EP2658032B1 - Cornet d'antenne à grille corruguée - Google Patents

Cornet d'antenne à grille corruguée Download PDF

Info

Publication number
EP2658032B1
EP2658032B1 EP13165474.1A EP13165474A EP2658032B1 EP 2658032 B1 EP2658032 B1 EP 2658032B1 EP 13165474 A EP13165474 A EP 13165474A EP 2658032 B1 EP2658032 B1 EP 2658032B1
Authority
EP
European Patent Office
Prior art keywords
axis
corrugations
waveguide
along
waveguide according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13165474.1A
Other languages
German (de)
English (en)
Other versions
EP2658032A1 (fr
Inventor
Michaël Jardin
Claude Labourdette
Thierry Judasz
Bruno Benoist
Olivier Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2658032A1 publication Critical patent/EP2658032A1/fr
Application granted granted Critical
Publication of EP2658032B1 publication Critical patent/EP2658032B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/028Means for reducing undesirable effects for reducing the cross polarisation

Definitions

  • the invention relates to a horn radiating a radio wave, coming from an input waveguide, comprising a gate disposed at the opening of the horn. It applies in particular to the field of reflector antennas.
  • the invention also relates to a satellite antenna provided with this horn.
  • an antenna for transmitting and receiving an electromagnetic wave can be achieved by associating a waveguide with a radiating element which can, for example, take the form of a horn.
  • a waveguide in the shape of a horn, more simply called a horn has a rectangular cross section (ie perpendicular to the direction of propagation of the wave) that grows progressively towards the opening.
  • Such a waveguide makes it possible to favor the propagation, along its longitudinal axis, of an electromagnetic wave polarized along an axis orthogonal to the longitudinal axis of the horn.
  • the electric field of the electromagnetic wave can be decomposed into a component parallel to the smaller-dimension sides of the aperture, and into a component parallel to the larger-dimension sides of the aperture.
  • the first component is called the main component or the co-polarization component.
  • the other component is called the cross-polarization component.
  • One solution is to have a grid at the opening of the horn.
  • a grid is generally made of a metallic material, for example aluminum. It is formed of a set of blades arranged parallel to the longer sides of the opening of the waveguide. The grid makes it possible to let the copolarization component pass through and to filter the cross-polarization component of an electromagnetic wave.
  • a relatively directional horn for example with a gain greater than 25 dBi, equipped with a grid, it is possible to obtain a cross-polarization component whose amplitude is approximately 40 to 45 dB below the amplitude of the co-polarization component.
  • the effectiveness of the filtering decreases very clearly or completely when the horn is less directive. That is in particular the case for the test horns used for the microwave deaf chambers.
  • the filtering is effective only on a weak band of frequencies.
  • An object of the invention is in particular to provide a horn having improved filtering properties of the cross-polarization component of the electric field of an electromagnetic wave, both in terms of amplitude of the cross-polarization component and in terms of bandwidth.
  • the subject of the invention is a waveguide comprising a horn-shaped section, an inlet, an opening and a gate disposed in the vicinity of the opening, at least one linearly polarized electromagnetic wave being suitable propagating between the inlet and the opening along a first axis; the grid having a frame surrounding a plurality of blades extending longitudinally and continuously from a first small side of the frame to a second small side of the frame, so as to form a linear polarization filter attenuating the cross-polarization component of the electric field of the electromagnetic wave, said cross-polarization component being orthogonal to a second axis orthogonal to the first axis.
  • the blades comprise corrugations sized and positioned to enhance the attenuation of said cross-polarization component.
  • the invention has the particular advantage of being able to adapt to any type of horn, including pyramidal horns and trifurcated, better known under the name Anglo-Saxon "trifurcated homs". These cones are relatively light, and relatively simple to design and manufacture. Compared to a corrugated horn, a pyramidal or trifurcated cornet has a diminished mass of about half. Also, the invention has the advantage of improving the stationary wave ratio and the gain of the horn.
  • the invention can be used in test equipments of radiofrequency deaf chambers to thereby provide more accurate and reliable measurement results on the cross-polarization levels and the orientation of the main bias of the tested equipment. With better cross-polarization levels and thanks to its simplicity of manufacture and its favorable mass, it will also be possible to use the invention for satellite antenna applications.
  • the corrugations consist for example of rectangular slots open in the opposite direction to the entrance of the waveguide.
  • the corrugations have dimensions that vary according to their position along the direction in which the blades extend longitudinally between the first and second short sides of the frame, as a function of the frequency of the electric field of the electromagnetic wave presenting locally. the greatest amplitude at the level of the respective corrugations. Filtering can thus be optimized over a wide frequency band.
  • the depth of the slots is, for example, substantially equal to a quarter of the wavelength corresponding to the frequency of the electric field having locally the greatest amplitude at the respective slots, and being oriented substantially along the second axis.
  • the depth of the slots is, in another example, substantially equal to one quarter of the wavelength corresponding to a frequency of an operating frequency band of the waveguide, the electromagnetic wave emitted on said frequency band of operation having an electric field oriented substantially along the second axis.
  • the higher the frequency the smaller the width of the slots.
  • the difference between two adjacent corrugations according to the direction in which the blades extend longitudinally is substantially equal to one quarter of the wavelength corresponding to the frequency of the electric field of the electromagnetic wave locally having the greatest amplitude at the respective slots.
  • the difference between two adjacent corrugations according to the direction in which the blades extend longitudinally is alternatively substantially equal to a quarter of the wavelength corresponding to a frequency of an operating frequency band of the waveguide, the electromagnetic wave emitted on said operating frequency band having an electric field oriented essentially according to the second axis.
  • the frame in order to optimize the attenuation, includes corrugations.
  • the frame in order to optimize the attenuation, comprises corrugations extending over the entire thickness of at least one side of the frame in a direction perpendicular to the first axis.
  • the frame comprises corrugations extending over the entire thickness of at least one side of the frame along the second axis and / or corrugations extending over the entire thickness of at least one side of the frame according to a third axis orthogonal to the first axis and the second axis.
  • the corrugations are aligned in sets along the second axis, the corrugations of the same set having identical dimensions.
  • the gate is disposed at a non-zero distance from the opening of the waveguide along the first axis.
  • the waveguide may comprise at least one additional gate, the gates being spaced two by two along the first axis by a distance between the corresponding wavelength substantially at a central frequency of an operating frequency band of the waveguide, and the eighth of this wavelength.
  • One or more of the additional grids may be placed parallel to the grid disposed in the vicinity of the opening.
  • one or more of the additional grids may each include corrugations.
  • Each additional grid may be substantially identical to the grid disposed in the vicinity of the opening.
  • the grid comprises a frame substantially conforming to the periphery of the opening of the waveguide, the frame comprising projecting portions extending in a plane orthogonal to the first axis.
  • the protruding parts form for example a sawtooth profile.
  • the protruding portions may extend inwardly and / or outwardly of the frame.
  • the blades extend longitudinally in a direction substantially parallel to a third axis orthogonal to the second axis and orthogonal to the first axis.
  • the blades extend longitudinally in a direction forming, with a third axis orthogonal to the second axis and orthogonal to the first axis, an angle of between 0.05 ° and 5 ° around the first axis. .
  • the waveguide is intended to operate over an operating frequency band
  • the blades have a height along the axis z substantially equal to half a wavelength corresponding to a frequency included in the band of operating frequencies of the waveguide.
  • the invention also relates to a satellite antenna comprising a waveguide as described above.
  • the subject of the invention is a method for testing a radio frequency equipment in which a waveguide as described above is used.
  • f 0 is the center frequency of the operating frequency band of an antenna
  • C 0 is the speed of light in the propagation medium considered
  • f 0 is the central frequency of the electric fields of the electromagnetic waves emitted on the operating band of the antenna. These electric fields are, even before their arrival on the grid, oriented essentially along the y axis
  • the figure 1 is a perspective view of an exemplary horn-shaped waveguide for a reflector antenna.
  • the waveguide is often called a horn in reference to its shape.
  • the horn 10 comprises a first section 11 with a rectangular cross section (in the xy plane) and a second section 12 with a rectangular transverse section that regularly increases between the inlet 13 and the opening 14, that is to say according to its longitudinal axis z. For a given cross section, the largest dimension of this section is oriented along the x-axis, while the smaller dimension is oriented along the y-axis.
  • the inlet 13 is generally connected to a rectangular waveguide, not shown, of the same cross section as that of the section 11.
  • the horn 10 comprises a grid 15 disposed in the vicinity of the opening 14.
  • the grid 15 comprises a frame 150 substantially around the periphery of the opening 14, and a set blades 151, 152 and 153.
  • the frame supports the blades.
  • the blades 151-153 extend longitudinally and continuously along the x-axis from a first short side of the frame 150 to a second small side of the frame. This characteristic is essential to be able to attenuate the cross-component of the electric field of any wave emitted within the waveguide whatever its position on the grid.
  • first small side 150a and the second small side 150b extend longitudinally parallel to the y axis.
  • the frame also includes a first major side 150c and a second major side 150d orthogonal to the sides 150a, 150b.
  • the frame is rectangular.
  • the two short sides of the frame are the two smaller sides of the frame, and two long sides of the frame are the two largest sides of the frame.
  • the blades 151-153 are arranged parallel to the xz plane on the embodiments of the figures. They are arranged to allow the passage of an electromagnetic wave whose electric field is polarized along the y-axis and the filtering of any electromagnetic wave whose electric field is not polarized along the y-axis.
  • the gate 15 thus forms a linear polarization filter of axis y. By filtering is meant attenuation of the amplitude of the electric field.
  • the gate 15 attenuates in particular the so-called cross-polarization component of the electric field of an electromagnetic wave, that is to say the component oriented along the x axis.
  • the geometric properties of the gate 15 are essentially determined according to the operating frequency band of the antenna.
  • the geometric properties having the most significant impact on the electromagnetic properties of the grid are the height of the grid 15 and the gap between the adjacent blades, as well as between the outer blades 151 and 153 and the inner edge of the frame
  • the height of the grid 15 along the z axis is substantially equal to half the wavelength ⁇ 0 ( ⁇ 0/2 ).
  • the gap between two adjacent blades, and between the outer blades 151 and 153 and the inner edge of the frame 150 is preferably substantially equal to one quarter of the wavelength ⁇ 0 ( ⁇ 0/4 ).
  • Other geometrical properties have a secondary influence on the electromagnetic properties of the horn 10. These include the position of the grid 15 with respect to the opening 14.
  • the grid 15 is placed at a distance from the plane xy of the opening 14 substantially zero.
  • the thickness of the frame 150 along the x and y axes and that of the blades 151-153 along the y axis have little influence on the performance of the grid 15.
  • the thickness of the blades 151-153 depends directly on the dimension the opening 14 of the horn along the y axis, the number of blades and the gap between blades.
  • the thickness of the blades 151-153 can be very small. However, the blades 151-153 must be sufficiently thick to be manufacturable and to ensure their mechanical strength. For example, the thickness of the blades may be substantially equal to 1 mm.
  • the thickness of the frame 150 is essentially determined so as to withstand the mechanical stresses experienced by the horn 10. In particular, the blades 151-153 being of relatively small thickness, the thickness of the frame 150 must be sufficient to avoid twisting. blades 151-153.
  • the thickness of the frame 150 is for example between 2 and 10 mm.
  • the figure 2 represents, in a perspective view, an exemplary embodiment of a horn according to the invention.
  • the horn 20 is different from the horn 10 of the figure 1 by its gate 21.
  • the grid 21 also comprises a frame 210 disposed in the vicinity of the opening 14 of the horn 20, and a set of blades 211, 212 and 213 arranged parallel to the plane xz on the embodiments of the figures.
  • the frame supports the blades.
  • the blades 211-213 extend longitudinally between the two sides of the frame 150. Specifically, the blades extend longitudinally and continuously from a first small side 250a of the frame to a second small side 250b of the frame 250.
  • first side 250a and the second side 250b extend longitudinally parallel to the y axis.
  • the frame also includes a first large side 250c and a second large side 250d.
  • the sides 250c and 250d are orthogonal sides 250a, 250b, the frame being rectangular on the figure 2 .
  • the geometrical properties of the grid 21 are determined identically to those of the grid 15 of the figure 1 .
  • the gate 21 differs from the gate 15 in that it comprises corrugations 22.
  • the gate 21 is said corrugated.
  • the corrugations 22 consist for example of slots, notches or crenellations. Mechanically, they can be likened to grooves made along the y-axis on the outer face of the frame 210 and / or blades 211-213. By external face is meant the surface oriented in the opposite direction to the inlet 13 of the horn 20.
  • Corrugations 22 advantageously have a rectangular shape or U in a plane xz. In practice, the corrugations 22 can be performed both by machining and by molding the gate 21.
  • the corrugations 22 improve the attenuation of the amplitude of any non-polarized electric field along the y axis with respect to a simple grid such as that grid 15 of the figure 1 .
  • they make it possible to improve the filtering, that is to say the attenuation of the cross-polarization components of the electric fields of the electromagnetic waves emitted in the operating frequency band of the waveguide. This means that the filtering will be better, and more uniform, in the operating frequency band of the waveguide.
  • They also make it possible to achieve cross-component attenuation over a wider frequency band than the attenuation device of the figure 1 .
  • the electric fields of the electromagnetic waves emitted in the waveguide are preferably oriented substantially in the y direction even before the passage of the gate.
  • the passage of the grid further improves this orientation by limiting the cross-polarization components.
  • the electric fields at the output of the waveguide are therefore necessarily oriented substantially along the y direction.
  • the strengthening of the attenuation of the electromagnetic waves whose electric field is not polarized along the y axis, in particular the attenuation of the cross-polarization components, is obtained by the geometric properties of the corrugations 22, namely by their dimensions and their positioning. These geometric properties of corrugations 22 are determined according to the operating frequency band of the antenna. The geometric properties having the most significant impact on the electromagnetic properties of the grid are the depth of the corrugations and the difference between adjacent corrugations along the x axis. The depth of a corrugation 22 is defined as the distance along the z axis between, on the one hand, the outer surface of the frame 210 or blades 211-213 and, on the other hand, the bottom of the slot 22 considered .
  • the depth of the corrugations is advantageously dimensioned in "quarter wave trap". In other words, it is substantially equal to a quarter of the wavelength ⁇ 0 ( ⁇ 0/4 ).
  • the signals at low frequencies tend to disperse more on the edges of the grid than in the center, while the higher frequency signals are more directional and therefore focus more in the center of the grid. This property can be used to dedicate different parts of the grid to the filtering of particular distinct frequencies. In the example of the figure 2 , four particular frequencies are considered. Each particular frequency corresponds to a wavelength and is associated with a set of corrugations 22.
  • each particular frequency thus gives a distinct depth of corrugation from the others.
  • the dimensions of the corrugations vary between the first side 250a and the second side 250b of the frame. Since the operation of the horn 20 is symmetrical with respect to the plane yz, the corrugations 22 can be made symmetrically with respect to the plane yz passing through the center of the grid.
  • a first set 221 of corrugations 22 is made on the frame 210 and the blades 211-213 so that the corrugations are aligned along the y axis passing through the center of the larger sides of the frame 210, sets of corrugations 222A-222B, 223A-223B, and 224A-224B being made symmetrically on either side of the first assembly 221.
  • the difference between adjacent corrugations along the x axis constitutes the main criterion for optimizing the filtering character of the corrugations 22
  • the difference between two adjacent corrugations 22 is defined as the distance along the x axis between the contiguous edges of these corrugations 22 or, if appropriate, between the edge
  • this difference can also be defined as the distance between the centers of the corrugations.
  • the difference between adjacent corrugations 22 is advantageously substantially equal to one quarter of the wavelength ⁇ 0 ( ⁇ 0/4 ).
  • ⁇ 0/4 the difference between the corrugations 22 is advantageously substantially equal to one quarter of the wavelength ⁇ 0 ( ⁇ 0/4 ).
  • ⁇ 0/4 Similar to the depth of the corrugations, it is possible to consider several particular frequencies in the operating frequency band.
  • the differences between corrugations are normally symmetrical with respect to the plane yz passing through the center of the grid 21.
  • the width of the corrugations has a secondary influence on the electromagnetic properties of the grid 21. dimension is conditioned by the dimensions of the opening 14 of the horn 20 along the x axis, the number of corrugations along each axis x, as well as the differences between the corrugations.
  • the width of the corrugations must nevertheless be sufficient to carry out their machining or the molding of the grid 21.
  • the width of the corrugations may be substantially equal to 1 mm.
  • the higher the particular frequency considered the smaller the width.
  • the width of the corrugations increases from the center towards the frame and in particular towards the edges of the frame 210.
  • the Figures 3A and 3B represent, respectively in a view from above and in a side view, an example of a grid according to the figure 2 sized for a frequency band between 10.3 GHz and 14.75 GHz.
  • H the height of the gate 21 along the axis z, of the gap between adjacent blades along the y axis, e c the thickness of the frame 210 along the axes x and y, e the thickness of the blades along the y axis, h 1 to h 4, the depth of the corrugations 22 of the respective sets 221 to 224 along the z axis.
  • e 1 to e 4 the width of the corrugations 22 along the x axis of the respective sets 221 to 224.
  • f 0 12.5 GHz
  • f 1 14.75 GHz
  • f 2 14.25 GHz
  • f 3 12.75 GHz
  • f 4 11.7 GHz.
  • Each frequency f 1 to f 4 is associated with a set of corrugations 221, 222A-222B, 223A-223B or 224A-224B. These frequencies make it possible to define the depths h 1 to h 4 of the corrugations of the respective assemblies 221 to 224.
  • the dimensions and / or the gaps between the respective slots are defined by the wavelength corresponding to the frequency of the electric field having locally the greatest amplitude at the gate 21, and in particular at the respective slots 22.
  • the large sides 250d and 250c of the frame include corrugations. These corrugations are spaced along the longitudinal direction of the sides. They extend advantageously over the entire thickness of these sides in a direction perpendicular to the z axis.
  • the corrugations formed on each long side extend over the entire thickness of the long side in a direction perpendicular to the longitudinal direction on the big side. In this way they open on both sides of this side.
  • the corrugations extend over the entire thickness of the respective long sides along the y direction.
  • the corrugations formed on one side have, for example as visible on the figure 2 , the shape of a channel extending longitudinally in a direction perpendicular to the longitudinal direction of said side and have a rectangular section in the xz plane.
  • the short sides 250a and 250b of the frame comprise corrugations extending over all their respective thicknesses in a direction perpendicular to the z axis.
  • the corrugations of each small side extend over the whole thickness of the short side perpendicular to the longitudinal direction of the short side. In this way they open on both sides of this side.
  • the corrugations extend over all their respective thicknesses in the x direction.
  • the corrugations formed on one side have, for example, the shape of a channel extending longitudinally in a direction perpendicular to the longitudinal direction of said side (direction y) and have a rectangular section in the plane yz.
  • At least one of the sides of the frame comprises corrugations extending over its entire thickness.
  • FIGS. 4A, 4B and 5 illustrate, by means of graphs, the improvement of the performances of a C-band horn due to the presence of a grid according to the invention with respect to the same non-grided horn, and with respect to the same horn provided with a simple grid (without corrugations).
  • the amplitudes A, in dB, of the co-polarization and cross-polarization components of the electric field of an electromagnetic wave are plotted as a function of the angle of elevation ⁇ , and for a single frequency.
  • the elevation angle corresponds to the angle formed between the z axis and the direction of propagation of the electromagnetic wave.
  • a curve 41 represents the amplitude of the co-polarization component for a gateless horn
  • a curve 42 represents the amplitude of the cross-polarization component for a gateless horn
  • a curve 43 represents the amplitude of the component cross-polarization for a horn with a simple grid.
  • curves 41 and 42 are reproduced
  • a curve 44 represents the amplitude of the cross-polarization component for a horn provided with a grid comprising corrugations according to the invention.
  • the Figures 4A and 4B show amplitude maxima of the cross-polarization component substantially 30 dB below the maximum amplitude of the co-polarization component for a horn without a grid, 35 dB for a horn with a simple grid, and 45 dB for a horn provided with a grid according to the invention.
  • the maximum amplitude A max of the cross-polarization components of the electric field of an electromagnetic wave for an angle of elevation between -10 ° and + 10 ° are plotted as a function of the frequency f. These amplitude maxima are considered in decibels with respect to the maximum amplitude of the copolarization component calculated for an angle of elevation between -180 ° and + 180 °, ie on the total sphere of radiation of the 'wave.
  • a curve 51 represents the maximum amplitude, for an angle of elevation between -10 ° and + 10 °, of the cross-polarization component for a gateless horn.
  • a curve 52 represents this maximum, for an angle of elevation between -10 ° and + 10 ° and for a cone equipped with a simple grid
  • a curve 53 represents this maximum for an angle of elevation between -10 ° and + 10 ° and for a cornet provided with a grid comprising corrugations.
  • the lowest attenuation of the cross-polarization component over the operating frequency band for a horn provided with a gate according to the invention is substantially equal to -44 dB, whereas it is approximately equal to -40 dB for a horn with a simple grid and -34 dB for a horn without grid.
  • the corrugated gate according to the invention also has the advantage of improving the stationary wave ratio by about 1 to 5 dB, as well as than the gain of the horn of a few tenths of decibels. It makes it possible to obtain amplitude maxima of the cross-polarization component 40 dB below the amplitude maximums of the copolarization component with pyramidal horns.
  • the horn 20 is pyramidal, that is to say it comprises a section 12 whose dimensions in the transverse plane increase linearly along the axis of propagation of the electromagnetic wave.
  • the invention nevertheless applies to any other form of horn, in particular so-called "trifurcated” horns and corrugated horns.
  • a horn according to the invention may comprise a plurality of grids in addition to the grid 21 disposed in the vicinity of the opening 14 of the horn 20.
  • These additional grids also have corrugations on their blades and / or on the edges of the horn. their setting.
  • the grids are for example spaced regularly from each other (two by two) by a distance between the wavelength ⁇ 0 and the eighth of this wavelength.
  • the additional grids may or may not be identical to the grid 21.
  • the figure 6 represents a particular embodiment of a waveguide according to the invention.
  • the horn 30 is different from the horn 20 of the figure 2 in that the frame 310 of the grid 31 comprises projecting parts 320 extending in a plane xy, that is to say in a plane orthogonal to the z axis.
  • These projecting portions 320 are for example arranged on the smaller sides of the frame 310, as shown in FIG. figure 6 .
  • the protruding portions may also be disposed all around the frame 310, or only on the larger sides.
  • the projecting parts may extend either towards the inside of the frame 310 or towards the outside, as shown in FIG. figure 6 .
  • the protruding parts may for example be like saw teeth or rectangular slots.
  • the blades extend longitudinally in the direction substantially parallel to the x axis.
  • the positioning and dimensions of the corrugations are defined according to and / or relative to this axis.
  • the longitudinal direction of the blades forms an angle less than 0.05 ° with the x axis around the z axis.
  • the blades extend longitudinally in a direction forming with the x axis, about the z axis, an angle at least equal to 0.05 ° and between 0.05 and 5 °.
  • the positioning for example the difference between the corrugations
  • the dimensions of the corrugations for example their width
  • this embodiment advantageously allows a better attenuation of cross-polarization components extending along the x axis.
  • the blades generally form rectangular parallelepipeds having a side extending along the z direction.
  • the depth of the corrugations, the difference between the corrugations or the height of the blade are equal to a fraction (quarter or half) of the wavelength of the central frequency.
  • these dimensions and positioning are equal to a fraction (one quarter or one half) of the wavelength of a frequency comprised in the operating frequency band of the waveguide.

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Description

  • L'invention concerne un cornet rayonnant une onde radioélectrique, issue d'un guide d'onde d'entrée, comprenant une grille disposée au niveau de l'ouverture du cornet. Elle s'applique notamment au domaine des antennes à réflecteur. L'invention concerne également une antenne satellite munie de ce cornet.
  • Classiquement, une antenne d'émission et de réception d'une onde électromagnétique peut être réalisée en associant un guide d'onde à un élément rayonnant qui peut, par exemple, prendre la forme d'un cornet. Un guide d'onde en forme de cornet, plus simplement appelé cornet, présente une section transverse (i. e. perpendiculaire à la direction de propagation de l'onde) rectangulaire qui croît progressivement vers l'ouverture. Un tel guide d'onde permet de privilégier la propagation, selon son axe longitudinal, d'une onde électromagnétique polarisée selon un axe orthogonal à l'axe longitudinal du cornet. Le champ électrique de l'onde électromagnétique peut être décomposé en une composante parallèle aux côtés de plus petite dimension de l'ouverture, et en une composante parallèle aux côtés de plus grande dimension de l'ouverture. La première composante est appelée composante principale ou composante de copolarisation. L'autre composante est appelée composante de cross-polarisation. Dans le cadre de certaines applications, il est souhaitable de réduire au maximum l'amplitude de la composante de cross-polarisation. Une solution consiste à disposer une grille au niveau de l'ouverture du cornet. Une grille est généralement réalisée en un matériau métallique, par exemple en aluminium. Elle est formée d'un ensemble de lames disposées parallèlement aux côtés de plus grande dimension de l'ouverture du guide d'onde. La grille permet de laisser traverser la composante de copolarisation et de filtrer la composante de cross-polarisation d'une onde électromagnétique. Pour un cornet relativement directif, par exemple avec un gain supérieur à 25 dBi, équipé d'une grille, il est possible d'obtenir une composante de cross-polarisation dont l'amplitude est environ 40 à 45dB en dessous de l'amplitude de la composante de copolarisation. Cependant, l'efficacité du filtrage diminue très nettement voire complètement lorsque le cornet est moins directif. Cela est notamment le cas pour les cornets de test utilisés pour les chambres sourdes hyperfréquence. Aussi, le filtrage n'est efficace que sur une faible bande de fréquences. Avec la demande croissante de meilleures performances d'antenne, il devient utile de développer des cornets présentant une atténuation de la composante de cross-polarisation au minimum de 40 dB par rapport à la composante de copolarisation, et ce, sur des bandes de fréquences étendues, par exemple de l'ordre de 40% à 50%.
  • Les documents US-A-3,938,159 et US-A-2,298,272 divulguent des cornets comportant des grilles et/ou des lames sans corrugations.
  • Un but de l'invention est notamment de fournir un cornet présentant des propriétés améliorées de filtrage de la composante de cross-polarisation du champ électrique d'une onde électromagnétique, à la fois en termes d'amplitude de la composante de cross-polarisation et en termes de largeur de bande. A cet effet, l'invention a pour objet un guide d'onde comportant un tronçon en forme de cornet, une entrée, une ouverture, et une grille disposée au voisinage de l'ouverture, au moins une onde électromagnétique à polarisation linéaire étant apte à se propager entre l'entrée et l'ouverture selon un premier axe; la grille comportant un cadre entourant un ensemble de lames s'étendant longitudinalement et continument depuis un premier petit côté du cadre jusqu'à un deuxième petit côté du cadre, de manière à former un filtre de polarisation linéaire atténuant la composante de cross-polarisation du champ électrique de l'onde électromagnétique, ladite composante de cross-polarisation étant orthogonale à un deuxième axe orthogonal au premier axe. Les lames comprennent des corrugations dimensionnées et positionnées de manière à renforcer l'atténuation de ladite composante de cross-polarisation.
  • L'invention a notamment pour avantage de pouvoir s'adapter à tout type de cornet, notamment les cornets pyramidaux et trifurqués, mieux connus sous la dénomination anglo-saxonne "trifurcated homs". Ces cornets sont relativement légers, et relativement simples à concevoir et à fabriquer. Par rapport à un cornet corrugué, un cornet pyramidal ou trifurcated présente une masse diminuée de moitié environ. Aussi, l'invention présente l'avantage d'améliorer le taux d'onde stationnaire et le gain du cornet.
  • L'invention peut être utilisée dans les équipements de test des chambres sourdes radiofréquence pour ainsi permettre de fournir des résultats de mesure plus précis et plus fiables sur les niveaux de cross-polarisation et sur l'orientation de la polarisation principale des équipements testés. Avec des niveaux de cross-polarisation meilleurs et grâce à sa simplicité de fabrication et sa masse favorable, on pourra aussi utiliser l'invention pour des applications d'antennes satellites.
  • Les corrugations consistent par exemple en des fentes rectangulaires ouvertes dans la direction opposée à l'entrée du guide d'onde.
  • Avantageusement, les corrugations ont des dimensions variant selon leur position le long de la direction selon laquelle les lames s'étendent longitudinalement entre le premier et le deuxième petit côté du cadre, en fonction de la fréquence du champ électrique de l'onde électromagnétique présentant localement la plus grande amplitude au niveau des corrugations respectives. Le filtrage peut ainsi être optimisé sur une large bande de fréquences.
  • La profondeur des fentes est, par exemple, sensiblement égale au quart de la longueur d'onde correspondant à la fréquence du champ électrique présentant localement la plus grande amplitude au niveau des fentes respectives, et étant orienté essentiellement selon le deuxième axe. La profondeur des fentes est, dans un autre exemple, sensiblement égale au quart de la longueur d'onde correspondant à une fréquence d'une bande de fréquences de fonctionnement du guide d'onde, l'onde électromagnétique émise sur ladite bande de fréquences de fonctionnement présentant un champ électrique orienté essentiellement selon le deuxième axe. Par ailleurs, plus la fréquence est élevée, plus la largeur des fentes peut être faible. Toujours dans le but d'optimiser le filtrage sur une large bande de fréquences, l'écart entre deux corrugations adjacentes selon la direction selon laquelle les lames s'étendent longitudinalement est sensiblement égal au quart de la longueur d'onde correspondant à la fréquence du champ électrique de l'onde électromagnétique présentant localement la plus grande amplitude au niveau des fentes respectives. L'écart entre deux corrugations adjacentes selon la direction selon laquelle les lames s'étendent longitudinalement, est en variante sensiblement égal au quart de la longueur d'onde correspondant à une fréquence d'une bande de fréquences de fonctionnement du guide d'onde, l'onde électromagnétique émise sur ladite bande de fréquences de fonctionnement présentant un champ électrique orienté essentiellement selon le deuxième axe.
  • Avantageusement, dans le but d'optimiser l'atténuation, le cadre comporte des corrugations. Avantageusement, dans le but d'optimiser l'atténuation le cadre comporte des corrugations s'étendant sur toute l'épaisseur d'au moins un côté du cadre selon une direction perpendiculaire au premier axe.
  • Avantageusement, le cadre comprend des corrugations s'étendant sur toute l'épaisseur d'au moins un côté du cadre selon le deuxième axe et/ou des corrugations s'étendant sur toute l'épaisseur d'au moins un côté du cadre selon un troisième axe orthogonal au premier axe et au deuxième axe.
  • Selon une forme particulière de réalisation, les corrugations sont alignées par ensembles selon le deuxième axe, les corrugations d'un même ensemble ayant des dimensions identiques.
  • Toujours selon une forme particulière de réalisation, la grille est disposée à une distance non nulle de l'ouverture du guide d'onde selon le premier axe.
  • Afin de renforcer le filtrage de la composante de cross-polarisation, le guide d'onde peut comporter au moins une grille supplémentaire, les grilles étant espacées deux à deux selon le premier axe d'une distance comprise entre la longueur d'onde correspondant sensiblement à une fréquence centrale d'une bande de fréquences de fonctionnement du guide d'onde, et le huitième de cette longueur d'onde. Une ou plusieurs des grilles supplémentaires peuvent être placées parallèlement à la grille disposée au voisinage de l'ouverture. Par ailleurs, une ou plusieurs des grilles supplémentaires peuvent comporter chacune des corrugations. Chaque grille supplémentaire peut être sensiblement identique à la grille disposée au voisinage de l'ouverture.
  • Selon une forme particulière de réalisation, la grille comporte un cadre épousant sensiblement le pourtour de l'ouverture du guide d'onde, le cadre comprenant des parties en saillie s'étendant dans un plan orthogonal au premier axe. Les parties en saillies forment par exemple un profil en dents de scie. Les parties en saillie peuvent s'étendre vers l'intérieur et/ou vers l'extérieur du cadre.
  • Avantageusement, les lames s'étendent longitudinalement selon une direction sensiblement parallèle à un troisième axe orthogonal au deuxième axe et orthogonal au premier axe.
  • Avantageusement, de façon à obtenir une meilleure atténuation, les lames s'étendent longitudinalement selon une direction formant, avec un troisième axe orthogonal au deuxième axe et orthogonal au premier axe, un angle compris entre 0,05° et 5° autour du premier axe.
  • Avantageusement, le guide d'onde est prévu pour fonctionner sur une bande de fréquences de fonctionnement, les lames présentent une hauteur selon l'axe z sensiblement égale à la moitié d'une longueur d'onde correspondant à une fréquence comprise dans la bande de fréquences de fonctionnement du guide d'onde.
  • L'invention a également pour objet une antenne satellite comprenant un guide d'onde tel que décrit précédemment.
  • L'invention a enfin pour objet un procédé de test d'un équipement radiofréquence dans lequel un guide d'onde tel que décrit précédemment est utilisé.
  • L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre, faite en regard de dessins annexés sur lesquels :
    • la figure 1 représente, dans une vue en perspective, un exemple de guide d'onde terminé en forme de cornet et comprenant une grille simple proche de l'ouverture ;
    • la figure 2 représente, dans une vue en perspective, un exemple de réalisation d'un guide d'onde terminé en forme de cornet et comprenant une grille selon l'invention proche de l'ouverture ;
    • les figures 3A et 3B représentent, respectivement dans une vue de dessus et dans une vue de côté, l'exemple de grille selon la figure 2 dimensionnée pour une bande de fréquences donnée ;
    • les figures 4A, 4B et 5 illustrent, par des graphiques, l'impact de la grille selon l'invention sur les performances du guide d'onde ;
    • la figure 6 représente une forme particulière de réalisation d'un guide d'onde selon l'invention.
  • Pour la suite de la description, on note f0 la fréquence centrale de la bande de fréquences de fonctionnement d'une antenne, C0 la célérité de la lumière dans le milieu de propagation considéré, et λ0 la longueur d'onde correspondant à la fréquence f0 (avec λ0 = C0/f0). f0 est la fréquence centrale des champs électriques des ondes électromagnétiques émises sur la bande de fonctionnement de l'antenne. Ces champs électriques sont, même avant leur arrivée sur la grille, orientés essentiellement selon l'axe y
  • La figure 1 représente, dans une vue en perspective, un exemple de guide d'onde en forme de cornet pour une antenne à réflecteur. Le guide d'onde est souvent appelé cornet en référence à sa forme. Le cornet 10 comporte un premier tronçon 11 à section transverse (dans le plan xy) rectangulaire constante, et un deuxième tronçon 12 à section transverse rectangulaire croissant régulièrement entre l'entrée 13 et l'ouverture 14, c'est-à-dire selon son axe longitudinal z. Pour une section transverse donnée, la plus grande dimension de cette section est orientée selon l'axe x, tandis que la plus petite dimension est orientée suivant l'axe y. L'entrée 13 est généralement reliée à un guide d'onde rectangulaire, non représenté, de même section transverse que celle du tronçon 11. Le cornet 10 comprend une grille 15 disposée au voisinage de l'ouverture 14. Par voisinage, on entend une distance comprise entre la longueur d'onde λ0 et la valeur nulle, la grille 15 étant alors fixée sur le pourtour de l'ouverture 14. La grille 15 comprend un cadre 150 épousant sensiblement le pourtour de l'ouverture 14, et un ensemble de lames 151, 152 et 153. Le cadre supporte les lames. Les lames 151-153 s'étendent longitudinalement et continument selon l'axe x depuis un premier petit côté du cadre 150 jusqu'à un deuxième petit côté du cadre. Cette caractéristique est essentielle pour pourvoir atténuer la cross-composante du champ électrique de toute onde émise au sein du guide d'onde quelque soit sa position sur la grille.
  • Sur la réalisation de la figure 1 de manière non limitative, le premier petit côté 150a et le deuxième petit côté 150b s'étendent longitudinalement parallèlement à l'axe y. Le cadre comprend également un premier grand côté 150c et un deuxième grand côté 150d orthogonaux aux côtés 150a, 150b. Le cadre est rectangulaire.
  • Par les deux petits côtés du cadre, on entend les deux plus petits côtés du cadre et par deux grands côtés du cadre, on entend les deux plus grands côtés du cadre.
  • Les lames 151-153 sont disposées parallèlement au plan xz sur les réalisations des figures. Elles sont disposées de manière à permettre le passage d'une onde électromagnétique dont le champ électrique est polarisé selon l'axe y et le filtrage de toute onde électromagnétique dont le champ électrique n'est pas polarisé selon l'axe y. La grille 15 forme ainsi un filtre de polarisation linéaire d'axe y. Par filtrage, on entend l'atténuation de l'amplitude du champ électrique. La grille 15 atténue notamment la composante dite de cross-polarisation du champ électrique d'une onde électromagnétique, c'est-à-dire la composante orientée selon l'axe x. Elle atténue en particulier les composantes de cross-polarisation des champs électriques des ondes électromagnétiques dont les fréquences respectives sont comprises dans la bande de fréquences de fonctionnement du guide d'onde. Les propriétés géométriques de la grille 15 sont déterminées essentiellement en fonction de la bande de fréquences de fonctionnement de l'antenne. Les propriétés géométriques ayant l'impact le plus significatif sur les propriétés électromagnétiques de la grille sont la hauteur de la grille 15 et l'écart entre les lames adjacentes, de même qu'entre les lames externes 151 et 153 et le bord intérieur du cadre 150. Avantageusement, la hauteur de la grille 15 suivant l'axe z est sensiblement égale à la moitié de la longueur d'onde λ00/2). L'écart entre deux lames adjacentes, ainsi qu'entre les lames externes 151 et 153 et le bord intérieur du cadre 150 est avantageusement sensiblement égal au quart de la longueur d'onde λ00/4). D'autres propriétés géométriques ont une influence secondaire sur les propriétés électromagnétiques du cornet 10. Il s'agit notamment de la position de la grille 15 par rapport à l'ouverture 14. Avantageusement, la grille 15 est placée à une distance du plan xy de l'ouverture 14 sensiblement nulle. L'épaisseur du cadre 150 suivant les axes x et y et celle des lames 151-153 suivant l'axe y ont peu d'influence sur les performances de la grille 15. L'épaisseur des lames 151-153 dépend directement de la dimension de l'ouverture 14 du cornet suivant l'axe y, du nombre de lames ainsi que de l'écart entre lames. D'un point de vue électromagnétique, l'épaisseur des lames 151-153 peut être très faible. Cependant, les lames 151-153 doivent être suffisamment épaisses pour être fabricables et pour assurer leur tenue mécanique. A titre d'exemple, l'épaisseur des lames peut être sensiblement égale à 1 mm. L'épaisseur du cadre 150 est essentiellement déterminée de manière à supporter les contraintes mécaniques subies par le cornet 10. En particulier, les lames 151-153 étant d'épaisseur relativement faible, l'épaisseur du cadre 150 doit être suffisante pour éviter une torsion des lames 151-153. Pour un cornet destiné à une antenne fonctionnant dans la bande de fréquences Ku, c'est-à-dire dans la bande de fréquences 10,00 GHz à 15,00GHz, l'épaisseur du cadre 150 est par exemple comprise entre 2 et 10 mm.
  • La figure 2 représente, dans une vue en perspective, un exemple de réalisation d'un cornet selon l'invention. Le cornet 20 se distingue du cornet 10 de la figure 1 par sa grille 21. La grille 21 comprend également un cadre 210 disposé au voisinage de l'ouverture 14 du cornet 20, et un ensemble de lames 211, 212 et 213 disposées parallèlement au plan xz sur les réalisations des figures. Le cadre supporte les lames. Les lames 211-213 s'étendent longitudinalement entre les deux côtés du cadre 150. Plus précisément, les lames s'étendent longitudinalement et continument depuis un premier petit côté 250a du cadre jusqu'à un deuxième petit côté 250b du cadre 250. Sur la réalisation de la figure de façon non limitative, le premier côté 250a et le deuxième côté 250b s'étendent longitudinalement parallèlement à l'axe y. Le cadre comprend également un premier grand côté 250c et un deuxième grand côté 250d. Les côtés 250c et 250d sont orthogonaux aux côtés 250a, 250b, le cadre étant rectangulaire sur la figure 2.
  • Les propriétés géométriques de la grille 21 sont déterminées de manière identique à celles de la grille 15 de la figure 1. La grille 21 diffère de la grille 15 en ce qu'elle comprend des corrugations 22. La grille 21 est dite corruguée. Les corrugations 22 consistent par exemple en des fentes, en des encoches ou des créneaux. Mécaniquement, elles peuvent s'apparenter à des saignées pratiquées le long de l'axe y sur la face externe du cadre 210 et/ou des lames 211-213. Par face externe, on entend la surface orientée dans la direction opposée à l'entrée 13 du cornet 20. Les corrugations 22 présentent avantageusement une forme rectangulaire ou en U dans un plan xz. En pratique, les corrugations 22 peuvent être réalisées aussi bien par usinage que par moulage de la grille 21. Les corrugations 22 améliorent l'atténuation de l'amplitude de tout champ électrique non polarisé selon l'axe y par rapport à une grille simple telle que la grille 15 de la figure 1. En particulier, elles permettent d'améliorer le filtrage, c'est-à-dire l'atténuation des composantes de cross-polarisation des champs électriques des ondes électromagnétiques émises dans la bande de fréquences de fonctionnement du guide d'onde. Cela signifie donc que le filtrage sera meilleur, et plus uniforme, dans la bande de fréquences de fonctionnement du guide d'onde. Elles permettent par ailleurs, de réaliser une atténuation des cross-composantes sur une plus large bande de fréquences que le dispositif d'atténuation de la figure 1. Pour rappel, les champs électriques des ondes électromagnétiques émises dans le guide d'onde sont de préférence orientés essentiellement selon la direction y même avant le passage de la grille. Le passage de la grille améliore d'avantage cette orientation en limitant les composantes de cross-polarisation. Les champs électriques à la sortie du guide d'onde sont donc forcément orientés essentiellement selon la direction y.
  • Le renforcement de l'atténuation des ondes électromagnétiques dont le champ électrique n'est pas polarisé selon l'axe y, en particulier l'atténuation des composantes de cross-polarisation, est obtenu par les propriétés géométriques des corrugations 22, à savoir par leurs dimensions et leur positionnement. Ces propriétés géométriques des corrugations 22 sont déterminées en fonction de la bande de fréquences de fonctionnement de l'antenne. Les propriétés géométriques ayant l'impact le plus significatif sur les propriétés électromagnétiques de la grille sont la profondeur des corrugations et l'écart entre corrugations adjacentes selon l'axe x. La profondeur d'une corrugation 22 est définie comme la distance selon l'axe z entre, d'une part, la surface externe du cadre 210 ou des lames 211-213 et, d'autre part, le fond de la fente 22 considérée. La profondeur des corrugations est avantageusement dimensionnée en "piège quart d'onde". Autrement dit, elle est sensiblement égale au quart de la longueur d'onde λ00/4). Cependant, afin de conserver un filtrage optimal sur toute la largeur de la bande de fréquences, il est possible de considérer plusieurs fréquences particulières dans la bande de fréquences. En effet, les signaux aux basses fréquences ont tendance à se disperser davantage sur les bords de la grille qu'au centre, alors que les signaux à plus haute fréquence sont plus directifs et se concentrent donc davantage au centre de la grille. Cette propriété peut être utilisée afin de dédier différentes parties de la grille au filtrage de fréquences particulières distinctes. Dans l'exemple de la figure 2, quatre fréquences particulières sont considérées. Chaque fréquence particulière correspond à une longueur d'onde et est associée à un ensemble de corrugations 22. Chaque fréquence particulière donne ainsi une profondeur de corrugation distincte des autres. Comme visible sur les figures 2, 3A, 3B, les dimensions des corrugations varient entre le premier côté 250a et le deuxième côté 250b du cadre. Le fonctionnement du cornet 20 étant symétrique par rapport au plan yz, les corrugations 22 peuvent être réalisées symétriquement par rapport au plan yz passant par le centre de la grille. Dans la forme particulière de réalisation de la figure 2, un premier ensemble 221 de corrugations 22 est réalisé sur le cadre 210 et les lames 211-213 de sorte que les corrugations sont alignées selon l'axe y passant par le centre des côtés de plus grande dimension du cadre 210, des ensembles de corrugations 222A-222B, 223A-223B, et 224A-224B étant réalisés symétriquement de part et d'autre du premier ensemble 221. L'écart entre corrugations adjacentes selon l'axe x constitue le principal critère d'optimisation du caractère filtrant des corrugations 22. L'écart entre deux corrugations adjacentes 22 est défini comme la distance selon l'axe x entre les bords contigus de ces corrugations 22 ou, le cas échéant, entre le bord intérieur du cadre 210 et le bord contigu de la corrugation adjacente 22. Néanmoins, la largeur des corrugations étant relativement faible par rapport à l'écart entre corrugations, cet écart peut également être défini comme la distance entre les centres des corrugations. L'écart entre corrugations adjacentes 22 est avantageusement sensiblement égal au quart de la longueur d'onde λ00/4). Cependant, de manière analogue à la profondeur des corrugations, il est possible de considérer plusieurs fréquences particulières dans la bande de fréquences de fonctionnement. En raison du fonctionnement symétrique du cornet, les écarts entre corrugations sont normalement symétriques par rapport au plan yz passant par le centre de la grille 21. La largeur des corrugations exerce une influence secondaire sur les propriétés électromagnétiques de la grille 21. En outre, cette dimension est conditionnée par les dimensions de l'ouverture 14 du cornet 20 selon l'axe x, par le nombre de corrugations selon chaque axe x, ainsi que par les écarts entre les corrugations. La largeur des corrugations doit néanmoins être suffisante pour réaliser leur usinage ou le moulage de la grille 21. A titre d'exemple, la largeur des corrugations peut être sensiblement égale à 1 mm. De préférence, plus la fréquence particulière considérée est élevée, plus la largeur est réduite. Ainsi, la largeur des corrugations augmente depuis le centre vers le cadre et notamment vers les bords du cadre 210.
  • Les figures 3A et 3B représentent, respectivement dans une vue de dessus et dans une vue de côté, un exemple de grille selon la figure 2 dimensionnée pour une bande de fréquences comprise entre 10,3 GHz et 14,75 GHz. On note H la hauteur de la grille 21 suivant l'axe z, d l'écart entre lames adjacentes suivant l'axe y, ec l'épaisseur du cadre 210 suivant les axes x et y, el l'épaisseur des lames suivant l'axe y, h1 à h4 la profondeur des corrugations 22 des ensembles respectifs 221 à 224 suivant l'axe z. On note également d12 l'écart entre les corrugations suivant l'axe x du premier ensemble 221 et celles de l'ensemble 222A (respectivement 222B), d23 l'écart entre les corrugations de l'ensemble 222A (respectivement 222B) et celles de l'ensemble 223A (respectivement 223B), d34 l'écart entre les corrugations de l'ensemble 223A (respectivement 223B) et celles de l'ensemble 224A (respectivement 224B), et d40 l'écart entre les corrugations de l'ensemble 224A (respectivement 224B) et le bord intérieur contigu du côté 250b (respectivement 250a) du cadre 210. Enfin, on note e1 à e4 la largeur des corrugations 22 suivant l'axe x des ensembles respectifs 221 à 224.
  • On considère les fréquences suivantes : f0=12,5 GHz, f1=14,75 GHz, f2=14,25 GHz, f3=12,75 GHz et f4=11,7 GHz. Chaque fréquence f1 à f4 est associée à un ensemble de corrugations 221, 222A-222B, 223A-223B ou 224A-224B. Ces fréquences permettent de définir les profondeurs h1 à h4 des corrugations des ensembles respectifs 221 à 224. Avec C0=3.108 m/s, les longueurs d'onde associées aux fréquences f0 à f4 sont respectivement λ0=24 mm, λ1=20,34 mm, λ2=21,05 mm, λ3=23,53 mm et λ4=25,64 mm.
  • Pour les différentes zones de la grille 21 situées entre les corrugations, on considère les fréquences suivantes : f12=14,5 GHz, f23=13,75 GHz, f34=f0=12,5 GHz et f40=10,3 GHz. Elles permettent de définir les écarts entre corrugations adjacentes. Les longueurs d'onde associées à ces fréquences sont respectivement λ12=20,69 mm, λ23=21,82 mm, λ34=24,00 mm, et λ40=29,13 mm. Pour ces fréquences, les dimensions de la grille 21 sont par exemple les suivantes :
    • ■ H=12 mm, dimensionnée en λ0/2 ;
    • ■ d=8,25 mm ;
    • ■ ec=7,0 mm ;
    • ■ el=1,0 mm ;
    • ■ h1=5,08 mm ; h2=5,26 mm ; h3=5,88 mm ; h4=6,41 mm ;
    • ■ d12=5,17 mm ; d23=5,46 mm ; d34=6,00 mm ; d40=7,28 mm ;
    • ■ e1=0,75 mm ; e2=1,0 mm ; e3=1,25 mm ; e4=1,5 mm.
  • Autrement dit, les dimensions et/ou les écarts entre les fentes respectives sont définis par la longueur d'onde correspondant à la fréquence du champ électrique présentant localement la plus grande amplitude au niveau de la grille 21, et en particulier au niveau des fentes respectives 22.
  • Comme visible sur la figure 2, les grands côtés 250d et 250c du cadre comportent des corrugations. Ces corrugations sont espacées selon la direction longitudinale des côtés. Elles s'étendent avantageusement sur toute l'épaisseur de ces côtés selon une direction perpendiculaire à l'axe z. Les corrugations formées sur chaque grand côté s'étendent sur toute l'épaisseur du grand côté selon une direction perpendiculaire à la direction longitudinale du grand côté. De cette façon elles débouchent de part et d'autre de ce côté. Sur la réalisation de la figure 2, les corrugations s'étendent sur toute l'épaisseur des grands côtés respectifs selon la direction y. Les corrugations formées sur un côté présentent, par exemple comme visible sur la figure 2, la forme d'un canal s'étendant longitudinalement selon une direction perpendiculaire à la direction longitudinale dudit côté et présentent une section rectangulaire dans le plan xz.
  • Dans une variante non représentée ou en plus des corrugations des grands côtés, les petits côtés 250a et 250b du cadre comportent des corrugations s'étendant sur toute leurs épaisseurs respectives selon une direction perpendiculaire à l'axe z. Les corrugations de chaque petit côté s'étendent sur toute l'épaisseur du petit côté perpendiculairement à la direction longitudinale du petit côté. De cette façon elles débouchent de part et d'autre de ce côté. Dans le cas où les petits côtés s'étendent longitudinalement selon l'axe y, les corrugations s'étendent sur toutes leurs épaisseurs respectives selon la direction x. Les corrugations formées sur un côté présentent, par exemple, la forme d'un canal s'étendant longitudinalement selon une direction perpendiculaire à la direction longitudinale dudit côté (direction y) et présentent une section rectangulaire dans le plan yz.
  • Avantageusement au moins un des côtés du cadre comprend des corrugations s'étendant sur toute son épaisseur.
  • Les figures 4A, 4B et 5 illustrent, par des graphiques, l'amélioration des performances d'un cornet en bande C due à la présence d'une grille selon l'invention par rapport au même cornet non muni de grille, et par rapport au même cornet muni d'une grille simple (sans corrugations).
  • Sur les graphiques des figures 4A et 4B, les amplitudes A, en dB, des composantes de copolarisation et de cross-polarisation du champ électrique d'une onde électromagnétique sont tracées en fonction de l'angle de site ϕ, et pour une seule fréquence. L'angle de site correspond à l'angle formé entre l'axe z et la direction de propagation de l'onde électromagnétique. Typiquement, on s'intéresse essentiellement aux angles de site compris entre 0° et 30 à 40°. Sur le graphique de la figure 4A, une courbe 41 représente l'amplitude de la composante de copolarisation pour un cornet sans grille, une courbe 42 représente l'amplitude de la composante de cross-polarisation pour un cornet sans grille, et une courbe 43 représente l'amplitude de la composante de cross-polarisation pour un cornet muni d'une grille simple. Sur le graphique de la figure 4B, les courbes 41 et 42 sont reproduites, et une courbe 44 représente l'amplitude de la composante de cross-polarisation pour un cornet muni d'une grille comportant des corrugations selon l'invention. Les figures 4A et 4B montrent des maximums d'amplitude de la composante de cross-polarisation sensiblement 30 dB en dessous du maximum d'amplitude de la composante de copolarisation pour un cornet sans grille, 35 dB pour un cornet muni d'une grille simple, et 45 dB pour un cornet muni d'une grille selon l'invention.
  • Sur le graphique de la figure 5, les maximums d'amplitude Amax des composantes de cross-polarisation du champ électrique d'une onde électromagnétique pour un angle de site compris entre -10° et +10° sont tracés en fonction de la fréquence f. Ces maximums d'amplitude sont considérés en décibels par rapport au maximum d'amplitude de la composante de copolarisation calculé pour un angle de site compris entre -180° et +180°, c'est à dire sur la sphère totale de rayonnement de l'onde. Une courbe 51 représente le maximum d'amplitude, pour un angle de site compris entre -10° et +10°, de la composante de cross-polarisation pour un cornet sans grille. Une courbe 52 représente ce maximum, pour un angle de site compris entre -10° et +10° et pour un cornet muni d'une grille simple, et une courbe 53 représente ce maximum pour un angle de site compris entre -10° et +10° et pour un cornet muni d'une grille comportant des corrugations. La plus faible atténuation de la composante de cross-polarisation sur la bande de fréquences de fonctionnement pour un cornet muni d'une grille selon l'invention est sensiblement égale à -44 dB, alors qu'elle est environ égale à -40 dB pour un cornet muni d'une grille simple et de -34 dB pour un cornet sans grille.
  • La grille corruguée selon l'invention présente également l'avantage d'améliorer le taux d'onde stationnaire d'environ 1 à 5 dB, ainsi que le gain du cornet de quelques dixièmes de décibels. Elle permet d'obtenir des maximums d'amplitude de la composante de cross-polarisation 40 dB en dessous des maximums d'amplitude de la composante de copolarisation avec des cornets pyramidaux.
  • Dans l'exemple des figures 2, 3A et 3B, le cornet 20 est pyramidal, c'est-à-dire qu'il comporte un tronçon 12 dont les dimensions dans le plan transverse augmentent linéairement selon l'axe de propagation de l'onde électromagnétique. L'invention s'applique néanmoins à toute autre forme de cornet, en particulier les cornets dits "trifurcated" et les cornets corrugués.
  • Par ailleurs, un cornet selon l'invention peut comporter une pluralité de grilles en plus de la grille 21 disposée au voisinage de l'ouverture 14 du cornet 20. Ces grilles supplémentaires présentent également des corrugations sur leurs lames et/ou sur les bords de leur cadre. Les grilles sont par exemples espacées régulièrement les unes des autres (deux à deux) d'une distance comprise entre la longueur d'onde λ0 et le huitième de cette longueur d'onde. Les grilles supplémentaires peuvent être identiques ou non à la grille 21.
  • La figure 6 représente une forme particulière de réalisation d'un guide d'onde selon l'invention. Le cornet 30 se distingue du cornet 20 de la figure 2 en ce que le cadre 310 de la grille 31 comprend des parties en saillie 320 s'étendant dans un plan xy, c'est-à-dire dans un plan orthogonal à l'axe z. Ces parties en saillie 320 sont par exemple disposées sur les côtés de plus petite dimension du cadre 310, comme représenté sur la figure 6. Cependant, les parties en saillie peuvent aussi être disposées sur tout le pourtour du cadre 310, ou uniquement sur les côtés de plus grande dimension. Par ailleurs, les parties en saillie peuvent s'étendre soit vers l'intérieur du cadre 310, soit vers l'extérieur, comme représenté sur la figure 6. Les parties en saillie peuvent par exemple s'apparenter à des dents de scie ou à des créneaux rectangulaires.
  • Sur la réalisation des figures, les lames s'étendent longitudinalement selon la direction sensiblement parallèle à l'axe x. Le positionnement et les dimensions des corrugations sont définis selon et/ou par rapport à cet axe. Autrement dit, la direction longitudinale des lames forme un angle inférieur à 0,05° avec l'axe x autour de l'axe z.
  • Dans une variante avantageuse, les lames s'étendent longitudinalement selon une direction formant avec l'axe x, autour de l'axe z, un angle au moins égal à 0,05° et compris entre 0,05 et 5°. Dans ce cas, on définit le positionnement (par exemple l'écart entre les corrugations) et les dimensions des corrugations (par exemple leur largeur) selon et/ou par rapport à la direction longitudinale des lames. Dans certains cas pratiques, ce mode de réalisation permet d'obtenir avantageusement une meilleure atténuation des composantes de cross-polarisation s'étendant selon l'axe x.
  • Dans ces deux modes de réalisation étant donné que l'angle formé entre la direction longitudinale des lames et l'axe x est au plus égal à 5°, on admet et on dit que les lames s'étendent longitudinalement globalement selon l'axe x.
  • Les lames forment globalement des parallélépipèdes rectangles présentant un côté s'étendant selon la direction z.
  • Nous avons décrit précédemment des modes de réalisation dans lesquels la profondeur des corrugations, l'écart entre les corrugations ou la hauteur de la lame sont égales à une fraction (le quart ou la moitié) de la longueur d'onde de la fréquence centrale. En variante, ces dimensions et positionnement sont égaux à une fraction (le quart ou la moitié) de la longueur d'onde d'une fréquence comprise dans la bande de fréquences de fonctionnement du guide d'onde.

Claims (22)

  1. Guide d'onde comportant un tronçon (12) en forme de cornet, une entrée (13), une ouverture (14), et une grille (21) disposée au voisinage de l'ouverture (14), au moins une onde électromagnétique à polarisation linéaire étant apte à se propager entre l'entrée (13) et l'ouverture (14) selon un premier axe (z), la grille (21) comportant un cadre (210) entourant un ensemble de lames (211-213) s'étendant longitudinalement et continument depuis un premier petit côté (250a) du cadre jusqu'à un deuxième petit côté (250b) du cadre, de manière à former un filtre de polarisation linéaire atténuant la composante de cross-polarisation du champ électrique de l'onde électromagnétique, ladite composante de cross-polarisation étant orthogonale à un deuxième axe (y) orthogonal au premier axe (z), le guide d'onde (20) étant caractérisé en ce que les lames (211-213) comprennent des corrugations (22) dimensionnées et positionnées de manière à renforcer l'atténuation de ladite composante de cross-polarisation.
  2. Guide d'onde selon la revendication 1, dans lequel les corrugations (22) sont des fentes rectangulaires ouvertes dans la direction opposée à l'entrée (13) du guide d'onde (20).
  3. Guide d'onde selon l'une des revendications 1 et 2, dans lequel les corrugations (22) ont des dimensions variant selon leur position le long de la direction selon laquelle les lames s'étendent longitudinalement entre le premier et le deuxième petit côté du cadre, en fonction de la fréquence du champ électrique de l'onde électromagnétique présentant localement la plus grande amplitude au niveau des corrugations respectives (22).
  4. Guide d'onde selon les revendications 2 et 3, dans lequel la profondeur (h1-h4) des fentes (22) est sensiblement égale au quart de la longueur d'onde correspondant à la fréquence du champ électrique présentant localement la plus grande amplitude au niveau des fentes respectives (22), et étant orienté essentiellement selon le deuxième axe (y).
  5. Guide d'onde selon les revendications 2 et 3, dans lequel la profondeur (h1-h4) des fentes (22) est sensiblement égale au quart de la longueur d'onde correspondant à une fréquence d'une bande de fréquences de fonctionnement du guide d'onde, l'onde électromagnétique émise sur ladite bande de fréquences de fonctionnement présentant un champ électrique orienté essentiellement selon le deuxième axe (y).
  6. Guide d'onde selon la revendication 3 ou 4, dans lequel plus la fréquence présentant localement la plus grande amplitude est élevée, plus la largeur (e1-e4) des fentes (22) est faible.
  7. Guide d'onde selon l'une des revendications précédentes, dans lequel l'écart entre deux corrugations (22) adjacentes selon la direction selon laquelle les lames s'étendent longitudinalement est sensiblement égal au quart de la longueur d'onde correspondant à la fréquence du champ électrique de l'onde électromagnétique présentant localement la plus grande amplitude au niveau des fentes respectives (22).
  8. Guide d'onde selon la revendication précédente, dans lequel l'écart entre deux corrugations (22) adjacentes selon la direction selon laquelle les lames s'étendent longitudinalement, est sensiblement égal au quart de la longueur d'onde correspondant à une fréquence d'une bande de fréquences de fonctionnement du guide d'onde, l'onde électromagnétique émise sur ladite bande de fréquences de fonctionnement présentant un champ électrique orienté essentiellement selon le deuxième axe (y).
  9. Guide d'onde selon l'une des revendications précédentes, dans lequel le cadre (210) comporte des corrugations (22).
  10. Guide d'onde selon la revendication précédente, dans lequel le cadre comporte des corrugations s'étendant sur toute l'épaisseur d'au moins un côté du cadre selon une direction perpendiculaire au premier axe (z).
  11. Guide d'onde selon la revendication précédente, dans lequel le cadre comprend des corrugations s'étendant sur toute l'épaisseur d'au moins un côté du cadre selon le deuxième axe (y) et/ou des corrugations s'étendant sur toute l'épaisseur d'au moins un côté du cadre selon un troisième axe (x) orthogonal au premier axe (z) et au deuxième axe (y).
  12. Guide d'onde selon l'une des revendications précédentes, dans lequel les corrugations (22) sont alignées par ensembles (221, 222A-222B, 223A-223B, 224A-224B) selon le deuxième axe (y), les corrugations (22) d'un même ensemble ayant des dimensions identiques.
  13. Guide d'onde selon l'une quelconque des revendications précédentes, dans lequel les lames s'étendent longitudinalement selon une direction sensiblement parallèle à un troisième axe (x) orthogonal au deuxième axe (y) et orthogonal au premier axe (z).
  14. Guide d'onde selon l'une quelconque des revendications précédentes, dans lequel les lames s'étendent longitudinalement selon une direction formant, avec un troisième axe (x) orthogonal au deuxième axe (y) et orthogonal au premier axe (z), un angle compris entre 0,05° et 5° autour du premier axe (z).
  15. Guide d'onde selon l'une quelconque des revendications précédentes, dans lequel le guide d'onde est prévu pour fonctionner sur une bande de fréquences de fonctionnement, les lames présentant une hauteur selon l'axe z sensiblement égale à la moitié d'une longueur d'onde correspondant à une fréquence comprise dans la bande de fréquences de fonctionnement du guide d'onde.
  16. Guide d'onde selon l'une des revendications précédentes, dans lequel la grille (21) est disposée à une distance non nulle de l'ouverture (14) du guide d'onde (20) selon le premier axe (z).
  17. Guide d'onde selon l'une des revendications précédentes, comprenant au moins une grille supplémentaire, les grilles étant espacées deux à deux selon le premier axe (z) d'une distance comprise entre la longueur d'onde correspondant sensiblement à une fréquence centrale d'une bande de fréquences de fonctionnement du guide d'onde (20), et le huitième de cette longueur d'onde.
  18. Guide d'onde selon la revendication précédente, dans lequel une ou plusieurs grilles supplémentaires sont placées parallèlement à la grille (21) disposée au voisinage de l'ouverture (14).
  19. Guide d'onde selon l'une des revendications 17 à 18, dans lequel une ou plusieurs grilles supplémentaires comportent chacune des corrugations.
  20. Guide d'onde selon l'une des revendications 17 à 19, dans lequel chaque grille supplémentaire est sensiblement identique à la grille (21) disposée au voisinage de l'ouverture (14).
  21. Antenne satellite comprenant un guide d'onde selon l'une des revendications précédentes.
  22. Procédé de test d'un équipement radiofréquence dans lequel est utilisé un guide d'onde selon l'une des revendications 1 à 20.
EP13165474.1A 2012-04-27 2013-04-26 Cornet d'antenne à grille corruguée Active EP2658032B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1201240A FR2990065B1 (fr) 2012-04-27 2012-04-27 Cornet d'antenne a grille corrugee

Publications (2)

Publication Number Publication Date
EP2658032A1 EP2658032A1 (fr) 2013-10-30
EP2658032B1 true EP2658032B1 (fr) 2014-05-28

Family

ID=46801574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13165474.1A Active EP2658032B1 (fr) 2012-04-27 2013-04-26 Cornet d'antenne à grille corruguée

Country Status (5)

Country Link
US (1) US9484637B2 (fr)
EP (1) EP2658032B1 (fr)
CA (1) CA2814281C (fr)
ES (1) ES2483892T3 (fr)
FR (1) FR2990065B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033520B1 (ja) * 2015-06-03 2016-11-30 三菱電機株式会社 ホーンアンテナ
US10027031B2 (en) 2015-06-03 2018-07-17 Mitsubishi Electric Corporation Horn antenna device
PE20180649A1 (es) * 2015-07-31 2018-04-17 Viasat Inc Constelacion de satelite de capacidad flexible
CN105116261B (zh) * 2015-09-08 2017-11-14 中国电子科技集团公司第五十四研究所 一种测量波纹喇叭损耗的方法
CN113078471B (zh) * 2020-01-03 2022-07-29 南京大学 一种反射面和差网络天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298272A (en) * 1938-09-19 1942-10-13 Research Corp Electromagnetic horn
US2820965A (en) * 1956-02-16 1958-01-21 Itt Dual polarization antenna
US3031664A (en) * 1959-10-01 1962-04-24 Marconi Wireless Telegraph Co Polarisation screen and filter for radio waves
US3938159A (en) * 1974-09-17 1976-02-10 Hughes Aircraft Company Dual frequency feed horn using notched fins for phase and amplitude control
US4119932A (en) * 1976-07-06 1978-10-10 Hughes Aircraft Company Linear polarization selective screen
JPS58121410U (ja) * 1982-02-12 1983-08-18 日本電気株式会社 ホ−ンアンテナ
CA2134384C (fr) * 1993-11-18 1997-09-30 Robert Lee Reynolds Attenuateur a ailettes pour cornet d'alimentation
US6208309B1 (en) * 1999-03-16 2001-03-27 Trw Inc. Dual depth aperture chokes for dual frequency horn equalizing E and H-plane patterns
US8730119B2 (en) * 2010-02-22 2014-05-20 Viasat, Inc. System and method for hybrid geometry feed horn

Also Published As

Publication number Publication date
US9484637B2 (en) 2016-11-01
CA2814281C (fr) 2020-10-27
EP2658032A1 (fr) 2013-10-30
US20140009351A1 (en) 2014-01-09
ES2483892T3 (es) 2014-08-08
CA2814281A1 (fr) 2013-10-27
FR2990065B1 (fr) 2019-12-20
FR2990065A1 (fr) 2013-11-01

Similar Documents

Publication Publication Date Title
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP2658032B1 (fr) Cornet d'antenne à grille corruguée
EP2573872B1 (fr) Antenne lentille comprenant un composant diélectrique diffractif apte à mettre en forme un front d'onde hyperfréquence .
EP3189557B1 (fr) Antenne à diagramme de rayonnement mécaniquement reconfigurable
FR2655204A1 (fr) Antenne-reseau d'alimentation de guides d'onde.
EP3086409B1 (fr) Module structural d'antenne integrant des sources rayonnantes elementaires a orientation individuelle, panneau rayonnant, reseau rayonnant et antenne multifaisceaux comportant au moins un tel module
CA2696279C (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
EP3154128B1 (fr) Cornet rayonnant compact multifréquences, source rayonnante et antenne comportant un tel cornet rayonnant
EP3843202A1 (fr) Cornet pour antenne satellite bi-bande ka a polarisation circulaire
EP2898568B1 (fr) Absorbant electromagnetique
WO2003028157A1 (fr) Antenne a large bande ou multi-bandes
EP3840124B1 (fr) Antenne à onde de fuite en technologie afsiw
EP3903381B1 (fr) Procede d'integration d'une antenne " reseaux " dans un milieu de nature electromagnetique differente et antenne associee
EP2076937A2 (fr) Antenne a materiau bip (bande interdite photonique), systeme
FR2590081A1 (fr) Antenne a reflecteurs a grilles polarisees lineairement avec de meilleures performances de polarisation transversale
FR3142300A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques RF selon leur angle d'incidence et procédé de fabrication
EP4391232A1 (fr) Dispositif d'adaptation d'impedance a grand angle pour antenne reseau a elements rayonnants et procede de conception d'un tel dispositif
EP4148902A1 (fr) Systeme electromagnetique avec deviation angulaire du lobe principal de rayonnement d'une antenne
EP4262024A1 (fr) Dispositif de contrôle de faisceaux électromagnétiques rf selon leur bande de fréquence et procédé de fabrication
EP3075032B1 (fr) Structure antennaire compacte pour télécommunications par satellites
FR3135170A1 (fr) Antenne cornet améliorée
EP1821366B1 (fr) Antenne à balayage mécanique balayant un large domaine spatial et a encombrement réduit
WO2008065148A2 (fr) Dispositif d'alimentation d'une antenne à réflecteur
CH436403A (fr) Elément d'antenne pour ondes ultra-courtes
FR2687253A1 (fr) Guide d'ondes hyperfrequences a pertes d'energie, applications et procede de fabrication d'un tel guide.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 13/02 20060101AFI20140131BHEP

Ipc: H01Q 19/02 20060101ALI20140131BHEP

Ipc: H01Q 15/24 20060101ALI20140131BHEP

INTG Intention to grant announced

Effective date: 20140306

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 670435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013000069

Country of ref document: DE

Effective date: 20140710

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2483892

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140808

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 670435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140528

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140528

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013000069

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013000069

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150426

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240314

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240326

Year of fee payment: 12

Ref country code: FR

Payment date: 20240321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240319

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240508

Year of fee payment: 12