EP2664025B1 - Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals - Google Patents

Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals Download PDF

Info

Publication number
EP2664025B1
EP2664025B1 EP12711563.2A EP12711563A EP2664025B1 EP 2664025 B1 EP2664025 B1 EP 2664025B1 EP 12711563 A EP12711563 A EP 12711563A EP 2664025 B1 EP2664025 B1 EP 2664025B1
Authority
EP
European Patent Office
Prior art keywords
satellite
antenna
monopole
strip
reception antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12711563.2A
Other languages
German (de)
French (fr)
Other versions
EP2664025A1 (en
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Leopold Reiter
Jochen Hopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Deutschland GmbH
Original Assignee
Delphi Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Deutschland GmbH filed Critical Delphi Deutschland GmbH
Publication of EP2664025A1 publication Critical patent/EP2664025A1/en
Application granted granted Critical
Publication of EP2664025B1 publication Critical patent/EP2664025B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading

Definitions

  • the invention relates to a multiband receiving antenna 1 for the combined reception of circularly polarized satellite radio signals of at least one circularly polarized radiating satellite service and terrestrial broadcasting signals over a substantially horizontal conductive base 6 as a mass with at least one, at least one satellite service with the transmission frequency fs1 associated satellite receiving antenna 3 with satellite antenna connection 5 and a terrestrial linearly polarized broadcast radio signals receiving monopole antenna with separate monopole connection point 14th
  • Terrestrially broadcast radio broadcasting signals are broadcast in the frequency bands of radio bands AM and FM with electromagnetic waves whose wavelengths are not shorter than approximately 2 m.
  • Recent developments with rod-shaped active antennas mounted vertically on the vehicle body as a conductive base for the two aforementioned broadcast bands have led to small antenna lengths of about 20 cm. In vehicle construction, however, a further shortening of such antennas is often required.
  • the directional diagram is extremely narrowly tolerated, particularly in view of the scale known on vehicles for antennas.
  • the design of an antenna is specified, which allows compliance with the closely tolerated directional diagram.
  • the antenna gain required in the area of the zenith angle can generally be realized problem-free.
  • the reception of terrestrial broadcast signals according to the SDARS standard is combined with a monopole antenna, resulting in an advantageous for the application to vehicles small design of the combined for the first radio service 1 antenna.
  • a close tolerance requirement is to be maintained largely for the construction on a vehicle largely.
  • other satellite radio services should also be possible, such as the Global Positioning System (GPS).
  • GPS Global Positioning System
  • An antenna according to the prior art as in the DE 101 08 910
  • Object of the present invention is therefore to provide a multiband antenna with a particularly small floor plan and particularly small height for the combined reception of circularly polarized satellite radio signals at least one circularly polarized radiating satellite service and terrestrial broadcast radio signals in the Rundfunkbändem AM and FM.
  • terrestrial radio services higher frequencies, such.
  • DAB_VHF, GSM900, GSM 1800, UMTS and DAB L-band to include.
  • Measures are provided for the design of additional radio services antenna mounted in the near field of a first antenna for a first service with a tightly tolerated antenna directional diagram which avoids the disadvantages of deformation of the antenna directional diagram of the antenna for the first service.
  • a satellite antenna 3 according to the invention has the advantage that the inventive design of a roof capacity 8 of a vertical rod-shaped monopole 13 located in the center of the satellite antenna practically does not affect the closely toleranced directional pattern of the satellite antenna 3 in the design according to the invention.
  • the inventive design of a roof capacity 8 of a vertical rod-shaped monopole 13 located in the center of the satellite antenna practically does not affect the closely toleranced directional pattern of the satellite antenna 3 in the design according to the invention.
  • This requirement is raised in particular for car antennas, with the result of the vehicle body caused by the rotation of the electric fields in the FM frequency range of the reception with vertical polarization that is done with the vertically oriented rod-shaped monopole 13.
  • the frequently asked requirement for a combined antenna with a height of only about 7 cm can be met by designing a sufficiently large roof capacity.
  • substantially periodic conductor structure 24 with the period 19 and the amplitude 18 is in particular the azimuthal directional pattern of the satellite antenna 3 according to the invention even with relatively long longitudinal extent of periodic conductor structure 24 virtually unaffected.
  • the roof capacity 8 can no longer be rotationally symmetrical. This leads to the requirement that the ratio of longitudinal extension to transverse dimension of the roof capacity at least 3: 1 up to the ratio 8: 1 can be selected.
  • the required azimuthal circular diagram of the satellite antenna could not be achieved with a flat conductive roof capacity.
  • this problem can also be solved economically advantageous.
  • the loop emitter forms a resonant structure, wherein the current distribution of a current line wave is set in a single direction of rotation on the loop in the transmission case, the phase difference over a revolution is just an integer multiple of the phase angle 2 ⁇ .
  • the arrangement may alternatively be formed such that on the conductive base there is a distribution and phase network, which is connected on the input side to the satellite antenna terminal, that the vertical radiators in each case via one of the outputs of the distribution and phase network are excited with respective phases, so that adjusts an ongoing electromagnetic wave in the loop antenna in such a way that the circular polarization of the satellite receiving antenna is given, as in the Fig. 1 a and 1 b the US 2003/0063038 is disclosed.
  • azimuthal radiation is sought.
  • the transmission mode of the satellite reception antenna is considered merely for explaining the antenna characteristics with respect to the reciprocity property.
  • the passive resonance structure can be allowed for different modes.
  • FIG. 1 shows a satellite antenna 3 according to the invention with a designed as a resonant structure square ring emitter 2 to produce a circularly polarized electromagnetic Femfeldes.
  • the ring tube radiator 2 is designed to extend in a horizontal plane with the height 9 above the conductive base 6, so that it forms an electrical line with respect to the conductive base 6 with a characteristic impedance resulting from the height and the effective diameter of substantially wire-shaped loop conductor results.
  • the elongated length L of the ring line of the ring line radiator 2 is chosen such that it is essentially an integral multiple of the line wavelength, the line wavelength being equal to the free space wavelength ⁇ s1.
  • the stretched length L can then be made shorter than the free space wavelength ⁇ s1.
  • An essential feature of an antenna according to the present invention is the possibility for particularly low-cost production.
  • An in this respect outstandingly advantageous form of the antenna with square loop antenna 2 is its nature in the FIGS. 1 and 2 shown.
  • the ring line emitter 2 with the vertical emitters 4a, 4b, 4c, 4d can, together with the flat electrodes or capacitance electrodes individually formed at its lower end 32a, 32b, 32c, 32d are made, for example, of a continuous, stamped and formed sheet metal part.
  • the characteristic impedance of the sections of the ring line radiator 2 can be designed individually by choosing the width of the connectors.
  • the wave propagation unidirectional effect of the electromagnetic excitation of the loop 2 and the impedance matching at the satellite antenna port 5 is by the dimensioning of the capacitance electrodes 32a, 32b, 32c, as well as by the coupling via the capacitance electrode 32d to the vertical radiator 4d in conjunction with the design of the characteristic impedance of the sections of the ring radiator reached.
  • the electrically conductive base 6 is preferably designed as a conductive coated circuit board.
  • the preferably realized as capacitances 15 couplings to the vertical radiators are formed in such a way that the capacitance electrodes 32a, 32b, 32c, 32d for coupling three vertical radiators 4a, 4b, 4c are designed to the electrically conductive base 6.
  • this is configured as a planar counterelectrode 34 which is insulated from the conductive layer of the printed circuit board and which can be designed as a capacitance electrode 15d or as an electrode 15.
  • the sheet metal part and the electrically conductive base surface 6 embodied as a printed circuit board can be connected to one another by way of example by low-cost adhesive bonding and thus without expensive soldering.
  • the connection to a receiver can be realized in a known manner, for example by connecting a microstrip line or a coaxial line, starting from the antenna connection 5.
  • the electromagnetic excitation of a ring line can also take place via the feed to ⁇ / 4 remote ring line crosspoints 7 of different by 90 ° in the phase signals.
  • the satellite antenna 3 according to the invention is particularly robust in view of the susceptibility of its radiation pattern compared to other circularly polarized antennas. Together with the combination according to the invention with the rod-shaped monopole 13 in its center with its roof capacity 8 designed according to the invention, the invention also provides a solution for large strip lengths 23 to maintain the tolerance values of approximately 0.5 dB specified for the satellite antennas.
  • the conductive to the upper end of the rod-shaped monopole 13, connected to form its roof capacitance 8 from, for example, wire-shaped conductor 17, and about a substantially horizontally oriented longitudinal center line M oscillating propagating, substantially periodic conductor structure 24 with the period 19 and the Strip width 22 is largely transparent with respect to the incident electromagnetic waves from the satellite at frequency fs1. It is advantageous here that due to the meandering or the periodic conductor structure, the static capacitance, which is necessary for the formation of the AM / FM antenna, is only insignificantly reduced by the wire-shaped design.
  • an elongate virtual strip 21 oriented substantially horizontally with respect to its surface is introduced, which has a longitudinal center line M.
  • the strip 21 has the strip length 23 and the strip width 22, wherein the substantially periodic conductor pattern 24 is designed to extend substantially in the surface of this strip 21, so that in the plan view the substantially periodic conductor structure 24 with the amplitude 18 within the border of Strip 22 is arranged and this substantially fills.
  • the strip width 22 should preferably be selected to be sufficiently small.
  • a strip length 23 which is at least three times as large as the strip width 22 results in an advantageous embodiment of the invention particularly small influences on the directional pattern of the satellite antenna, if the stripe width 22 is not greater than 3/8 of the free space wavelength ⁇ s1 and the period 19 is not greater than 1/4 of the free-space wavelength As1 of the satellite service with the highest frequency fs1 is selected.
  • the periodic conductor structure 24 of the roof capacitance 8 can be designed as a substantially periodic triangular structure with the period 19 which substantially completely fills the virtual stripe 21, the stripe length 23 about 0.8 of the free space wavelength ⁇ s1 and the stripe width 22 can be about 0.15 the free space wavelength ⁇ s1 and the rod-shaped monopole 13 is conductively connected approximately in the middle of the virtual stripe 21 with the periodic conductor structure 24.
  • the triangular structure shaped periodic conductor pattern 24, as in FIG. 4b shown as a winding made of, for example, a wire or a conductor track with the period 19 on a dielectric plate-shaped bobbin 28 of the shape of the virtual strip 21 are executed.
  • the periodic conductor structure 24 of the roof capacitance 8 is a substantially periodic meander structure with the period 19 designed. This substantially completely fills the virtual stripe 21, wherein the stripe length 23 can be about 0.8 of the free space wavelength ⁇ s1 and the stripe width 22 can be about 0.15 of the free space wavelength ⁇ s1 and the bar-shaped monopole 13 about in the middle of the virtual stripe 21 with the periodic conductor structure 24 is conductively connected.
  • the height of the rod-shaped monopole 13, which determines the overall height of the multiband receiving antenna 1, can amount to approximately half of the free-space wavelength ⁇ s1.
  • the periodic conductor structure 24 of the roof capacitance 8 can be used as a meandering structure, as in FIG. 6 shown, are designed in such a way that both legs of the meander on both sides of the center line M respectively by the inclination angle 16 relative to the horizontal lying virtual strips 21 are angled down and the dimensions of the meander structure are chosen so that their vertical projection on the virtual strip 21 fills this and the inclination angle 16 occupies about the value of 60 °.
  • FIG. 4a shows the top view and FIG. 7 a perspective view of a multi-band receiving antenna 1 according to the invention with a plurality of concentrically oriented satellite antennas.
  • the innermost of the satellite antennas 3a is operated at a resonance on the frequency fs1 with a current line wave whose phase difference over a revolution is just 2 ⁇ , as z. B. is suitable for the azimuthal round reception of SDARS broadcast signals.
  • Another satellite antenna 3b for a satellite broadcasting service having a lower transmission frequency fs2 and a traveling line wave whose phase difference over a round trip is also just 2 ⁇ is suitable for receiving GPS signals, for example.
  • FIGS. 4a and 7 Concentric with the first (innermost) satellite antenna 3a with a traveling line wave whose phase difference over a cycle is just 2 ⁇ is in FIGS. 4a and 7 in each case a further satellite antenna 3b for receiving the same satellite signal, but with a current line wave whose phase difference over a cycle is just 4 ⁇ available.
  • a further satellite antenna 3b for receiving the same satellite signal, but with a current line wave whose phase difference over a cycle is just 4 ⁇ available.
  • the electrically insulating round rod 39 is designed as a plastic rod, which is designed tubular in its lower portion.
  • an electrically conductive round rod 38 is inserted into the tubular opening, the lower end of which forms the monopole connection point 14.
  • the industrially complex galvanic connection of the winding to the monopole connection point 14 can be avoided.
  • the increase in the received voltage at the monopole connection point 14 in the VHF frequency range by the measures described above can be used particularly advantageously if the monopole connection point 14 immediately following antenna circuit is equipped with high-impedance active elements, such as field effect transistors with small input capacitance , Such circuits are for example in the EP 1 246 294 A3 and in the EP 1 406 349 A3 described.
  • connection of the conductor winding or wire winding can be capacitive with the monopole connection point 14 by means of an electrically conductive bushing 41, which is lined in its interior with a plastic tube 40.
  • the cylindrical winding 35 located on the electrically insulating round rod 39 is inserted mechanically positively and the cover 30 is made in this way.
  • FIG. 9 shows the rod-shaped monopole 13 with meandering roof capacity 8 according to the invention, the electrically insulating plastic tube 40 and the electrically conductive socket 41, at the lower end of the monopole connection point 14 is formed.
  • the lower part of the vertical radiator 4 as an electrically conductive round rod 38 corresponding to the resonance length of, for example, a quarter wavelength of one of the above radio services and in the upper part of the rod-shaped monopole 13 to the applied on the rod-shaped dielectric body of the monopole 13 applied wire winding 35 in such a way that adjusts the VHF resonance described above in the VHF frequency range in conjunction with the meandering roof capacity.
  • the wire winding 35 resonances can also be realized for the frequencies for a plurality of the radio services of higher frequencies mentioned above.
  • a combination of the measures can be advantageously carried out in that the electrically conductive rod 38 is designed for the radio service with the lowest frequency and the wire winding 35 in the upper part of the electrically conductive rod 38 contains a plurality of spaced closely wound winding packages. These each cause the blocking of signals higher frequencies relative to the overlying part of the monopoly.
  • the monopole can thus be designed multiresonant in such a way that for the different wavelengths of the radio service frequencies correspondingly long radiators are effective with corresponding resonance impedances at the monopole junction 14.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Description

Die Erfindung betrifft eine Multiband-Empfangsantenne 1 für den kombinierten Empfang zirkular polarisierter Satellitenfunksignale mindestens eines zirkular polarisiert ausstrahlenden Satellitenfunkdienstes und von terrestrisch ausgestrahlten Rundfunksignalen über einer im Wesentlichen horizontalen leitenden Grundfläche 6 als Masse mit mindestens einer, dem mindestens einen Satellitenfunkdienst mit der Sendfrequenz fs1 zugeordneten Satellitenempfangsantenne 3 mit Satelliten-Antennenanschluss 5 und einer terrestrisch linear polarisiert ausgestrahlte Rundfunksignale empfangenden Monopol-Antenne mit gesonderter Monopol-Anschlussstelle 14.The invention relates to a multiband receiving antenna 1 for the combined reception of circularly polarized satellite radio signals of at least one circularly polarized radiating satellite service and terrestrial broadcasting signals over a substantially horizontal conductive base 6 as a mass with at least one, at least one satellite service with the transmission frequency fs1 associated satellite receiving antenna 3 with satellite antenna connection 5 and a terrestrial linearly polarized broadcast radio signals receiving monopole antenna with separate monopole connection point 14th

Terrestrisch ausgestrahlte Rundfunk-Signale des Hörrundfunks werden in den Frequenzbereichen der Rundfunkbänder AM und FM mit elektromagnetischen Wellen ausgestrahlt, deren Wellenlängen nicht kürzer sind als ca. 2 m. Neuere Entwicklungen mit stabförmigen senkrecht auf der Fahrzeugkarosserie angebrachten aktiven Antennen als leitende Grundfläche für die beiden genannten Rundfunkbänder haben zu kleinen Antennenlängen von etwa 20 cm geführt. Im Fahrzeugbau wird jedoch häufig eine weitere Verkürzung solcher Antennen gefordert.Terrestrially broadcast radio broadcasting signals are broadcast in the frequency bands of radio bands AM and FM with electromagnetic waves whose wavelengths are not shorter than approximately 2 m. Recent developments with rod-shaped active antennas mounted vertically on the vehicle body as a conductive base for the two aforementioned broadcast bands have led to small antenna lengths of about 20 cm. In vehicle construction, however, a further shortening of such antennas is often required.

Aufgrund der knappen Bauräume besteht bei Fahrzeugantennen die wesentliche Anforderung nach Kleinheit und insbesondere danach, den Grundriss der Antenne zu minimieren. Insbesondere für Satellitenfunkdienste als erstem Funkdienst ist die Kombination von Satellitenantennen und Antennen für andere Funkdienste auf engem Raum aufgrund der Strahlungskopplung zwischen den Antennen und der damit verbundenen Verformung des Richtdiagramms der Satellitenantenne problematisch. Dies ist insbesondere durch das knapp bemessene Link-Budget begründet, welches bei drastischer Verformung des Richtdiagramms zum Abriss der Funkverbindung führen kann. Zum Beispiel wird für Satellitenantennen nach dem Standard des Satellitenrundfunks SDARS im Elevationswinkelbereich z.B. zwischen 25 bzw. 30 Grad und 60 bzw. 90 Grad ein Antennengewinn je nach Betreiber von konstant z.B. 2 dBi bzw. z.B. 3 dBi für zirkulare Polarisation streng gefordert. Diese Forderung besteht für eine auf einer im Zentrum einer ebenen leitenden Grundplatte aufgebauten Antenne. Diese Forderung ist nur dann einzuhalten, wenn die Abweichung von der idealen Strahlungscharakteristik in keinem Raumwinkel nicht mehr als ca. 0,5 dB beträgt. Somit ist das Richtdiagramm insbesondere im Hinblick von dem auf Fahrzeugen für Antennen bekannten Maßstab extrem eng toleriert. In der DE 101 08 910 ist z.B. die Bauform einer Antenne angegeben, welche die Einhaltung des eng tolerierten Richtdiagramms ermöglicht. Mit Antennen dieser Bauform lässt sich der im Bereich des Zenitwinkels geforderte Antennengewinn im Allgemeinen problemfrei realisieren. Bei dieser Antenne ist der Empfang terrestrisch ausgestrahlter Signale nach dem SDARS-Standard mit einer Monopolantenne kombiniert, wodurch sich eine für die Anwendung auf Fahrzeugen vorteilhafte kleine Bauform der für den ersten Funkdienst 1 kombinierten Antenne ergibt. Eine enge Toleranzforderung ist entsprechend für den Aufbau auf einem Fahrzeug weitgehend aufrecht zu erhalten. Neben diesem Satelliten-Rundfunkdienst sollen auch weitere Satellitenfunkdienste ermöglicht sein, wie z.B. das Global Positioning System (GPS).Due to the limited space available in vehicle antennas is the essential requirement for smallness and in particular to minimize the floor plan of the antenna. Especially for satellite radio services as the first service, the combination of satellite antennas and antennas for other radio services in a small space due to the radiation coupling between the antennas and the associated deformation of the directional diagram of the satellite antenna problematic. This is particularly due to the tight link budget, which can lead to the demolition of the radio link with drastic deformation of the directional diagram. For example, for satellite antennas according to the standard of satellite broadcasting SDARS in the elevation angle range, for example between 25 and 30 degrees and 60 or 90 degrees an antenna gain depending on the operator of constant eg 2 dBi or eg 3 dBi for circular polarization strictly required. This requirement is for an antenna built up in the center of a planar conductive baseplate. This requirement can only be met if the deviation from the ideal radiation characteristic in no solid angle is not more than approximately 0.5 dB. Thus, the directional diagram is extremely narrowly tolerated, particularly in view of the scale known on vehicles for antennas. In the DE 101 08 910 For example, the design of an antenna is specified, which allows compliance with the closely tolerated directional diagram. With antennas of this design, the antenna gain required in the area of the zenith angle can generally be realized problem-free. In this antenna, the reception of terrestrial broadcast signals according to the SDARS standard is combined with a monopole antenna, resulting in an advantageous for the application to vehicles small design of the combined for the first radio service 1 antenna. A close tolerance requirement is to be maintained largely for the construction on a vehicle largely. In addition to this satellite broadcasting service, other satellite radio services should also be possible, such as the Global Positioning System (GPS).

Eine Antenne nach dem Stand der Technik, wie sie in der DE 101 08 910 angegeben ist, ist jedoch aufgrund ihrer geringen Höhe keinesfalls geeignet, terrestrisch ausgestrahlte Rundfunk-Signale des Hörrundfunks in den Frequenzbereichen der Rundfunkbänder AM mit Freiraum-Wellenlängen zwischen 600 m und 10 m sowie das FM-Rundfunkband mit circa 3 m Freiraumwellenlänge zu empfangen. Aufgabe der vorliegenden Erfindung ist es deshalb, eine Multiband-Antenne mit besonders kleinem Grundriss und besonders kleiner Höhe für den kombinierten Empfang zirkular polarisierter Satellitenfunksignale mindestens eines zirkular polarisiert ausstrahlenden Satellitenfunkdienstes und von terrestrisch ausgestrahlten Rundfunksignalen in den Rundfunkbändem AM und FM anzugeben. Ferner soll die Möglichkeit bestehen, terrestrische Funkdienste höherer Frequenzen, wie z. B. DAB_VHF, GSM900, GSM 1800, UMTS und DAB L-Band mit einzubeziehen.An antenna according to the prior art, as in the DE 101 08 910 However, due to its low height, it is by no means suitable for receiving terrestrial broadcasting signals of radio broadcasting in the frequency bands of the broadcasting bands AM with free space wavelengths between 600 m and 10 m as well as the FM broadcasting band with about 3 m free-space wavelength. Object of the present invention is therefore to provide a multiband antenna with a particularly small floor plan and particularly small height for the combined reception of circularly polarized satellite radio signals at least one circularly polarized radiating satellite service and terrestrial broadcast radio signals in the Rundfunkbändem AM and FM. Furthermore, there should be the possibility of terrestrial radio services higher frequencies, such. B. DAB_VHF, GSM900, GSM 1800, UMTS and DAB L-band to include.

Es werden Maßnahmen für die Gestaltung von im Nahfeld einer ersten Antenne für einen ersten Funkdienst mit eng toleriertem Antennenrichtdiagramm angebrachten bzw. mit dieser kombinierten Antenne für weitere Funkdienste angegeben, welche die Nachteile der Verformung des Antennenrichtdiagramms der Antenne für den ersten Funkdienst vermeiden.Measures are provided for the design of additional radio services antenna mounted in the near field of a first antenna for a first service with a tightly tolerated antenna directional diagram which avoids the disadvantages of deformation of the antenna directional diagram of the antenna for the first service.

Diese Aufgabe wird bei einer Antenne nach dem Oberbegriff des Hauptanspruchs durch die kennzeichnenden Merkmale gelöst.This object is achieved in an antenna according to the preamble of the main claim by the characterizing features.

Die Merkmale lauten:

  • die mindestens eine Satellitenempfangsantenne 3 enthält einen bezüglich ihres Zentrums Z rotationssymmetrischen Ringleitungsstrahler 2, welcher durch eine polygonale oder kreisförmige geschlossene Ringleitung mit der gestreckten Länge L kleiner der Freiraum-Wellenlänge A in einer zur leitenden Grundfläche 6 parallelen Ebene mit der Höhe 9 kleiner λ/8 über der leitenden Grundfläche 6 verlaufend gestaltet ist;
  • über den Umfang der Länge L des Ringleitungsstrahlers 2 der Satellitenempfangsantenne 3 sind mehrere N vertikale, zur leitenden Grundfläche 6 hin verlaufende Strahler 4 in gleich langen gestreckten Längenabständen L/N der Struktur voneinander entfernt über Ringleitungs-Anschlusspunkte 7 an den Ringleitungsstrahler 2 angeschlossen;
  • der Ringleitungsstrahler 2 ist über mindestens einen der vertikalen Strahler 4 erregt, zwischen dessen unterem Ende und der leitenden Grundfläche 6, insbesondere über eine Kapazität 15d, ein Satelliten-Antennenanschluss 5 gebildet ist, wobei die mindestens eine Satellitenempfangsantenne 3 zirkular polarisiert ist;
  • die übrigen vertikalen Strahler 4 sind an ihrem unteren Ende jeweils über eine Kapazität 15a, 15b, 15can einen Masse-Anschlusspunkt 11 an die leitende Grundfläche 6 angeschlossen;
  • die Monopolantenne 13 enthält einen vertikal zur leitenden Grundfläche 6 orientierten und durch das Zentrum Z des Ringleitungsstrahlers 2 verlaufenden, im Wesentlichen stabförmigen Monopol 13, an dessen unterem Ende, zusammen mit der leitenden Grundfläche 6 die Monopol-Anschlussstelle 14 zur Auskopplung der linear polarisiert ausgestrahlten Rundfunksignale gebildet ist;
  • mit dem oberen Ende des stabförmigen Monopols 13 ist zur Bildung einer Dachkapazität 8 eine aus insbesondere drahtförmigem Leiter 17 gebildete und um eine im Wesentlichen horizontal orientierte Längs-Mittellinie M oszillierend sich ausbreitende, im Wesentlichen periodische Leiterstruktur 24 mit der Periode 19 und der Schwingweite 18 leitend verbunden;
  • sowohl die Periode 19 als auch die Schwingweite 18 ist jeweils kleiner gewählt als die halbe Freiraumwellenlänge λs1 desjenigen Satellitenfunkdienstes mit der höchsten Sendefrequenz fs1.
The features are:
  • the at least one satellite receiving antenna 3 includes a with respect to its center Z rotationally symmetrical ring line radiator 2, which by a polygonal or circular closed loop with the extended length L smaller of the free space wavelength A in a plane parallel to the conductive base 6 level with the height 9 smaller λ / 8 is designed to extend over the conductive base 6;
  • over the circumference of the length L of the loop antenna 2 of the satellite receiving antenna 3 several N vertical radiators 4 extending towards the conductive base 6 are connected to the ring tube radiator 2 in the same lengthwise extended lengths L / N of the structure away from each other via ring line connection points 7;
  • the ring line emitter 2 is excited via at least one of the vertical emitters 4, between whose lower end and the conductive base 6, in particular via a capacitance 15d, a satellite antenna terminal 5 is formed, wherein the at least one satellite receiving antenna 3 is circularly polarized;
  • the remaining vertical radiators 4 are connected at their lower end in each case via a capacitor 15a, 15b, 15can a ground connection point 11 to the conductive base 6;
  • The monopole antenna 13 includes a vertical to the conductive base 6 oriented and extending through the center Z of the ring line radiator 2, substantially rod-shaped monopole 13, at its lower end, together with the conductive base 6, the monopole connection point 14 for coupling the linearly polarized broadcast radio signals is formed;
  • With the upper end of the rod-shaped monopole 13, a substantially periodic conductor structure 24 with the period 19 and the oscillation amplitude 18, which is formed by a wire-shaped conductor 17 and oscillates about a substantially horizontally oriented longitudinal center line M, is conductive connected;
  • both the period 19 and the amplitude 18 are each selected to be smaller than half the free space wavelength λs1 of that satellite service with the highest transmission frequency fs1.

Mit einer Satellitenantenne 3 nach der Erfindung ist der Vorteil verbunden, dass die erfindungsgemäße Gestaltung einer Dachkapazität 8 eines im Zentrum der Satellitenantenne befindlichen vertikalen stabförmigen Monopols 13 das eng tolerierte Richtdiagramm der Satellitenantenne 3 bei der erfindungsgemäßen Gestaltung praktisch nicht beeinflusst. Auf diese Weise ist es möglich, die terrestrisch ausgestrahlten Rundfunksignale im AM- und FM-Frequenzbereich mit einer extrem niedrigen Bauhöhe 29 der Multiband-Empfangsantenne 1 zu empfangen. Diese Forderung wird insbesondere für Autoantennen erhoben, wobei aufgrund der durch die Fahrzeugkarosserie bewirkten Drehung der elektrischen Felder im FM-Frequenzbereich der Empfang mit vertikaler Polarisation also mit dem vertikal orientierten stabförmigen Monopol 13 erfolgt. Die häufig gestellte Forderung nach einer kombinierten Antenne mit einer Bauhöhe von lediglich circa 7 cm kann durch die Gestaltung einer hinreichend großen Dachkapazität erfüllt werden. Mit der erfindungsgemäßen Gestaltung der Dachkapazität 8 in Form einer um eine Längs-Mittellinie M oszillierend sich ausbreitenden, im Wesentlichen periodischen Leiterstruktur 24 mit der Periode 19 und der Schwingweite 18 ist insbesondere das azimutale Richtdiagramm der Satellitenantenne 3 nach der Erfindung auch bei relativ großer Längsausdehnung der periodischen Leiterstruktur 24 praktisch unbeeinflusst. Häufig kommt im Fahrzeugbau die Zusatzforderung hinzu, wonach auch die Querabmessung der Antenne strengen Auflagen unterliegt. Dadurch lässt sich die Dachkapazität 8 nicht mehr rotationssymmetrisch gestalten. Dies führt zu der Forderung, dass das Verhältnis von Längsausdehnung zu Querausdehnung der Dachkapazität mindestens 3:1 bis hin zum Verhältnis 8:1 gewählt werden kann. Das geforderte azimutale Runddiagramm der Satellitenantenne ließe sich mit einer flächig leitend gestalteten Dachkapazität nicht erreichen. Im Gegensatz hierzu kann mithilfe der Kombination der erfindungsgemäßen Satellitenantenne 3 mit dem stabförmigen Monopol 13 mit der erfindungsgemäßen Ausführung der Dachkapazität 8 dieses Problem auch wirtschaftlich vorteilhaft gelöst werden.A satellite antenna 3 according to the invention has the advantage that the inventive design of a roof capacity 8 of a vertical rod-shaped monopole 13 located in the center of the satellite antenna practically does not affect the closely toleranced directional pattern of the satellite antenna 3 in the design according to the invention. In this way it is possible to receive the terrestrially broadcast radio signals in the AM and FM frequency range with an extremely low overall height 29 of the multiband receiving antenna 1. This requirement is raised in particular for car antennas, with the result of the vehicle body caused by the rotation of the electric fields in the FM frequency range of the reception with vertical polarization that is done with the vertically oriented rod-shaped monopole 13. The frequently asked requirement for a combined antenna with a height of only about 7 cm can be met by designing a sufficiently large roof capacity. With the inventive design of the roof capacitance 8 in the form of an oscillating about a longitudinal center line M, substantially periodic conductor structure 24 with the period 19 and the amplitude 18 is in particular the azimuthal directional pattern of the satellite antenna 3 according to the invention even with relatively long longitudinal extent of periodic conductor structure 24 virtually unaffected. Frequently comes in vehicle construction, the additional requirement added, according to which the transverse dimension of the antenna is subject to strict requirements. As a result, the roof capacity 8 can no longer be rotationally symmetrical. This leads to the requirement that the ratio of longitudinal extension to transverse dimension of the roof capacity at least 3: 1 up to the ratio 8: 1 can be selected. The required azimuthal circular diagram of the satellite antenna could not be achieved with a flat conductive roof capacity. In contrast, by using the combination of the satellite antenna 3 according to the invention with the rod-shaped monopole 13 with the inventive design of the roof capacity 8, this problem can also be solved economically advantageous.

Es kann vorteilhaft sein, wenn der Ringleitungsstrahler eine Resonanzstruktur bildet, wobei auf der Ringleitung im Sendefall die Stromverteilung einer laufenden Leitungswelle in einer einzigen Umlaufrichtung eingestellt ist, deren Phasenunterschied über einen Umlauf gerade ein ganzzahliges Vielfaches des Phasenwinkels 2π beträgt.It may be advantageous if the loop emitter forms a resonant structure, wherein the current distribution of a current line wave is set in a single direction of rotation on the loop in the transmission case, the phase difference over a revolution is just an integer multiple of the phase angle 2π.

Außerdem kann die Anordnung alternativ so gebildet sein ,dass auf der leitenden Grundfläche ein Verteil-und Phasen-Netzwerk vorhanden ist, welches eingangsseitig mit dem Satelliten-Antennenanschluss verbunden ist, dass die vertikalen Strahler jeweils über einen der Ausgänge des Verteil-und Phasen-Netzwerks mit entsprechenden Phasen erregt sind, so dass sich auf dem Ringleitungsstrahler eine laufende elektromagnetische Welle in der Weise einstellt, dass die zirkulare Polarisation der Satellitenempfangsantenne gegeben ist, so wie dies in den Fig. 1 a und 1 b der US 2003/0063038 offenbart ist.In addition, the arrangement may alternatively be formed such that on the conductive base there is a distribution and phase network, which is connected on the input side to the satellite antenna terminal, that the vertical radiators in each case via one of the outputs of the distribution and phase network are excited with respective phases, so that adjusts an ongoing electromagnetic wave in the loop antenna in such a way that the circular polarization of the satellite receiving antenna is given, as in the Fig. 1 a and 1 b the US 2003/0063038 is disclosed.

Die Erfindung wird im Folgenden an Hand von Ausführungsbeispielen näher erläutert. Die zugehörigen Figuren zeigen im Einzelnen:

  • Fig. 1:
    • Multiband-Empfangsantenne 1 nach der Erfindung mit Satellitenempfangsantenne 3 mit rotationssymmetrischem Ringleitungsstrahler 2 und vertikalen, zur leitenden Grundfläche 6 hin verlaufenden Strahlern 4 und Satelliten-Antennenanschluss 5, kombiniert mit dem stabförmigen Monopol 13 mit Dachkapazität 8 in der Form einer Mäanderstruktur 25 aus drahtförmigem Leiter 17,
  • Fig. 2:
    Multiband-Empfangsantenne 1 nach der Erfindung wie in Figur 1, jedoch mit einem stabförmigen Monopol 13, dessen Eigeninduktivität durch eine im Wesentlichen zylindrische Drahtwicklung 35, welche auf einem stabförmigen dielektrischen Körper aufgewickelt ist, erhöht ist.
  • Fig. 3:
    1. a) Periodische Leiterstruktur der Dachkapazität 8 als periodische Mäanderstruktur mit der Periode 19 nach der Erfindung innerhalb eines virtuellen Streifens 21 gestaltet. Der stabförmige Monopol 13 ist mit der periodischen Leiterstruktur 24 leitend verbunden.
    2. b) Wie in Figur 3a), jedoch ist die periodische Leiterstruktur der Dachkapazität 8 als periodische Dreiecksstruktur mit der Periode 19 nach der Erfindung innerhalb des virtuellen Streifens 21 gestaltet.
    3. c) zur Vergrößerung der Dachkapazität 8 sind mindestens zwei im Wesentlichen gleiche periodische Leiterstrukturen mit der Längsseite zueinander parallel in virtuellen Streifen 21 angeordnet. Die zwei periodischen Leiterstrukturen sind leitend mit dem oberen Ende des stabförmigen Monopols 13 verbunden.
  • Fig. 4:
    1. a) Draufsicht auf eine Multiband-Empfangsantenne 1 nach der Erfindung mit einer konzentrisch zur ersten Satellitenantenne 3a mit einer laufenden Leitungswelle, deren Phasenunterschied über einen Umlauf gerade 2π beträgt verlaufenden weiteren Satellitenantenne 3b für einen Satellitenfunkdienst mit niedrigerer Sendefrequenz fs2 und einer laufenden Leitungswelle, deren Phasenunterschied über einen Umlauf ebenfalls gerade 2π beträgt. Für die beispielhafte Gestaltung einer in ihrer azimutalen Hauptrichtung einstellbaren Richtantenne ist eine dritte Satellitenantenne 3c für den Empfang desselben Satellitensignals wie das der ersten Satellitenantenne 3a vorhanden, deren laufende Leitungswelle den Phasenunterschied über einen Umlauf von gerade 4π einnimmt. Die einstellbare Hauptrichtung kann aus der Überlagerung der Signale der ersten 3a und der dritten 3c Satellitenantenne über einen in der Combiner-Phase einstellbaren Antennen-Combiner realisiert werden.
    2. b) Dachkapazität 8 wie in Figur 3b. Die als Dreiecksstruktur gestaltete periodische Leiterstruktur ist jedoch als Wicklung mit der Periode 19 auf einem dünnen dielektrischen plattenförmigen Wickelkörper 28 von der Form des virtuellen Streifens 21 ausgeführt.
  • Fig. 5:
    • Zeigt zum Vergleich eine nicht erfindungsgemäße Dachkapazität 10, welche flächig leitend gestaltet ist und das Richtdiagramm der Satellitenantenne 3 untolerierbar beeinflusst.
  • Fig. 6:
    • Die periodische Leiterstruktur 24 der Dachkapazität 8 ist als Mäanderstruktur in der Weise gestaltet, dass jeweils die beiden Schenkel auf beiden Seiten der Mittellinie M um den Neigungswinkel 16 gegenüber dem horizontal liegenden virtuellen Streifen 21 nach unten abgewinkelt sind. Dabei sind die Abmessungen der Mäanderstruktur so gewählt, dass deren vertikale Projektion auf den virtuellen Streifen 21 diesen ausfüllt und der Neigungswinkel 16 etwa den Wert von 60° einnimmt.
  • Fig. 7:
    • Multiband-Empfangsantenne nach der Erfindung wie in Figur 6 jedoch mit einer Satellitenempfangsantenne 3a und mit Phasenunterschied über einen Umlauf von 2π und mit konzentrischer Satellitenantenne 3b für den Empfang eines weiteren Satellitendienstes bei niedrigerer Frequenz, bzw. wahlweise mit einem Phasenunterschied über einen Umlauf von 4π bei derselben Frequenz wie Satellitenempfangsantenne 3a für die Kombination der Satelliten-Antennenanschlüsse 5a und 5b durch Überlagerung der Empfangssignale über einen einstellbaren Antennen-Phase-Combiner zur Einstellung der azimutalen Hauptrichtung des Richtdiagramms.
  • Fig. 8:
    • stabförmiger Monopol mit Dachkapazität 8 für eine Antenne nach der Erfindung mit teilweiser Überdeckung 30 der Wicklung 35 zur Erhöhung der Empfangsspannung des stabförmigen Monopols im UKW-Frequenzbereich durch rohrförmige Gestaltung eines elektrisch isolierenden Rundstabs 39 in seinem unteren Abschnitt zur kapazitiven Ankopplung an die Drahtwicklung mit elektrisch leitendem Rundstab 38 mit Monopol-Anschlussstelle 14.
    (die Satellitenempfangsantenne ist nicht dargestellt)
    1. a) perspektivische Darstellung
    2. b) Längsschnittdarstellung
  • Fig. 9:
    • stabförmiger Monopol mit Dachkapazität 8 wie in Figur 8 jedoch mit elektrisch leitender Buchse 41 mit innerem, elektrisch isolierendem Kunststoffrohr 40 zur mechanisch formschlüssigen Aufnahme der auf dem elektrisch isolierenden Rundstab 39 befindlichem zylindrischen Wicklung 35. Der an jeder Stelle geforderte Monopol-Ringleitungs-Abstand 37 sollte bevorzugt 15 % der inneren Ringleitungs-Weite 36 nicht unterschreiten.
The invention will be explained in more detail below with reference to exemplary embodiments. The accompanying figures show in detail:
  • Fig. 1 :
    • Multiband receiving antenna 1 according to the invention with satellite receiving antenna 3 with rotationally symmetrical ring line emitter 2 and vertical, the base 6 towards running radiators 4 and satellite antenna connector 5, combined with the rod-shaped monopole 13 with roof capacity 8 in the form of a meander structure 25 of wire-shaped conductor 17th .
  • Fig. 2 :
    Multiband receiving antenna 1 according to the invention as in FIG. 1 but with a rod-shaped monopole 13 whose self-inductance is increased by a substantially cylindrical wire winding 35 wound on a rod-shaped dielectric body.
  • Fig. 3 :
    1. a) Periodic ladder structure of the roofing capacity 8 designed as a periodic meander structure with the period 19 according to the invention within a virtual strip 21. The rod-shaped monopole 13 is conductively connected to the periodic conductor structure 24.
    2. b) As in FIG. 3a ), but the periodic ladder structure of the roof capacitance 8 is designed as a periodic triangular structure with the period 19 according to the invention within the virtual stripe 21.
    3. c) to increase the roof capacity 8, at least two substantially identical periodic conductor structures are arranged with the longitudinal side parallel to one another in virtual strips 21. The two periodic conductor patterns are conductively connected to the upper end of the rod-shaped monopole 13.
  • Fig. 4 :
    1. a) Top view of a multiband receiving antenna 1 according to the invention with a concentric to the first satellite antenna 3a with a current line wave whose phase difference over a round straight 2π amounts to another satellite antenna 3b for a satellite service with a lower transmission frequency fs2 and a current line wave whose phase difference also just 2π over a round. For the exemplary design of a directional antenna adjustable in its azimuthal main direction, there is a third satellite antenna 3c for receiving the same satellite signal as that of the first satellite antenna 3a, whose traveling line wave takes the phase difference over an orbit of just 4π. The adjustable main direction can be realized from the superimposition of the signals of the first 3a and the third 3c satellite antenna via a combiner-phase adjustable antenna combiner.
    2. b) roof capacity 8 as in FIG. 3b , However, the periodic ladder structure designed as a triangular structure is designed as a winding with the period 19 on a thin dielectric plate-shaped bobbin 28 of the shape of the virtual stripe 21.
  • Fig. 5 :
    • For comparison, a roofing capacity 10 not according to the invention, which has a planar design and influences the directional diagram of the satellite antenna 3 intolerably, is shown.
  • Fig. 6 :
    • The periodic conductor structure 24 of the roofing capacity 8 is designed as a meandering structure in such a way that in each case the two legs are angled on both sides of the center line M by the inclination angle 16 with respect to the horizontal virtual strip 21 down. The dimensions of the meander structure are chosen so that their vertical projection on the virtual strip 21 fills this and the inclination angle 16 occupies approximately the value of 60 °.
  • Fig. 7 :
    • Multiband receiving antenna according to the invention as in FIG. 6 but with a satellite receiving antenna 3a and with phase difference over a revolution of 2π and concentric satellite antenna 3b for receiving another satellite service at lower frequency, and optionally with a phase difference over a revolution of 4π at the same frequency as satellite receiving antenna 3a for the combination of satellites -Antennasanschlüsse 5a and 5b by superimposing the received signals via an adjustable antenna-phase combiner for adjusting the azimuthal main direction of the radiation pattern.
  • Fig. 8 :
    • rod-shaped monopole with roofing capacity 8 for an antenna according to the invention with partial coverage 30 of the winding 35 for increasing the receiving voltage of the rod-shaped monopole in the VHF frequency range by tubular design of an electrically insulating round rod 39 in its lower portion for capacitive coupling to the wire winding with electrically conductive Round rod 38 with monopole connection point 14.
    (the satellite receiving antenna is not shown)
    1. a) perspective view
    2. b) longitudinal section
  • Fig. 9 :
    • rod-shaped monopoly with roof capacity 8 as in FIG. 8 However, with electrically conductive sleeve 41 with inner, electrically insulating plastic tube 40 for mechanically positive reception of the cylindrical insulating winding 35 located on the electrically insulating round rod 39. The required at each point monopole ring line spacing 37 should preferably 15% of the inner loop width 36th do not fall short.

Der Ringleitungsstrahler 2 der Satellitenantenne 3 nach der Erfindung, in Figur 1 unten, ist beispielhaft als eine passive Resonanzstruktur für eine Sende- oder Empfangsantenne gestaltet, welche die Abstrahlung bzw. den Empfang von im Wesentlichen zirkular polarisierten Wellen in einem Elevationswinkelbereich zwischen theta=0° (vertikal) und theta=65° und im Wesentlichen vertikal polarisierter Wellen in einem Elevationswinkelbereich zwischen theta = 90° und theta = 85° ermöglicht, wobei theta den Winkel der einfallenden Welle gegenüber der Vertikalen beschreibt. Azimutal wird dabei im Allgemeinen Rundstrahlung angestrebt. In diesem Zusammenhang wird der Sendemodus der Satelliten-Empfangsantenne lediglich zur Erläuterung der Antenneneigenschaften unter Bezug auf die Reziprozitätseigenschaft betrachtet. Die passive Resonanzstruktur kann dabei für unterschiedliche Moden gestattet werden.The loop antenna 2 of the satellite antenna 3 according to the invention, in FIG. 1 below, is exemplified as a passive resonant structure for a transmit or receive antenna that effects the radiation or reception of substantially circularly polarized waves in an elevation angle range between theta = 0 ° (vertical) and theta = 65 ° and substantially vertically polarized Waves in an elevation angle range between theta = 90 ° and theta = 85 °, where theta describes the angle of the incident wave with respect to the vertical. In general, azimuthal radiation is sought. In this connection, the transmission mode of the satellite reception antenna is considered merely for explaining the antenna characteristics with respect to the reciprocity property. The passive resonance structure can be allowed for different modes.

Die Verteilung der Ströme auf einer Antenne im Empfangsbetrieb ist vom Abschlusswiderstand an der Antennenanschlussstelle 5 abhängig. Im Gegensatz hierzu ist im Sendebetrieb die auf den Speisestrom an der Antennenanschlussstelle 5 bezogene Verteilung der Ströme auf den Antennenleitern vom Quellwiderstand der speisenden Signalquelle unabhängig und ist somit eindeutig mit dem Richtdiagramm und der Polarisation der Antenne verknüpft. Figur 1 zeigt eine Satellitenantenne 3 nach der Erfindung mit einem als Resonanzstruktur gestalteten quadratischen Ringleitungsstrahler 2 zur Erzeugung eines zirkular polarisierten elektromagnetischen Femfeldes. Der Ringleitungsstrahler 2 ist in einer horizontalen Ebene mit der Höhe 9 über der leitenden Grundfläche 6 verlaufend gestaltet, so dass er in Bezug auf die leitende Grundfläche 6 eine elektrische Leitung bildet mit einem Wellenwiderstand, der sich aus der Höhe und dem wirksamen Durchmesser des im Wesentlichen drahtförmigen Ringleitungs-Leiters ergibt. Zur Erzeugung der gewünschten zirkularen Polarisation mit azimutal abhängiger Phase einer Drehrichtung der Strahlung im Femfeld ist es notwendig, auf dem Ringleitungsstrahler 2 im Sendefall eine ausschließlich in einer Richtung sich ausbreitenden Leitungswelle zu erregen.The distribution of the currents on an antenna in the receiving mode is dependent on the terminating resistor at the antenna connection point 5. In contrast to this, in the transmission mode, the distribution of the currents on the antenna conductors related to the feed current at the antenna connection point 5 is independent of the source resistance of the supplying signal source and is thus unambiguous with the Directional diagram and the polarization of the antenna linked. FIG. 1 shows a satellite antenna 3 according to the invention with a designed as a resonant structure square ring emitter 2 to produce a circularly polarized electromagnetic Femfeldes. The ring tube radiator 2 is designed to extend in a horizontal plane with the height 9 above the conductive base 6, so that it forms an electrical line with respect to the conductive base 6 with a characteristic impedance resulting from the height and the effective diameter of substantially wire-shaped loop conductor results. To generate the desired circular polarization with azimuthally dependent phase of a direction of rotation of the radiation in the field, it is necessary to excite a line wave propagating exclusively in one direction on the ring line emitter 2 in the transmission case.

Zur Erzeugung der Resonanz ist die gestreckte Länge L der Ringleitung des Ringleitungsstrahlers 2 derart gewählt, dass sie im Wesentlichen ein ganzzahliges Vielfaches der Leitungswellenlänge beträgt, wobei die Leitungswellenlänge gleich der Freiraumwellenlänge λs1 ist. Für W= ganzzahlig, das heißt vollständige Leitungswellenlängen auf der Ringstruktur ergibt sich somit für deren gestreckte Länge im wesentlichen L= W*λs1.To generate the resonance, the elongated length L of the ring line of the ring line radiator 2 is chosen such that it is essentially an integral multiple of the line wavelength, the line wavelength being equal to the free space wavelength λs1. For W = integer, that is to say complete conduction wavelengths on the ring structure, the result for the stretched length thereof is essentially L = W * λs1.

Für den Satellitenempfang mit azimutalem Runddiagramm ist die einfache Resonanz mit W=1 zu wählen. Die gestreckte Länge L kann dann auch kürzer als die Freiraumwellenlänge λs1 gestaltet werden.For satellite reception with an azimuthal round diagram, the simple resonance with W = 1 is to be selected. The stretched length L can then be made shorter than the free space wavelength λs1.

Eine wesentliche Eigenschaft einer Antenne nach der vorliegenden Erfindung ist die Möglichkeit zur besonders aufwandsarmen Herstellung. Eine diesbezüglich herausragend vorteilhafte Form der Antenne mit quadratischem Ringleitungsstrahler 2 ist ihrem Wesen in den Figuren 1 und 2 dargestellt. Der Ringleitungsstrahler 2 mit den vertikalen Strahlern 4a, 4b, 4c, 4d kann zusammen mit den an ihrem unteren Ende individuell ausgeformten, flächigen Elektroden oder Kapazitätselektroden 32a, 32b, 32c, 32d zum Beispiel aus einem zusammenhängenden, gestanzten und geformten Blechteil hergestellt werden. Auch die Wellenwiderstände der Teilstücke des Ringleitungsstrahlers 2 können durch Wahl der Breite der Verbindungsstücke individuell gestaltet werden. Die bezüglich der Wellenausbreitung unidirektionale Wirkung der elektromagnetischen Erregung der Ringleitung 2 sowie die Impedanz-Anpassung am Satelliten-Antennenanschluss 5 ist durch die Dimensionierung der Kapazitätselektroden 32a, 32b, 32c, sowie durch die Ankopplungen über die Kapazitätselektrode 32d an den vertikalen Strahler 4d in Verbindung mit der Gestaltung der Wellenwiderstände der Teilstücke des Ringstrahlers erreichbar.An essential feature of an antenna according to the present invention is the possibility for particularly low-cost production. An in this respect outstandingly advantageous form of the antenna with square loop antenna 2 is its nature in the FIGS. 1 and 2 shown. The ring line emitter 2 with the vertical emitters 4a, 4b, 4c, 4d can, together with the flat electrodes or capacitance electrodes individually formed at its lower end 32a, 32b, 32c, 32d are made, for example, of a continuous, stamped and formed sheet metal part. The characteristic impedance of the sections of the ring line radiator 2 can be designed individually by choosing the width of the connectors. The wave propagation unidirectional effect of the electromagnetic excitation of the loop 2 and the impedance matching at the satellite antenna port 5 is by the dimensioning of the capacitance electrodes 32a, 32b, 32c, as well as by the coupling via the capacitance electrode 32d to the vertical radiator 4d in conjunction with the design of the characteristic impedance of the sections of the ring radiator reached.

Die elektrisch leitende Grundfläche 6 ist vorzugsweise als leitend beschichtete Leiterplatte ausgeführt. Die vorzugsweise als Kapazitäten 15 realisierten Ankopplungen an die vertikalen Strahler sind in der Weise gebildet, dass die Kapazitätselektroden 32a, 32b, 32c, 32d zur Ankopplung von drei vertikalen Strahlern 4a,4b,4c an die elektrisch leitende Grundfläche 6 gestaltet sind. Zur Gestaltung und zur kapazitiven Ankopplung des vierten vertikalen Strahlers 4d an den Antennenanschluss 5 ist dieser als eine von der leitenden Schicht der Leiterplatte isolierte, flächige Gegenelektrode 34 gestaltet, die als Kapazitätselektrode 15d oder als Elektrode 15 gestaltet sein kann. In besonders aufwandsarmer Weise besteht somit die Möglichkeit, die wesentlichen für die Funktion der Antenne notwendigen Abmessungen über ein gestanztes und geformtes Blechteil mit den Vorzügen der hohen Reproduzierbarkeit herzustellen. Das Blechteil und die als Leiterplatte ausgeführte elektrisch leitende Grundfläche 6 können beispielhaft durch eine aufwandsarme Verklebung und somit ohne ein aufwändigeres Löten miteinander verbunden werden. Die Verbindung zu einem Empfänger kann auf bekannte Weise zum Beispiel durch Anschluss einer Micro-Streifenleitung oder einer Koaxialleitung, ausgehend vom Antennenanschluss 5, realisiert werden.The electrically conductive base 6 is preferably designed as a conductive coated circuit board. The preferably realized as capacitances 15 couplings to the vertical radiators are formed in such a way that the capacitance electrodes 32a, 32b, 32c, 32d for coupling three vertical radiators 4a, 4b, 4c are designed to the electrically conductive base 6. For the design and the capacitive coupling of the fourth vertical radiator 4d to the antenna terminal 5, this is configured as a planar counterelectrode 34 which is insulated from the conductive layer of the printed circuit board and which can be designed as a capacitance electrode 15d or as an electrode 15. In a particularly low-effort manner, it is therefore possible to produce the essential dimensions necessary for the function of the antenna via a stamped and formed sheet-metal part with the advantages of high reproducibility. The sheet metal part and the electrically conductive base surface 6 embodied as a printed circuit board can be connected to one another by way of example by low-cost adhesive bonding and thus without expensive soldering. The connection to a receiver can be realized in a known manner, for example by connecting a microstrip line or a coaxial line, starting from the antenna connection 5.

Erfindungsgemäß kann die elektromagnetische Erregung einer Ringleitung auch über die Einspeisung an λ/4 voneinander entfernten Ringleitungs-Koppelpunkten 7 von um 90° in der Phase unterschiedlichen Signalen erfolgen.According to the invention, the electromagnetic excitation of a ring line can also take place via the feed to λ / 4 remote ring line crosspoints 7 of different by 90 ° in the phase signals.

Die Satellitenantenne 3 nach der Erfindung ist im Hinblick auf die Störbarkeit ihres Strahlungsdiagramms im Vergleich zu anderen zirkular polarisierten Antennen besonders robust. Zusammen mit der erfindungsgemäßen Kombination mit dem in ihrem Zentrum befindlichen stabförmigen Monopol 13 mit seiner erfindungsgemäß gestalteten Dachkapazität 8 liefert die Erfindung auch bei großen Streifenlängen 23 eine Lösung, die für die Satellitenantennen vorgegebenen Toleranzwerte von circa 0,5 dB einzuhalten.The satellite antenna 3 according to the invention is particularly robust in view of the susceptibility of its radiation pattern compared to other circularly polarized antennas. Together with the combination according to the invention with the rod-shaped monopole 13 in its center with its roof capacity 8 designed according to the invention, the invention also provides a solution for large strip lengths 23 to maintain the tolerance values of approximately 0.5 dB specified for the satellite antennas.

Die mit dem oberen Ende des stabförmigen Monopols 13 leitend verbundene, zur Bildung seiner Dachkapazität 8 aus beispielsweise drahtförmigem Leiter 17 gebildete, und um eine im Wesentlichen horizontal orientierte Längs-Mittellinie M oszillierend sich ausbreitende, im Wesentlichen periodische Leiterstruktur 24 mit der Periode 19 und der Streifenbreite 22 ist bezüglich der einfallenden elektromagnetischen Wellen vom Satelliten auf der Frequenz fs1 weitgehend transparent. Vorteilhaft ist hierbei, dass durch die Mäandrisierung bzw. die periodische Leiterstruktur die statische Kapazität, welche für die Bildung der AM/FM-Antenne notwendig ist, durch die drahtförmige Gestaltung nur unwesentlich verkleinert wird.The conductive to the upper end of the rod-shaped monopole 13, connected to form its roof capacitance 8 from, for example, wire-shaped conductor 17, and about a substantially horizontally oriented longitudinal center line M oscillating propagating, substantially periodic conductor structure 24 with the period 19 and the Strip width 22 is largely transparent with respect to the incident electromagnetic waves from the satellite at frequency fs1. It is advantageous here that due to the meandering or the periodic conductor structure, the static capacitance, which is necessary for the formation of the AM / FM antenna, is only insignificantly reduced by the wire-shaped design.

Zur einfachen Erläuterung der Lage und Ausführung der unterschiedlichen Strukturen der Dachkapazität 8 wird ein länglicher, bezüglich seiner Fläche im Wesentlichen horizontal orientierter virtueller Streifen 21 eingeführt, der eine Längs-Mittellinie M aufweist. Der Streifen 21 besitzt die Streifenlänge 23 und die Streifenbreite 22, wobei die im Wesentlichen periodische Leiterstruktur 24 im Wesentlichen in der Fläche dieses Streifens 21 verlaufend gestaltet ist, so dass in der Draufsicht die im Wesentlichen periodische Leiterstruktur 24 mit der Schwingweite 18 innerhalb der Umrandung des Streifens 22 angeordnet ist und diese im Wesentlichen ausfüllt. Gute Ergebnisse wurden z. B. für eine Multiband-Empfangsantenne 1 für die Frequenzbereiche AM, UKW und SDARS mit einer Streifenlänge 23 von etwa 12 cm, einer Streifenbreite 22 = Schwingweite 18 von etwa 2,5 cm und einer Periode 19 von 1cm bei einer Antennen-Bauhöhe 29 von etwa 7cm erreicht.For ease of explanation of the location and execution of the different structures of the roofing capacity 8, an elongate virtual strip 21 oriented substantially horizontally with respect to its surface is introduced, which has a longitudinal center line M. The strip 21 has the strip length 23 and the strip width 22, wherein the substantially periodic conductor pattern 24 is designed to extend substantially in the surface of this strip 21, so that in the plan view the substantially periodic conductor structure 24 with the amplitude 18 within the border of Strip 22 is arranged and this substantially fills. Good results were z. B. for a multiband receiving antenna 1 for the frequency ranges AM, VHF and SDARS with a stripe length 23 of about 12 cm, a stripe width 22 = amplitude 18 of about 2.5 cm and a period 19 of 1cm at an antenna height 29 of reached about 7cm.

Würde man von einer Dachkapazität 8 gemäß der Erfindung absehen und diese flächig leitend, wie in Figur 5 dargestellt, gestalten, so ergäbe sich insbesondere bei einem azimutalen Einfall elektromagnetischer Wellen senkrecht zur Längs-Mittellinie M eine untolerierbare Verformung des azimutalen Richtdiagramms. Die erfindungsgemäße Dachkapazität 8 mit ihrer sich um die Längs-Mittellinie M oszillierend ausbreitenden, im Wesentlichen periodischen Leiterstruktur 24 löst dieses Problem. Erfindungsgemäß sollte deshalb bevorzugt die Streifenbreite 22 hinreichend klein gewählt werden. Bei einer Streifenlänge 23, welche mindestens dreimal so groß ist wie die Streifenbreite 22 ergeben sich in einer vorteilhaften Ausgestaltung der Erfindung besonders geringe Einflüsse auf das Richtdiagramm der Satellitenantenne, wenn die Streifenbreite 22 nicht größer als 3/8 der Freiraumwellenlänge λs1 und die Periode 19 nicht größer als 1/4 der Freiraumwellenlänge As1 desjenigen Satellitenfunkdienstes mit der höchsten Frequenz fs1 gewählt ist. Im Interesse einer möglichst kleinen Streifenbreite 22 ist es erfindungsgemäß vorteilhaft, zur Vergrößerung der Dachkapazität 8 mindestens zwei im Wesentlichen gleiche periodische Leiterstrukturen, wie in Figur 3c dargestellt, in mit der Längsseite zueinander parallel in kleinem Abstand voneinander geführten virtuellen Streifen 21 anzuordnen und die mindestens zwei periodischen Leiterstrukturen 24 leitend mit dem oberen Ende des stabförmigen Monopols 13 zu verbinden.If one refrained from a roofing capacity 8 according to the invention and this surface conducting, as in FIG. 5 represented, so would result in particular in an azimuthal incidence of electromagnetic waves perpendicular to the longitudinal center line M an intolerable deformation of the azimuthal directional diagram. The roof capacity 8 according to the invention with its essentially periodic conductor structure 24 oscillating around the longitudinal center line M solves this problem. Therefore, according to the invention, the strip width 22 should preferably be selected to be sufficiently small. In a strip length 23 which is at least three times as large as the strip width 22 results in an advantageous embodiment of the invention particularly small influences on the directional pattern of the satellite antenna, if the stripe width 22 is not greater than 3/8 of the free space wavelength λs1 and the period 19 is not greater than 1/4 of the free-space wavelength As1 of the satellite service with the highest frequency fs1 is selected. In the interest of the smallest possible strip width 22, it is inventively advantageous to increase the roof capacity 8 at least two substantially identical periodic conductor structures, as in Figure 3c shown, in parallel with the longitudinal side to each other at a small distance from each other guided virtual strips 21 and to connect the at least two periodic conductor structures 24 conductively connected to the upper end of the rod-shaped monopole 13.

In Analogie zu einer Mäanderstruktur 25 kann in einer vorteilhaften Ausgestaltung der Erfindung die periodische Leiterstruktur 24 der Dachkapazität 8 als im Wesentlichen periodische Dreiecksstruktur mit der Periode 19 gestaltet werden, welche den virtuellen Streifen 21 im Wesentlichen voll ausfüllt, wobei die Streifenlänge 23 etwa 0,8 der Freiraumwellenlänge λs1 und die Streifenbreite 22 etwa 0.15 der Freiraumwellenlänge λs1 betragen kann und der stabförmige Monopol 13 etwa in der Mitte des virtuellen Streifens 21 mit der periodischen Leiterstruktur 24 leitend verbunden ist. In einer ähnlichen Darstellung kann die als Dreiecksstruktur gestaltete periodische Leiterstruktur 24, wie in Figur 4b dargestellt, als Wicklung aus beispielsweise einem Draht oder einer Leiterbahn mit der Periode 19 auf einem dielektrischen plattenförmigen Wickelkörper 28 von der Form des virtuellen Streifens 21 ausgeführt werden.In analogy to a meander structure 25, in an advantageous embodiment of the invention, the periodic conductor structure 24 of the roof capacitance 8 can be designed as a substantially periodic triangular structure with the period 19 which substantially completely fills the virtual stripe 21, the stripe length 23 about 0.8 of the free space wavelength λs1 and the stripe width 22 can be about 0.15 the free space wavelength λs1 and the rod-shaped monopole 13 is conductively connected approximately in the middle of the virtual stripe 21 with the periodic conductor structure 24. In a similar representation, the triangular structure shaped periodic conductor pattern 24, as in FIG. 4b shown as a winding made of, for example, a wire or a conductor track with the period 19 on a dielectric plate-shaped bobbin 28 of the shape of the virtual strip 21 are executed.

In einer beispielhaften, besonders günstigen praktischen Ausführung einer Multiband-Empfangsantenne 1 für den Satellitenfunkdienst SDARS bei der Frequenz fs1 von circa 2,3 GHz und einer Freiraumwellenlänge λs1 = 13cm ist die periodische Leiterstruktur 24 der Dachkapazität 8 als im Wesentlichen periodische Mäanderstruktur mit der Periode 19 gestaltet. Diese füllt den virtuellen Streifen 21 im Wesentlichen voll aus, wobei die Streifenlänge 23 etwa 0,8 der Freiraumwellenlänge λs1 und die Streifenbreite 22 etwa 0,15 der Freiraumwellenlänge λs1 betragen kann und der stabförmige Monopol 13 etwa in der Mitte des virtuellen Streifens 21 mit der periodischen Leiterstruktur 24 leitend verbunden ist. Die Höhe des stabförmigen Monopols 13, welcher die Gesamthöhe der Multiband-Empfangsantenne 1 bestimmt, kann dabei etwa die Hälfte der Freiraumwellenlänge λs1 betragen. Zur Erzeugung einer Resonanz in der Umgebung des FM-Frequenzbandes ist der stabförmige Monopol 13 zur Erhöhung seiner Eigeninduktivität durch eine im Wesentlichen zylindrische Drahtwicklung 35 wie in Figur 2 ausgeführt, welche auf einem stabförmigen dielektrischen Körper aufgewickelt ist.In an exemplary, particularly favorable practical embodiment of a multiband receiving antenna 1 for the satellite radio service SDARS at the frequency fs1 of approximately 2.3 GHz and a free space wavelength λs1 = 13cm, the periodic conductor structure 24 of the roof capacitance 8 is a substantially periodic meander structure with the period 19 designed. This substantially completely fills the virtual stripe 21, wherein the stripe length 23 can be about 0.8 of the free space wavelength λs1 and the stripe width 22 can be about 0.15 of the free space wavelength λs1 and the bar-shaped monopole 13 about in the middle of the virtual stripe 21 with the periodic conductor structure 24 is conductively connected. The height of the rod-shaped monopole 13, which determines the overall height of the multiband receiving antenna 1, can amount to approximately half of the free-space wavelength λs1. For generating a resonance in the vicinity of the FM frequency band, the rod-shaped monopole 13 for increasing its self-inductance by a substantially cylindrical wire winding 35 as in FIG. 2 executed, which is wound on a rod-shaped dielectric body.

Kommt im Fahrzeugbau die Zusatzforderung hinzu, wonach auch die Querabmessung der Antenne strengen Auflagen unterliegt, so kann die periodische Leiterstruktur 24 der Dachkapazität 8 als Mäanderstruktur, wie in Figur 6 dargestellt, in der Weise gestaltet werden, dass beide Schenkel der Mäander auf beiden Seiten der Mittellinie M jeweils um den Neigungswinkel 16 gegenüber dem horizontal liegenden virtuellen Streifen 21 nach unten abgewinkelt sind und die Abmessungen der Mäanderstruktur so gewählt sind, dass deren vertikale Projektion auf den virtuellen Streifen 21 diesen ausfüllt und der Neigungswinkel 16 etwa den Wert von 60° einnimmt.If the additional requirement is added in vehicle construction, according to which the transverse dimension of the antenna is also subject to strict conditions, the periodic conductor structure 24 of the roof capacitance 8 can be used as a meandering structure, as in FIG FIG. 6 shown, are designed in such a way that both legs of the meander on both sides of the center line M respectively by the inclination angle 16 relative to the horizontal lying virtual strips 21 are angled down and the dimensions of the meander structure are chosen so that their vertical projection on the virtual strip 21 fills this and the inclination angle 16 occupies about the value of 60 °.

Figur 4a zeigt die Draufsicht und Figur 7 eine perspektivische Sicht auf eine Multiband-Empfangsantenne 1 nach der Erfindung mit mehreren konzentrisch zueinander orientierten Satellitenantennen. Beispielhaft wird hier vorausgesetzt, dass die innerste der Satellitenantennen 3a bei einer Resonanz auf der Frequenz fs1 mit einer laufenden Leitungswelle, deren Phasenunterschied über einen Umlauf gerade 2π beträgt, betrieben ist, wie sie z. B. für den azimutalen Rundempfang von SDARS-Rundfunksignalen geeignet ist. Eine weitere Satellitenantenne 3b für einen Satellitenfunkdienst mit niedrigerer Sendefrequenz fs2 und einer laufenden Leitungswelle, deren Phasenunterschied über einen Umlauf ebenfalls gerade 2π beträgt, ist zum Beispiel für den Empfang von GPS-Signalen geeignet. FIG. 4a shows the top view and FIG. 7 a perspective view of a multi-band receiving antenna 1 according to the invention with a plurality of concentrically oriented satellite antennas. By way of example, it is assumed here that the innermost of the satellite antennas 3a is operated at a resonance on the frequency fs1 with a current line wave whose phase difference over a revolution is just 2π, as z. B. is suitable for the azimuthal round reception of SDARS broadcast signals. Another satellite antenna 3b for a satellite broadcasting service having a lower transmission frequency fs2 and a traveling line wave whose phase difference over a round trip is also just 2π is suitable for receiving GPS signals, for example.

Konzentrisch zur ersten (innersten) Satellitenantenne 3a mit einer laufenden Leitungswelle, deren Phasenunterschied über einen Umlauf gerade 2π beträgt, ist in Figuren 4a und 7 jeweils eine weitere Satellitenantenne 3b für den Empfang desselben Satellitensignals, jedoch mit einer laufenden Leitungswelle, deren Phasenunterschied über einen Umlauf gerade 4π beträgt, vorhanden. Bei Kombination der Satelliten-Antennenanschlüsse 5a und 5b durch Überlagerung der Empfangssignale der beiden Satellitenantennen 3a, 3b über einen Antennen-Combiner mit einstellbarer Combiner-Phase zu einem gemeinsamen Richtantennen-Anschluss ergibt sich durch Einstellung der Combiner-Phase eine in ihrer azimutalen Hauptrichtung einstellbare Satelliten-Richtantenne. Ergänzt man die Multiband-Empfangsantenne um eine dritte Satellitenantenne 3c, wie es in Figur 4a skizziert ist, so kann diese z. B. zusätzlich für den Empfang eines weiteren Satellitendienstes auf einer anderen Frequenz, wie zum Beispiel für den Empfang von GPS-Signalen, eingesetzt werden.Concentric with the first (innermost) satellite antenna 3a with a traveling line wave whose phase difference over a cycle is just 2π is in FIGS. 4a and 7 in each case a further satellite antenna 3b for receiving the same satellite signal, but with a current line wave whose phase difference over a cycle is just 4π available. When combining the satellite antenna terminals 5a and 5b by superimposing the received signals of the two satellite antennas 3a, 3b via an antenna combiner with adjustable combiner phase to a common directional antenna connection is obtained by setting the combiner phase in their azimuthal main direction adjustable satellite -Richtantenne. Add the multiband receive antenna to a third satellite antenna 3c, as shown in FIG. 4a sketched, so this z. B. in addition to the reception of another satellite service on a different frequency, such as for the reception of GPS signals used.

Diese Beispiele zeigen besonders deutlich die vielseitige Gestaltbarkeit der Multiband-Empfangsantenne für eine Reihe von Satellitenfunkdiensten SDARS, GPS etc. in Verbindung mit terrestrischen Funkdiensten wie zum Beispiel AM/FM, DAB im VHF- und im L-Band, welche durch besondere Ausgestaltung des stabförmigen Monopols 13 einbezogen werden können. Insbesondere bei der Gestaltung einer niedrigen Bauhöhe 29 der Antenne nach der Erfindung zeigt es sich als besonders vorteilhaft, den vertikalen Strahler 4 nach Angaben in der DE 102009037722 A1 zu gestalten. Bei einer Bauhöhe 29 von 15 cm und kleiner wird dort vorgesehen, die auf dem elektrisch isolierenden Rundstab 39 des Monopols 13 aufgebrachte Wicklung 35 zur Erhöhung der Empfangsspannung des Antennenstabs im UKW-Frequenzbereich über eine geeignete Länge - in Figur 8 Überdeckung 30 - kapazitiv zu überdecken. Dies ist, angewandt auf eine Antenne nach der Erfindung, beispielhaft in der Figur 8a perspektivisch und in Figur 8b im Längsschnitt dargestellt. Dort ist der elektrisch isolierende Rundstab 39 als Kunststoff-Stab ausgeführt, welcher in seinem unteren Abschnitt rohrförmig gestaltet ist. Zur kapazitiven Ankopplung an die Wicklung ist in die rohrförmige Öffnung ein elektrisch leitender Rundstab 38 eingeführt, dessen unteres Ende die Monopol-Anschlussstelle 14 bildet. Auf vorteilhafte Weise kann mithilfe der kapazitiven Kopplung dabei die arbeitstechnisch aufwändige galvanische Verbindung der Wicklung mit der Monopol-Anschlussstelle 14 vermieden werden.These examples show particularly clearly the versatility of the multiband receiving antenna for a number of satellite services SDARS, GPS, etc. in connection with terrestrial radio services such as AM / FM, DAB in the VHF and L-band, which by special design of the rod-shaped Monopoly 13 can be included. In particular, in the design of a low overall height 29 of the antenna according to the invention, it is found to be particularly advantageous to the vertical radiator 4 as indicated in the DE 102009037722 A1 to design. With a height 29 of 15 cm and smaller there is provided, applied to the electrically insulating round rod 39 of the monopoly 13 winding 35 to increase the receiving voltage of the antenna rod in the VHF frequency range over a suitable length - FIG. 8 Overlap 30 - capacitively cover. This is exemplary when applied to an antenna according to the invention FIG. 8a in perspective and in FIG. 8b shown in longitudinal section. There, the electrically insulating round rod 39 is designed as a plastic rod, which is designed tubular in its lower portion. For capacitive coupling to the winding, an electrically conductive round rod 38 is inserted into the tubular opening, the lower end of which forms the monopole connection point 14. Advantageously, by means of the capacitive coupling, the industrially complex galvanic connection of the winding to the monopole connection point 14 can be avoided.

Die Erhöhung der Empfangsspannung an der Monopol-Anschlussstelle 14 im UKW-Frequenzbereich durch die oben beschriebenen Maßnahmen lässt sich besonders vorteilhaft nutzen, wenn die der Monopol-Anschlussstelle 14 unmittelbar nachfolgende Antennenschaltung mit hochohmigen aktiven Elementen ausgestattet ist, wie zum Beispiel mit Feldeffekttransistoren mit kleiner Eingangskapazität. Solche Schaltungen sind beispielsweise in der EP 1 246 294 A3 und in der EP 1 406 349 A3 beschrieben.The increase in the received voltage at the monopole connection point 14 in the VHF frequency range by the measures described above can be used particularly advantageously if the monopole connection point 14 immediately following antenna circuit is equipped with high-impedance active elements, such as field effect transistors with small input capacitance , Such circuits are for example in the EP 1 246 294 A3 and in the EP 1 406 349 A3 described.

Auf ähnliche Weise vorteilhaft kann die Verbindung der Leiterwicklung oder Drahtwicklung kapazitiv mit der Monopol-Anschlussstelle 14 mithilfe einer elektrisch leitenden Buchse 41 erfolgen, welche in ihrem Inneren mit einem Kunststoffrohr 40 ausgekleidet ist. In diese ist die auf dem elektrisch isolierenden Rundstab 39 befindliche zylindrische Wicklung 35 mechanisch formschlüssig eingeführt und die Überdeckung 30 ist auf diese Weise hergestellt. Figur 9 zeigt den stabförmigen Monopol 13 mit mäanderförmiger Dachkapazität 8 nach der Erfindung, das elektrisch isolierende Kunststoffrohr 40 und die elektrisch leitende Buchse 41, an deren unterem Ende die Monopol-Anschlussstelle 14 gebildet ist.Similarly advantageously, the connection of the conductor winding or wire winding can be capacitive with the monopole connection point 14 by means of an electrically conductive bushing 41, which is lined in its interior with a plastic tube 40. In this, the cylindrical winding 35 located on the electrically insulating round rod 39 is inserted mechanically positively and the cover 30 is made in this way. FIG. 9 shows the rod-shaped monopole 13 with meandering roof capacity 8 according to the invention, the electrically insulating plastic tube 40 and the electrically conductive socket 41, at the lower end of the monopole connection point 14 is formed.

Um die Stromverteilung auf der Ringleitung der Satellitenantenne 3 durch den in ihrem Zentrum befindlichen stabförmigen Monopol 13 nicht merklich zu stören, ist es vorteilhaft, einen Mindestwert für den Monopol-Ringleitungs-Abstand 37- wie in Figur 9 dargestellt- einzuhalten. Definiert man den lichten Abstand jeweils zwischen zwei azimutal einander gegenüberliegenden Punkten am inneren Rand der Ringleitung als die innere Ringleitungs-Weite 36 und den Abstand zwischen einem solchen Punkt am inneren Rand der Ringleitung und dem dazu nächstliegenden Punkt auf einem elektrischen Leiter des stabförmigen Monopols 13 als Monopol-Ringleitungs-Abstand 37, so sollte dieser Monopol-Ringleitungs-Abstand 37 den Wert von etwa 15 % der betreffenden inneren Ringleitungs-Weite 36 an dieser Stelle nicht unterschreiten. Dieser Abstand sollte für alle azimutalen Richtungen der x-y- Ebene auf der Ringleitung und für alle Raumpunkte x, y, z auf den stabförmigen Monopol 13 eingehalten werden. Insbesondere bei Satellitenantennen für sehr hohe Frequenzen und mit kleiner innerer Ringleitungs-Weite 36 ist es deshalb vorteilhaft, den stabförmigen Monopol 13 an seinem unteren Ende, wie in den Figuren 8a und 8b dargestellt, mit einem entsprechend schlanken elektrisch leitenden Rundstab 38 zur sicheren Einhaltung des geforderten Mindestwerts für den Monopol-Ringleitungs-Abstand 37 auszuführen.In order not to significantly disturb the current distribution on the ring line of the satellite antenna 3 through the rod-shaped monopole 13 located in its center, it is advantageous to set a minimum value for the monopole ring line spacing 37- as in FIG FIG. 9 shown. Defining the clear distance between each two azimuthally opposite points on the inner edge of the loop as the inner loop width 36 and the distance between such a point on the inner edge of the loop and the nearest thereto point on an electrical conductor of the rod-shaped monopole 13 as Monopole ring line distance 37, so this monopole ring gap 37 should not fall below the value of about 15% of the relevant inner loop width 36 at this point. This distance should be observed for all azimuthal directions of the xy plane on the loop and for all points in space x, y, z on the rod-shaped monopole 13. In particular, in satellite antennas for very high frequencies and with a small inner loop width 36, it is therefore advantageous to the rod-shaped monopole 13 at its lower end, as in FIGS. 8a and 8b shown to perform with a correspondingly thin electrically conductive round rod 38 to ensure compliance with the required minimum value for the monopole ring gap 37.

Für die vertikal polarisierten Signale der terrestrischen Funkdienste höherer Frequenzen, wie z. B. GSM 900, GSM 1800, UMTS und DAB L-Band ist es erfindungsgemäß vorteilhaft, den unteren Teil des vertikalen Strahlers 4 als elektrisch leitenden Rundstab 38 entsprechend der Resonanzlänge von zum Beispiel einer Viertelwellenlänge eines der genannten Funkdienste zu gestalten und im oberen Teil des stabförmigen Monopols 13 die auf dem stabförmigen dielektrischen Körper des Monopols 13 aufgebrachte Drahtwicklung 35 in der Weise zu gestalten, dass sich im UKW-Frequenzbereich in Verbindung mit der mäanderförmigen Dachkapazität die oben beschriebene UKW-Resonanz einstellt. Zusätzlich können durch entsprechende Gestaltung der Drahtwicklung 35 auch für die Frequenzen für mehrere der oben genannten Funkdienste höherer Frequenzen Resonanzen realisiert werden. Eine Kombination der Maßnahmen kann auf vorteilhafte Weise dadurch erfolgen, dass der elektrisch leitende Stab 38 für den Funkdienst mit der niedrigsten Frequenz gestaltet ist und die Drahtwicklung 35 im Anschluss an den elektrisch leitenden Stab 38 im oberen Teil mehrere in Abständen unterschiedlich dicht gewickelte Wicklungspakete enthält. Diese bewirken jeweils die Blockierung von Signalen höherer Frequenzen gegenüber dem darüber befindlichen Teil des Monopols. Der Monopol kann somit in der Weise multiresonant gestaltet werden, dass für die unterschiedlichen Wellenlängen der Funkdienstfrequenzen entsprechend lange Strahler wirksam sind mit entsprechenden Resonanz-Impedanzen an der Monopol-Anschlussstelle 14. Alle durch die gesamte Wicklung 35 bewirkten Induktivitäten bilden im Zusammenwirken mit der mäanderförmig Dachkapazität 8 die Resonanz im Bereich der UKW-Frequenzen, wodurch der stabförmige Monopol 13 zusammen mit den konzentrischen Satellitenantennen 3a und 3b eine Multiband-Empfangsantenne nach der Erfindung zum Beispiel für die sechs Funkdienste AM, FM, DAB-VHF, DAB-L und die Satelliten-Funkdienste SDARS und GPS bilden kann.For the vertically polarized signals of terrestrial radio services higher frequencies such. B. GSM 900, GSM 1800, UMTS and DAB L-band, it is inventively advantageous to make the lower part of the vertical radiator 4 as an electrically conductive round rod 38 corresponding to the resonance length of, for example, a quarter wavelength of one of the above radio services and in the upper part of the rod-shaped monopole 13 to the applied on the rod-shaped dielectric body of the monopole 13 applied wire winding 35 in such a way that adjusts the VHF resonance described above in the VHF frequency range in conjunction with the meandering roof capacity. In addition, by appropriate design of the wire winding 35, resonances can also be realized for the frequencies for a plurality of the radio services of higher frequencies mentioned above. A combination of the measures can be advantageously carried out in that the electrically conductive rod 38 is designed for the radio service with the lowest frequency and the wire winding 35 in the upper part of the electrically conductive rod 38 contains a plurality of spaced closely wound winding packages. These each cause the blocking of signals higher frequencies relative to the overlying part of the monopoly. The monopole can thus be designed multiresonant in such a way that for the different wavelengths of the radio service frequencies correspondingly long radiators are effective with corresponding resonance impedances at the monopole junction 14. All induced by the entire winding 35 inductances form in cooperation with the meandering roof capacity 8, the resonance in the range of the FM frequencies, whereby the rod-shaped monopole 13 together with the concentric satellite antennas 3a and 3b, a multi-band receiving antenna according to the invention, for example for the six radio services AM, FM, DAB-VHF, DAB-L and the satellites Radio services SDARS and GPS can form.

Liste der BezeichnungenList of terms

  • Multiband-Empfangsantenne 1Multiband receiving antenna 1
  • Ringleitungsstrahler 2Ring line radiator 2
  • erste Satellitenempfangsantenne 3afirst satellite receiving antenna 3a
  • zweite Satellitenempfangsantenne 3bsecond satellite receiving antenna 3b
  • vertikale Strahler 4, 4a, 4b, 4c, 4d, 4evertical radiators 4, 4a, 4b, 4c, 4d, 4e
  • Satelliten-Antennenanschluss 5, 5a, 5bSatellite antenna connection 5, 5a, 5b
  • leitende Grundfläche 6conductive base 6
  • Ringleitungs-Koppelpunkte 7,7a,7b,7c,7dRing line coupling points 7,7a, 7b, 7c, 7d
  • mäanderförmige Dachkapazität 8meandering roof capacity 8
  • Abstand (Höhe) 9Distance (height) 9
  • flächige Dachkapazität 10flat roof capacity 10
  • Masse-Anschlusspunkt 11Ground connection point 11
  • stabförmiger Monopol 13rod-shaped monopole 13
  • Monopol-Anschlussstelle 14Monopoly connection point 14
  • Elektroden 15, 15a, 15b 15c, 15dElectrodes 15, 15a, 15b 15c, 15d
  • Neigungswinkel 16Inclination angle 16
  • drahtförmiger Leiter 17wire-shaped conductor 17
  • Schwingweite18Schwingweite18
  • Periode 19Period 19
  • unteres Stabende 20lower end of rod 20
  • virtueller Streifen 21virtual strip 21
  • Streifenbreite 22Strip width 22
  • Streifenlänge 23Strip length 23
  • periodische Leiterstruktur 24periodic conductor structure 24
  • Mäanderstruktur 25Meander structure 25
  • Dreieckstruktur 26Triangular structure 26
  • oszillierende Leiterstruktur 27oscillating conductor structure 27
  • plattenförmiger Wickelkörper 28plate-shaped winding body 28th
  • Antennen-Bauhöhe 29Antenna height 29
  • Überdeckung 30Overlap 30
  • Kapazitätselektrode 32a, 32b, 32c, 32dCapacitance electrode 32a, 32b, 32c, 32d
  • Wicklung 35Winding 35
  • innere Ringleitungs-Weite 36inner loop width 36
  • Monopol-Ringleitungs-Abstand 37Monopole ring gap 37
  • elektrisch leitender Rundstab 38electrically conductive round rod 38
  • elektrisch isolierender Rundstab 39electrically insulating round rod 39
  • Kunststoffrohr 40Plastic tube 40
  • elektrisch leitende Buchse 41electrically conductive socket 41
  • gestreckte Länge des Ringleitungsstrahlers Lelongated length of the ring line radiator L
  • zentrale Linie Zcentral line Z
  • Längs-Mittellinie MLongitudinal midline M
  • λs1 Freiraumwellenlänge des 1. Satellitenfunkdienstesλs1 free space wavelength of the first satellite service
  • fs1 Sendefrequenz des 1. Satellitenfunkdienstes (höchste Frequenz)fs1 transmission frequency of the 1st satellite service (highest frequency)

Claims (15)

  1. Multiband reception antenna (1) for the combined reception of circularly polarised satellite radio signals by means of a satellite radio service which emits with circular polarisation, and of terrestrially emitted radio signals, over a substantially horizontal conductive base (6) as earth, having at least one satellite reception antenna (3) with satellite antenna terminal (5) assigned to the at least one satellite radio service with transmitting frequency fs1 and free-space wavelength λs1, and a monopole antenna with separate monopole connection point (14) which receives radio signals emitted terrestrially with linear polarisation,
    characterised by the following characteristics:
    - the at least one satellite reception antenna (3) includes a loop emitter (2) which is rotationally symmetrical relative to its centre Z and which, due to a polygonal or circular closed loop of developed length L, is designed to run in a plane parallel to the conductive base (6) having a height (9) of less than λs1/8 above the conductive base (6),
    - over the circumference of the length (L) of the loop emitter (2) of the satellite reception antenna (3), several (N) vertical emitters (4) running towards the conductive base (6) are connected to the loop emitter (2) via loop connection points (7) spaced apart from each other at developed length intervals (L/N) of the structure having equal length;
    - the loop emitter (2) is excited via at least one of the vertical emitters (4), between the lower end of which and the conductive base (6) the satellite antenna terminal (5) is formed, wherein the at least one satellite reception antenna (3) is circularly polarised;
    - the other vertical emitters (4) are each connected to the conductive base (6) at their lower end via a capacitance (15b, 15c, 15d) at an earth connection point (11);
    - the monopole antenna includes a substantially rod-shaped monopole (13) which is oriented vertically to the conductive base (6) and runs through the centre Z of the loop emitter (2) and at the lower end of which, together with the conductive base (6), the monopole connection point (14) is formed for decoupling the radio signals emitted with linear polarisation;
    - conductively connected to the upper end of the rod-shaped monopole (13), to form its roof capacitance (8), is a substantially periodic conductor structure (24) of period (19) and amplitude (18) which is formed from a conductor (17) and propagates in oscillating relationship about a substantially horizontally oriented longitudinal centre line M;
    - both the period (19) and the amplitude (18) are smaller than half the free-space wavelength λs1 of the satellite radio service with transmitting frequency fs1.
  2. Multiband reception antenna according to claim 1, characterised in that the longitudinal centre line M provides the centre line of an elongate virtual strip (21) of strip length (23) and strip width (22) which is oriented substantially horizontally relative to its surface, wherein the substantially periodic conductor structure (24) is designed to run substantially in the surface of this strip (21), so that in plan view the substantially periodic conductor structure (24) of amplitude (18) is disposed within the edge of the strip (22) and substantially fills the latter.
  3. Multiband reception antenna according to claim 2, characterised in that the strip length (23) is at least three times as great as the strip width (22), and in that the strip width (22) is not greater than 3/8 of the free-space wavelength λs1 and the period (19) is not greater than 1/4 of the free-space wavelength λs1 of the satellite radio service with the highest frequency fs1.
  4. Multiband reception antenna according to any of claims 1 to 3, characterised in that the periodic conductor structure (24) of the roof capacitance (8) is designed as a substantially periodic meander structure of period (19) which substantially completely fills a virtual strip (21), wherein the strip length (23) can be approximately 0.8 of the free-space wavelength λs1 and the strip width (22) approximately 0.15 of the free-space wavelength λs1, and the rod-shaped monopole (13) is conductively connected to the periodic conductor structure (24) approximately at the centre of the virtual strip (21).
  5. Multiband reception antenna according to any of claims 1 to 4, characterised in that the periodic conductor structure (24) of the roof capacitance (8) is designed as a meander structure, wherein in each case one arm of the meander structure on both sides of the longitudinal centre line M is angled downwards about an angle of inclination (16) relative to the horizontal virtual strip (21), and the dimensions of the meander structure are selected so that its vertical projection onto the virtual strip (21) fills the latter, wherein the angle of inclination (16) in particular approximately assumes a value of 60°.
  6. Multiband reception antenna according to any of claims 1 to 5, characterised in that, to increase the roof capacitance (8), at least two substantially identical periodic conductor structures (24), with the longitudinal sides parallel to each other and at a short distance from each other, are disposed in a virtual strip (21), and the at least two periodic conductor structures (24) are conductively connected to the upper end of the rod-shaped monopole (13).
  7. Multiband reception antenna according to any of claims 1 to 6, characterised in that the periodic conductor structure (24) of the roof capacitance (8) is designed as a substantially periodic triangle structure of period (19) which substantially completely fills a virtual strip (21), wherein the strip length (23) can be approximately 0.8 of the free-space wavelength λs1 and the strip width (22) approximately 0.15 of the free-space wavelength λs1, and the rod-shaped monopole (13) is conductively connected to the periodic conductor structure (24) approximately at the centre of the virtual strip (21).
  8. Multiband reception antenna according to any of claims 1 to 7, characterised in that the periodic conductor structure (24) designed as a triangle structure is constructed as a winding of period (19) on a dielectric plate-shaped winding reel (28) having the shape of a strip (21).
  9. Multiband reception antenna according to any of claims 1 to 8, characterised in that the rod-shaped monopole (13), to increase its self-inductance, is provided by a substantially cylindrical winding (35) which is wound on a rod-shaped dielectric body.
  10. Multiband reception antenna according to any of claims 1 to 9, characterised in that the satellite antenna terminal (5) is not formed between the lower end of a vertical emitter and the conductive base (6), and in that the other vertical emitters (4) at their lower ends are not connected to the conductive base (6) in each case via a capacitance (15b, 15c, 15d) at an earth connection point (11), but in that, instead, on the conductive base (6) there is a distribution and phase network which is connected on the input side to the satellite antenna terminal (5), wherein the vertical emitters (4) are in each case excited via one of the outputs of the distribution and phase network with corresponding phases, so that a continuous electromagnetic wave occurs on the loop emitter (2) in such a way that circular polarisation of the satellite reception antenna (3) is provided.
  11. Multiband reception antenna according to any of claims 1 to 10, characterised in that the capacitances (15a, 15b, 15c, 15d), which differ in their capacitance value, are formed by the fact that the vertical emitters (4) at their lower ends are formed into individually shaped, planar capacitance electrodes (32a, 32b, 32c, 32d), and the capacitances (15a, 15b, 15c) are designed for coupling three vertical emitters (4a, 4b, 4c) to the electrically conductive base (6), and for capacitively coupling the fourth vertical emitter (4d) to the antenna terminal (5) the latter is designed as a planar counter-electrode (34) insulated from the conductive base (6).
  12. Multiband reception antenna according to any of claims 1 to 11, characterised in that, concentrically with the at least one satellite antenna (3a) with a continuous conduction wave of which the phase difference over one revolution is exactly 2π, there is at least one additional satellite antenna (3b, 3c) each for one satellite radio service with a lower transmitting frequency fs2 or fs3 (and therefore fs3 is less than fs2) and in each case a continuous conduction wave of which the phase difference over one revolution is also exactly 2π, and the satellite antennas (3a, 3b, 3c) are designed in particular according to the above claims.
  13. Multiband reception antenna according to any of claims 1 to 12, characterised in that, concentrically with the at least one satellite antenna (3a) with a continuous conduction wave of which the phase difference over one revolution is exactly 2π, there is at least one additional satellite antenna (3c) for the reception of the same satellite signal, but with a continuous conduction wave of which the phase difference over one revolution is exactly 4π, and the satellite antenna terminals (5) are combined into a joint directional antenna terminal for superimposing the reception signals of the two satellite antennas (3a, 3c) by means of an antenna combiner with adjustable combiner phase, so that by adjusting the combiner phase there is provided a directional antenna of which the main azimuthal direction is adjustable.
  14. Multiband reception antenna according to any of claims 1 to 13, characterised in that, for one of the terrestrial radio services with vertically polarised signals of higher frequencies - e.g. GSM900, GSM1800, UMTS and DAB L-band - the lower portion of the monopole antenna is designed as an electrically conductive rod (38) according to the resonant length of a quarter wavelength of the radio service concerned, and the monopole antenna in its upper portion is formed by a winding (35) in such a way that resonance is provided in the VHF frequency range in conjunction with the meander-shaped roof capacitance (8).
  15. Multiband reception antenna according to claim 14, characterised in that the monopole antenna is designed for several of the named terrestrial radio services, and the electrically conductive rod (38) is designed for the terrestrial radio service with the highest frequency, and the winding (35) in connection with the electrically conductive rod (38) in the upper portion of the monopole antenna has several winding packets wound at intervals with different density for separating signals of respectively higher frequencies from the portion of the monopole antenna located thereabove, so that for the different wavelengths of the radio service frequencies, correspondingly long emitters are operative with corresponding resonance impedances at the monopole connection point (14).
EP12711563.2A 2011-03-15 2012-03-15 Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals Active EP2664025B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011013990 2011-03-15
DE102012003460A DE102012003460A1 (en) 2011-03-15 2012-02-22 Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals
PCT/EP2012/001174 WO2012123125A1 (en) 2011-03-15 2012-03-15 Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals

Publications (2)

Publication Number Publication Date
EP2664025A1 EP2664025A1 (en) 2013-11-20
EP2664025B1 true EP2664025B1 (en) 2015-03-04

Family

ID=46756964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12711563.2A Active EP2664025B1 (en) 2011-03-15 2012-03-15 Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals

Country Status (5)

Country Link
US (1) US9553365B2 (en)
EP (1) EP2664025B1 (en)
CN (1) CN103403961B (en)
DE (1) DE102012003460A1 (en)
WO (1) WO2012123125A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181207A1 (en) * 2012-05-29 2013-12-05 Aereo, Inc. Three dimensional antenna array system with troughs
DE102013005001A1 (en) * 2013-03-24 2014-09-25 Heinz Lindenmeier Broadband monopole antenna for two frequency bands separated by a frequency gap in the decimeter wave range for vehicles
US20160043472A1 (en) * 2014-04-28 2016-02-11 Tyco Electronics Corporation Monocone antenna
US9692136B2 (en) * 2014-04-28 2017-06-27 Te Connectivity Corporation Monocone antenna
DE102014013926A1 (en) * 2014-09-21 2016-03-24 Heinz Lindenmeier Multi-structure broadband monopole antenna for two frequency bands separated by a frequency gap in the decimeter wave range for vehicles
EP3419109B1 (en) 2016-02-19 2022-09-21 Yokowo Co., Ltd Antenna device
US9871303B2 (en) 2016-05-25 2018-01-16 International Business Machines Corporation Multi-frequency, multi-radiation angle, multi-polarization and multi-pattern communication antenna
DE102017003072A1 (en) * 2017-03-30 2018-10-04 Heinz Lindenmeier Antenna for receiving circularly polarized satellite radio signals for satellite navigation on a vehicle
GB2561408A (en) * 2017-04-10 2018-10-17 Cirrus Logic Int Semiconductor Ltd Flexible voice capture front-end for headsets
CN110264880B (en) * 2018-07-10 2021-07-20 友达光电股份有限公司 Wireless display panel with multi-channel data transmission
CN110890634A (en) * 2018-09-11 2020-03-17 三美电机株式会社 Antenna device and method for manufacturing the same
US10770796B2 (en) 2018-09-24 2020-09-08 Mitsumi Electric Co., Ltd. Antenna device and method for manufacturing antenna device
EP3629418A1 (en) * 2018-09-25 2020-04-01 Mitsumi Electric Co., Ltd. Antenna device and method for manufacturing antenna device
US10943417B2 (en) * 2018-10-12 2021-03-09 Denso International America, Inc. Passive entry/passive start access systems including round trip time sniffing
CN111900528A (en) * 2020-03-25 2020-11-06 合肥若森智能科技有限公司 Short wave communication antenna and vehicle-mounted antenna
CN114899612B (en) * 2022-05-16 2023-05-30 南昌大学 Circularly polarized airborne detection antenna based on double-row periodic arrangement
DE102022132788A1 (en) 2022-12-09 2024-06-20 Fuba Automotive Electronics Gmbh Satellite antenna

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077923A (en) * 1998-09-01 2000-03-14 Nippon Antenna Co Ltd On-vehicle antenna
DE10163793A1 (en) 2001-02-23 2002-09-05 Heinz Lindenmeier Antenna for mobile satellite communication in vehicle, has positions of impedance connection point, antenna connection point, impedance coupled to impedance connection point selected to satisfy predetermined condition
DE10114769B4 (en) 2001-03-26 2015-07-09 Heinz Lindenmeier Active broadband antenna
US6559804B2 (en) 2001-09-28 2003-05-06 Mitsumi Electric Co., Ltd. Electromagnetic coupling type four-point loop antenna
US6816122B2 (en) * 2002-01-29 2004-11-09 Mitsumi Electric Co., Ltd. Four-point feeding loop antenna capable of easily obtaining an impedance match
US20040196203A1 (en) * 2002-09-11 2004-10-07 Lockheed Martin Corporation Partly interleaved phased arrays with different antenna elements in central and outer region
DE10245813A1 (en) 2002-10-01 2004-04-15 Lindenmeier, Heinz, Prof. Dr.-Ing. Active broadband reception antenna with reception level control
DE10304911B4 (en) * 2003-02-06 2014-10-09 Heinz Lindenmeier Combination antenna arrangement for multiple radio services for vehicles
DE102004035064A1 (en) 2004-07-20 2006-02-16 Receptec Gmbh antenna module
DE102008003532A1 (en) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenna for satellite reception
DE102008043632A1 (en) 2008-11-11 2010-05-12 Robert Bosch Gmbh Antenna device and motor vehicle with an antenna device
DE102009011542A1 (en) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals
DE102009037722A1 (en) 2009-08-17 2011-02-24 Heinz Prof. Dr.-Ing. Lindenmeier Antenna rod for a rod antenna for several radio services

Also Published As

Publication number Publication date
CN103403961A (en) 2013-11-20
US9553365B2 (en) 2017-01-24
US20140002319A1 (en) 2014-01-02
DE102012003460A1 (en) 2012-09-20
CN103403961B (en) 2015-04-22
EP2664025A1 (en) 2013-11-20
WO2012123125A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
EP2664025B1 (en) Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals
EP2256864B1 (en) Antenna for circular polarisation with a conductive base
EP2458679B1 (en) Antenna for receiving circular polarised satellite radio signals
DE102007055323B4 (en) Finned multiband antenna module for vehicles
DE69608132T2 (en) SLOT SPIRAL ANTENNA WITH INTEGRATED SYMMETRICAL DEVICE AND INTEGRATED LEAD
EP1842262B1 (en) Aperture-coupled antenna
EP3440738B1 (en) Antenna device
DE102005010894B4 (en) Planar multiband antenna
DE69512831T2 (en) antenna
EP2592691B1 (en) Receiver antenna for circular polarised satellite radio signals
DE102008003532A1 (en) Antenna for satellite reception
DE10150149A1 (en) Antenna module for automobile mobile radio antenna has antenna element spaced above conductive base plate and coupled to latter via short-circuit path
DE102008007258A1 (en) Multi-band antenna and mobile communication terminal, which has these
EP2693565B1 (en) Electrical radiator for vertically polarised radio signals
DE10304911A1 (en) Combination antenna arrangement for several radio services for vehicles
DE102014013926A1 (en) Multi-structure broadband monopole antenna for two frequency bands separated by a frequency gap in the decimeter wave range for vehicles
DE102007055327B4 (en) External multi-band radio antenna module
EP3474374B1 (en) Antenna system for circular polarised satellite radio signals on a vehicle
DE102005030631B3 (en) Motor vehicle antenna for e.g. terrestial mobile radio, has discone/cone antenna with electrically conductive surface formed according to type of cone or triangle or trapezoid, where surface is aligned transverse to base/measuring surface
EP3483983A1 (en) Receiving antenna for satellite navigation on a vehicle
DE102022109407A1 (en) Antenna element for wireless communication
EP2034557A2 (en) Antenna for satellite reception
EP2546925B1 (en) Antenna module
EP4383460A2 (en) Satellite antenna
DE112013003272B4 (en) Inverted F-type antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 714565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002428

Country of ref document: DE

Effective date: 20150416

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150604

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150605

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002428

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150315

26N No opposition filed

Effective date: 20151207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120315

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 714565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200318

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230526

Year of fee payment: 12