EP2646587B1 - Process for producing an alscca alloy and also an aiscca alloy - Google Patents

Process for producing an alscca alloy and also an aiscca alloy Download PDF

Info

Publication number
EP2646587B1
EP2646587B1 EP11831814.6A EP11831814A EP2646587B1 EP 2646587 B1 EP2646587 B1 EP 2646587B1 EP 11831814 A EP11831814 A EP 11831814A EP 2646587 B1 EP2646587 B1 EP 2646587B1
Authority
EP
European Patent Office
Prior art keywords
alloy
aluminum
scandium
calcium
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11831814.6A
Other languages
German (de)
French (fr)
Other versions
EP2646587A2 (en
Inventor
Frank Palm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP2646587A2 publication Critical patent/EP2646587A2/en
Application granted granted Critical
Publication of EP2646587B1 publication Critical patent/EP2646587B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • US 5 211 910 describes an aluminum alloy which may contain scandium and / or calcium in a proportion of 0.5 to 4 wt.%.
  • WO 2007/102988 A2 discloses an aluminum alloy which may have calcium and / or scandium in a range of 0.01 to 6%.
  • melt-spinning describes a process by which melting, in particular molten metal, is cooled at very high speeds, ie. be deterred.
  • KBM AFFILIPS Master Alloys offers on its website aluminum base alloys, such as aluminum-magnesium alloys, aluminum-scandium alloys or aluminum-calcium alloys.
  • CN 100 402 683 C describes a process for producing an aluminum foam in which an aluminum melt is first mixed with 1 to 11% magnesium, 0.5 to 5.5% calcium and 0.1 to 1.2% rare earth metal, followed by foaming of the aluminum melt titanium hydride, zirconium hydride , Volcanic ash or the like is added.
  • the object of the invention is to propose an aluminum scandium-calcium alloy with reduced density and a simple and harmless method for producing this alloy.
  • calcium has a significantly lower volume weight than aluminum and thus contributes to a reduction in the total density of the alloy when alloyed with an aluminum scandium alloy.
  • a material made with such an alloy is lightweight and yet largely exhibits the strength properties of the aluminum scandium alloy.
  • the melt with calcium can be easily handled under atmospheric conditions, so that protective measures, such as the lining of gutters and pots with oxides or the use of inert gas, are not necessary.
  • a high-strength, low-density aluminum alloy can be produced in a simple and harmless method.
  • Calcium is added in a proportion of more than 0.5% by weight and less than 5% by weight.
  • calcium is present with a significant proportion in the alloy and significantly reduces the weight of the alloy and also of the materials produced therefrom.
  • the weight of the alloy can be reduced by about 5% over the aluminum scandium alloy.
  • the common melt is quenched by means of a rapid solidification process at a rate of 10,000 K / s to 10,000,000 K / s.
  • a rapid solidification process Through a normal metallurgical manufacturing pathway followed by cast solidification with slow cooling conditions after melting, it has hitherto been difficult to alloy calcium in significant amounts to an aluminum scandium alloy. Because it immediately forms an Al 2 Ca phase, which is excreted and embrittles the alloy.
  • the problem of limited solubility and unwanted premature coarse deterioration of calcium in aluminum alloys can be overcome and calcium remains largely in solution because rapid cooling prevents natural crystallization. This robs the atoms of mobility before they can take a crystal arrangement and thus Al 2 Ca can be formed.
  • Methods which are suitable are all solidification processes in which the heat is quickly removed from the melt, for example spin-casting, powder atomization by means of gas or in water, strip-casting or spray-compacting, but also processes in which a melt is generated at short notice and solidifies immediately, for example, welding processes for joining, surface modification or for the generative production of three-dimensional components, the so-called "layer-building process"("additivemanufacturing”).
  • the common melt is sprayed onto a substrate by means of a nozzle as a jet, wherein the substrate is cooled and rotated during the application of the common melt.
  • the substrate may be, for example, a water-cooled copper wheel.
  • the cooling results in a temperature difference between the common melt and the substrate, so that a temperature transfer from the melt takes place on the substrate. The higher the temperature difference, the faster the temperature is transferred to the substrate and dissipated by the cooling. Further, the rate of cooling, and hence the presence of rapid solidification to prevent Al 2 Ca phase formation, depends on the rate at which the melt impinges on the substrate and on the rotational speed of the rotated substrate.
  • the substrate is preferably rotated so fast that the quenched common melt is thrown off the substrate from an impact area of the nozzle jet on the substrate, the substrate is automatically freed from the solid alloy already formed by quenching and stands for subsequently sprayed common melt for cooling to disposal.
  • the centrifuged common melt forms a band which can be further processed in subsequent process steps.
  • the belt is first chopped small, processed into granules or powder, and then bolted in a press and outgassing / annealing process compacted.
  • the bolts ie the particulate starting material, can then be extruded into extruded profiles with different cross sections.
  • the process is preferably carried out under atmospheric conditions, in particular under air contact.
  • measures for protecting the common melt against the atmosphere are no longer necessary, it can be dispensed with the use of inert gas, vacuum conditions, protection device and the like. This significantly simplifies and reduces the cost of the process compared to adding lithium.
  • step a) comprises the step of melt-bringing an aluminum-magnesium base alloy.
  • Magnesium has a density of 1.74 g / cm 3. At the same time it controls and reduces the density of the corresponding alloy. The more magnesium in the alloy, the lower the density.
  • the alloying of magnesium to aluminum is useful up to a proportion of 10 wt .-%. Due to the similar melting points of aluminum and magnesium, production of an aluminum-magnesium base alloy is particularly easy to produce.
  • Aluminum scandium alloy is a generic term for all alloys containing aluminum and scandium. This includes all compositions having the formula AlScM 1 M 2 M 3 M 4 where M 1 is a metal selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver , Vanadium, nickel, cobalt and molybdenum, and wherein M 2 is a metal selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver, vanadium, nickel, Contains cobalt and molybdenum.
  • M 3 comprises the group of elements which, with the Al 3 Sc phase, have a certain compatibility, ie metal-physical similarity (exchangeability), and can therefore form the tertiary phase Al 3 Sc 1 -xM 3 x.
  • these are zirconium, niobium, tantalum, hafnium and titanium.
  • M 4 comprises the group of the so-called rare earths (element numbers 39 and 57 to 71), which in principle are very similar to scandium. Therefore, Sc is often wrongly attributed to rare earths. In addition to the scandium of the alloy, they can also be alloyed to a considerable extent and then, in addition to solid solution hardening alone or with scandium, form a hardening phase with comparable stoichiometry as Al 3 Sc 1 -xM 3 x.
  • step a) an aluminum scandium master alloy is melted.
  • Scandium has a significantly higher melting point than aluminum, which is why a long retention time must be maintained to form an alloy. This is complicated, which is why it is advantageous if, instead of the pure elements, a master alloy is used in which the scandium is already "melted in” and thus a shorter holding time must be maintained for forming the aluminum scandium-calcium alloy.
  • an aluminum-calcium master alloy is further melted in step a).
  • calcium has a significantly higher melting point (842 ° C) than aluminum, and the pre-alloy, the required melting point and thus the holding time is preferably reduced.
  • the aluminum scandium-calcium alloy has a calcium content of more than 0.5% by weight and less than 5.0% by weight.
  • the density of the aluminum-scandium alloy can be reduced by containing an easily available and easy-to-handle metal as an alloying component in the alloy.
  • the AlScCa alloy comprises 0.3 wt% to 1.5 wt%, and preferably 0.4 wt% to 1.5 wt%, scandium.
  • scandium When scandium is contained in the specified amounts in the alloy, it increases the strength of the alloy, but does not contribute so much to an increase in density of the alloy material made from it would be too heavy for lightweight construction.
  • ytterbium instead of scandium, can also be alloyed in the stated proportions of the alloy. Ytterbium is cheaper than scandium, but has the disadvantage of not improving the strength of the alloy as well as scandium.
  • the alloy comprises from 0.1% to 1.5% and preferably from 0.2% to 0.75% zirconium by weight.
  • Zirconium in such a proportion in the alloy facilitates the temperature-enhanced processing of the alloy and stabilizes it thermally, ie it reduces the tendency to "age", which is equivalent to an unwanted coarsening of the curing phase Al 3 Sc by formation of an Al 3 ScZr phase.
  • the AlScCa alloy contains 1.0 wt% to 8.0 wt%, and preferably 2.5 wt% to 6.0 wt%, of magnesium.
  • Magnesium lowers the density of an aluminum alloy.
  • the alloying of magnesium to aluminum makes sense only up to certain amounts, since otherwise negative properties such as brittleness and corrosion sensitivity increase greatly. Therefore, magnesium is preferably contained in the stated proportions in the alloy.
  • the alloy optionally comprises further admixtures, also in multiple form, of the elements mentioned in M 1 , M 2 , M 3 and M 4 with the proportions 0.2 to 2.0% by weight, which have the mechanical, physical or chemical properties improve the alloy.
  • Unavoidable is the presence in the alloy of unwanted impurities of both metallic and non-metallic nature, such as oxides, nitrides, dissolved gases, etc., in negligible amounts, ie, less than 0.5% by weight).
  • the alloy has a density less than 2.6 g / cm 3 .
  • the alloy is particularly well suited as a basic material for lightweight construction.
  • the alloy has substantially the same strength and essentially the same elastic modulus as the pure aluminum scandium alloy in which no alloyed calcium is contained.
  • the alloy has the positive properties of the aluminum scandium base alloy, i. substantially the same strength and modulus of elasticity, but is denser reduced by the presence of calcium and thus easier.
  • An aluminum scandium-calcium material has more than 0.5 wt .-% calcium. Such a material is characterized by particularly good strength values and a high modulus of elasticity, but has a reduced density and is therefore particularly suitable for lightweight construction.
  • Fig. 1 shows how in a common crucible 10, the metals scandium 12 and calcium 14 are mixed into an aluminum-magnesium base alloy 17 containing aluminum 15 and magnesium 16.
  • the crucible 10 has on its underside a nozzle 18, which is separated by a closing device 19 of the crucible 10.
  • scandium 12 is added as aluminum scandium master alloy 20 and calcium 14 as aluminum calcium master alloy 21.
  • the mixture is heated with an induction heater 23.
  • induction heater 23 other suitable heating possibilities for bringing the metals 12, 14, 15, 16 into molten metal are also possible.
  • a common melt 22 has formed.
  • Fig. 2 It is shown how the common melt 22 is sprayed onto a rotating substrate 24.
  • the closing device 19 is opened between the nozzle 18 and the crucible 10, so that the common melt 22 can flow into the nozzle 18.
  • the nozzle 18 sprays the common melt 22 in a jet 30 onto a landing area 32 on a surface 33 of the substrate 24.
  • the substrate 24 is cooled on a side facing the landing area 32 via a cooling device 34.
  • the substrate 24 is rapidly rotated about the axis 35 in the direction of the arrow O.
  • the common melt 22 solidifies on the cooled substrate 24 at a high cooling rate to an aluminum-scandium-calcium alloy 36.
  • Fig. 3 shows the substrate 24 from a rear side 42, which is opposite to the surface 33.
  • the cooling device 34 is arranged in the form of a cooling coil 44. Water can be passed through the cooling coil 44, for example in the direction of the arrow, so as to cool the substrate 24.
  • Fig. 4 shows a view of the surface 33 of the substrate 24.
  • the substrate 24 is rotated in the direction of arrow P so fast that the solidified aluminum scandium calcium alloy 36 is ejected as an alloy strip 40 from the surface 38 by the resulting forces.
  • An AlMg5.4Sc1.2Zr0.6Mn0.5 alloy is alloyed with 2.0% by weight of calcium according to the method described above.
  • the alloy ribbon is chopped into granules and then degassed in a heatable device at 290 to 300 ° C with alternating rinsing with vacuum at about 10 to 2 mbar and supply of dry nitrogen and repeated vacuum suction.
  • the degassing process is carried out five times and the granules are compacted by means of a hydraulic press into a stud with 98% gross density and 31 mm diameter at 25 -30 mm length.
  • This bolt is then turned over to 30 mm and then pressed in an extrusion apparatus with a compression ratio of 25: 1 at 325 to 335 ° C to a 6 mm round rod.
  • Standard round tensile specimens EN 10001 B6 x 30 are taken from the round bar and the strength tested.
  • the microstructure hardness can be determined using the Brinell hardness test method (HB2.5 / 6.5) on small disks from the 6 mm rod
  • Fabric-based lightweight construction requires construction materials with high strength and low density, ie high specific strength, also called breaking length.
  • High-strength AlMgSc alloys have a density of 2.62 to 2.86 g / cm 3 or an Mg content of 6.0 to 2.5% by weight.
  • AlMg materials all of which are written in field AA5XXX in their American Al alloy key composition, are widely used because of their relatively low densities and are very popular for their good strength and processing properties.
  • the magnesium content of the alloy partly controls the strength via solid solution hardening, but at the same time also determines the density of the corresponding alloys, since magnesium 16 has a density of 1.74 g / cm 3 . This should be as low as possible, especially from a lightweight construction point of view. The more magnesium 16 in the alloy, the lower the density. It is known that the addition of magnesium 16 to aluminum 15, and thus the associated reduction in density, makes sense only up to certain amounts, since otherwise other negative properties such as brittleness and corrosion sensitivity increase greatly.
  • high magnesium aluminum materials have a magnesium content of less than 6 wt .-% (eg AA5059 or AA5083).
  • the alloying of lithium is state of the art, the alloying of calcium 14 in AlMgSc alloys not.
  • the alternative to lowering the density, ie the alloying of lithium with a density of 0.52 g / cm 3 was already developed in the 20s of the last century and technically implemented in Russia especially from the late 70s.
  • a further reduction in density by addition of lithium (0.5 g / cm 3 ) or only calcium 14 (1.55 g / cm 3 ) is possible.
  • the alloying of scandium 12, combined with a sufficiently rapid cooling after casting or during solidification, allows by means of defined heat conduction, eg downstream hot aging in the temperature range between 250 and 400 ° C, for these materials, a further increase in strength of precipitation hardening over a fully or partially coherent Al 3 Sc phase and / or dispersoid hardening, when the Al 3 Sc phase becomes increasingly incoherent due to overaging.
  • the density of AlMgSc sheet and more of extruded sections is determined by the amount of magnesium 16 which is added to this type of solid solution for solid solution hardening. This results in a limited minimum density for higher-strength AlMgSc alloys.
  • the alloying of calcium 14 with a density of 1.55 g / cm 3 and in an amount of more than 0.5% by weight is hitherto used in high-strength aluminum-magnesium-scandium alloy concepts for applications in the traffic or air & Space area not available.
  • the aluminum-magnesium-scandium alloys the alkaline earth element calcium 14 with a density of 1, 54 g / cm 3 alloy and thus further reduce the density of these attractive high-strength aluminum materials.
  • High-strength aluminum-magnesium scandium materials with a reduced density of less than 2.6 g / cm 3 can be obtained as profiles, but also high-strength aluminum-magnesium scandium materials with a reduced density of less than 2.6 g / cm 3 as directly generated (eg remelted by laser) close-net shape components, the components are more efficient lightweight structures with high longevity.

Description

Die Erfindung betrifft eine Aluminium-Scandium-Calcium-Legierung und ein Verfahren zum Herstellen dieser Aluminium-Scandium-Legierung.
Durch seine geringe Dichte wird Aluminium gerne als Konstruktionswerkstoff verwendet, d.h. bei Anwendungen, wo eine geringe Masse gewünscht ist, wie beispielsweise bei Transportmitteln vor allem in der Luft- und Raumfahrt.
Aluminium ist zwar ein leichtes Metall und daher für die genannten Anwendungen interessant, hat jedoch den Nachteil, dass es relativ weich ist und die Zugfestigkeit im geglühten Zustand lediglich bei 30 -50 MPa liegt. Die Festigkeitswerte des Aluminiums lassen sich durch Legierung mit anderen Metallen in weiten Grenzen erhöhen und auch andere Eigenschaften können dadurch beeinflusst werden. Dies ist vorteilhaft für den Leichtbau, da hier Konstruktionswerkstoffe benötigt werden, die eine hohe spezifische Festigkeit aufweisen. Beispielsweise kann durch Zulegierung von Scandium, verbunden mit einer ausreichend schnellen Abkühlung nach dem Gießen, neben der erhöhten Festigkeit durch Mischkristallbildung eine viel stärkere Festigkeitssteigerung durch Ausscheidungshärtung über eine voll- oder teilkohärente Al3Sc-Phase und/oder durch Dispersoid-Härtung, d.h. wenn die Al3Sc-Phasen durch Überalterung zunehmend inkohärent werden, erzielt werden. Da die Dichte von Scandium mit 2,98 g/cm3 über der von Aluminium mit 2,7 g/cm3 liegt, erhöht Scandium jedoch die Werkstoffdichte und damit auch das Gesamtgewicht.
Aluminium-Scandium-Legierungen sind gut bekannt und ihre Eigenschaften in den folgenden Veröffentlichungen beschrieben:

  • A.J. Bosch, R. Senden, W. Entelmann, M. Knüwer, F. Palm "Scalmalloy®: A unique high strength and corrosion insensitive AlMgScZr material concept", Proceedings of the 11th International Conference on Aluminium Alloys
  • F. Palm, P. Vermeer, W. von Bestenbostel, D. Isheim, R. Schneider "Metallurgical peculiarities in hyper-eutectic AlSc and AlMgSc engineering materials prepared by rapid solidification processing", Proceedings of the 11th International Conference on Aluminium Alloys.
The invention relates to an aluminum scandium-calcium alloy and a method for producing this aluminum scandium alloy.
Due to its low density, aluminum is often used as a construction material, ie in applications where a low mass is desired, such as in means of transport, especially in the aerospace industry.
Although aluminum is a light metal and therefore interesting for the applications mentioned, it has the disadvantage that it is relatively soft and the tensile strength in the annealed state is only 30-50 MPa. The strength values of aluminum can be increased within a wide range by alloying with other metals, and other properties can also be influenced. This is advantageous for lightweight construction, since construction materials are required which have a high specific strength. For example, by adding scandium, coupled with a sufficiently rapid cooling after casting, in addition to the increased strength by solid solution formation, a much greater strength increase by precipitation hardening over a fully or partially coherent Al 3 Sc phase and / or by dispersoid hardening, ie the Al 3 Sc phases become increasingly incoherent due to overaging can be achieved. However, since the density of scandium at 2.98 g / cm 3 is higher than that of aluminum at 2.7 g / cm 3 , scandium increases the material density and thus the total weight.
Aluminum scandium alloys are well known and their properties are described in the following publications:
  • AJ Bosch, R. sending, W. Entelmann, M. Knüwer, F. Palm "Scalmalloy ®: A unique high strength and corrosion insensitive AlMgScZr material concept", Proceedings of the 11 th International Conference on Aluminum Alloys
  • F. Palm, P. Vermeer, W. von Bestenbostel, D. Isheim, R. Schneider "Metallurgical peculiarities in hyper-eutectic AlSc and AlMgSc engineering materials prepared by rapid solidification processing", Proceedings of the 11 th International Conference on Aluminum Alloys.

Um die Dichte dieser Aluminium-Scandium-Legierungen herabzusetzen, besteht neben der in den oben angegebenen Veröffentlichungen beschriebenen Zugabe von Magnesium (Dichte 1,74 g/cm3) besonders die Möglichkeit, Lithium, das eine Dichte von 0,5 g/cm3 aufweist, zuzulegieren.In order to lower the density of these aluminum scandium alloys, in addition to the addition of magnesium (density 1.74 g / cm 3 ) described in the above publications, there is the possibility of lithium having a density of 0.5 g / cm 3 has zuzulegieren.

Die Herstellung von Aluminium-Scandium-Lithium-Legierungen ist jedoch in der Herstellung problematisch, da die Schmelze unter Schutzgas, wie beispielsweise Argon gehandhabt werden muss. Weiter müssen Rinnen und Schmelztöpfe besonders ausgekleidet werden, beispielsweise mit CeO, ZrO oder anderen schützenden Metalloxiden. Die Schmelze reagiert an Luft leicht mit Brand oder Explosion und wurde daher in früheren Herstellungsprozessen häufig auch durch eine Schutzschlacke von der Umgebung getrennt.The production of aluminum-scandium-lithium alloys, however, is problematic to manufacture, since the melt must be handled under inert gas, such as argon. Furthermore, gutters and melting pots must be specially lined, for example with CeO, ZrO or other protective metal oxides. The melt easily reacts with fire or explosion in air and has therefore often been separated from the environment by a protective slag in earlier manufacturing processes.

US 5 211 910 beschreibt eine Aluminium-Legierung, die Scandium und/oder Calcium in einem Anteil von 0,5 bis 4 Gew.-% aufweisen kann. US 5 211 910 describes an aluminum alloy which may contain scandium and / or calcium in a proportion of 0.5 to 4 wt.%.

WO 2007/102988 A2 offenbart eine Aluminium-Legierung, die Calcium und/oder Scandium in einem Bereich von 0,01 bis 6 % aufweisen kann. WO 2007/102988 A2 discloses an aluminum alloy which may have calcium and / or scandium in a range of 0.01 to 6%.

In der deutschen Wikipedia ist unter dem Begriff "Schmelzschleudern" ein Verfahren beschrieben, mit dem Schmelzen, insbesondere Metallschmelzen, mit sehr hohen Geschwindigkeiten abgekühlt, d.h. abgeschreckt, werden.In the German Wikipedia, the term "melt-spinning" describes a process by which melting, in particular molten metal, is cooled at very high speeds, ie. be deterred.

KBM AFFILIPS Master Alloys bietet auf seiner Webseite Aluminium-Grundlegierungen, beispielsweise Aluminium-Magnesium-Legierungen, Aluminium-Scandium-Legierungen oder Aluminium-Calcium-Legierungen, an.KBM AFFILIPS Master Alloys offers on its website aluminum base alloys, such as aluminum-magnesium alloys, aluminum-scandium alloys or aluminum-calcium alloys.

CN 100 402 683 C beschreibt ein Verfahren zur Herstellung eines Aluminiumschaumes, bei dem eine Aluminiumschmelze zunächst mit 1 bis 11 % Magnesium, 0,5 bis 5,5 % Calcium und 0,1 bis 1,2 % Seltenerdmetall versetzt wird, wonach zum Schäumen der Aluminiumschmelze Titanhydrid, Zirconiumhydrid, Vulkanasche oder dergleichen zugegeben wird. CN 100 402 683 C describes a process for producing an aluminum foam in which an aluminum melt is first mixed with 1 to 11% magnesium, 0.5 to 5.5% calcium and 0.1 to 1.2% rare earth metal, followed by foaming of the aluminum melt titanium hydride, zirconium hydride , Volcanic ash or the like is added.

Aufgabe der Erfindung ist es, eine Aluminium-Scandium-Calcium-Legierung mit verringerter Dichte und ein einfaches und ungefährliches Verfahren zum Herstellen dieser Legierung vorzuschlagen.The object of the invention is to propose an aluminum scandium-calcium alloy with reduced density and a simple and harmless method for producing this alloy.

Die Aufgabe wird durch eine Aluminium-Scandium-Calcium-Legierung mit den Merkmalen des Patentanspruchs 1 und ein Verfahren mit den Merkmalen des Patentanspruchs 5 gelöst.The object is achieved by an aluminum-scandium-calcium alloy having the features of patent claim 1 and a method having the features of patent claim 5.

Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the dependent claims.

Eine Aluminium-Scandium-Calcium-Legierung besteht aus

  • 0,3 Gew.-% bis 1,5 Gew.-% Scandium,
  • 1,0 Gew.-% bis 8,0 Gew.-% Magnesium,
  • zwischen 0,5 und 5 Gew.-% Calcium,
  • 0,1 Gew.-% bis 1,5 Gew.-% Zirconium,
  • Rest Aluminium und unvermeidliche Verunreinigungen mit einer Summe von weniger als 0,5 Gew.-%,
und optionalen weiteren Beimischungen, auch in multipler Form, der Elemente M1, M2, M3, M4 mit den Anteilen 0,2 bis 2,0 Gew.-%, wobei
  • M1 aus der Gruppe ausgewählt ist, die aus Kupfer, Magnesium, Mangan, Silicium, Eisen, Beryllium, Lithium, Chrom, Zink, Silber, Vanadium, Nickel, Cobalt und Molybdän besteht,
  • M2 aus der Gruppe ausgewählt ist, die aus Kupfer, Magnesium, Mangan, Silicium, Eisen, Beryllium, Lithium, Chrom, Zink, Silber, Vanadium, Nickel, Cobalt und Molybdän besteht,
  • M3 aus der Gruppe ausgewählt ist, die aus Zirconium, Niob, Tantal, Hafnium und Titan besteht,
  • M4 aus der Gruppe der Seltenen Erden ausgewählt ist.
An aluminum scandium-calcium alloy consists of
  • 0.3 wt.% To 1.5 wt.% Scandium,
  • 1.0% to 8.0% by weight of magnesium,
  • between 0.5 and 5% by weight of calcium,
  • 0.1% by weight to 1.5% by weight of zirconium,
  • Balance of aluminum and unavoidable impurities with a total of less than 0.5% by weight,
and optionally further admixtures, also in multiple form, of the elements M 1 , M 2 , M 3 , M 4 with the proportions 0.2 to 2.0 wt .-%, wherein
  • M 1 is selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver, vanadium, nickel, cobalt and molybdenum,
  • M 2 is selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver, vanadium, nickel, cobalt and molybdenum,
  • M 3 is selected from the group consisting of zirconium, niobium, tantalum, hafnium and titanium,
  • M 4 is selected from the group of rare earths.

Ein Verfahren zum Herstellen der obigen Aluminium-Scandium-Calcium-Legierung unter Zulegieren von Calcium zu den übrigen Legierungsbestandteilen umfasst die folgenden Schritte:

  1. a) gemeinsames in Schmelze Bringen der Legierungsbestandteile; und
  2. b) Abschrecken der gemeinsamen Schmelze mittels eines Schnellerstarrungsprozesses in einer Geschwindigkeit von mehr als 100 K/s.
A method for producing the above aluminum scandium-calcium alloy while adding calcium to the other alloying ingredients comprises the following steps:
  1. a) jointly melt the alloying components; and
  2. b) Quenching the common melt by means of a fast solidification process at a rate of more than 100 K / s.

Calcium hat mit einer Dichte von 1,55 g/cm3 ein deutlich geringeres Volumengewicht als Aluminium und trägt damit beim Zulegieren zu einer Aluminium-Scandium-Legierung zur Verringerung der Gesamtdichte der Legierung bei. Ein mit einer solchen Legierung hergestellter Werkstoff ist leicht und weist dennoch weitestgehend die Festigkeitseigenschaften der Aluminium-Scandium-Legierung auf.With a density of 1.55 g / cm 3, calcium has a significantly lower volume weight than aluminum and thus contributes to a reduction in the total density of the alloy when alloyed with an aluminum scandium alloy. A material made with such an alloy is lightweight and yet largely exhibits the strength properties of the aluminum scandium alloy.

Die Schmelze mit Calcium kann problemlos unter Atmosphärenbedingungen gehandhabt werden, so dass Schutzvorkehrungen, wie beispielsweise das Auskleiden von Rinnen und Töpfen mit Oxiden bzw. die Verwendung von Schutzgas, nicht nötig sind.The melt with calcium can be easily handled under atmospheric conditions, so that protective measures, such as the lining of gutters and pots with oxides or the use of inert gas, are not necessary.

Die Löslichkeit von Calcium ist in Aluminium sehr gering, so dass bislang keine signifikanten Legierungsmengen größer 0,5 Gew.-% herstellbar waren. Wird jedoch die Schmelze, die die Legierungspartner elementar enthält, schnell abgeschreckt und somit ein Schnellerstarrungsprozess durchgeführt, verbleibt Calcium in der festen Phase weitgehend in Lösung.The solubility of calcium in aluminum is very low, so far no significant amounts of alloy greater than 0.5 wt .-% were produced. However, if the melt, which contains the alloying partners elementary, quenched quickly and thus carried out a fast solidification process, calcium remains largely in solution in the solid phase.

Somit kann eine Aluminium-Legierung mit hoher Festigkeit und niedriger Dichte in einem einfachen und ungefährlichen Verfahren hergestellt werden.Thus, a high-strength, low-density aluminum alloy can be produced in a simple and harmless method.

Calcium wird in einem Anteil von mehr als 0,5 Gew.-% und weniger als 5 Gew.-% zulegiert. Damit ist Calcium mit einem signifikanten Anteil in der Legierung vorhanden und setzt das Gewicht der Legierung und auch der daraus hergestellten Werkstoffe deutlich herab.Calcium is added in a proportion of more than 0.5% by weight and less than 5% by weight. Thus, calcium is present with a significant proportion in the alloy and significantly reduces the weight of the alloy and also of the materials produced therefrom.

Vorzugsweise wird Calcium in einem Anteil zu der Legierung zulegiert, dass eine Dichte kleiner 2,6 g/cm3 erreicht wird. Somit kann das Gewicht der Legierung um etwa 5% gegenüber der Aluminium-Scandium-Legierung herabgesetzt werden.Preferably, calcium is added to the alloy in a proportion to the alloy that has a density less than 2.6 g / cm is reached. 3 Thus, the weight of the alloy can be reduced by about 5% over the aluminum scandium alloy.

Vorteilhaft wird für die gemeinsame Schmelze mittels eines Schnellerstarrungsprozesses in einer Geschwindigkeit von 10.000 K/s bis 10.000.000 K/s, abgeschreckt. Über einen normalen metallurgischen Herstellungsweg, bei dem nach dem Erschmelzen ein Gieß-Erstarren mit langsamen Abkühlbedingungen folgt, ist es bislang schwierig, Calcium in signifikanten Mengen zu einer Aluminium-Scandium-Legierung zuzulegieren. Denn es bildet sich sofort eine Al2Ca-Phase, die ausgeschieden wird und die Legierung versprödet. Wird jedoch ein Schnellerstarrungsprozess durchgeführt, kann das Problem der begrenzten Löslichkeit und ungewollte vorzeitige grobe eigenschaftsverschlechternde Ausscheidung von Calcium in AluminiumLegierungen überwunden werden und Calcium bleibt weitgehend in Lösung, da durch das schnelle Abkühlen die natürliche Kristallisation verhindert wird. Damit wird den Atomen die Beweglichkeit geraubt, bevor sie eine Kristallanordnung einnehmen können und somit Al2Ca gebildet werden kann.Advantageously, the common melt is quenched by means of a rapid solidification process at a rate of 10,000 K / s to 10,000,000 K / s. Through a normal metallurgical manufacturing pathway followed by cast solidification with slow cooling conditions after melting, it has hitherto been difficult to alloy calcium in significant amounts to an aluminum scandium alloy. Because it immediately forms an Al 2 Ca phase, which is excreted and embrittles the alloy. However, when a fast solidification process is performed, the problem of limited solubility and unwanted premature coarse deterioration of calcium in aluminum alloys can be overcome and calcium remains largely in solution because rapid cooling prevents natural crystallization. This robs the atoms of mobility before they can take a crystal arrangement and thus Al 2 Ca can be formed.

Verfahren, die dazu geeignet sind, sind alle Erstarrungsverfahren, bei denen der Schmelze die Wärme schnell entzogen wird, beispielsweise das Schmelzschleudern, das Pulververdüsen mittels Gas oder in Wasser, das Dünnbandgießen oder das Sprühkompaktieren, aber auch Verfahren bei denen kurzfristig eine Schmelze erzeugt wird und diese sofort wieder erstarrt, beispielsweise Schweißverfahren zum Verbinden, Oberflächen Modifizieren oder zur generativen Fertigung von dreidimensionalen Bauteilen, die so genannten Schichtbauverfahren ("additive manufacturing").Methods which are suitable are all solidification processes in which the heat is quickly removed from the melt, for example spin-casting, powder atomization by means of gas or in water, strip-casting or spray-compacting, but also processes in which a melt is generated at short notice and solidifies immediately, for example, welding processes for joining, surface modification or for the generative production of three-dimensional components, the so-called "layer-building process"("additivemanufacturing").

Vorteilhaft wird dabei die gemeinsame Schmelze mittels einer Düse als Düsenstrahl auf ein Substrat aufgesprüht, wobei das Substrat während des Aufbringens der gemeinsamen Schmelze gekühlt und gedreht wird. Das Substrat kann beispielsweise ein mit Wasser gekühltes Kupferrad sein. Durch die Kühlung entsteht eine Temperaturdifferenz zwischen der gemeinsamen Schmelze und dem Substrat, so dass eine Temperaturübertragung von der Schmelze auf das Substrat erfolgt. Je höher die Temperaturdifferenz ist, desto schneller wird die Temperatur auf das Substrat übertragen und durch die Kühlung abgeführt. Weiter hängt die Abkühlrate und somit das Vorhandensein einer schnellen Erstarrung zum Verhindern der Al2Ca-Phasenbildung von der Geschwindigkeit ab, mit der die Schmelze auf dem Substrat auftrifft sowie von der Rotationsgeschwindigkeit des gedrehten Substrates.Advantageously, the common melt is sprayed onto a substrate by means of a nozzle as a jet, wherein the substrate is cooled and rotated during the application of the common melt. The substrate may be, for example, a water-cooled copper wheel. The cooling results in a temperature difference between the common melt and the substrate, so that a temperature transfer from the melt takes place on the substrate. The higher the temperature difference, the faster the temperature is transferred to the substrate and dissipated by the cooling. Further, the rate of cooling, and hence the presence of rapid solidification to prevent Al 2 Ca phase formation, depends on the rate at which the melt impinges on the substrate and on the rotational speed of the rotated substrate.

Wird das Substrat vorzugsweise so schnell gedreht, dass die abgeschreckte gemeinsame Schmelze ausgehend von einem Auftreffbereich des Düsenstrahls auf dem Substrat von dem Substrat abgeschleudert wird, wird das Substrat automatisch von der durch Abschrecken bereits gebildeten festen Legierung befreit und steht für nachfolgend aufgesprühte gemeinsame Schmelze zur Abkühlung zur Verfügung. Eine Akkumulation von Legierungsmaterial auf dem Substrat, was einer schnellen Temperaturübertragung von der gemeinsamen Schmelze auf das Substrat entgegensteht, wird so vorteilhaft verhindert. Die abgeschleuderte gemeinsame Schmelze bildet ein Band, das in nachfolgenden Verfahrensschritten weiterverarbeitet werden kann.If the substrate is preferably rotated so fast that the quenched common melt is thrown off the substrate from an impact area of the nozzle jet on the substrate, the substrate is automatically freed from the solid alloy already formed by quenching and stands for subsequently sprayed common melt for cooling to disposal. An accumulation of alloy material on the substrate, which precludes rapid temperature transfer from the common melt to the substrate, is thus advantageously prevented. The centrifuged common melt forms a band which can be further processed in subsequent process steps.

Zum Beispiel wird das Band zunächst klein gehäckselt, zu Granulat oder Pulver verarbeitet und dann in einem Press- und Ausgas-/Ausheizverfahren zu Bolzen kompaktiert. Die Bolzen, d.h. das partikuläre Vormaterial, können dann zu Strangpressprofilen mit verschiedenen Querschnitten extrudiert werden.For example, the belt is first chopped small, processed into granules or powder, and then bolted in a press and outgassing / annealing process compacted. The bolts, ie the particulate starting material, can then be extruded into extruded profiles with different cross sections.

Vorzugsweise wird das Verfahren unter Atmosphärenbedingungen, insbesondere unter Luftkontakt, durchgeführt. Somit sind Maßnahmen zum Schützen der gemeinsamen Schmelze gegen die Atmosphäre nicht mehr nötig, es kann auf die Verwendung von Schutzgas, Vakuumbedingungen, Schutzvorrichtung und Ähnliches verzichtet werden. Dies vereinfacht und verbilligt das Verfahren im Vergleich zu einem Zulegieren von Lithium deutlich.The process is preferably carried out under atmospheric conditions, in particular under air contact. Thus, measures for protecting the common melt against the atmosphere are no longer necessary, it can be dispensed with the use of inert gas, vacuum conditions, protection device and the like. This significantly simplifies and reduces the cost of the process compared to adding lithium.

Besonders bevorzugt weist Schritt a) den Schritt in Schmelze Bringen einer Aluminium-Magnesium-Grundlegierung auf. Magnesium weist eine Dichte von 1,74 g/cm3 auf. Es steuert und verringert gleichzeitig die Dichte der entsprechenden Legierung. Je mehr Magnesium sich in der Legierung befindet, desto geringer wird die Dichte. Das Zulegieren von Magnesium zu Aluminium ist bis zu einem Anteil von 10 Gew.-% sinnvoll. Aufgrund der ähnlichen Schmelzpunkte von Aluminium und Magnesium ist eine Herstellung einer Aluminium-Magnesium-Grundlegierung besonders einfach herzustellen.Particularly preferably, step a) comprises the step of melt-bringing an aluminum-magnesium base alloy. Magnesium has a density of 1.74 g / cm 3. At the same time it controls and reduces the density of the corresponding alloy. The more magnesium in the alloy, the lower the density. The alloying of magnesium to aluminum is useful up to a proportion of 10 wt .-%. Due to the similar melting points of aluminum and magnesium, production of an aluminum-magnesium base alloy is particularly easy to produce.

Aluminium-Scandium-Legierung ist ein Oberbegriff für alle Legierungen, die Aluminium und Scandium enthalten. Darunter fallen alle Zusammensetzungen mit der Formel AlScM1M2M3M4, wobei M1 ein Metall ist, das aus der Gruppe ausgewählt ist, welche Kupfer, Magnesium, Mangan, Silizium, Eisen, Beryllium, Lithium, Chrom, Zink, Silber, Vanadin, Nickel, Kobalt und Molybdän enthält, und wobei M2 ein Metall ist, das aus der Gruppe ausgewählt ist, die Kupfer, Magnesium, Mangan, Silizium, Eisen, Beryllium, Lithium, Chrom, Zink, Silber, Vanadin, Nickel, Kobalt und Molybdän enthält.Aluminum scandium alloy is a generic term for all alloys containing aluminum and scandium. This includes all compositions having the formula AlScM 1 M 2 M 3 M 4 where M 1 is a metal selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver , Vanadium, nickel, cobalt and molybdenum, and wherein M 2 is a metal selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver, vanadium, nickel, Contains cobalt and molybdenum.

M3 umfasst die Gruppe der Elemente, welche mit der Al3Sc Phase eine gewisse Kompatibilität, d.h. metall-physikalische Ähnlichkeit (Austauschbarkeit), besitzen und deshalb die tertiäre Phase Al3Sc1-xM3x bilden können. Vorrangig sind dies Zirkonium, Niob, Tantal, Hafnium und Titan.M 3 comprises the group of elements which, with the Al 3 Sc phase, have a certain compatibility, ie metal-physical similarity (exchangeability), and can therefore form the tertiary phase Al 3 Sc 1 -xM 3 x. Primarily, these are zirconium, niobium, tantalum, hafnium and titanium.

M4 umfasst die Gruppe der sogenannten Seltenen Erden (Elementnummern 39 und 57 bis 71), die grundsätzlich eine große Ähnlichkeit mit Scandium haben. Deswegen wird Sc oft fälschlicherweise den Seltenen Erden zugerechnet Auch sie können neben dem Scandium der Legierung im nennenswertem Umfang zulegiert werden und bilden dann neben der Mischkristallhärtung alleine oder mit Scandium eine Aushärtungsphase mit vergleichbarer Stöchiometrie wie Al3Sc1-xM3x.M 4 comprises the group of the so-called rare earths (element numbers 39 and 57 to 71), which in principle are very similar to scandium. Therefore, Sc is often wrongly attributed to rare earths. In addition to the scandium of the alloy, they can also be alloyed to a considerable extent and then, in addition to solid solution hardening alone or with scandium, form a hardening phase with comparable stoichiometry as Al 3 Sc 1 -xM 3 x.

Weiter vorzugsweise wird in Schritt a) eine Aluminium-Scandium-Vorlegierung in Schmelze gebracht. Scandium hat einen deutlich höheren Schmelzpunkt als Aluminium, weswegen zur Bildung einer Legierung eine lange Haltezeit eingehalten werden muss. Dies ist aufwändig, weswegen es vorteilhaft ist, wenn statt der reinen Elemente eine Vorlegierung verwendet wird, bei der das Scandium bereits "eingeschmolzen" ist und somit eine geringere Haltezeit zum Bilden der Aluminium-Scandium-Calcium-Legierung eingehalten werden muss.Further preferably, in step a) an aluminum scandium master alloy is melted. Scandium has a significantly higher melting point than aluminum, which is why a long retention time must be maintained to form an alloy. This is complicated, which is why it is advantageous if, instead of the pure elements, a master alloy is used in which the scandium is already "melted in" and thus a shorter holding time must be maintained for forming the aluminum scandium-calcium alloy.

Vorzugsweise wird weiter in Schritt a) eine Aluminium-Calcium-Vorlegierung in Schmelze gebracht. Auch Calcium hat einen deutlich höheren Schmelzpunkt (842°C) als Aluminium, und durch die Vorlegierung wird der benötigte Schmelzpunkt und somit die Haltezeit vorzugsweise herabgesetzt.Preferably, an aluminum-calcium master alloy is further melted in step a). Also, calcium has a significantly higher melting point (842 ° C) than aluminum, and the pre-alloy, the required melting point and thus the holding time is preferably reduced.

Die Aluminium-Scandium-Calcium-Legierung weist einen Calcium-Anteil von mehr als 0,5 Gew.-% und weniger als 5,0 Gew.-auf. Somit kann die Dichte der Aluminium-Scandium-Legierung herabgesetzt werden, indem ein leicht verfügbares und einfach zu handhabendes Metall als Legierungsbestandteil in der Legierung enthalten ist.The aluminum scandium-calcium alloy has a calcium content of more than 0.5% by weight and less than 5.0% by weight. Thus, the density of the aluminum-scandium alloy can be reduced by containing an easily available and easy-to-handle metal as an alloying component in the alloy.

Die AlScCa-Legierung weist 0,3 Gew.-% bis 1,5 Gew.-% und vorzugsweise 0,4 Gew.-% bis 1,5 Gew.-%, Scandium auf. Wenn Scandium in den angegebenen Mengen in der Legierung enthalten ist, erhöht es die Festigkeit der Legierung, trägt aber nicht so stark zu einer Dichteerhöhung der Legierung bei, dass ein daraus hergestellter Werkstoff zu schwer für den Leichtbau würde. Alternativ kann statt Scandium auch Ytterbium in den genannten Anteilen der Legierung zulegiert werden. Ytterbium ist günstiger erhältlich als Scandium, hat aber den Nachteil, dass es die Festigkeit der Legierung weniger gut verbessert als Scandium.The AlScCa alloy comprises 0.3 wt% to 1.5 wt%, and preferably 0.4 wt% to 1.5 wt%, scandium. When scandium is contained in the specified amounts in the alloy, it increases the strength of the alloy, but does not contribute so much to an increase in density of the alloy material made from it would be too heavy for lightweight construction. Alternatively, instead of scandium, ytterbium can also be alloyed in the stated proportions of the alloy. Ytterbium is cheaper than scandium, but has the disadvantage of not improving the strength of the alloy as well as scandium.

Die Legierung weist 0,1 Gew.-% bis 1,5 Gew.-% und vorzugsweise 0,2 Gew.-% bis 0,75 Gew.-% Zirkonium auf. Zirkonium in einem solchen Anteil in der Legierung (Verhältnis Zr/Sc etwa ½ bis etwa ¼) erleichtert die temperaturgestützte Weiterverarbeitung der Legierung und stabilisiert diese thermisch, d.h. es reduziert die Neigung zu "altern", was gleichbedeutend ist zu einer ungewollten Vergröberung der Aushärtungsphase Al3Sc durch Bildung einer Al3ScZr-Phase.The alloy comprises from 0.1% to 1.5% and preferably from 0.2% to 0.75% zirconium by weight. Zirconium in such a proportion in the alloy (ratio Zr / Sc about ½ to about ¼) facilitates the temperature-enhanced processing of the alloy and stabilizes it thermally, ie it reduces the tendency to "age", which is equivalent to an unwanted coarsening of the curing phase Al 3 Sc by formation of an Al 3 ScZr phase.

Weiter enthält die AlScCa-Legierung 1,0 Gew.-% bis 8,0 Gew.-% und vorzugsweise 2,5 Gew.-% bis 6,0 Gew.-%, Magnesium. Magnesium setzt die Dichte einer Aluminium-Legierung herab. Das Zulegieren von Magnesium zu Aluminium ist jedoch nur bis zu bestimmten Mengen sinnvoll, da sonst negative Eigenschaften wie Sprödigkeit und Korrosionsempfindlichkeit stark zunehmen. Deshalb ist Magnesium vorzugsweise in den genannten Anteilen in der Legierung enthalten.Further, the AlScCa alloy contains 1.0 wt% to 8.0 wt%, and preferably 2.5 wt% to 6.0 wt%, of magnesium. Magnesium lowers the density of an aluminum alloy. The alloying of magnesium to aluminum, however, makes sense only up to certain amounts, since otherwise negative properties such as brittleness and corrosion sensitivity increase greatly. Therefore, magnesium is preferably contained in the stated proportions in the alloy.

Die Legierung umfasst optional weitere Beimischungen, auch in multipler Form, der in M1, M2, M3 und M4 genannten Elemente mit den Anteilen 0,2 bis2,0 Gew.-% auf, die die mechanischen, physikalischen oder chemischen Eigenschaften der Legierung verbessern. Nicht zu vermeiden ist das Vorhandensein von nicht erwünschten Verunreinigungen metallischer aber auch nicht-metallischer Natur wie Oxiden, Nitriden, gelösten Gasen usw. in vernachlässigbaren Mengen, d.h. mit einer Summe von weniger als 0,5 Gew.-%) in der Legierung.The alloy optionally comprises further admixtures, also in multiple form, of the elements mentioned in M 1 , M 2 , M 3 and M 4 with the proportions 0.2 to 2.0% by weight, which have the mechanical, physical or chemical properties improve the alloy. Unavoidable is the presence in the alloy of unwanted impurities of both metallic and non-metallic nature, such as oxides, nitrides, dissolved gases, etc., in negligible amounts, ie, less than 0.5% by weight).

Vorzugsweise weist die Legierung eine Dichte kleiner als 2,6 g/cm3 auf. Somit ist die Legierung als Grundstoff für den Leichtbau besonders gut geeignet.Preferably, the alloy has a density less than 2.6 g / cm 3 . Thus, the alloy is particularly well suited as a basic material for lightweight construction.

In bevorzugter Ausgestaltung weist die Legierung im Wesentlichen die gleiche Festigkeit und im Wesentlichen das gleiche Elastizitätsmodul auf wie die reine Aluminium-Scandium-Legierung, in der kein zulegiertes Calcium enthalten ist. Somit hat die Legierung die positiven Eigenschaften der Aluminium-Scandium-Grundlegierung, d.h. im Wesentlichen die gleiche Festigkeit und das gleiche Elastizitätsmodul, ist jedoch durch das Vorhandensein von Calcium dichtereduziert und somit leichter.In a preferred embodiment, the alloy has substantially the same strength and essentially the same elastic modulus as the pure aluminum scandium alloy in which no alloyed calcium is contained. Thus, the alloy has the positive properties of the aluminum scandium base alloy, i. substantially the same strength and modulus of elasticity, but is denser reduced by the presence of calcium and thus easier.

Ein Aluminium-Scandium-Calcium-Werkstoff weist mehr als 0,5 Gew.-% Calcium auf. Ein solcher Werkstoff zeichnet sich durch besonders gute Festigkeitswerte und ein hohes Elastizitätsmodul aus, hat jedoch eine verringerte Dichte und ist somit für den Leichtbau besonders geeignet.An aluminum scandium-calcium material has more than 0.5 wt .-% calcium. Such a material is characterized by particularly good strength values and a high modulus of elasticity, but has a reduced density and is therefore particularly suitable for lightweight construction.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Darin zeigt:

Fig. 1
das gemeinsame in Schmelze Bringen von Aluminium, Scandium und Calcium;
Fig. 2
das Abschrecken der gemeinsamen Schmelze durch Aufsprühen auf ein gekühltes, rotierendes Substrat;
Fig. 3
eine rückseitige Ansicht des Substrates; und
Fig. 4
das Entstehen eines Legierungsbandes;
An embodiment of the invention will be explained in more detail with reference to the accompanying drawings. It shows:
Fig. 1
the common in smelting of aluminum, scandium and calcium;
Fig. 2
quenching the common melt by spraying it onto a cooled, rotating substrate;
Fig. 3
a back view of the substrate; and
Fig. 4
the emergence of an alloy ribbon;

Fig. 1 zeigt, wie in einem gemeinsamen Schmelztiegel 10 die Metalle Scandium 12 und Calcium 14 zu einer Aluminium 15 und Magnesium 16 enthaltenden Aluminium-Magnesium-Grundlegierung 17 zugemischt werden. Der Schmelztiegel 10 weist an seiner Unterseite eine Düse 18 auf, die durch eine Schließvorrichtung 19 von dem Schmelztiegel 10 getrennt ist. Fig. 1 shows how in a common crucible 10, the metals scandium 12 and calcium 14 are mixed into an aluminum-magnesium base alloy 17 containing aluminum 15 and magnesium 16. The crucible 10 has on its underside a nozzle 18, which is separated by a closing device 19 of the crucible 10.

Um möglichst geringe Haltezeiten zu erreichen, wird Scandium 12 als Aluminium-Scandium-Vorlegierung 20 und Calcium 14 als Aluminium-Calcium-Vorlegierung 21 zugegeben. Zum Schmelzen wird die Mischung mit einer Induktionsheizung 23 geheizt. Es sind jedoch auch andere geeignete Heizmöglichkeiten zum in Schmelze Bringen der Metalle 12, 14, 15, 16 möglich. Nachdem die in den Schmelztiegel 10 eingegebenen Metalle 12, 14, 15, 16 geschmolzen sind, ist eine gemeinsame Schmelze 22 entstanden.To achieve the lowest possible hold times, scandium 12 is added as aluminum scandium master alloy 20 and calcium 14 as aluminum calcium master alloy 21. For melting, the mixture is heated with an induction heater 23. However, other suitable heating possibilities for bringing the metals 12, 14, 15, 16 into molten metal are also possible. After the metals 12, 14, 15, 16 fed into the crucible 10 have melted, a common melt 22 has formed.

In Fig. 2 wird gezeigt, wie die gemeinsame Schmelze 22 auf ein sich drehendes Substrat 24 aufgesprüht wird. Dazu wird die Schließvorrichtung 19 zwischen der Düse 18 und dem Schmelztiegel 10 geöffnet, so dass die gemeinsame Schmelze 22 in die Düse 18 einfließen kann. Die Düse 18 versprüht die gemeinsame Schmelze 22 in einem Düsenstrahl 30 auf einen Auftreffbereich 32 an einer Oberfläche 33 des Substrats 24. Das Substrat 24 wird auf der Seite, die dem Auftreffbereich 32 gegenüberliegt, über eine Kühlvorrichtung 34 gekühlt. Das Substrat 24 wird in Richtung des Pfeils O schnell um die Achse 35 gedreht.In Fig. 2 It is shown how the common melt 22 is sprayed onto a rotating substrate 24. For this purpose, the closing device 19 is opened between the nozzle 18 and the crucible 10, so that the common melt 22 can flow into the nozzle 18. The nozzle 18 sprays the common melt 22 in a jet 30 onto a landing area 32 on a surface 33 of the substrate 24. The substrate 24 is cooled on a side facing the landing area 32 via a cooling device 34. The substrate 24 is rapidly rotated about the axis 35 in the direction of the arrow O.

Die gemeinsame Schmelze 22 erstarrt auf dem gekühlten Substrat 24 in einer hohen Abkühlgeschwindigkeit zu einer Aluminium-Scandium-Calcium-Legierung 36. Durch die schnelle Drehung des Substrates 24 und die daraus resultierenden Kräfte wird die entstandene Aluminium-Scandium-Calcium-Legierung 36 von der Oberfläche 33 des Substrates 24 weggeschleudert, so dass ein Legierungsband 40 entsteht.The common melt 22 solidifies on the cooled substrate 24 at a high cooling rate to an aluminum-scandium-calcium alloy 36. The rapid rotation of the substrate 24 and the resulting forces, the resulting aluminum-scandium-calcium alloy 36 of the Surface 33 of the substrate 24 thrown away, so that an alloy strip 40 is formed.

Fig. 3 zeigt das Substrat 24 von einer Rückseite 42, die der Oberfläche 33 gegenüberliegt. Hier ist die Kühlvorrichtung 34 in Form einer Kühlwendel 44 angeordnet. Durch die Kühlwendel 44 kann beispielsweise in Pfeilrichtung Wasser geleitet werden, um so das Substrat 24 zu kühlen. Es ist jedoch auch möglich, beispielsweise flüssigen Stickstoff oder andere niedriger als Wasser schmelzende Medien zum Kühlen zu verwenden, um so eine größere Temperaturdifferenz zwischen dem auftreffenden Düsenstrahl 30 und dem Substrat 24 zu erreichen. Fig. 3 shows the substrate 24 from a rear side 42, which is opposite to the surface 33. Here, the cooling device 34 is arranged in the form of a cooling coil 44. Water can be passed through the cooling coil 44, for example in the direction of the arrow, so as to cool the substrate 24. However, it is also possible to use, for example, liquid nitrogen or other lower-than-water-melting media for cooling, the more so Temperature difference between the impinging jet 30 and the substrate 24 to achieve.

Fig. 4 zeigt eine Ansicht auf die Oberfläche 33 des Substrates 24. Das Substrat 24 wird in Richtung des Pfeils P so schnell gedreht, dass durch die resultierenden Kräfte die erstarrte Aluminium-Scandium-Calcium-Legierung 36 als Legierungsband 40 von der Oberfläche 38 weggeschleudert wird. Fig. 4 shows a view of the surface 33 of the substrate 24. The substrate 24 is rotated in the direction of arrow P so fast that the solidified aluminum scandium calcium alloy 36 is ejected as an alloy strip 40 from the surface 38 by the resulting forces.

In dem nachfolgenden Beispiel wird die Herstellung eines AlScCa-Legierungs-Halbzeugs beschrieben.The following example describes the preparation of an AlScCa alloy semi-finished product.

Einer AlMg5,4Sc1,2Zr0,6Mn0,5 -Legierung wird 2,0 Gew.-% Calcium nach oben beschriebenem Verfahren zulegiert. Das Legierungsband wird zu Granulat gehäckselt (chopped) und dann in einer beheizbaren Vorrichtung bei 290 bis 300°C unter Wechselspülen mit Vakuum bei etwa 10 bis 2 mbar und Zufuhr von trockenem Stickstoff und wiederholtem Vakuum Saugen entgast. Der Entgasungsprozess wird fünfmal durchgeführt und dabei das Granulat mit Hilfe einer hydraulischen Presse zu einem Bolzen mit 98 % Bruttodichte und 31 mm Durchmesser bei 25 -30 mm Länge kompaktiert.An AlMg5.4Sc1.2Zr0.6Mn0.5 alloy is alloyed with 2.0% by weight of calcium according to the method described above. The alloy ribbon is chopped into granules and then degassed in a heatable device at 290 to 300 ° C with alternating rinsing with vacuum at about 10 to 2 mbar and supply of dry nitrogen and repeated vacuum suction. The degassing process is carried out five times and the granules are compacted by means of a hydraulic press into a stud with 98% gross density and 31 mm diameter at 25 -30 mm length.

Dieser Bolzen wird dann auf 30 mm überdreht und nachfolgend in einer Strangpressvorrichtung mit einem Verpressverhältnis von 25:1 bei 325 bis 335°C zu einem 6 mm Rundstab ausgepresst. Aus dem Rundstab werden genormte Rundzugproben EN 10001 B6 x 30 entnommen und die Festigkeit geprüft. An kleinen Scheiben aus dem 6 mm Stab kann zusätzlich die Gefügehärte nach dem Brinell-Härte-Prüfverfahren (HB2,5/6,5) ermittelt werdenThis bolt is then turned over to 30 mm and then pressed in an extrusion apparatus with a compression ratio of 25: 1 at 325 to 335 ° C to a 6 mm round rod. Standard round tensile specimens EN 10001 B6 x 30 are taken from the round bar and the strength tested. In addition, the microstructure hardness can be determined using the Brinell hardness test method (HB2.5 / 6.5) on small disks from the 6 mm rod

Je geringer die Werkstoffdichte ist, desto größer ist das Leichtbaupotential, dies ist bei sonst gleichbleibenden Festigkeitseigenschaften eine feste Designgröße. Stoffbasierter Leichtbau benötigt Konstruktionswerkstoffe mit hoher Festigkeit und geringer Dichte, d.h. hoher spezifischer Festigkeit, auch Reißlänge genannt. Hochfeste AlMgSc-Legierungen haben eine Dichte von 2,62 bis 2,86 g/cm3 bzw. einen Mg-Gehalt von 6,0 bis 2,5 Gew.-%. AlMg-Werkstoffe, die in ihrer Zusammensetzung nach amerikanischem AI-Legierungsschlüssel alle in Feld AA5XXX geschrieben werden, sind aufgrund ihrer relativ geringen Dichten weit verbreitet und wegen ihrer guten Festigkeits- und Verarbeitungseigenschaften sehr beliebt. Der Magnesiumanteil an der Legierung steuert teilweise die Festigkeit über Mischkristallhärtung, bestimmt zugleich aber auch die Dichte der entsprechenden Legierungen, da Magnesium 16 eine Dichte von 1,74 g/cm3 aufweist. Diese soll insbesondere aus Leichtbaugesichtspunkten möglichst gering sein. Je mehr Magnesium 16 sich in der Legierung befindet, desto geringer wird die Dichte. Es ist bekannt, dass das Zulegieren von Magnesium 16 zu Aluminium 15, und damit die einhergehende Dichtereduktion, nur bis zu bestimmten Mengen sinnvoll ist, da sonst andere negative Eigenschaften wie Sprödigkeit und Korrosionsempfindlichkeit stark zunehmen.The lower the material density, the greater is the lightweight construction potential, this is a fixed design size with otherwise constant strength properties. Fabric-based lightweight construction requires construction materials with high strength and low density, ie high specific strength, also called breaking length. High-strength AlMgSc alloys have a density of 2.62 to 2.86 g / cm 3 or an Mg content of 6.0 to 2.5% by weight. AlMg materials, all of which are written in field AA5XXX in their American Al alloy key composition, are widely used because of their relatively low densities and are very popular for their good strength and processing properties. The magnesium content of the alloy partly controls the strength via solid solution hardening, but at the same time also determines the density of the corresponding alloys, since magnesium 16 has a density of 1.74 g / cm 3 . This should be as low as possible, especially from a lightweight construction point of view. The more magnesium 16 in the alloy, the lower the density. It is known that the addition of magnesium 16 to aluminum 15, and thus the associated reduction in density, makes sense only up to certain amounts, since otherwise other negative properties such as brittleness and corrosion sensitivity increase greatly.

Deswegen haben generell heute etablierte, d.h. industriell genutzte, hochmagnesiumhaltige Aluminiumwerkstoffe einen Magnesiumgehalt von unter 6 Gew.-% (z.B. AA5059 oder AA5083). Das Zulegieren von Lithium ist Stand der Technik, das Zulegieren von Calcium 14 bei AlMgSc-Legierungen nicht. Die Alternative zur Absenkung der Dichte, d.h. das Zulegieren von Lithium mit einer Dichte von 0,52 g/cm3, wurde schon in den 20er Jahren des letzten Jahrhunderts entwickelt und besonders ab den späten 70er Jahren in Russland technisch umgesetzt. Somit ist eine weitere Dichtereduktion durch Zulegierung von Lithium (0,5 g/cm3) oder nur noch Calcium 14 (1,55 g/cm3) möglich. Das Zulegieren von Scandium 12, verbunden mit einer ausreichend schnellen Abkühlung nach dem Gießen bzw. während der Erstarrung, ermöglicht mittels definierter Wärmeführung, z.B. nachgeschaltete Warmauslagerung im Temperaturbereich zwischen 250 und 400 °C, bei diesen Werkstoffen eine weitere Festigkeitssteigerung der Ausscheidungshärtung über eine voll- oder teilkohärente Al3Sc-Phase und/oder Dispersoid-Härtung, wenn die Al3Sc-Phase durch Überalterung zunehmend inkohärent wird.Therefore, generally established today, ie industrially used, high magnesium aluminum materials have a magnesium content of less than 6 wt .-% (eg AA5059 or AA5083). The alloying of lithium is state of the art, the alloying of calcium 14 in AlMgSc alloys not. The alternative to lowering the density, ie the alloying of lithium with a density of 0.52 g / cm 3 , was already developed in the 20s of the last century and technically implemented in Russia especially from the late 70s. Thus, a further reduction in density by addition of lithium (0.5 g / cm 3 ) or only calcium 14 (1.55 g / cm 3 ) is possible. The alloying of scandium 12, combined with a sufficiently rapid cooling after casting or during solidification, allows by means of defined heat conduction, eg downstream hot aging in the temperature range between 250 and 400 ° C, for these materials, a further increase in strength of precipitation hardening over a fully or partially coherent Al 3 Sc phase and / or dispersoid hardening, when the Al 3 Sc phase becomes increasingly incoherent due to overaging.

Die Dichte von AlMgSc-Blech und mehr noch von Strangpressprofilen wird bestimmt durch die Menge an Magnesium 16, welches zur Mischkristallhärtung diesem Werkstofftyp zulegiert wird. Daraus ergibt sich bei höher festen AlMgSc-Legierungen eine nach unten begrenzte minimale Dichte. Das Zulegieren von Calcium 14 mit einer Dichte von 1,55 g/cm3 und in einer Menge von mehr als 0,5 Gew.-% kommt bislang bei hochfesten Aluminium-Magnesium-Scandium-Legierungskonzepten für Anwendungen im Verkehrs- bzw. Luft- & Raumfahrt-Bereich nicht vor.The density of AlMgSc sheet and more of extruded sections is determined by the amount of magnesium 16 which is added to this type of solid solution for solid solution hardening. This results in a limited minimum density for higher-strength AlMgSc alloys. The alloying of calcium 14 with a density of 1.55 g / cm 3 and in an amount of more than 0.5% by weight is hitherto used in high-strength aluminum-magnesium-scandium alloy concepts for applications in the traffic or air & Space area not available.

Da die Löslichkeit von Calcium 14 in Aluminium 15 sehr gering ist, verbietet sich der Einsatz von Calcium 14 als Standardlegierungselement mit signifikanten Legierungsmengen von größer als 0,5 Gew.-%. Dies gilt jedoch nur für den normalen metallurgischen Herstellungsweg, bei dem nach dem Erschmelzen ein Gießen bzw. Erstarren mit langsamen Abkühlbedingungen folgt und sich sofort eine Al2Ca-Phase ausscheidet, welche die Legierung versprödet.Since the solubility of calcium 14 in aluminum 15 is very low, the use of calcium 14 as a standard alloying element with significant amounts of alloy greater than 0.5% by weight is out of the question. However, this only applies to the normal metallurgical production route, in which, after melting, casting or solidification follows with slow cooling conditions and immediately an Al 2 Ca phase precipitates, which embrittles the alloy.

Wird ein Schnellerstarrungsprozess, z.B. Schmelzschleudern, durchgeführt, kann das Problem der sehr begrenzten Löslichkeit von Calcium 14 in Aluminium 15 und Aluminium-Magnesium-Legierungen 17 überwunden werden und Calcium 14 bleibt weitgehend in Lösung. Ausreichend schnell erstarrte, mit Scandium 12 zwischen 0,3 und 1,5 Gew.-% legierte und damit hoch bis höchst feste Aluminium-Magnesium-Werkstoffe mit einem Magnesiumgehalt zwischen 1 und 10 Gew.-% können durch Zugabe von Calcium 14 in einem Bereich zwischen 0,5 und 5 Gew.-% weiter in ihrer Dichte reduziert werden und steigern so ihre Attraktivität als Leichtbauwerkstoffe wegen der hohen spezifischen Festigkeit für alle Arten von gewichtsgetriebenen Anwendungen, beispielsweise Flugzeugbau, Fahrzeugbau usw.When a fast solidification process, e.g. The problem of the very limited solubility of calcium 14 in aluminum 15 and aluminum-magnesium alloys 17 can be overcome and calcium 14 remains largely in solution. Sufficiently solidified, with scandium 12 between 0.3 and 1.5 wt .-% alloyed and thus high to very solid aluminum-magnesium materials with a magnesium content between 1 and 10 wt .-%, by adding calcium 14 in one Range between 0.5 and 5 wt .-% are further reduced in density and so increase their attractiveness as lightweight materials because of the high specific strength for all types of weight-driven applications, such as aircraft, vehicle construction, etc.

Dank der schnellen Abkühlung und Erstarrung aus der flüssigen Phase, welche notwendig ist, damit erhöhte Mengen an Scandium 12 im Aluminium-Werkstoff gelöst werden können, kann man nun den Aluminium-Magnesium-Scandium-Legierungen das Erdalkalielement Calcium 14 mit einer Dichte von 1,54 g/cm3 zulegieren und so effizient die Dichte dieser attraktiven hochfesten AluminiumWerkstoffe weiter reduzieren. Es können hochfeste Aluminium-Magnesium-Scandium-Werkstoffe mit reduzierter Dichte von kleiner als 2,6 g/cm3 als Profile erzielt werden, allerdings auch hochfeste Aluminium-Magnesium-Scandium-Werkstoffe mit reduzierter Dichte von kleiner 2,6 g/cm3 als direktgenerierte (z.B. durch Laser umgeschmolzene) endkonturnahe Bauteile, wobei die Bauteile effizientere Leichtbaustrukturen mit hoher Langlebigkeit sind.Thanks to the rapid cooling and solidification from the liquid phase, which is necessary in order to be able to dissolve increased amounts of scandium 12 in the aluminum material, it is now possible to give the aluminum-magnesium-scandium alloys the alkaline earth element calcium 14 with a density of 1, 54 g / cm 3 alloy and thus further reduce the density of these attractive high-strength aluminum materials. High-strength aluminum-magnesium scandium materials with a reduced density of less than 2.6 g / cm 3 can be obtained as profiles, but also high-strength aluminum-magnesium scandium materials with a reduced density of less than 2.6 g / cm 3 as directly generated (eg remelted by laser) close-net shape components, the components are more efficient lightweight structures with high longevity.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

1010
Schmelztiegelmelting pot
1212
Scandiumscandium
1414
Calciumcalcium
1515
Aluminiumaluminum
1616
Magnesiummagnesium
1717
Aluminium-Magnesium-GrundlegierungAluminum magnesium base alloy
1818
Düsejet
1919
Schließvorrichtungclosing device
2020
Aluminium-Scandium-VorlegierungAluminum-Scandium alloy
2121
Aluminium-Calcium-VorlegierungAluminum-calcium alloy
2222
gemeinsame Schmelzecommon melt
2323
Induktionsheizunginduction heating
2424
Substratsubstratum
3030
Düsenstrahljet
3232
Auftreffbereichimpingement
3333
Oberflächesurface
3434
Kühlvorrichtungcooler
2525
Achseaxis
3636
Aluminium-Scandium-Calcium-LegierungAluminum-scandium-calcium alloy
4040
Legierungsbandalloy band
4242
Rückseiteback
4444
Kühlwendelcooling coil
OO
Pfeilarrow
PP
Pfeilarrow

Claims (10)

  1. Process for producing an aluminum-scandium-calcium alloy (36), consisting of:
    - 0.3% to 1.5% by weight of scandium (12),
    - 1.0% to 8.0% by weight of magnesium (16),
    - between 0.5% and 5% by weight of calcium (14),
    - 0.1 % to 1.5% by weight of zirconium,
    - balance aluminum and unavoidable impurities with a total of less then 0.5% by weight,
    and optional further additions, also in a multiple form, of the elements M1, M2, M3, M4 in a percentage from 0.2% to 2.0% by weight, wherein
    - M1 is selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver, vanadium, nickel, cobalt, and molybdenum,
    - M2 is selected from the group consisting of copper, magnesium, manganese, silicon, iron, beryllium, lithium, chromium, zinc, silver, vanadium, nickel, cobalt, and molybdenum,
    - M3 is selected from the group consisting of zirconium, niobium, tantalum, hafnium and titanium,
    - M4 is selected from the group of rate earth.
  2. Alloy according to claim 1, wherein scandium (12) is present in an amount ranging from 0.4% to 1.5% by weight and/or magnesium (16) is present in an amount ranging from 2.5% to 6.0% by weight.
  3. Alloy according to claim 1 or 2, wherein zirconium is present in an amount ranging from 0.2% to 0.75% by weight.
  4. Alloy according to one of the preceding claims,
    characterized in that said alloy has a density of less than 2.6 g/cm3.
  5. Process of producing an aluminum-scandium-calcium alloy according to one of the claims 1 to 4, with the addition of calcium to the remaining alloy constituents by alloying, the process comprising the steps of
    a) collectively melting said alloy constituents; and
    b) quenching the collective melt (22) by means of a fast freezing process at a speed of more than 100 K/s.
  6. Process according to claim 5, wherein quenching is effected at a speed in
    the range of 10,000 K/s to 10,000 K/s.
  7. Process according to one of the claims 5 and 6,
    characterized in that the collective melt (22) is applied to a substrate (24) as a nozzle jet (30) by spraying through a nozzle (18), wherein said substrate (24) is cooled and rotated during the application of said collective melt (22).
  8. Process according to claim 7,
    characterized in that the substrate (24) is rotated so fast that the quenched collective melt (22) is spun off the substrate (24) from an impact region (32) of the nozzle jet (30) on the substrate (24).
  9. Process according to any one of the preceding claims,
    characterized in that the process is carried out under atmosphere conditions, especially under air contact.
  10. Process according to any one of the preceding claims,
    characterized in that step a) comprises the step of melting an aluminum-magnesium base alloy (17) and/or melting an aluminum-scandium pre-alloy (20) and/or melting an aluminum-calcium pre-alloy (21).
EP11831814.6A 2010-12-02 2011-11-30 Process for producing an alscca alloy and also an aiscca alloy Active EP2646587B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010053274A DE102010053274A1 (en) 2010-12-02 2010-12-02 Method for producing an AlScCa alloy and AlScCa alloy
PCT/DE2011/002050 WO2012075993A2 (en) 2010-12-02 2011-11-30 Process for producing an alscca alloy and also an aiscca alloy

Publications (2)

Publication Number Publication Date
EP2646587A2 EP2646587A2 (en) 2013-10-09
EP2646587B1 true EP2646587B1 (en) 2017-10-11

Family

ID=45936578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11831814.6A Active EP2646587B1 (en) 2010-12-02 2011-11-30 Process for producing an alscca alloy and also an aiscca alloy

Country Status (4)

Country Link
US (2) US9725790B2 (en)
EP (1) EP2646587B1 (en)
DE (1) DE102010053274A1 (en)
WO (1) WO2012075993A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159344A1 (en) 2021-09-30 2023-04-05 Airbus (S.A.S.) Aluminium-nickel alloy for manufacturing a heat conducting part, such as a heat exchanger
US11802325B2 (en) 2018-05-21 2023-10-31 Obshchestvo S Ogranichennoy Otvetstvennost'yu Obedinennaya Kompaniya Rusal “Inzherno-Tekhnologicheskiy Tsentr” Aluminum alloy for additive technologies

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011111365A1 (en) 2011-08-29 2013-02-28 Eads Deutschland Gmbh Surface passivation of aluminum-containing powder
JP5920723B2 (en) * 2011-11-21 2016-05-18 株式会社神戸製鋼所 Aluminum-magnesium alloy and its alloy plate
EP3181711B1 (en) 2015-12-14 2020-02-26 Apworks GmbH Aluminium alloy containing scandium for powder metallurgy technologies
EP3903964B1 (en) 2018-12-07 2023-05-31 Obshchestvo S Ogranichennoj Otvetstvennost'Yu "Institut Legkikh Materialov I Tekhnologij" Powdered aluminum material
EP4012062A4 (en) * 2019-08-07 2022-10-05 Acts Technologies Inc. Aluminum alloy for 3d printing or additive manufacturing, 3d printing or additive manufacturing method using same, and aluminum alloy product or component manufactured by 3d printing or additive manufacturing
US20220275484A1 (en) * 2019-08-07 2022-09-01 Acts Technologies Inc. Aluminum alloy for 3d printing or additive manufacturing, 3d printing or additive manufacturing method using same, and aluminum alloy product or component manufactured by 3d printing or additive manufacturing
US11608546B2 (en) 2020-01-10 2023-03-21 Ut-Battelle Llc Aluminum-cerium-manganese alloy embodiments for metal additive manufacturing
DE102020131823A1 (en) * 2020-12-01 2022-06-02 Airbus Defence and Space GmbH Aluminum alloy and method for additive manufacturing of lightweight components
CN115874088A (en) * 2022-11-21 2023-03-31 南京航空航天大学 High-strength heat-resistant damage-resistant aluminum alloy powder, and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394825B1 (en) * 1989-04-25 1995-03-08 Ykk Corporation Corrosion resistant aluminum-based alloy
US5211910A (en) * 1990-01-26 1993-05-18 Martin Marietta Corporation Ultra high strength aluminum-base alloys
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
US5624632A (en) * 1995-01-31 1997-04-29 Aluminum Company Of America Aluminum magnesium alloy product containing dispersoids
WO2003010349A1 (en) 2001-07-25 2003-02-06 Showa Denko K. K. Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
US20090022982A1 (en) * 2006-03-06 2009-01-22 Tosoh Smd, Inc. Electronic Device, Method of Manufacture of Same and Sputtering Target
JP5094031B2 (en) * 2006-03-23 2012-12-12 大平洋金属株式会社 Method for producing scandium-containing alloy
CN100402683C (en) * 2006-06-13 2008-07-16 东南大学 Rustproof closed-cell foam aluminium alloy and preparation method thereof
US7871477B2 (en) * 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802325B2 (en) 2018-05-21 2023-10-31 Obshchestvo S Ogranichennoy Otvetstvennost'yu Obedinennaya Kompaniya Rusal “Inzherno-Tekhnologicheskiy Tsentr” Aluminum alloy for additive technologies
EP4159344A1 (en) 2021-09-30 2023-04-05 Airbus (S.A.S.) Aluminium-nickel alloy for manufacturing a heat conducting part, such as a heat exchanger

Also Published As

Publication number Publication date
WO2012075993A2 (en) 2012-06-14
WO2012075993A3 (en) 2012-08-23
DE102010053274A1 (en) 2012-06-21
US20170298477A1 (en) 2017-10-19
US20130312876A1 (en) 2013-11-28
US9725790B2 (en) 2017-08-08
EP2646587A2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
EP2646587B1 (en) Process for producing an alscca alloy and also an aiscca alloy
EP2829624B1 (en) Aluminium material with improved precipitation hardening
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
EP1840235B1 (en) Magnesium alloy and corresponding production method
DE2423597B2 (en) Process for the smelting metallurgical production of dispersion-dispersed aluminum alloy products with finely divided intermetallic particles
DE112007000673T5 (en) Magnesium alloy with high strength and high toughness and process for its preparation
WO2018009359A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
DE3043503A1 (en) CRYSTALINE METAL ALLOY
JPH0347941A (en) High strength magnesium base alloy
EP1851350B1 (en) Method for casting titanium alloy
EP2598664B1 (en) High temperature scandium-containing aluminium alloy with improved extrudability
DE10043108A1 (en) Production of a metallurgical toughened bond between a coated insert and a casting material comprises applying a first thin layer to the insert, applying a second thin layer and casting the casting material against the surface of the insert
CH646999A5 (en) OBJECT OF A HIGH-STRENGTH ALUMINUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF.
DE2116549C3 (en) Process for the production of copper alloys, which have a high content of iron, cobalt and phosphorus, with high electrical conductivity and at the same time high strength
WO1995005490A1 (en) Molten mass treating agent, its production and use
US6334911B2 (en) High-strength, high-ductility aluminum alloy
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JP2002543290A (en) Steel cold working tools, their uses and manufacturing
DE19800433C2 (en) Continuous casting process for casting an aluminum plain bearing alloy
EP0456296B1 (en) Process for production of continuously cast strips and wires
EP0149210B1 (en) Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon
DE112004001542B4 (en) Copper-nickel-silicon two-phase quench substrate
DE102019104492A1 (en) PROCESS FOR PREPARING A CRYSTALLINE ALUMINUM IRON / SILICON ALLOY
DE19928330C2 (en) Use of a tin-rich copper-tin-iron wrought alloy
DE1224049B (en) Method and device for the production of ductile and at the same time strong, in particular heat-resistant aluminum alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130528

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140805

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEFENCE AND SPACE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170526

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 936081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013131

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171011

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013131

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 936081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 13

Ref country code: DE

Payment date: 20231121

Year of fee payment: 13