratched brass panel was plated at 2 amps for 15 minutes. The resulting deposit was overall lustrous semi-bright with some slight dullness in the extreme HCD edge of the panel. The panel was over-plated with 5 minutes of bright as described above in Example 9 and the leveling was about 75% of a commercial coumarin bath.
  • Example 10 was repeated but the bath pH was increased to 4.6. The resulting deposit was a little brighter than that in Example 10. It was over-plated with bright nickel as above and leveling evaluated. The leveling of the deposit was equal to one plated from a commercial coumarin bath.
  • Example 11 A one liter solution of the bath of Example 11 was placed in a beaker equipped with air agitation. A foil was plated from this bath which had a thickness of about 1.0 mil. This was done by plating the deposit on a stainless steel panel at an average current density of 40 ASF. Because the substrate is passive, the deposit is readily removed by cutting the edges of the panel which releases the deposit. This allows the plater to cut strips of foil and measure the ductility. The ductility (T/2R value) of this deposit was 0.5.
  • Example 11 A one liter solution of the bath in Example 11 was again placed in an air agitation beaker. This time, stress was measured using the strip method. This is done by measuring the deflection of the strip before and after plating and plugging the data into a formula which uses deposit thickness, deflection and a constant to determine stress in units of pounds per square inch (psi). The stress of the deposit was determined to be 1.32 x 10 7 N/m 2 (1920 psi) tensile. As mentioned above, the lower the stress, the better, and most semi-bright nickel deposits have stress values of about 5.52 x 10 7 to about 1.03 x 10 8 N/m 2 (8,000 to about 15,000 psi) tensile.
  • Example 3 was repeated using 1.5 g/l of sodium benzoate in place of sodium acetate.
  • the resulting deposit was overall semi-bright to lustrous over the entire current density range.
  • the leveling of the deposit was comparable to deposits from a commercial coumarin bath.
  • Example 3 was repeated using 1.5 g/l of sodium chlorobenzoate in place of sodium acetate.
  • the resulting deposit was overall lustrous over the entire current density range.
  • the leveling of the deposit was comparable to deposits from a commercial coumarin bath.
  • the semi-bright nickel plating baths described herein produce sulfur-free semi-bright deposits over a very wide current density range.
  • the nickel plating baths described herein are the only non-coumarin semi-bright baths known to produce leveling equal to a full commercial coumarin bath.
  • the baths also require no aldehydes to achieve STEP and, as a result, the deposit has extremely low stress and excellent ductility.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation-in-part of U.S. Application Serial No. 12/620,746, filed on November 18, 2009 .
  • FIELD OF THE INVENTION
  • The present invention relates generally to semi-bright nickel plating baths that provide good properties with respect to leveling, ductility and stress and that are virtually sulfur-free.
  • BACKGROUND OF THE INVENTION
  • Bright nickel plating baths are used in the automotive, electrical, appliance, hardware and other industries. The most important functions of bright nickel plating are as an undercoating for chromium plating, helping finishers achieve a smooth bright finish and providing a significant amount of corrosion protection.
  • For decorative plated parts that need a high level of basis metal corrosion protection, semi-bright nickel deposits are almost always used in conjunction with subsequent deposits of bright nickel and chromium. The semi-bright nickel deposit is typically between about 60 and 70 percent of the total nickel deposited on the part, which offers the highest level of basis metal corrosion protection with the lowest total nickel thickness and the best appearance.
  • The most common nickel plating bath is a sulfate bath known as a Watts bath. A typical Watts bath contains about 20-40 oz/gal nickel sulfate, 3-12 oz/gal nickel chloride, and 4-6 oz/gal boric acid and operates at a pH in the range of about 2.0-5.2, a temperature in the range of 90-160°F and a current density in the range of about 1.0-60 ASF. The large amount of nickel sulfate provides the necessary concentration of nickel ions, nickel chloride improves anode corrosion and increases conductivity, and boric acid is used as a weak buffer to maintain pH. In addition, in order to achieve bright and lustrous appearance of the nickel plating deposit, organic and inorganic agents (brighteners) are often added to the electrolyte. The types of added brighteners and their concentrations determine the appearance of the nickel deposit, i.e., brilliant, bright, semi-bright, satin, etc. WO 2011/062693 , which is a prior art according to Art. 54(3) EPC discloses a semi-bright nickel plating bath. GB 1,386,781 and GB 1, 006, 333 disclose the electrodeposition of nickel.
  • Traditionally, coumarin has been used to obtain a high-leveling, ductile, semi-bright and sulfur-free nickel deposit from a Watts nickel bath. However, coumarin-free solutions are now available. A semi-bright nickel finish is semi-lustrous, as the name implies, but it was specifically developed for its ease of polishing and buffing. In the alternative, if subsequently bright nickel is plated, buffing can be eliminated. Brightness and smoothness are dependent on operating conditions.
  • One of the reasons that semi-bright nickel finishes are so easily buffed and/or polished is that the structure of the deposit is columnar, whereas the structure of a bright nickel finish is plate-like (lamellar). However, the structure of the deposit can be changed with various additives, a change in pH, current density or an increase in solution agitation, which is not a problem unless it affects properties of the deposit such as internal stress.
  • Internal stress of the plated nickel deposit can be compressive or tensile. Compressive stress is where the deposit expands to relieve the stress. In contrast, tensile stress is where the deposit contracts. Highly compressed deposits can result in blisters, warping or cause the deposit to separate from the substrate, while deposits with high tensile stress can also cause warping in addition to cracking and reduction in fatigue strength.
  • The use of coumarin as an additive in nickel electroplating baths, especially semi-bright nickel processes, to produce ductile, lustrous deposits with excellent leveling is well known. It is also known that the degree of leveling obtained is generally proportional to the concentration of coumarin in the plating bath. A full coumarin bath typically contains about 150 to about 200 mg/L of coumarin and about 30 mg/L of formaldehyde. Thus, it can be seen that a high concentration of coumarin in the bath gives the best leveling.
  • However, such characteristics are short-lived, because such high coumarin concentrations also result in a high rate of formation of detrimental breakdown or degradation products. These degradation products are objectionable in that they can cause uneven, dull gray areas that are not easily brightened by a subsequent bright nickel deposit, they can reduce the leveling obtained from a given concentration of coumarin in the plating bath, and they can reduce the beneficial physical properties of the nickel deposits.
  • Because it is well known that coumarin breaks down or degrades under many conditions, it is imperative to monitor the degradation of a plating bath containing coumarin so that plating is not adversely affected. It has also been suggested to reduce the concentration of coumarin in the bath in order to reduce degradation products and thus increase bath life, but such reduction in coumarin concentration is often accompanied by a loss of leveling and also makes the bath more sensitive to degradant build-up. The use of various additives, such as formaldehyde and chloral hydrate has also been suggested to help overcome the undesirable effects of the coumarin degradation products. However, the use of such additives has certain limitations because even moderate concentrations of these materials not only increase the tensile stress of the nickel electrodeposits, but also significantly reduces the leveling action of the coumarin.
  • It has also been suggested to use an aqueous acidic nickel electroplating bath comprising a coumarin compound and an aryl hydroxyl carboxylic acid compound in a combined amount, as described for example in U.S. Patent No. 4,441,969 to Tremmel, the subject matter of which is herein incorporated by reference in its entirety. However, the bath described in Tremmel still requires a relatively high concentration of coumarin to provide good leveling characteristics. While the bath required less frequent batch carbon treatments, the need for said treatments was not eliminated. Another problem with coumarin is odor. The amount of coumarin required for a plating bath produces an offensive odor that can irritate eyes and mucous membranes.
  • Because of the noted deficiencies of coumarin-based baths, researchers have been trying for a long time to develop a semi-bright nickel plating bath that is capable of providing the leveling achieved by a coumarin-based bath, which is considered to be the standard in the plating industry. Leveling refers to the ability of the deposit to fill in and smooth out surface defects such as scratches or polish lines. It is also important to provide these highly leveled deposits without sacrificing deposit ductility and stress. It is further preferable that the nickel deposit contain less than 0.004% sulfur.
  • Since the late 1970's plating suppliers have proposed many bath formulations which claim to level as well as a coumarin bath. However, to date, none of these baths formulations have met all of the necessary criteria. It is believed that the best baths developed to date can only achieve about 65% of the leveling of a coumarin-based deposit at equal deposit thickness.
  • As explained above, while the leveling of coumarin is exceptional, coumarin has a disagreeable odor, breaks down and forms harmful degradation products, and these degradation products can only be removed by batch carbon treatments of the plating bath. These treatments are expensive and time consuming and normally must be done at least monthly and in some cases, even weekly. Therefore, there is a need in the art to provide a nickel plating bath that is coumarin-free but that provides similar leveling characteristics.
  • Current semi-bright nickel solutions use hexyne diol and/or butyne diol, in combination with aldehydes such as chloral hydrate, formaldehyde and piperonal in further combination with salicylic acid or benzoic acid. The internal stress of these baths is relatively high, ranging from about 5.52 x 107 N/m2 (8,000 psi) tensile to about 1.03 x 108 N/m2 (15,000) psi tensile. In addition, none of these baths level nearly as well as a full coumarin system.
  • Thus it would be desirable to provide a coumarin-free semi-bright nickel plating bath that approaches the leveling characteristics of a coumarin bath, is virtually sulfur-free, and meets the automotive requirements for stress and ductility.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a highly leveled semi-bright nickel deposit with excellent ductility and very low stress.
  • It is another object of the present invention to provide a coumarin-free semi-bright nickel plating bath that approaches or even equals the leveling characteristics of a coumarin bath and is virtually sulfur free.
  • It is another object of the present invention to provide a semi-bright nickel plating bath that does not require aldehydes to provide acceptable simultaneous thickness and electrolytic potential (STEP) results.
  • It is still another object of the present invention to provide a semi-bright nickel plating bath that provides good stability over the life of the bath.
  • The present invention relates to a nickel plating bath according to claim 1. The present invention also relates to a method according to claim 8.
  • Also described herein is a nickel plating bath for plating a semi-bright nickel deposit on a substrate, the nickel plating bath comprising:
    1. a) a source of nickel ions;
    2. b) a halide substituted acetic acid, propionic acid or salts of the foregoing;
      and
    3. c) at least one diol selected from the group consisting of hexyne diol, butyne diol and combinations of the foregoing
      wherein the nickel plating bath is preferably substantially free of coumarin, and preferably substantially free of aldehydes.
  • Also described herein is a nickel plating bath for plating a semi-bright nickel deposit on a substrate, the nickel plating bath comprising:
    1. a) nickel ions such as from a mixture of nickel sulfate and nickel chloride;
    2. b) a soluble salt of chloroacetic acid, acetic acid, glycolic acid, propionic acid, benzoic acid, salicylic acid or chlorobenzoic acid; and
    3. c) at least one diol selected from the group consisting of hexyne diol, butyne diol and combinations of the foregoing,
      wherein the nickel plating bath is preferably substantially free of coumarin and preferably substantially free of aldehydes.
  • Also described herein is a method of plating a substrate to produce a sulfur-free semi-bright nickel deposit thereon comprising the steps of:
    1. a) providing a nickel plating bath comprising:
      1. i) nickel ions, such as from a mixture of nickel sulfate and nickel chloride;
      2. ii) a halide substituted (i) acetic acid, (ii) propionic acid, or (iii) salts of any of the foregoing, or a soluble salt of chloroacetic acid, acetic acid, glycolic acid, proprionic acid, benzoic acid, salicylic acid or chlorobenzoic acid; and
      3. iii) at least one diol selected from the group consisting of hexyne diol, butyne diol and combinations of the foregoing; and
    2. b) contacting with the substrate with the nickel plating bath and applying current to provide a semi-bright nickel deposit on the substrate,
      wherein the nickel plating bath is preferably substantially free of coumarin and preferably substantially free of aldehydes.
    DETAILED DESCRIPTION OF THE PREFERRED EMBMODIMENTS
  • Described herein is a nickel plating bath that includes a halide substituted (i) acetic acid, (ii) propionic acid, or (iii) salts of any of the foregoing, or a soluble salt of chloroacetic acid, acetic acid, glycolic acid, propionic acid, benzoic acid, salicylic acid or chlorobenzoic acid in combination with hexyne diol and/or butyne diol and that is able to provide good leveling characteristics without the addition of coumarin.
  • The present invention relates generally to a coumarin-free nickel plating bath which provides the leveling characteristics that are achievable with a coumarin-containing nickel plating bath.
  • Also described herein is a nickel plating bath for plating a semi-bright nickel deposit on a substrate, the nickel plating bath comprising:
    1. a) a source of nickel ions;
    2. b) a halide substituted (i)acetic acid, (ii)propionic acid or (iii)salts of the foregoing; and
    3. c) at least one diol selected from the group consisting of hexyne diol, butyne diol and combinations of the foregoing.
    wherein the nickel plating bath is preferably substantially free of coumarin and preferably substantially free of aldehydes.
  • In a preferred embodiment, the nickel plating bath contains nickel sulfate and nickel chloride. In addition, boric acid is typically added to control the pH of the solution. The present invention describes a plating bath containing a halide substituted (i) acetic acid, (ii) propionic acid or (iii) salts thereof. Monochloroacetic acid is preferred, however dichloroacetic acid or trichloroacetic acid are also suitable. The aforementioned acids are generally added as sodium, potassium, lithium, magnesium and nickel salts because the addition of the acids tends to make the pH of the bath too low. The concentration of the soluble salt, such as sodium mono chloroacetate, is preferably between about 2.0 to 4.0 g/l but can range from as little as 0.5 g/l to as much as 20 g/l.
  • The hexyne diol concentration should preferably be between 100 to 200 mg/l, but can range from 50 mg/l to 500 mg/l. The preferred range for the butyne diol is 60 to 120 mg/l but can range from 30 to 300 mg/l. Preferably both hexyne diol and butyne diol are used together, however, the inclusion of one of the two will work well. Even higher concentrations of these compounds can be used if they are used alone. If both diols are used the aggregate concentration can range from 50 mg/l to 600 mg/l. Supplementary additives include ethoxylated (or propoxylated) butyne diol, ethoxylated (or propoxylated) hexyne diol, ethoxylated (or propoxylated) acetylenic alcohols, and/or acetylenic alcohols.
  • The present invention relates to a nickel plating bath comprising:
    1. a) a source of nickel ions;
    2. b) a soluble salt of salicylic acid; and
    3. c) at least one diol selected from the group consisting of hexyne diol, butyne diol and combinations of the foregoing,
    wherein the nickel plating bath is preferably substantially free of coumarin and preferably substantially free of aldehydes,
  • The soluble salt of salicylic acid is preferably sodium salicylate. The aforementioned acid is generally added as sodium, potassium, lithium, magnesium and nickel salts because the addition of the acids would make the pH of the bath too low. The concentration of the soluble salt, such as sodium salicylate, is preferably between about 1.0 to 2.0 g/l but can range from as little as 0.3 g/l to as much as 20 g/l.
  • As described herein, the semi-bright nickel plating bath is substantially free of coumarin and is most preferably free of coumarin. What is meant by substantially free is that the bath contains no functional amounts of coumarin. Free of coumarin means that no detectible amounts of coumarin have been added to the bath.
  • One important aspect of the present invention is that aldehydes are not required in the nickel plating bath to provide acceptable STEP results. "STEP" is an acronym for "simultaneous thickness and electrolytic potential" and is measured with a special device called a STEP tester, which measures not only the thickness of the given deposits but also the electrical potential difference between the bright and semi-bright nickel layers. This difference is very important because it relates to the corrosion protection of these duplex nickel layers. A STEP of at least 100 mV is required and 120 mV or higher is desirable. Normally, the addition of aldehydes is used to accomplish this end. However, the use of aldehydes is not desirable because these compounds increase the internal stress and may also decrease the ductility and the leveling of the semi-bright coatings. Thus the plating bath described herein is substantially free of aldehydes, and most preferably is free of aldehydes. What is meant by substantially free is that the bath contains no functional amounts of aldehydes. Free of aldehydes means that no detectible amounts of aldehydes have been added to the bath.
  • The results obtained with the combination of the listed acid compounds with hexyne diol and butyne diol are quite surprising. STEP results of deposits prepared using plating baths with the foregoing additives range from 80 to 145 mV. In order to obtain the higher STEP results and better leveling, the pH should preferably be above 4.0, preferably higher than 4.3. This higher pH is desirable because it also improves the leveling of the deposit. The pH of the proposed bath is from 4.1 to 5.0, more preferably from 4.4 to 4.8, most preferably 4.4 to 4.6. The fact that the stress of the deposit remains very low and the ductility very high is surprising. Normally, as one raises the pH of a semi-bright nickel bath or any nickel plating bath for that matter, the internal stress of the deposit goes up and the ductility is poorer.
  • The semi-bright nickel plating bath described herein also provides a nickel deposit that exhibits perfect ductility of 0.5 according to the Chrysler ductility method and exceptionally low internal stress ranging from about 1,000 compressive to about 4,000 tensile.
  • Furthermore, the leveling of deposits plated from the plating bath of the invention are comparable to a freshly made coumarin/formaldehyde bath. To date, while many claims have been made to the leveling characteristics of various processes, there have been no coumarin-free plating processes that have come close to the leveling of a fresh coumarin bath.
  • The STEP results achieved by the plating bath of this invention are completely unexpected. Until now, only the addition of aldehydes, such as chloral hydrate or formaldehyde, would increase the STEP to the required levels. Furthermore, previously the addition of other acids, such as salicylic acid and benzoic acid, was shown to reduce STEP. However, as seen from the examples set forth below, the addition of a soluble salt of an acid such as salicylic acid or benzoic acid can also be shown to provide desirable STEP results. In addition, increasing the pH of the bath to increase STEP without the use of aldehydes is also completely unexpected.
  • Stress of the deposit is measured using various methods and is typically desired to be within the range of 1.03 x 108 N/m2 (15,000 psi) tensile or less. The lower the internal stress, the better.
  • Ductility is normally measured using the Chrysler ductility method. The Chrysler ductility method involves plating a foil 0.001 inch thick. The foil is then cut into a strip the width of a micrometer jaw and folded over to make a "U" shape in the jaw of the micrometer. The micrometer is turned down until the foil breaks and ductility is equal to T/2R where T is the thickness of a plated foil and 2R is the measurement of deflection at which the foil breaks when it is bent over itself. For example, if the nickel thickness is 0.001" and the foil breaks at 0.005 diameter the ductility would be: D = 0.001/0.005 = 0.2. Perfect ductility is 0.5 and most automotive companies require a number that is at least 0.4.
  • The present invention will now be discussed with reference to the following nonlimiting examples. Examples 11-14 are part of the scope of invention while examples 1-10, 15,16 are not part of the scope of the invention.
  • Example 1:
  • A stock semi-bright nickel bath was prepared having 40 oz/gal nickel sulfate hexahydrate, 4.5 oz/gal nickel chloride hexahydrate and 5.5 oz/gal of boric acid. The solution was carbon and peroxide treated and filtered and the pH adjusted to 3.8 to 4.0. Thereafter, 0.3% v/v of a solution of 6% by weight di-hexylsulfosuccinate was added to prevent pitting in the subsequent deposits.
  • 330 cm3 of this solution was added to a hull cell equipped with air agitation and heated to 135°F. 2 g/l of sodium acetate was added to the bath and a brass panel was plated at 2 amps for 15 minutes. The resulting deposit was overall gray with lustrous recesses. 0.1% of a 70/30 mixture of hexyne diol and butyne diol was added such that the aggregate concentration was 0.15 g/l. The resulting deposit was lustrous to semi-bright from about 0 to 40 ASF and dull above 40 ASF and very dull near the high current density (HCD) edge.
  • Another 0.1% of the mixture of hexyne diol and butyne diol was added and the panel was repeated using a scratched hull cell panel for the test. A scratched hull cell panel is one where the bottom 0.75 inch of the panel has been polished with a 200 grit belt. This leaves polishing lines and allows the researcher to evaluate leveling across a wide current density range.
  • The overall deposit was over-lustrous semi-bright from about 0 to 50 ASF and slightly dull above 50 ASF and very dull along the HCD edge.
  • This panel was then plated in a bright nickel bath directly across from the anode (not a hull cell) at 25 ASF for 5 minutes. The bright nickel under these conditions did not provide much leveling but made the deposit bright enough to evaluate leveling of the initial nickel deposit. The leveling of the deposit was about 65% of a commercial coumarin bath. It should be noted that the HCD area of the panel was still cloudy because the semi-bright deposit was dull.
  • Example 2:
  • A fresh semi-bright stock solution was added to the air agitated hull cell. Thereafter, 2.0 g/l of sodium mono chloroacetate was added to the bath and 0.2% of the mixture of hexyne diol and butyne diol was added such that the aggregate concentration was 0.30 g/l. A scratched brass panel was plated at 2 amps for 15 minutes. The resulting deposit was overall lustrous semi-bright with some slight dullness in the extreme HCD edge of the panel. The panel was over-plated with 5 minutes of bright as described above in Example 1 and the leveling was about 65% of a commercial coumarin bath.
  • Example 3:
  • Example 2 was repeated but the bath pH was increased to 4.6. The resulting deposit was a little brighter than that in Example 2. It was over-plated with bright nickel as above and leveling evaluated. The leveling of the deposit was almost equal to one plated from a full coumarin bath. The concentration of the mixture of hexyne diol and butyne diol was increased such that the aggregate concentration was 0.45 g/l. The leveling of the deposit was now equal to one plated from a commercial coumarin bath.
  • Example 4:
  • The tests in Examples 2 and 3 were repeated using 4 g/l of sodium mono chloroacetate and the results were the same.
  • Example 5:
  • Example 1 was repeated at a bath pH of 4.6, and the results were the same.
  • Example 6:
  • A one liter solution of the bath of Example 3 was placed in a beaker equipped with air agitation. A foil was plated from this bath which had a thickness of about 1.0 mil. This was done by plating the deposit on a stainless steel panel at an average current density of 40 ASF. Because the substrate is passive, the deposit is readily removed by cutting the edges of the panel which releases the deposit. This allows the plater to cut strips of foil and measure the ductility. The ductility (T/2R value) of this deposit was 0.5.
  • Example 7:
  • A one liter solution of the bath in Example 3 was again placed in an air agitation beaker. This time, stress was measured using the strip method. This is done by measuring the deflection of a beryllium - copper strip before and after plating and plugging the data into a formula which uses deposit thickness, deflection and a constant to determine stress in units of pounds per square inch (psi). The stress of the deposit was determined to be 1.08 x 107 N/m2 (1560 psi) tensile. As mentioned above, the lower the stress, the better, and most semi-bright nickel deposits have stress values of about 5.52 x 107 to about 1.03 x 108 N/m2(8,000 to about 15,000 psi) tensile.
  • Example 8:
  • Example 1 was repeated using 2 g/l of sodium formate in place of the sodium acetate. The resulting deposit with the diols was overall lustrous over the entire current density range but the deposit had fair to poor leveling. While increasing the pH improved leveling, leveling was still less than 50% of a commercial coumarin bath.
  • Example 9:
  • A stock semi-bright nickel bath was prepared having 40 oz/gal nickel sulfate hexahydrate, 4.5 oz/gal nickel chloride hexahydrate and 5.5 oz/gal of boric acid. The solution was carbon and peroxide treated and filtered and the pH adjusted to 3.8 to 4.0. Thereafter, 0.3% v/v of a solution of 6% by weight di-hexylsulfosuccinate was added to prevent pitting in the subsequent deposits.
  • 330 cm3 of this solution was added to a hull cell equipped with air agitation and heated to 135°F. 2 g/l of sodium salicylate was added to the bath and a brass panel was plated at 2 amps for 15 minutes. The resulting deposit was overall gray with lustrous recesses. 0.1% of a 70/30 mixture of hexyne diol and butyne diol was added such that the aggregate concentration was 0.15 g/l. The resulting deposit was lustrous to semi-bright from about 0 to 60 ASF and slightly dull above 60 ASF and very dull near the high current density (HCD) edge.
  • Another 0.1% of the mixture of hexyne diol and butyne diol was added and the panel was repeated using a scratched hull cell panel for the test. A scratched hull cell panel is one where the bottom 0.75 inch of the panel has been polished with a 200 grit belt. This leaves polishing lines and allows the researcher to evaluate leveling across a wide current density range.
  • The overall deposit was over-lustrous semi-bright from about 0 to 80 ASF and dull above 80 ASF and somewhat dull along the HCD edge.
  • This panel was then plated in a bright nickel bath directly across from the anode (not a hull cell) at 25 ASF for 5 minutes. The bright nickel under these conditions did not provide much leveling but made the deposit bright enough to evaluate leveling of the initial nickel deposit. The leveling of the deposit was about 65% of a commercial coumarin bath.
  • Example 10:
  • A fresh semi-bright stock solution was added to the air agitated hull cell. Thereafter, 2.0 g/l of sodium salicylate was added to the bath and 0.2% of the mixture of hexyne diol and butyne diol was added such that the aggregate concentration was 0.35 g/l. A scratched brass panel was plated at 2 amps for 15 minutes. The resulting deposit was overall lustrous semi-bright with some slight dullness in the extreme HCD edge of the panel. The panel was over-plated with 5 minutes of bright as described above in Example 9 and the leveling was about 75% of a commercial coumarin bath.
  • Example 11:
  • Example 10 was repeated but the bath pH was increased to 4.6. The resulting deposit was a little brighter than that in Example 10. It was over-plated with bright nickel as above and leveling evaluated. The leveling of the deposit was equal to one plated from a commercial coumarin bath.
  • Example 12:
  • The tests in Examples 10 and 11 were repeated using 4 g/l of sodium salicylate and the results were the same.
  • Example 13:
  • A one liter solution of the bath of Example 11 was placed in a beaker equipped with air agitation. A foil was plated from this bath which had a thickness of about 1.0 mil. This was done by plating the deposit on a stainless steel panel at an average current density of 40 ASF. Because the substrate is passive, the deposit is readily removed by cutting the edges of the panel which releases the deposit. This allows the plater to cut strips of foil and measure the ductility. The ductility (T/2R value) of this deposit was 0.5.
  • Example 14:
  • A one liter solution of the bath in Example 11 was again placed in an air agitation beaker. This time, stress was measured using the strip method. This is done by measuring the deflection of the strip before and after plating and plugging the data into a formula which uses deposit thickness, deflection and a constant to determine stress in units of pounds per square inch (psi). The stress of the deposit was determined to be 1.32 x 107 N/m2 (1920 psi) tensile. As mentioned above, the lower the stress, the better, and most semi-bright nickel deposits have stress values of about 5.52 x 107 to about 1.03 x 108 N/m2 (8,000 to about 15,000 psi) tensile.
  • Example 15:
  • Example 3 was repeated using 1.5 g/l of sodium benzoate in place of sodium acetate. The resulting deposit was overall semi-bright to lustrous over the entire current density range. The leveling of the deposit was comparable to deposits from a commercial coumarin bath.
  • Example 16:
  • Example 3 was repeated using 1.5 g/l of sodium chlorobenzoate in place of sodium acetate. The resulting deposit was overall lustrous over the entire current density range. The leveling of the deposit was comparable to deposits from a commercial coumarin bath.
  • Example 17:
  • The panels from the above examples as well as other similar test panels which were plated with both semi-bright and bright nickel were evaluated for STEP. Generally, the results indicated that the deposits which were plated at lower pH values, e.g., 3.6 to 4.0 had STEP values around 50 to 80 mV. Those deposits plated at a pH of 4.4 to 4.6 had values of 110 to 145 mV.
  • Thus, it is seen that the semi-bright nickel plating baths described herein produce sulfur-free semi-bright deposits over a very wide current density range. The nickel plating baths described herein are the only non-coumarin semi-bright baths known to produce leveling equal to a full commercial coumarin bath. The baths also require no aldehydes to achieve STEP and, as a result, the deposit has extremely low stress and excellent ductility.

Claims (14)

  1. A nickel plating bath for plating a semi-bright nickel deposit on a substrate, the nickel plating bath comprising:
    a) nickel ions;
    b) a soluble salt of salicylic acid, and
    c) at least one diol selected from the group consisting of hexyne diol, butyne diol and combinations of the foregoing,
    wherein the nickel plating bath is substantially free of coumarin, substantially free of aldehydes and has a pH from 4.1 to 5.0.
  2. The nickel plating bath as claimed in claim 1, wherein the soluble salt is a sodium, potassium, lithium, magnesium or nickel salt of salicylic acid;
    optionally wherein the soluble salt is sodium salicylate.
  3. The nickel plating bath as claimed in claim 1, wherein the concentration of the soluble salt in the nickel plating bath is between 0.5 and 20.0 g/l.
  4. The nickel plating bath as claimed in claim 1, wherein the plating bath also comprises an additive selected from the group consisting of ethoxylated (or propoxylated) butyne diol, ethoxylated (or propoxylated) hexyne diol, acetylenic alcohols, and ethoxylated (or propoxylated) acetylenic alcohols.
  5. The nickel plating bath as claimed in claim 1, wherein the at least one diol comprises both hexyne diol and butyne diol;
    optionally wherein the concentration of hexyne diol in the nickel plating bath is in the range of 50 mg/L to 500 mg/L and the concentration of butyne diol is from 30 mg/l to 300 mg/L;
    further optionally wherein the concentration of hexyne diol in the nickel plating bath is in the range of 100 mg/L to 200 mg/L and the concentration of butyne diol is from 60 mg/L to 120 mg/L.
  6. The nickel plating bath according to claim 1, wherein the plating bath has a pH between about 4.4 and about 4.6.
  7. The nickel plating bath according to claim 1, wherein the plating bath does not include coumarin or an aldehyde.
  8. A method of plating a substrate to produce a sulfur-free semi-bright nickel deposit thereon, the method comprising the steps of:
    a) providing a nickel plating bath according to any one of claims 1 to 7; and
    b) contacting the substrate with the nickel plating bath and applying electrical current to provide a semi-bright nickel deposit on the substrate.
  9. The method according to claim 8, comprising the step of plating a bright nickel layer over the semi-bright nickel deposit.
  10. The method according to claim 9, wherein a simultaneous thickness and electrolytic potential (STEP) of the plated deposits is at least 100 mV.
  11. The method according to claim 10, wherein the STEP of the plated deposits is between 110 and 145 mV.
  12. The method according to claim 10, wherein the STEP of the plated deposits is at least 120 mV.
  13. The method according to claim 8, wherein the stress of the deposit is less than 1.03 x 108 N/m2 (15,000 psi) tensile;
    optionally wherein the stress of the deposit is less than 2.76 x 107 N/m2 (4,000 psi) tensile.
  14. The method according to claim 8, wherein the ductility of the deposit, measured in accordance with the Chrysler ductility method, is at least 0.4;
    optionally wherein the ductility of the deposit, measured in accordance with the Chrysler ductility method, is 0.5.
EP12754802.2A 2011-03-09 2012-02-08 Semi-bright nickel plating bath and method of using same Revoked EP2683853B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/043,783 US20110155582A1 (en) 2009-11-18 2011-03-09 Semi-Bright Nickel Plating Bath and Method of Using Same
PCT/US2012/024233 WO2012121829A1 (en) 2011-03-09 2012-02-08 Semi-bright nickel plating bath and method of using same

Publications (3)

Publication Number Publication Date
EP2683853A1 EP2683853A1 (en) 2014-01-15
EP2683853A4 EP2683853A4 (en) 2015-01-07
EP2683853B1 true EP2683853B1 (en) 2017-10-11

Family

ID=46798512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12754802.2A Revoked EP2683853B1 (en) 2011-03-09 2012-02-08 Semi-bright nickel plating bath and method of using same

Country Status (5)

Country Link
US (1) US20110155582A1 (en)
EP (1) EP2683853B1 (en)
CN (1) CN103415653B (en)
ES (1) ES2654552T3 (en)
WO (1) WO2012121829A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110114498A1 (en) * 2009-11-18 2011-05-19 Tremmel Robert A Semi-Bright Nickel Plating Bath and Method of Using Same
CN105112949A (en) * 2015-07-31 2015-12-02 广东欧珀移动通信有限公司 Method for improving glossiness of aluminium alloy plated part, aluminium alloy plated part and electronic device
CN105002525A (en) * 2015-08-21 2015-10-28 无锡桥阳机械制造有限公司 Semi-bright nickel plating solution
CN107119292A (en) * 2017-03-10 2017-09-01 广东华普科技股份有限公司 A kind of nickel plating solution and the method for nickel plating
US10508348B2 (en) * 2017-06-15 2019-12-17 Rohm And Haas Electronic Materials Llc Environmentally friendly nickel electroplating compositions and methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB871276A (en) 1959-02-26 1961-06-28 Hanson Van Winkle Munning Co Improvements in electrodeposition of nickel
GB1006333A (en) 1961-08-29 1965-09-29 Albright & Wilson Mfg Ltd Electrodeposition of nickel
US3264200A (en) 1964-01-16 1966-08-02 Udylite Corp Electrodeposition of nickel
GB1386781A (en) 1971-03-05 1975-03-12 Albright & Wilson Electrodeposition of nickel
US3898138A (en) 1974-10-16 1975-08-05 Oxy Metal Industries Corp Method and bath for the electrodeposition of nickel
US4441969A (en) 1982-03-29 1984-04-10 Omi International Corporation Coumarin process and nickel electroplating bath
CS271564B1 (en) 1987-07-21 1990-10-12 Dostal Jaroslav Lustre forming admixture into semi-lustrous nickel plating bathes
US20060096868A1 (en) 2004-11-10 2006-05-11 Siona Bunce Nickel electroplating bath designed to replace monovalent copper strike solutions
WO2010006800A1 (en) 2008-07-15 2010-01-21 Atotech Deutschland Gmbh Method for electrochemically depositing a metal on a substrate
WO2010051937A1 (en) 2008-11-05 2010-05-14 Atotech Deutschland Gmbh A method of inspecting a metal coating and a method for analytical control of a deposition electrolyte serving to deposit said metal coating
WO2011062693A1 (en) 2009-11-18 2011-05-26 Macdermid Acumen, Inc. Semi-bright nickel plating bath and method of using same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841602A (en) * 1955-10-04 1958-07-01 Udylite Res Corp Alkynoxy acids
GB1114615A (en) * 1965-03-26 1968-05-22 Harshaw Chem Corp Electrodeposition of nickel
GB1166631A (en) * 1965-12-07 1969-10-08 Vickers Ltd Sa Improvements in or relating to the Electrodeposition of Base Metals
GB1192036A (en) * 1966-10-18 1970-05-13 M & T Chemicals Inc Improvements in or relating to Nickel Electroplating
US3745097A (en) * 1969-05-26 1973-07-10 M & T Chemicals Inc Electrodeposition of an iridescent chromium coating
US3677913A (en) * 1971-04-01 1972-07-18 M & T Chemicals Inc Nickel plating
DE2210879C3 (en) * 1972-03-07 1978-06-15 Hoechst Ag, 6000 Frankfurt Process for the single bath dyeing of unmodified polyolefin fibers with metal-containing phthalocyanine dyes
US4049509A (en) * 1972-05-16 1977-09-20 W. Canning & Company Limited Plating
US3953304A (en) * 1975-06-23 1976-04-27 Dart Industries Inc. Electroplating baths for nickel and brightener-leveler compositions therefor
GB1541118A (en) * 1976-12-03 1979-02-21 Bnf Metals Tech Centre Nickel plating
US4310389A (en) * 1980-06-16 1982-01-12 Chrysler Corporation Method for simultaneous determination of thickness and electrochemical potential in multilayer plated deposits
US4554219A (en) * 1984-05-30 1985-11-19 Burlington Industries, Inc. Synergistic brightener combination for amorphous nickel phosphorus electroplatings
CN1011316B (en) * 1989-01-19 1991-01-23 铁道部戚墅堰机车车辆工艺研究所 Ni-plating solution and method
CN1051942A (en) * 1990-12-03 1991-06-05 太仓县电镀助剂厂 Quick electronickelling brightener, manufacturing and application thereof
US5338342A (en) * 1993-05-21 1994-08-16 Mallory Jr Glen O Stabilized electroless nickel plating baths
US5413874A (en) * 1994-06-02 1995-05-09 Baldwin Hardware Corporation Article having a decorative and protective multilayer coating simulating brass
AU783229B2 (en) * 1999-08-31 2005-10-06 Remedy Research Limited Metal-containing compositions, preparations and uses
CA2362244A1 (en) * 2001-11-14 2003-05-14 Peter Forth Method of treating an electroplating bath
WO2004072320A2 (en) * 2003-02-07 2004-08-26 Pavco, Inc. Use of n-allyl substituted amines and their salts as brightening agents in nickel plating baths
WO2007002070A2 (en) * 2005-06-20 2007-01-04 Pavco, Inc. Zinc-nickel alloy electroplating system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB871276A (en) 1959-02-26 1961-06-28 Hanson Van Winkle Munning Co Improvements in electrodeposition of nickel
GB1006333A (en) 1961-08-29 1965-09-29 Albright & Wilson Mfg Ltd Electrodeposition of nickel
US3264200A (en) 1964-01-16 1966-08-02 Udylite Corp Electrodeposition of nickel
GB1386781A (en) 1971-03-05 1975-03-12 Albright & Wilson Electrodeposition of nickel
US3898138A (en) 1974-10-16 1975-08-05 Oxy Metal Industries Corp Method and bath for the electrodeposition of nickel
US4441969A (en) 1982-03-29 1984-04-10 Omi International Corporation Coumarin process and nickel electroplating bath
CS271564B1 (en) 1987-07-21 1990-10-12 Dostal Jaroslav Lustre forming admixture into semi-lustrous nickel plating bathes
US20060096868A1 (en) 2004-11-10 2006-05-11 Siona Bunce Nickel electroplating bath designed to replace monovalent copper strike solutions
WO2006052310A2 (en) 2004-11-10 2006-05-18 Macdermid, Incorporated Nickel electroplating bath designed to replace monovalent copper strike solutions
WO2010006800A1 (en) 2008-07-15 2010-01-21 Atotech Deutschland Gmbh Method for electrochemically depositing a metal on a substrate
WO2010051937A1 (en) 2008-11-05 2010-05-14 Atotech Deutschland Gmbh A method of inspecting a metal coating and a method for analytical control of a deposition electrolyte serving to deposit said metal coating
WO2011062693A1 (en) 2009-11-18 2011-05-26 Macdermid Acumen, Inc. Semi-bright nickel plating bath and method of using same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Mark 90 data sheet", ATOTECH, 3 August 2009 (2009-08-03), pages 1 - 24, XP055502946
"safety data sheet Mark 90 M 901", ATOTECH, 29 January 2008 (2008-01-29), pages 1 - 6, XP055502948
"safety data sheet Mark 90 M 902", ATOTECH, 4 March 2008 (2008-03-04), pages 1 - 7, XP055502951
"Salze", CHEMIE.DE, 4 July 2018 (2018-07-04), XP055502942, Retrieved from the Internet <URL:www.chemie.de/lexikon/Salze.html>
DENNIS J.K ET AL: "Nickel and chromium plating", 1986, ISBN: 0-408-01124-6, article "Brighteners", pages: 83 - 84, XP055502944
MORDECHAY SCHILESINGER ET AL: "Modern Electroplating 5 edition", 2010, ISBN: 978-0-470-16778-6, article DI BARI G.: "chapter 3", pages: 79 - 114, XP055502953

Also Published As

Publication number Publication date
EP2683853A4 (en) 2015-01-07
EP2683853A1 (en) 2014-01-15
US20110155582A1 (en) 2011-06-30
CN103415653A (en) 2013-11-27
ES2654552T3 (en) 2018-02-14
WO2012121829A1 (en) 2012-09-13
CN103415653B (en) 2016-12-07

Similar Documents

Publication Publication Date Title
EP2683853B1 (en) Semi-bright nickel plating bath and method of using same
JP6227062B2 (en) Electroplating bath and method for producing black chrome layer
US3152971A (en) Electrodeposition of fine-grained lustrous nickel
US20150292098A1 (en) Ionic Liquid Electrolyte and Method to Electrodeposit Metals
KR101665905B1 (en) Galvanic nickel or nickel alloy electroplating bath for depositing a semi-bright nickel or nickel alloy, method for electroplating and use of such a bath and compounds for the same
JP6608597B2 (en) Cyanide-free acidic matte silver electroplating composition and method
CN105463528B (en) The electroplating bath without cyanide for white bronze based on copper (I) ion
US20120111731A1 (en) Dark Colored Chromium Based Electrodeposits
US20110114498A1 (en) Semi-Bright Nickel Plating Bath and Method of Using Same
KR102122221B1 (en) Environmentally friendly nickel electroplating compositions and methods
TW201908535A (en) Nickel electroplating composition with cationic polymer and method for electroplating nickel
GB2116588A (en) Electroplated zinc-cobalt alloy
JP2008504435A (en) Pulse reverse electrolysis of acidic copper electroplating solution
KR20100121399A (en) Nickel flash plating solution, zinc-electroplated steel sheet and manufacturing method thereof
KR20200012351A (en) Zn-Ni ALLOY PLATING SOLUTION FOR AUTOMOTIVE PARTS
RU2705050C1 (en) Steel articles contact copper plating solution
Brown et al. Methods of Obtaining Improved Outdoor Corrosion Resistance with Nickel+ Chromium Plate
JP6660421B2 (en) Nickel electroplating composition containing copolymer of arginine and bisepoxide and method for electroplating nickel
Watts The plating on radiator shells
CN116926634A (en) Electroplating solution for forming amorphous nickel-phosphorus alloy coating and use process thereof
Beckett et al. Operational Experience Using an Organically-Stabilized Electroless Nickel
GB2079788A (en) Process for the electrodeposition of nickel having a high degree of brightness and smoothness
Macnaughtan et al. Part II.—The Effect of Deformation on the Protective Value of Hot-Dipped and Electrodeposited Tin Coatings on Steel
JPH08225955A (en) Passivating agent for electroplated tungsten alloy
JP2001316860A (en) Attractive electrogalvanized steel sheet and manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012038412

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25D0003120000

Ipc: B05D0005120000

A4 Supplementary search report drawn up and despatched

Effective date: 20141208

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 5/12 20060101AFI20141202BHEP

Ipc: C25D 3/16 20060101ALI20141202BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170314

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20170831

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 935566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012038412

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2654552

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180214

Ref country code: NL

Ref legal event code: MP

Effective date: 20171011

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 935566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180227

Year of fee payment: 7

Ref country code: ES

Payment date: 20180301

Year of fee payment: 7

Ref country code: DE

Payment date: 20180227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180222

Year of fee payment: 7

Ref country code: FR

Payment date: 20180227

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602012038412

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

26 Opposition filed

Opponent name: ATOTECH DEUTSCHLAND GMBH

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012038412

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190208

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190209

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 602012038412

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 602012038412

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20200524