EP2646740B1 - Led-strahler mit reflektor - Google Patents

Led-strahler mit reflektor Download PDF

Info

Publication number
EP2646740B1
EP2646740B1 EP11815431.9A EP11815431A EP2646740B1 EP 2646740 B1 EP2646740 B1 EP 2646740B1 EP 11815431 A EP11815431 A EP 11815431A EP 2646740 B1 EP2646740 B1 EP 2646740B1
Authority
EP
European Patent Office
Prior art keywords
led
scattering
reflector
cap
spotlight according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11815431.9A
Other languages
English (en)
French (fr)
Other versions
EP2646740A2 (de
Inventor
Christian Derkits
Stefan Tasch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumitech Produktion und Entwicklung GmbH
Tridonic Jennersdorf GmbH
Original Assignee
Lumitech Produktion und Entwicklung GmbH
Tridonic Jennersdorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumitech Produktion und Entwicklung GmbH, Tridonic Jennersdorf GmbH filed Critical Lumitech Produktion und Entwicklung GmbH
Publication of EP2646740A2 publication Critical patent/EP2646740A2/de
Application granted granted Critical
Publication of EP2646740B1 publication Critical patent/EP2646740B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/062Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • F21V3/12Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • F21Y2113/17Combination of light sources of different colours comprising an assembly of point-like light sources forming a single encapsulated light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • LED radiators in particular for achieving a white light illumination, are well known from the prior art. Under an LED spotlight is to be understood regularly an LED light source having one or more LEDs of the same and different color, the light of the one or more LEDs receives the desired distribution by a reflector.
  • a particular problem occurs when LEDs with different emission spectra are used as the light source. It must namely be ensured that before the exit of the mixed light from the various LEDs from the radiator to a sufficient mixing of the light, so that a sufficient color homogeneity of the emitted light over the entire angular range of the emitted light can be achieved.
  • the problem of color homogeneity may be exacerbated when the spectrum of at least one of the LEDs of the LED light source is partially converted to a light with other (usually longer wavelength) light by a color conversion layer applied at a distance and / or in contact with the LED Color conversion layer, so to speak represents a third light source, which must be homogeneously mixed with the light emitted by the LEDs.
  • a spotlight with an LED light source and a reflector is already known from the WO 02/5047472 , There will be an LED light source arranged on the reflector bottom and a lower portion of the reflector inner volume filled. Also the pamphlets WO 2010/113098 A1 WO 2010/106504 A1 . US 2008/310158 A1 or the DE 10 2007 054206 A1 reveal spotlights with LED light sources and reflectors.
  • the spreading cap and the reflector bottom can be on the same level.
  • the LED spotlight may have a heat sink in thermal contact with the LED module.
  • the scattering cap and the reflector can be designed separately or integrated.
  • the translucent medium may comprise phosphor and / or scattering particles.
  • the scattering cap can be designed similar to a hollow cylinder, which may have a wall thickness of 1 - 3 mm.
  • the spreading cap can be similar to a hollow cylinder, which can have a height of 3 - 10mm and a diameter of 3 - 8mm ..
  • the reflector base can have a central opening, through which the LED chips protrude from the base of the LED module, which is arranged below the reflector base, into the stray cap.
  • stray cap From the reflector bottom, a preferably integrally formed with this stray cap can wegeroxyn.
  • the stray cap and the reflector can be placed on the support of the LED module.
  • the LED chips can be covered with a globe-top applied by a dispensing method, for example, or by another cover.
  • the LED chips can be monochromatic in the same color or different colors.
  • the inner circumferential surface of the reflector may have a parabolic, circular or a straight course or be formed at least partially in the form of facets.
  • the inner circumferential surface of the reflector and / or the inner and / or the outer surface of the scattering cap can / can be designed to be reflective, scattering or scattering-reflecting.
  • the scattering cap can consist of a plastic filled with scattering particles.
  • the inner and / or the outer surface of the scattering cap can / have scattering and / or phosphor particles.
  • the inner surface of the scattering cap may contain phosphor particles and the outer surface of the scattering cap may have scattering particles.
  • the scattering cap according to the invention has a base on which the reflector is placed and thus the scattering cap is positioned or fixed.
  • the leaflet may have a snap-in contact.
  • the reflector base and / or the base of the scattering cap can be circular, elliptical or square shaped.
  • the reflector may be covered or open by a scatter or color conversion disc.
  • LED spotlights can be designed as ceiling spotlights for installation in suspended ceilings.
  • LED spotlight can be designed as a retrofit LED reflector lamp and, for example, be equipped with a commercially available version such as. Screw thread, plug-in socket, etc.
  • FIG. 1 shows a cross-sectional view of an LED emitter according to the invention.
  • the LED light source is preferably formed by a plurality of LEDs 7, 7 'which are arranged on a carrier 6, thus forming an LED module 5.
  • the LED module 5 is in thermal contact with a heat sink 3.
  • the LED module 5 and more precisely, the carrier 6 is placed in a central region of the fan-shaped cooling body 3 in the sectional view, or preferably embedded in a central depression of the heat sink bottom.
  • the LEDs 7, 7 ' can be monochromatic (UV, blue, red or green) of the same color or different colors.
  • a translucent (or at least partially translucent) medium 8 applied by a dispensing method is applied, which may contain color conversion material and / or scattering particles.
  • the translucent medium could be prepared by injection or overmolding techniques. Scattering and / or color color version particles may be embedded in the dispensing layer 8 in a polymer matrix (plastic matrix).
  • silicone resin epoxy resin or their mixtures can be used.
  • color conversion material is to be understood as meaning one or more phosphors used in LEDs (for example garnets (YAG), ortho silicates (BOSE) nitrides (SiAlON)). These phosphors may, for example, green, yellow, yellow / green, red or emit any color. Their mixtures can be formed by two or more of these phosphors of the same and / or different color.
  • phosphors used in LEDs for example garnets (YAG), ortho silicates (BOSE) nitrides (SiAlON)
  • YAG garnets
  • BOSE ortho silicates
  • SiAlON ortho silicates
  • These phosphors may, for example, green, yellow, yellow / green, red or emit any color. Their mixtures can be formed by two or more of these phosphors of the same and / or different color.
  • scattering particles one can apply inorganic (eg silicon dioxide, titanium dioxide, barium titanate, small glass ball) and / or organic particles (eg organic scattering particles can be produced from the polymer matrix itself).
  • inorganic eg silicon dioxide, titanium dioxide, barium titanate, small glass ball
  • organic particles eg organic scattering particles can be produced from the polymer matrix itself.
  • the refractive index difference between scattering particle and polymer matrix can be between +/- 0.0003 and +/- 3. It is preferably between +/- 0.05 and +/- 1.5.
  • the LED module 5 is arranged as shown so that it is inserted from the outside through a central opening in the bottom 60 of a reflector 2, such that at least a portion of the LEDs 7, 7 'but preferably the entire side surface of the LEDs 7, 7 'a the interior of the reflector 2 protrudes.
  • the LEDs 7, 7 ' are surrounded by a stray cap 900.
  • the stray cap 900 and the reflector 2 are placed on the support 6 of the LED module 5.
  • the bottoms of the scattering cap and the reflector lie according to the illustrated embodiment on a plane, so are aligned in the side view.
  • the scattering cap can be offset to the rear. In this case, therefore, the bottom of the leaflet with respect.
  • the reflector base is offset to the rear.
  • the LEDs can all lie behind the plane formed by the reflector bottom.
  • the outlet side of the mixing chamber located in the light emission direction can lie on the level of the reflector base, or can project slightly into the interior of the reflector.
  • the lobe walls 904 may be laterally spaced from, or in contact with, the dispensing layer 8.
  • the scattering cap 900 is partially unfilled, thus containing an air layer between the LEDs 7, 7 'or the optional dispensing layer 8 and the exit plane (defined by the edge of the spreading cap 900).
  • this cover 900 is thus an example of color conversion material in the light emission direction but spaced from the LEDs 7, 7 '. can be arranged. Between this color conversion material and the LEDs 7,7 'may be an unfilled, so only air-containing mixing room.
  • the dispensing layer 8 is only one example of how color conversion material and / or scattering material can be provided in direct contact with at least one or all of the LEDs 7, 7 '.
  • the inside of the walls delimiting the scattering cap (in the example 904) is preferably designed to be reflective or scattering or to be control-reflective. In the scattering cap, there will thus be a premixing of the light from the LEDs 7, 7 'and optionally the color conversion material in dispensing layer 8, before this mixed light reaches the actual reflector internal volume limited by the inner lateral surface 70 of the reflector 2.
  • the inner 903 and / or the outer surface 902 of the scattering cap 900 may be coated with scattered and / or phosphor particles.
  • inner surface 903 of scattering cap 900 is coated with phosphor particles and its outer surface 902 is coated with scattering particles.
  • both optimal color conversion and scattering / Lichtfärbehomogenestechnik can be achieved. Compared to the commercially available spreading discs used today, this scattering cap appears more white.
  • the scattering and / or phosphor particles can be embedded in the polymer matrix (plastic) of the scattering cap 900.
  • the entire surface area or volume of the scattering cap (900) may exhibit scattering and / or color-converting properties.
  • the scattering cap is at least partially translucent and has a polymer matrix.
  • the polymer matrix can be prepared for example from thermoplastics.
  • Polycarbonates (PC) and polymethyl methacrylates (PMMA) can be used as thermoplastics.
  • Polycarbonates have the advantage of retaining their physical (and chemical) properties at higher temperatures (T ⁇ 90 ° C).
  • PC polycarbonates
  • PMMA polymethyl methacrylates
  • Polycarbonates have the advantage of retaining their physical (and chemical) properties at higher temperatures (T ⁇ 90 ° C).
  • PMMA is no longer mechanically stable above 90 ° C.
  • PMMA with respect to light transmission is advantageous because its light transmittance is higher.
  • Approximately Half of the loss of luminous intensity is achievable with the use of PMMA (approx. 5-10%) than with the use of PC (10-20%) with the same design of the diffuser cap 900.
  • the scattering cap can be produced by injection molding.
  • the reflector 2 as a whole may also be terminated by a light-permeable cover 100 in the light emission direction, wherein this cover 100 may likewise contain conversion material and / or scattering material.
  • Fig. 1B shows two possible designs of the scattering cap 900.
  • the invention is not limited to the examples shown. All possible 3-dimensional geometric shapes are conceivable.
  • the height (h), the width / diameter (d) and the wall thickness (w) are shown as basic parameters. These parameters could influence the radiation. Eg the higher the spreading cap the larger the radiation angle.
  • Radiation characteristics intensity (I) vs. beam angle ( ⁇ )
  • I intensity
  • beam angle
  • the radiation characteristic can be influenced by the arrangement and / or spacing of the LEDs (7, 7 ') on the LED module 5.
  • the scattering particle density also modifies the emission characteristic of the scattering cap 900.
  • Fig. 1 C shows a possible dome-like design of the stray cap 900.
  • a base or snap-in contact 901 can be used to attach the stray cap 900 on / in the LED module 5.
  • the preferably cup-shaped heat sink 3 can follow the course of the outer contour of the reflector 2.
  • the edge of the reflector 2 can end in a flange region 101 which covers the heat sink 3 at the top.
  • the electrical supply of the LEDs 7, 7 'through the heat sink bottom by means of electrical contacts 9, 10 take place.
  • the flange portion 101 of the reflector may have recesses 22 (not shown), which are preferably arranged in alignment with the chimney-like extensions 30 of the heat sink to (if the reflector is inserted in the cup-like heat sink 3) to the convection promoted by air circulation in these chimney-like recesses 30 of the heat sink 3 not to block.
  • Fig. 2 the reflector 2 is shown. In the central opening of the reflector 2 sits a cylindrical stray cap 900, which has been handled by the reflector bottom 60.
  • Fig. 3 is a detailed view of the cup-shaped heat sink 3.
  • the LED module 5 is added.
  • the side wall of the cup-shaped heat sink 3 has cooling fins 20, which are spaced apart by chimney-like cavities 30. At least in a lower region (i.e., in the direction of the closed base), the cooling fins 20 may be connected by radially inwardly offset wall surfaces. In the upper region, the cooling ribs may be free of fingerprints, in such a way that the reflector outer wall is partially exposed to the outside in a lateral view.
  • Fig. 4 shows a cross-sectional view of the positioning possibilities of the reflector 2 / reflector base 60 and the LED module 5 / the scattering cap 900 in an LED emitter according to the invention.
  • the reflector bottom 60 may be connected to the side of the carrier 6 with the LED module 5 ( Fig. 4 B).
  • Fig. 4C shows a further embodiment of the solution.
  • the reflector 2 is connected to the rear side of the LED module 5.
  • the reflector bottom 60 may be completely or partially hidden by the LED module 5 (or LED carrier 6). Other other positioning options are also conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

  • LED-Strahler, insbesondere zur Erzielung einer Weißlichtbeleuchtung, sind aus dem Stand der Technik gut bekannt. Unter einem LED-Strahler ist dabei regelmäßig eine LED-Lichtquelle zu verstehen, die eine oder mehrere LEDs gleicher und unterschiedlicher Farbe aufweist, wobei das Licht der einen oder mehreren LEDs durch einen Reflektor die gewünschte Verteilung erhält.
  • Eine besondere Problematik tritt dabei auf, wenn als Lichtquelle LEDs mit unterschiedlichen Emissionsspektren verwendet werden. Es muss nämlich dafür gesorgt werden, dass es vor dem Austritt des Mischlichts von den verschiedenen LEDs aus dem Strahler zu einer ausreichenden Vermischung des Lichts kommt, so dass eine ausreichende Farbhomogenität des ausgestrahlten Lichts über den möglichst gesamten Winkelbereich des ausgestrahlten Lichts erzielt werden kann.
  • Das Problem der Farbhomogenität kann sich noch verstärken, wenn das Spektrum wenigstens einer der LEDs der LED-Lichtquelle durch eine in Abstand und/oder in Kontakt auf die LED aufgebrachte Farbkonversionsschicht teilweise in ein Licht mit anderen (normalerweise langwelligeren) Licht umgewandelt wird, das die Farbkonversionsschicht sozusagen eine dritte Lichtquelle darstellt, die mit dem von den LEDs ausgesandten Licht homogen vermischt werden muss.
  • Ein Strahler mit einer LED-Lichtquelle und einem Reflektor ist bereits bekannt aus der WO 02/5047472 . Dort wird eine LED-Lichtquelle auf dem Reflektorboden angeordnet und ein unterer Abschnitt des Reflektor-Innenvolumens aufgefüllt. Auch die Druckschriften WO 2010/113098 A1 WO 2010/106504 A1 , US 2008/310158 A1 oder die DE 10 2007 054206 A1 offenbaren Strahler mit LED-Lichtquellen und Reflektoren.
  • Es ist daher Aufgabe der Erfindung, einen LED-Strahler vorzuschlagen, der eine bessere Lichtmischung erzielt, um somit die Farbhomogenität zu verbessern.
  • Diese Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche. Die abhängigen Ansprüche bilden den zentralen Gedanken der Erfindung in besonders vorteilhafter Weise weiter.
  • Die Erfindung betrifft einen LED-Strahler, vorzugsweise für Weißlicht, aufweisend:
    • ein LED-Modul (5) mit mehreren LED-Chips auf einem Träger, ein lichtdurchlässiges Medium unter der die LED-Chips untergebracht sind,
    • einen die LED-Chips seitlich umgebenden Reflektor,
    • eine innerhalb des Reflektors angeordnete Streukappe, wobei die Streukappe die LED-Chips umhüllt.
  • Die Streukappe und der Reflektorboden können auf der gleichen Ebene liegen. Der LED-Strahler kann einen Kühlkörper, der in thermischen Kontakt mit dem LED-Modul steht, aufweisen.
  • Die Streukappe und der Reflektor können separat oder integriert ausgestaltet sein.
  • Das lichtdurchlässige Medium kann Leuchtstoff- und/oder Streupartikel aufweisen.
  • Die Streukappe kann ähnlich einem Hohlzylinder ausgeführt sein, die eine Wandstärke von 1 - 3 mm aufweisen kann.
  • Die Streukappe kann ähnlich einem Hohlzylinder ausgeführt sein, die eine Höhe von 3 - 10mm und einen Durchmesser von 3 - 8mm aufweisen kann..
  • Der Reflektorboden kann eine zentrale Öffnung aufweisen, durch die die LED-Chips ausgehend von dem unterhalb des Reflektorbodens angeordneten Trägers des LED-Moduls in die Streukappe ragen.
  • Von dem Reflektorboden kann eine vorzugsweise einstückig damit ausgebildete Streukappe wegerstrecken.
  • Die Streukappe und der Reflektor können auf dem Träger des LED-Moduls aufgesetzt sein.
  • Die LED-Chips können mit einem bspw. durch ein Dispensverfahren aufgebrachten Globe-Top oder durch eine andere Abdeckung abgedeckt sein.
  • Die LED-Chips können monochromatisch gleichfarbig oder verschiedenfarbig sein.
  • Die innere Mantelfläche des Reflektors kann einen parabolischen, kreisförmigen oder einen geradlinigen Verlauf aufweisen oder wenigstens teilweise in Form von Facetten ausgebildet sein.
  • Die innere Mantelfläche des Reflektors und/öder die innere und/oder die äußere Oberfläche der Streukappe kann/können reflektierend, streuend oder streuend-reflektierend ausgebildet sein.
  • Die Streukappe kann aus einem mit Streupartikel gefüllten Kunststoff bestehen.
  • Die innere und/oder die äußere Oberfläche der Streukappe kann/können Streu- und/oder Leuchtstoffpartikel aufweisen.
  • Die innere Oberfläche der Streukappe kann Leuchtstoffpartikel und die äußere Oberfläche der Streukappe kann Streupartikel aufweisen.
  • Die Streukappe weist erfindungsgemäß einen Sockel auf, auf welchen der Reflektor aufgesetzt wird und somit die Streukappe positioniert bzw. befestigt ist.
  • Die Streukappe kann einen Snap-in Kontakt aufweisen.
  • Der Reflektorboden und/oder die Grundfläche der Streukappe kann/können kreisförmig, elliptisch oder quadratisch geformt sein.
  • Der Reflektor kann durch eine Streu- oder Farbkonversionsscheibe abgedeckt oder offen sein.
  • LED-Strahler kann als Deckenstrahler zum Einbau in abgehängten Decken ausgebildet sein.
  • LED-Strahler kann als Retrofit LED-Reflektor Lampe ausgebildet sein und bspw. mit einer handelsüblichen Fassung wie bspw. Schraubgewinde, Plug-In-Sockel etc. ausgerüstet sein.
  • Weitere Merkmale, Vorteil und Eigenschaften der Erfindung werden nunmehr unter Bezugnahme auf die Figuren der beiliegenden Zeichnungen näher erläutert werden.
    • Figur 1A zeigt eine Querschnittsansicht eines erfindungsgemäßen LED-Strahlers.
    • Figuren 1B-C zeigen Querschnittsansichten einer erfindungsgemäßen Streukappe
    • Figur 1D zeigt die Abhängigkeit der Abstrahlung des LED- Strahlers von der Höhe einer erfindungsgemäßen Streukappe.
    • Figur 2 zeigt den Reflektor des LED-Strahlers,
    • Figur 3 zeigt im Detail den Kühlkörper mit einem LED-Modul,
    • Figuren 4 A-C zeigen mögliche Positionierungen des Reflektors und der Streukappe.
  • Figur 1 zeigt eine Querschnittsansicht eines erfindungsgemäßen LED-Strahlers. Die LED-Lichtquelle wird vorzugsweise durch mehrere LEDs 7, 7' gebildet, die auf einen Träger 6 angeordnet sind, um somit ein LED-Modul 5 zu bilden.
  • Das LED-Modul 5 ist in thermischen Kontakt mit einem Kühlkörper 3. Im dargestellten Beispiel ist das LED-Modul 5 und genauer gesagt der Träger 6 in einem Zentralbereich des in der Schnittansicht fächerförmig ausgeführten Kühlkörpers 3 aufgesetzt oder vorzugsweise in eine zentrale Vertiefung des Kühlkörperbodens eingelassen.
  • Die LEDs 7, 7' können monochromatisch (UV, blau, rot oder grün) gleichfarbig oder verschiedenfarbig sein.
  • Im dargestellten Beispiel ist in direktem Kontakt mit einem oder allen LEDs 7, 7' ein durch ein Dispensverfahren aufgebrachte lichtdurchlässiges (oder mindestens teilweise lichtdurchlässiges) Medium 8 aufgebracht, das Farbkonversionsmaterial und/oder Streupartikel enthalten kann. Alternativ könnte das lichtdurchlässige Medium durch Injektion- oder Overmouldingverfahren vorbereitet sein. Streu- und/oder Farbkoriversionspärtikel können in der Dispensschicht 8 in einer Polymer-Matrix (Kunststoffmatrix) eingebettet sein.
  • Als Polymer-Matrix können Silikonharz, Epoxydharz oder ihre Mischungen eingesetzt werden.
  • Unter Farbkonversionsmaterial ist dabei im Rahmen der vorliegenden Beschreibung und Ansprüche ein oder mehrere bei LEDs angewendete Leuchtstoffe (z.B. Granate (YAG), Ortho Silikate (BOSE) Nitride (SiAlON)) zu verstehen. Diese Leuchtstoffe können bspw. grün, gelb, gelb/grün, rot oder eine beliebige Farbe emittieren. Ihre Mischungen können von zwei oder mehr dieser Leuchtstoffe gleicher und/oder unterschiedlicher Farbe entstehen.
  • Als Streupartikel kann man anorganische (z.B. Silizium Dioxid, Titanium Dioxid, Barium Titanate, kleine. Glaskugel) und/oder organische Teilchen (z.B. können organische Streupartikel aus dem Polymer-Matrix selbst hergestellt werden) anwenden.
  • Der Brechzahlunterschied zwischen Streupartikel und Polymer-Matrix kann zwischen +/-0.0003 und+/-3 liegen. Vorzugsweise liegt er zwischen +/- 0.05 und+/-1.5.
  • Das LED-Modul 5 ist wie dargestellt derart angeordnet, daß es von außen durch eine zentrale Öffnung in dem Boden 60 eines Reflektors 2 hindurchgesteckt wird, derart, dass zumindest ein Teil der LEDs 7, 7' vorzugsweise aber die gesamte Seitenfläche der LEDs 7,7' ein das Innere des Reflektors 2 hineinragt. Die LEDs 7,7' sind von einer Streukappe 900 umgeben.
  • Die Streukappe 900 und der Reflektor 2 sind auf dem Träger 6 des LED-Moduls 5 aufgesetzt. Die Böden der Streukappe und des Reflektors liegen gemäß dem dargestellten Ausführungsbeispiel auf einer Ebene, sind also in der Seitenansicht fluchtend angeordnet.
  • Alternativ (nicht dargestellt) kann die Streukappe nach hinten versetzt sein. In diesem Fall ist also der Boden der Streukappe bzgl. des Reflektorbodens nach hinten versetzt. Auch die LEDs können sämtlich hinter der durch den Reflektorboden gebildeten Ebene liegen. Bspw. kann die in Lichtabstrahlrichtung gelegene Auslassseite der Mischkammer auf der Ebene des Reflektorbodens liegen, oder leicht in den Reflektor-Innenraum hineinragen.
  • Die Streukappenwände 904 können von der Dispensschicht 8 seitlich beabstandet sein, oder mit dieser in Kontakt stehen.
  • Die Streukappe 900 ist zum Teil unbefüllt, enthält also eine Luftschicht zwischen den LEDs 7,7' bzw. der optionalen Dispensschicht 8 und der Austrittebene (definiert durch den Rand die Streukappe 900). Diese Abdeckung 900 ist also somit ein Beispiel, daß Farbkonversionsmaterial in Lichtabstrahlrichtung, aber in Abstand zu den LEDs 7,7' angeordnet sein kann. Zwischen diesem Farbkonversionsmaterial und den LEDs 7,7' kann sich ein nicht ausgefüllter, also nur Luft enthaltender Mischraum befinden.
  • Die Dispensschicht 8 ist dafür nur ein Beispiel, wie Farbkonversionsmaterial und/oder Streumaterial in direktem Kontakt mit wenigstens einer oder auch allen LEDs 7, 7' vorgesehen sein kann.
  • Die Innenseite der die Streukappe begrenzenden Wände (im Beispiel 904) ist vorzugsweise reflektierend oder streuend oder steuend-reflektierend ausgeführt. In der Streukappe wird es somit zu einer Vormischung des Lichts von den LEDs 7,7' und gegebenenfalls des Farbkonversionsmaterials in Dispensschicht 8 kommen, bevor dieses Mischlicht das eigentliche Reflektorinnenvolumen begrenzt durch die innere Mantelfläche 70 des Reflektors 2 erreicht.
  • Die innere 903 und/oder die äußere Oberfläche 902 der Streukappe 900 kann/können mit Streu- und/oder Leuchtstoffpartikel beschichtet sein. Vorzugsweise ist die innere Oberfläche 903 der Streukappe 900 mit Leuchtstoffteilchen und ihre äußere Oberfläche 902 mit Streupartikel beschichtet. Durch diese Ausführungsform kann sowohl eine optimale Farbkonversion als auch Streuung/Lichtfärbehomogenesierung erreicht werden. Im Vergleich zu den heute eingesetzten handelsüblichen Streuscheiben erscheint diese Streukappe mehr weiß. Alternativ können die Streu- und/oder Leuchtstoffpartikel in der Polymer-Matrix (Kunststoff) der Streukappe 900 eingebettet sein. Die gesamte Oberfläche oder Volumen der Streukappe (900) kann streuende und/oder farbkonvertierende Eigenschaften aufzeigen.
  • Die Streukappe ist mindestens teilweise lichtdurchlässig und weist eine Polymer-Matrix auf. Die Polymer-Matrix kann beispielsweise aus Thermoplasten vorbereitet sein. Polycarbonate (PC) und Polymethylmethacrylate (PMMA) können als thermoplastische Kunststoffe eingesetzt werden. Polycarbonate haben den Vorteil, daß sie ihre physikalische (und chemische) Eigenschaften bei höheren Temperaturen (T≥90 °C) behalten. PMMA ist über 90°C mechanisch nicht mehr stabil. PMMA bezüglich Lichtdurchlässigkeit ist aber vorteilhaft, weil ihre Lichtdurchlässigkeit höher ist. Ca. die Hälfte des Lichtstärkeverlustes ist bei Einsetzung PMMA (ca. 5-10%) als bei Einsetzung PC (10-20%) bei der gleicher Bauform der Streukappe 900 erreichbar. Die Streukappe kann mittels Spritzgußtechnik hergestellt werden.
  • Alternativ oder zusätzlich kann auch der Reflektor 2 insgesamt durch eine lichtdurchlässige Abdeckung 100 in Lichtabstrahlrichtung abgeschlossen sein, wobei diese Abdeckung 100 ebenfalls Konversionsmateria und/oder Streumaterial enthalten kann.
  • Fig. 1B zeigt zwei mögliche Bauformen der Streukappe 900. Die Erfindung ist aber nicht auf den gezeigten Beispielen eingeschränkt. Alle möglichen 3-dimensionale geometrischen Formen sind denkbar. Bei der zylindrischen Streukappe sind die Höhe (h), die Breite/Durchmesser (d) und die Wandstärke (w) als Basisparameter dargestellt. Durch diese Parameter könnte die Abstrahlung beeinflußt werden. z.B. Je höher die Streukappe desto größer der Abstrahlwinkel ist. Abstrahlcharakteristiken (Intensität (I) vs. Abstrahlwinkel (α)) sind bei einer höheren Kappe durch Kurve 1 und bei einer niedrigeren Kappe durch Kurve 2 in Fig. 1D illustriert. Alternativ kann die Abstrahlcharakteristik durch die Anordnung und/oder Abstand der LEDs (7, 7') auf dem LED-Modul 5 beeinflußt werden. Durch die Streupartikeldichte wird die Abstrahlcharakteristik der Streukappe 900 auch modifiziert.
  • Nämlich, eine höhere Partikeldichte wird einen größeren Abstrahlwinkel erzeugen.
  • Fig. 1 C zeigt eine mögliche kuppelartige Bauform der Streukappe 900. Ein Sockel oder Snap-in Kontakt 901 kann zur Befestigung der Streukappe 900 auf/in das LED-Modul 5 eingesetzt werden.
  • Wie bereits aus der Querschnittsansicht von Fig. 1 A ersichtlich, kann der vorzugsweise becherförmig ausgestaltete Kühlkörper 3 dem Verlauf der Außenkontur des Reflektors 2 folgen. Der Rand des Reflektors 2 kann in einem Flanschbereich 101 enden, der oben den Kühlkörper 3 abdeckt. Wie in Fig. 1 schematisch dargestellt, kann die elektrische Versorgung der LEDs 7, 7' durch den Kühlkörperboden hindurch mittels elektrischer Kontaktierungen 9, 10 erfolgen.
  • Der Flanschbereich 101 des Reflektors kann Ausnehmungen 22 (nicht gezeigt) aufweisen, die vorzugsweise fluchtend zu den kaminartigen Ausdehnungen 30 des Kühlkörpers angeordnet werden, um (wenn der Reflektor in dem becherartigen Kühlkörper 3 eingesetzt ist), um die beispielsweise durch Konvektion geförderte Luftzirkulation in diesen kaminartigen Ausnehmungen 30 des Kühlkörpers 3 nicht zu blockieren.
  • In Fig. 2 ist der Reflektor 2 gezeigt. In der zentralen Öffnung des Reflektors 2 sitzt eine zylindrische Streukappe 900, die von dem Reflektorboden 60 umgegangen ist.
  • Fig. 3 ist eine detaillierte Ansicht des becherförmigen Kühlkörpers 3. In eine zentrale, hier im Wesentlichen quadratische Vertiefung des Kühlkörpers 3 ist wie dargestellt das LED-Modul 5 aufgenommen.
  • Die Seitenwand des becherförmigen Kühlkörpers 3 weist Kühlrippen 20 auf, die durch kaminartige Hohlräume 30 beabstandet sind. Zumindest in einem unteren Bereich (d.h. in Richtung der geschlossenen Grundfläche) können die Kühlrippen 20 durch radial nach innen versetzte Wandflächen verbunden sein. Im oberen Bereich können die Kühlrippen fingerartig freistehen, derart, daß also teilweise in seitlicher Ansicht die Reflektor-Außenwand nach Außen freiliegt.
  • In Fig. 4 zeigt eine Querschnittsansicht der Positionierungsmöglichkeiten des Reflektors 2/ Reflektorboden 60 und das LED-Modul 5/ die Streukappe 900 bei einem erfindungsgemäßen LED-Strahler.
  • Insgesamt kann wie in Fig. 4 A gut ersichtlich der Reflektor auch auf den Träger 6 des LED-Moduls 5, die LEDs 7, 7' umgebend aufgesetzt werden. Alternativ kann der Reflektorboden 60 an der Seite des Trägers 6 mit dem LED-Modul 5 angebunden sein (Fig. 4 B). Fig. 4 C zeigt ein weiteres Ausführungsbeispiel der Lösung. Der Reflektor 2 mit der Rückseite des LED-Moduls 5 verbunden. Der Reflektorboden 60 kann völlig oder teilweise von dem LED-Modul 5 (oder LED-Täger 6) verdeckt werden. Weitere andere Positionierungsmöglichkeiten sind auch denkbar.

Claims (25)

  1. LED-Strahler, vorzugsweise für Weißlicht, aufweisend:
    - ein LED-Modul (5) mit mehreren LED-Chips (7,7') auf einem Träger (6),
    - ein lichtdurchlässiges Medium (8), unter dem die LED- Chips (7,7'), untergebracht sind,
    - einen die LED-Chips (7,7') seitlich umgebenden Reflektor (2), wobei innerhalb des Reflektors (2) eine Streukappe (900) angeordnet ist,
    die die LED-Chips (7,7') umhüllt, dadurch gekennzeichnet, dass die Streukappe (900) einen Sockel aufweist, auf welchen der Reflektor (2) aufgesetzt wird und somit die Streukappe (900) positioniert bzw. befestigt ist.
  2. LED-Strahler nach Anspruch 1,
    dadurch gekennzeichnet, dass die Streukappe (900) und der Reflektorboden (60) auf der gleichen Ebene liegen.
  3. LED-Strahler nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass der LED-Strahler einen Kühlkörper (3), der in thermischen Kontakt mit dem LED- Modul (5) steht, aufweist.
  4. LED-Strähler nach Anspruch 1 bis 3,
    dadurch gekennzeichnet, dass die Streukappe (900) und der Reflektor (2) separat oder integriert ausgestaltet sind.
  5. LED-Strahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das lichtdurchlässiges Medium (8) Leuchtstoff und/oder Streupartikel aufweist.
  6. LED-Strahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Streukappe (900) ähnlich einem Hohlzylinder ausgeführt ist, der eine Wandstärke von 1 - 3 mm aufweist.
  7. LED-Strahler nach Anspruch 6,
    dadurch gekennzeichnet, dass die Streukappe (900) ähnlich einem Hohlzylinder ausgeführt ist, der eine Höhe von 3-10 mm und einen Durchmesser von 3 - 8 mm aufweist.
  8. LED-Strahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Reflektorboden (60) eine zentrale Öffnung aufweist, durch die die LED-Chips (7,7') ausgehend von dem unterhalb des Reflektorbodens (60) angeordneten Trägers (6) des LED-Moduls (5) in die Streukappe (900) ragen.
  9. LED-Strahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich von dem Reflektorboden (60) eine vorzugsweise einstückig damit ausgebildete Streukappe (900) wegerstreckt.
  10. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Streukappe (900) und der Reflektor (2) auf dem Träger (6) des LED-Moduls aufgesetzt sind.
  11. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die LED-Chips (7,7') mit einem bspw. durch ein Dispensverfahren aufgebrachten Globe-Top 18) oder durch eine andere Abdeckung abgedeckt sind.
  12. LED-Strahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die LED-Chips (7,7') monochromatisch gleichfarbig oder verschiedenfarbig sind.
  13. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die innere Mantelfläche (70) des Reflektors (2) einen parabolischen, kreisförmigen oder einen geradlinigen Verlauf aufweist oder wenigstens teilweise in Form von Facetten ausgebildet ist.
  14. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die innere Mantelfläche (70) des Reflektors (2) und/oder die innere (903) und/oder die äußere Oberfläche (902) der Streukappe (900) reflektierend, streuend oder streuend-reflektierend ausgebildet sind.
  15. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Streukappe (900) aus einem mit Streupartikel gefüllten Kunststoff besteht
  16. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die innere (903) und/oder äußere Oberfläche (902) der Streukappe (900) Streu- und/oder Leuchtstoffpartikel aufweist.
  17. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die innere Oberfläche (903) der Streukappe (900) Leuchtstoffpartikel und die äußere Oberfläche (902) der Streukappe (900) Streupartikel aufweist.
  18. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Streukappe (900) einen Snap-in Kontakt (901) aufweist.
  19. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der Reflektorboden (60) und/oder die Grundfläche (50) der Streukappe (900) kreisförmig, elliptisch oder quadratisch geformt ist.
  20. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der Reflektor (2) durch eine Streu- oder Farbkonversionsscheibe (100) abgedeckt oder offen ist.
  21. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass er als Deckenstrahler zum Einbau in abgehängten Decken ausgebildet ist.
  22. LED-Strahler nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass er als Retrofit LED-Reflektor Lampe ausgebildet ist und bspw. mit einer handelsüblichen Fassung wie bspw. Schraubgewinde, Plug-In-Sockel etc. ausgerüstet ist.
  23. Verfahren zur Verbesserung der Farbhomogenität eines LED-Strahlers, aufweisend die Schritte:
    - Anordnen mehrerer LED Chips (7,7') auf einem Träger (6),
    - Aufbringen eines lichtdurchlässigen Mediums (8) auf die LED Chips (7,7'),
    - Anordnen des Trägers (6) von außen durch eine zentrale Öffnung in einem Boden (60) eines Reflektors (2) derart, dass zumindest ein Teil der LED Chips (7,7') in das Innere des Reflektors (2) hineinragt, und
    - Aufsetzen einer Streukappe (900) auf den Träger (6), wobei die Streukappe (900) einen Sockel aufweist, auf welchen der Reflektor (2) aufgesetzt wird und somit die Streukappe (900) positioniert bzw. befestigt ist,
    derart, dass die Streukappe (900) die LED Chips (7,7') umgibt.
  24. Verfahren zur Verbesserung der Farbhomogenität eines LED-Strahlers nach Anspruch 23, wobei das lichtdurchlässige Medium (8) mittels Dispensverfahren, Injektions- oder Overmouldingverfahren auf die LED Chips (7,7') aufgebracht wird.
  25. Verfahren zur Verbesserung der Farbhomogenität eines LED-Strahlers nach Anspruch 23 oder 24, aufweisend die weiteren Schritte
    - Beschichtung einer inneren Oberfläche (903) der Streukappe (900) mit Leuchtstoffteilchen und
    - Beschichtung einer äußeren Oberfläche (902) der Streukappe (900) mit Streupartikeln.
EP11815431.9A 2010-12-03 2011-12-02 Led-strahler mit reflektor Active EP2646740B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM746/2010U AT12552U1 (de) 2010-12-03 2010-12-03 Led-strahler mit reflektor
PCT/AT2011/000484 WO2012071598A2 (de) 2010-12-03 2011-12-02 Led-strahler mit reflektor

Publications (2)

Publication Number Publication Date
EP2646740A2 EP2646740A2 (de) 2013-10-09
EP2646740B1 true EP2646740B1 (de) 2015-08-26

Family

ID=45558442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11815431.9A Active EP2646740B1 (de) 2010-12-03 2011-12-02 Led-strahler mit reflektor

Country Status (3)

Country Link
EP (1) EP2646740B1 (de)
AT (1) AT12552U1 (de)
WO (1) WO2012071598A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015101947A1 (de) 2015-02-11 2016-08-11 Trilux Gmbh & Co. Kg Langgestreckte Optik für LED-Module
US10683971B2 (en) 2015-04-30 2020-06-16 Cree, Inc. Solid state lighting components
WO2017001259A1 (en) * 2015-06-30 2017-01-05 Philips Lighting Holding B.V. Led spot with customizable beam shape, beam color and color uniformity
WO2021236413A1 (en) 2020-05-18 2021-11-25 Wangs Alliance Corporation Germicidal lighting
US11027038B1 (en) 2020-05-22 2021-06-08 Delta T, Llc Fan for improving air quality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080310158A1 (en) * 2007-06-18 2008-12-18 Xicato, Inc. Solid State Illumination Device
DE102007054206A1 (de) * 2007-10-15 2009-04-16 Harald Hofmann LED-Lampe mit Diffusor
WO2010106504A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Illumination device with remote luminescent material
WO2010113098A1 (en) * 2009-04-02 2010-10-07 Koninklijke Philips Electronics N.V. Reflector with mixing chamber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547416B2 (en) 2000-12-21 2003-04-15 Koninklijke Philips Electronics N.V. Faceted multi-chip package to provide a beam of uniform white light from multiple monochrome LEDs
DE10105957A1 (de) * 2001-02-09 2002-09-19 Fraunhofer Ges Forschung Verfahren zur Herstellung von Licht streuenden Elementen
CA2565339C (en) * 2004-05-05 2012-11-06 Rensselaer Polytechnic Institute High efficiency light source using solid-state emitter and down-conversion material
EP1693615A1 (de) * 2005-02-22 2006-08-23 Moduled Inc. Beleuchtungsvorrichtung mit einer Lichtmischungseinheit
DE102006043402B4 (de) * 2006-09-15 2019-05-09 Osram Gmbh Beleuchtungseinheit mit einem optischen Element
US8283190B2 (en) * 2008-06-26 2012-10-09 Osram Sylvania Inc. LED lamp with remote phosphor coating and method of making the lamp
US8613530B2 (en) * 2010-01-11 2013-12-24 General Electric Company Compact light-mixing LED light engine and white LED lamp with narrow beam and high CRI using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080310158A1 (en) * 2007-06-18 2008-12-18 Xicato, Inc. Solid State Illumination Device
DE102007054206A1 (de) * 2007-10-15 2009-04-16 Harald Hofmann LED-Lampe mit Diffusor
WO2010106504A1 (en) * 2009-03-19 2010-09-23 Koninklijke Philips Electronics N.V. Illumination device with remote luminescent material
WO2010113098A1 (en) * 2009-04-02 2010-10-07 Koninklijke Philips Electronics N.V. Reflector with mixing chamber

Also Published As

Publication number Publication date
WO2012071598A2 (de) 2012-06-07
AT12552U1 (de) 2012-07-15
EP2646740A2 (de) 2013-10-09
WO2012071598A3 (de) 2012-08-30

Similar Documents

Publication Publication Date Title
DE102010043921B4 (de) Leuchtvorrichtung und Verfahren zum Herstellen einer Leuchtvorrichtung
EP2646740B1 (de) Led-strahler mit reflektor
WO2011067093A1 (de) Leuchtvorrichtung und aufsatzelement zur befestigung an der leuchtvorrichtung
WO2012123233A2 (de) Leuchtvorrichtung
EP1843081B1 (de) Leuchte, insbesondere Raumleuchte
EP2264796A2 (de) Weisse LED mit kegelfoermigem Reflektor und planaren Facetten
EP2281140A1 (de) Leuchtvorrichtung
EP2627942B1 (de) Led-strahler mit reflektor
EP2556286B1 (de) Led-modul mit doppeldiffusor
DE102009047487A1 (de) Leuchtmodul
DE102010029515A1 (de) Halbleiterlampe, Verfahren zum Herstellen eines Kolbens für eine Halbleiterlampe und Verfahren zum Herstellen einer Halbleiterlampe
DE102011076300A1 (de) Leuchtvorrichtung mit aufsatzelement
DE102009047481A1 (de) Leuchtmodul
WO2012062643A1 (de) Leuchtvorrichtung und verfahren zum herstellen einer leuchtvorrichtung
DE102017222649A1 (de) Lichtmodul, anordnung, scheinwerfer und verfahren
DE102012209354A1 (de) LED-Modul
WO2012139841A1 (de) Kolben für halbleiter-leuchtvorrichtung sowie halbleiter-leuchtvorrichtung
DE202014104031U1 (de) Rahmenlose Pendelleuchte
DE202010007032U1 (de) LED-Modul für Strahler
AT13039U1 (de) Reflektoreinheit für leds, led lichtquelle, poster-box sowie verfahren zur montage der led lichtquelle
EP2816275B1 (de) LED-Modul für werkzeuglose Montage von optischen Elementen
WO2012110292A1 (de) Leuchtvorrichtung
EP2372229B1 (de) Downlightreflektor mit Zusatzlichtquelle
WO2012101096A2 (de) Leuchtvorrichtung
DE102016203668A1 (de) Retrofitlampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130603

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LUMITECH PRODUKTION UND ENTWICKLUNG GMBH

Owner name: TRIDONIC JENNERSDORF GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 99/00 20100101AFI20150306BHEP

Ipc: F21V 3/04 20060101ALI20150306BHEP

Ipc: F21Y 101/02 20060101ALN20150306BHEP

Ipc: F21V 13/02 20060101ALN20150306BHEP

Ipc: F21Y 113/00 20060101ALN20150306BHEP

INTG Intention to grant announced

Effective date: 20150401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 745401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007728

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WEINMANN ZIMMERLI, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007728

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151202

26N No opposition filed

Effective date: 20160530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: F21V 3/04 20180101ALI20150306BHEP

Ipc: F21Y 101/02 20000101ALN20150306BHEP

Ipc: F21Y 113/00 20160101ALN20150306BHEP

Ipc: F21K 99/00 20160101AFI20150306BHEP

Ipc: F21V 13/02 20060101ALN20150306BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011007728

Country of ref document: DE

Owner name: TRIDONIC GMBH & CO KG, AT

Free format text: FORMER OWNERS: LUMITECH PRODUKTION UND ENTWICKLUNG GMBH, JENNERSDORF, AT; TRIDONIC JENNERSDORF GMBH, JENNERSDORF, AT

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011007728

Country of ref document: DE

Representative=s name: MITSCHERLICH, PATENT- UND RECHTSANWAELTE PARTM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011007728

Country of ref document: DE

Owner name: LUMITECH PATENTVERWERTUNG GMBH, AT

Free format text: FORMER OWNERS: LUMITECH PRODUKTION UND ENTWICKLUNG GMBH, JENNERSDORF, AT; TRIDONIC JENNERSDORF GMBH, JENNERSDORF, AT

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011007728

Country of ref document: DE

Owner name: TRIDONIC JENNERSDORF GMBH, AT

Free format text: FORMER OWNERS: LUMITECH PRODUKTION UND ENTWICKLUNG GMBH, JENNERSDORF, AT; TRIDONIC JENNERSDORF GMBH, JENNERSDORF, AT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011007728

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191224

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191220

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 745401

Country of ref document: AT

Kind code of ref document: T

Owner name: TRIDONIC JENNERSDORF GMBH, AT

Effective date: 20200305

Ref country code: AT

Ref legal event code: PC

Ref document number: 745401

Country of ref document: AT

Kind code of ref document: T

Owner name: LUMITECH PATENTVERWERTUNG GMBH, AT

Effective date: 20200305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200113

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 745401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011007728

Country of ref document: DE

Owner name: TRIDONIC GMBH & CO KG, AT

Free format text: FORMER OWNERS: LUMITECH PATENTVERWERTUNG GMBH, JENNERSDORF, AT; TRIDONIC JENNERSDORF GMBH, JENNERSDORF, AT

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011007728

Country of ref document: DE

Owner name: LUMITECH PATENTVERWERTUNG GMBH, AT

Free format text: FORMER OWNERS: LUMITECH PATENTVERWERTUNG GMBH, JENNERSDORF, AT; TRIDONIC JENNERSDORF GMBH, JENNERSDORF, AT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221220

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 13