EP2643878A1 - Device forming a seal between two spaces having mutually reactive gases, and use in high temperature steam electrolysis (htse) units and in solid oxide fuel cells (sofc) - Google Patents

Device forming a seal between two spaces having mutually reactive gases, and use in high temperature steam electrolysis (htse) units and in solid oxide fuel cells (sofc)

Info

Publication number
EP2643878A1
EP2643878A1 EP11785455.4A EP11785455A EP2643878A1 EP 2643878 A1 EP2643878 A1 EP 2643878A1 EP 11785455 A EP11785455 A EP 11785455A EP 2643878 A1 EP2643878 A1 EP 2643878A1
Authority
EP
European Patent Office
Prior art keywords
spaces
seal
chamber
gases
sofc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11785455.4A
Other languages
German (de)
French (fr)
Inventor
Gatien Fleury
Patrick Le Gallo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2643878A1 publication Critical patent/EP2643878A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a device forming a seal between two spaces each capable of being occupied by a gas, the two gases being reactive with one another to form a fluid.
  • reactive gases between them two gases which in the presence of each other react to form a fluid in the form of gas or vapor.
  • hydrogen reacts with oxygen to form water as a vapor.
  • the invention finds particular application in the electrolysis of high temperature water vapor (EVHT), typically between 600 ° C and 1000 ° C, where there is currently no satisfactory sealing at the same time the constraints medium (high temperature, redox atmosphere %) and the system (thermal transients).
  • EVHT high temperature water vapor
  • the invention can also be applied to other fields, such as the SOFC fuel cell, or for chemical industry reactors, and for systems operating in other temperature ranges where V sealing is difficult to achieve.
  • the object of the invention is to propose another sealing solution between two spaces occupied by reactive gases with one another.
  • a particular object of the invention is to propose an alternative sealing solution capable of completing and securing an existing sealing solution in a high temperature water electrolysis (EHT) reactor or in a reactor constituting a fuel cell, in particular of the SOFC type.
  • the subject of the invention is a device forming a seal for separating two spaces each capable of being occupied by a gas, the two gases being reactive with one another to form a fluid, the device comprising at least one plate and a chamber, called buffer chamber, separating the two spaces, the buffer chamber being adapted to be occupied by the same fluid as that formed by reaction of the two reactive gases with each other.
  • One of the two spaces is separated from the chamber by a first support portion and a plate portion facing;
  • Each of the first and second support portions form with the plate portion facing a bearing zone defining a microchannel; the microchannels being porous volumes delimited by the surface roughness of the support portions and plate portions;
  • the flow of reactive gases in the microchannels is mainly molecular.
  • microchannel is understood to mean a fluid channel of micrometric height defined by the surface roughness of the support and plate portions, that is to say typically a channel. whose height or in other words the depth is of the order a few tens of microns (microns).
  • a microchannel defined by the surface roughness of the support and plate portions has a width of the order of from fifty to a hundred ⁇ (micrometers).
  • the inventors have defined a new type of seal: unlike state-of-the-art gaskets for which it is desired to give them a perfect barrier function, here an imperfect sealing zone controlled by 1 is defined.
  • one of the two surfaces is very rough or even porous, which makes this kind of barrier solution according to the state of the art even more utopian.
  • the seal device according to the invention is a pneumatic seal which consists in slowing the displacement of at least one of the two reactive gases, ie the one which has the smallest molar mass, by effect steric.
  • a barrier of molecules of greater molar mass and in greater quantity In front of the molecule of the reactive gas in question is interposed a barrier of molecules of greater molar mass and in greater quantity.
  • the fluid resulting from the reaction between the two reactive gases, and present inside the buffer chamber, has a collision cross section much larger than that of each of the two reactive gases.
  • the molecular diffusion of the gases is necessarily reduced. reagents inside the microchannels.
  • a buffer chamber occupied by water vapor having a much larger cross section requires molecular diffusion of H 2 and less 0 2 in the microchannels.
  • the buffer chamber according to the invention makes it possible to stabilize the exchanges of reactive gases between the two spaces, that is to say to reduce at most the gradient between these two spaces.
  • the buffer fluid in the chamber decreases the reaction rate between the two reactive gases.
  • the water vapor in the chamber decreases the reaction rate between H 2 and O 2 from each of one of the spaces on either side of the chamber.
  • the collision cross section is evaluated respectively at:
  • the dimensioning (height and width) of the buffer chamber is preferably made according to the constraints of use of the seal. The lower the pressure and the higher the temperature, the larger the buffer chamber will be to allow the transformation of the reactive gases between them.
  • the volume of gas must also make it possible to absorb the heat resulting from the reaction.
  • the structure of the seal is made at the support portions with the same technology and the same processes as the rest of the parts used, such as the plates.
  • the walls of the chamber and the support portions are formed in the same separating element interposed between said two spaces.
  • the separating element consists of a stamped sheet.
  • a separation element manufactured by stamping has the advantages of being mass-produced and low-cost.
  • care is taken to choose a thickness of sheet sufficiently thin to allow easy stamping, but large enough so that the reserve of minor elements of the alloy (typically Al or Cr) is sufficient to allow protection against oxidation throughout its life.
  • the stamped sheet may advantageously be made of nickel base alloy, such as Inconel 600, Inconel 718, Haynes 230. It may also be made of stainless steel, such as AISI 310S, AISI 316L, AISI 430.
  • the invention also relates to an electrochemical reactor comprising at least one gasket device as described above, in which the spaces on either side separated by the gasket are the circulation spaces for the reactive gases. inside the reactor.
  • the reactor comprises a stack of elementary electrochemical cells each formed of a cathode, an anode and an electrolyte interposed between the cathode and the anode, at least one interconnecting plate being arranged between two adjacent elementary cells and in electrical contact with an electrode of one of the two elementary cells and an electrode of the other of the two elementary cells, the interconnecting plate delimiting at least one cathode compartment and at least one anode compartment for the circulation of gases respectively at the cathode and the anode, it is expected that the cathode compartment or the anode compartment is advantageously one of two spaces separated by the seal device.
  • it may be a reactor for electrolysis of water at high temperatures, intended to operate at temperatures above 450 ° C., typically between 600 ° C. and 1000 ° C.
  • reactor constituting a SOFC fuel cell, intended to operate at temperatures between 600 ° C and 800 ° C.
  • the buffer chamber has the following dimensions: height between 100 and 500 ⁇ m, the height being defined as the distance between the bottom of the chamber and the support surface;
  • width at least equal to 500 ⁇ m, width being defined as being the minimum distance between the two support portions of the separating element.
  • the force of support between the support portions and the plate portions is between 0.1 N / mm and 10 N / mm.
  • the buffer chamber is preferably annular in shape around a space for recovering hydrogen produced.
  • a buffer chamber height of between 100 and 500 ⁇ and a width of at least 500 ⁇ m are adapted.
  • FIG. 1 is a schematic view showing the operation of a seal forming device according to the invention
  • FIG. 2 is a perspective view of an element of a device according to a first embodiment of the invention
  • FIG. 3 is a semi-perspective view of a device according to a second embodiment according to the invention.
  • FIG. 4 is a partial sectional view of FIG. 3;
  • FIG. 5 is a schematic view showing a device forming a seal according to the invention according to another embodiment
  • FIG. 6 is a schematic view showing a device forming a seal according to the invention according to another embodiment
  • FIGS. 7A to 7C show the curves of the average free path respectively of air, of hydrogen H 2, and of water vapor H 2 0 as a function of pressure and temperature, the mean free path to define a desired molecularly desired flow with a seal according to the invention
  • FIG. 8 is a schematic representation of different types of flow as a function of the Knudsen number to define a predominantly molecular flow from the mean free range.
  • the seal device is described below with reference to electrolysis of water (EHT) or a SOFC fuel cell.
  • the sealing device according to the invention comprises a first space 1 occupied by hydrogen H 2 and a second space 2 occupied by oxygen O 2 .
  • separating element 4 comprising two support portions 40, 41 held in abutment against a single support plate 5 with a given compression force which makes it possible to obtain a predominantly molecular type flow of the reactive gas molecules in the microchannels defined 60, 61 (see arrows).
  • the microchannels 60, 61 are porous volumes delimited by the surface roughness of the bearing portions 40, 41 and portions of the plate 5.
  • a buffer chamber 7 is delimited by the support portions 40, 41 where, in order for this characteristic to persist, the pressure difference between the oxygen and hydrogen chambers must not be too high (a few bars) so that the buffer chamber 7 remains the reaction place of the gases.
  • the dimensions (height H and width L as shown in FIG. 4) of the buffer chamber 7 are determined in such a way as to allow a reaction of the two reactive gases O 2 , H 2 therebetween.
  • the physical phenomenon obtained with the device according to the invention is a recombination reaction - geometrically controlled - of two constituents are typically the production of water vapor by the recombination of molecules of hydrogen and oxygen (see Figure 1). Once this water vapor has been obtained, it has advantageous characteristics such as:
  • Each of the microchannels 60, 61, or in other words leakage zones, defined between a bearing portion 40, 41 and the support plate 5 passes two gases which do not react but which are counter-controlled at the level of the flow.
  • the buffer chamber 7 is in overpressure with respect to two spaces 1, 2 to isolate.
  • This method makes it possible to overcome a supply of a buffer gas and therefore an additional complexity.
  • the buffer chamber 7 can be made easily from stamped shapes (FIG. 2).
  • FIGS. 3 and 4 there is illustrated a device forming a seal according to the invention which constitutes what is usually referred to as a "stand alone" seal.
  • the seal forming device according to the invention is a sort of dynamic seal which consists in controlling leakage by molecular flow (Knudsen type). It is thus perfectly suited to electrochemical applications with high operating temperatures because it makes it possible to let two pieces slide in contact (separating element and support plate), which allows large differential expansions.
  • the invention can be applied in other electrochemical reactors for which it is sought to find a high performance seal.
  • the device according to the invention when integrated directly into a reactor, the device according to the invention requires only a single buffer chamber.
  • the support plate 5 on which the separating element 4 shown in FIGS. 2 to 4 is supported is flat: it goes without saying that it can have any other shape that bears with two bearing portions 40, 41 of the separating element.
  • An example of another form is shown in Figure 5.
  • FIGS. 2 to 4 a single separating element 4 is shown in FIGS. 2 to 4: according to the invention, it is of course possible to integrate another separating element 4 'in the same buffer chamber 7 as represented in FIG. 6.
  • This other separation element 4 ' can for example be an additional piece of stamped sheet.
  • the initial roughness of the surfaces of the materials constituting the gasket (separating element 4 supporting ortions 40, 41) and the bearing surface (bearing plate 5) vis-à- vis will typically have an arithmetic average deviation of Ra ⁇ 0.4 ⁇ m, obtained by polishing, or even by the care given to the surfaces during the elaboration.
  • a linear force of 0.5 N per mm of joint makes it possible to obtain a molecular flow regime of the Knudsen type, provided that the material of the seal used (metal separating element 4) is sufficiently soft at the temperature of use, for example ferritic steel of type AISI 430 at 600 ° C, and that its initial roughness is low (Ra ⁇ 0.4 ⁇ m) and that pressures in spaces 1, 2 and 7 are around the atmospheric pressure. Under these conditions, the greater the linear support force is and the more one tends to obtain a molecular flow regime.
  • the first method consists of comparing the value of the mean free path of the reactive gases, here respectively H2 and O2, and of the fluid formed by the reaction, in this case water vapor, with the dimensions of the microchannels defined by the roughness states of the portions. support and support plate.
  • the mean free path ⁇ of a fluid can be expressed by the following equation:
  • denotes the average free path in m
  • denotes the dynamic viscosity in Pa s
  • R denotes the universal constant of perfect gases (8,314) in J.mo-1.k-1; ;
  • T denotes the temperature in Kelvin degree
  • M denotes the molar mass of the fluid in g / mol.
  • the average free path of the fluid therefore increases as a function of the temperature and the dynamic viscosity of the fluid, but decreases as a function of the pressure and the molar mass.
  • FIGS. 7A, 7B and 7C are shown for the three gases of the preferred application, namely respectively air, hydrogen and water vapor, the representative curve of the average free path as a function of temperature and the pressure they are subjected to. We see that for the three gases the average free path increases with temperature and decreases very significantly with the pressure.
  • the average free path is about the same level as the air (towards 0.5 ⁇ m at atmospheric pressure and at 700 ° C).
  • the average free path is more important. This corroborates the relative collision cross section values, that of hydrogen being lower than those of substantially equal oxygen and water vapor.
  • the Knudsen Kn number defined by the ratio between the mean free path and the characteristic length of the channel where the flow takes place, for example the diameter of a capillary.
  • A denotes a free molecular flow
  • D denotes a continuous flow.
  • the seal according to the invention. invention can be considered as starting to be effective. Gasket is the most efficient from a characteristic microchannel length less than 0.1 times the mean free path.
  • the second method consists in measuring the mass flow rate of a leak as a function of the overpressure on both sides of a seal. If the relation is of quadratic form, then one considers that it is rather a flow of type of Darcy. If the relation is linear, then we consider that it is rather a molecular flow.
  • ⁇ H2 and ⁇ air respectively denote the effective collision diameter of H2 and air in nanometers (nm);
  • MH2 and Mair respectively denote the molar mass of H2 and air in g / mol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a novel seal between two spaces (1, 2) which can be occupied by two mutually reactive gases, typically oxygen and hydrogen. According to the invention, a buffer chamber (7) is provided between the two spaces having mutually reactive gases, wherein the leakage of reactive gases toward the buffer chamber is determined so as to achieve flow that is mainly of the diffusion type (by molecular or Knudsen diffusion). The invention can be used to provide sealing in an HT type electrolysis unit or a solid oxide fuel cell (SOFC).

Description

DISPOSITIF FORMANT UN JOINT D ' ETANCHEITE ENTRE DEUX ESPACES DE GAZ REACTIFS ENTRE EUX, APPLICATION AUX ELECTROLYSEURS DE VAPEUR D'EAU A HAUTE TEMPERATURE (EVHT) ET AUX PILES A COMBUSTIBLE DE TYPE SOFC  DEVICE FORMING SEAL BETWEEN TWO REAGENT GAS SPACES BETWEEN THEM, APPLICATION TO HIGH TEMPERATURE WATER VAPOR ELECTROLYSERS (EVHT) AND TO SOFC-TYPE FUEL CELLS
DESCRIPTION DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
La présente invention concerne un dispositif formant joint d' étanchéité entre deux espaces aptes à être occupés chacun par un gaz, les deux gaz étant réactifs entre eux pour former un fluide . The present invention relates to a device forming a seal between two spaces each capable of being occupied by a gas, the two gases being reactive with one another to form a fluid.
Dans le cadre de l' invention, on entend par gaz réactifs entre eux, deux gaz qui en présence l' un de l' autre réagissent pour en former un fluide sous forme de gaz ou vapeur. Ainsi, typiquement de 1' hydrogène réagit avec de l' oxygène pour former de 1' eau sous forme de vapeur.  In the context of the invention, the term reactive gases between them, two gases which in the presence of each other react to form a fluid in the form of gas or vapor. Thus, typically hydrogen reacts with oxygen to form water as a vapor.
L' invention trouve particulièrement application dans l' électrolyse de la vapeur d' eau à haute température (EVHT) , typiquement entre 600°C et 1000°C, où il n' y a actuellement pas d' étanchéité satisfaisant à la fois les contraintes du milieu (haute température, atmosphère oxydo- réductrice...) et du système (transitoires thermiques) .  The invention finds particular application in the electrolysis of high temperature water vapor (EVHT), typically between 600 ° C and 1000 ° C, where there is currently no satisfactory sealing at the same time the constraints medium (high temperature, redox atmosphere ...) and the system (thermal transients).
L' invention peut être également appliquée à d'autres domaines, tels que la pile à combustible de type SOFC, ou pour des réacteurs de l' industrie chimique, et pour des systèmes fonctionnant dans d' autres plages de température où V étanchéité est difficile à réaliser. The invention can also be applied to other fields, such as the SOFC fuel cell, or for chemical industry reactors, and for systems operating in other temperature ranges where V sealing is difficult to achieve.
ART ANTERIEUR PRIOR ART
Dans le domaine de l' électrolyse de l' eau ou des piles à combustible à haute température, on cherche, à ce jour, à séparer un gaz contenant entre autres de l' oxygène, d' un gaz contenant entre autres de 1' hydrogène. En effet, en présence l' un de l' autre, ces deux gaz réagissent spontanément. D'une part cette réaction nuit au rendement global du réacteur, et d' autre part, elle dissipe localement de la chaleur et peut donc endommager le système. Jusqu' à présent, les concepteurs des réacteurs d' électrolyse EHT ou de piles à combustible ont donc cherché à intercaler des joints d' étanchéité dont la fonction était de séparer ces deux gaz en créant simplement une barrière étanche . In the field of the electrolysis of water or high temperature fuel cells, it is sought, so far, to separate a gas containing, inter alia, oxygen, a gas containing, inter alia, hydrogen. . Indeed, in the presence of each other, these two gases react spontaneously. On the one hand, this reaction affects the overall efficiency of the reactor, and on the other hand, it dissipates heat locally and can therefore damage the system. Until now, the designers of EHT electrolysis reactors or fuel cells have sought to insert seals whose function was to separate these two gases by simply creating a tight barrier.
Dans les plages de température visées, il n' existe à ce jour pas de solution simple et satisfaisante pour résoudre ce problème. Aussi, pour chaque type de réaction et d' architecture de réacteur, il est nécessaire d' adapter des solutions types, voire de réaliser de nouveaux développements.  In the target temperature ranges, there is currently no simple and satisfactory solution to solve this problem. Also, for each type of reaction and reactor architecture, it is necessary to adapt standard solutions, even to make new developments.
Dans les électrolyseurs à haute température ou piles à combustible, les étanchéités types sont classiquement réalisées par des joints de verre ou composite verre/vitrocéramique car ils présentent essentiellement trois avantages : une bonne isolation électronique, une excellente étanchéité et ils ne nécessitent pas de serrage mécanique. Les inconvénients majeurs de ces joints d' étanchéité en verre ou matériaux composites verre -céramique sont par contre : In high temperature electrolysers or fuel cells, the standard seals are conventionally made by glass or glass / glass-ceramic composite joints because they have essentially three advantages: good electronic insulation, excellent sealing and they do not require mechanical clamping . The inconvenients major of these gaskets of glass or glass-ceramic composite materials are cons:
~ fragilité importante en dessous de leur température de transition vitreuse ou leur température de cristallisation et possibilité de rupture s' ils sont sollicités, notamment du fait des dilatations thermiques différentielles ; lors de cyclages thermiques violents, il peut alors se produire une rupture de l' étanchéité ;  ~ significant fragility below their glass transition temperature or their crystallization temperature and possibility of rupture if solicited, especially due to differential thermal expansion; during violent thermal cycling, there may be a rupture of the seal;
- nécessité d' une excursion en température au delà de la température de fonctionnement pour réaliser le joint ; cette excursion peut être néfaste pour les matériaux d' interconnecteurs métalliques et ceux constituant la cellule réactive, ce qui peut impliquer une dégradation des performances du réacteur ;  - need for a temperature excursion beyond the operating temperature to achieve the seal; this excursion may be detrimental to metal interconnector materials and those constituting the reactive cell, which may involve degradation of reactor performance;
- incompatibilité chimique potentielle avec les autres composants de la cellule et de (s) l' interconnecteur (s) , par exemple émission de vapeurs de Si02 polluantes pour les électrodes, voire une corrosion importante des portées de joints ; - potential chemical incompatibility with the other components of the cell and (s) the interconnector (s), for example emission of pollutant Si0 2 vapors for the electrodes, or even significant corrosion of the joints of joints;
- création d' une liaison rigide entre les composants de l' empilement ; il peut alors en résulter des sollicitations lors des transitoires thermiques ;  creating a rigid connection between the components of the stack; it can then result in stress during thermal transients;
- difficulté de démontage des composants, voire impossibilité sans changer la cellule ou l'empilement de cellules.  - Difficulty of disassembly of the components, or impossibility without changing the cell or the stack of cells.
D' autres solutions consistent à braser le métal de l' interconnecteur sur la céramique. Or, 1' obtention du mouillage du métal de l' interconnecteur sur la céramique ainsi que les différences de dilatation thermique entre ces deux matériaux rendent cette opération très difficile pour des grandes dimensions. En effet, le refroidissement après la solidification de la brasure provoque régulièrement la rupture de la céramique . Other solutions include soldering the metal of the interconnector to the ceramic. However, the wetting of the metal of the interconnector on the ceramic and the differences in Thermal expansion between these two materials makes this operation very difficult for large dimensions. Indeed, the cooling after the solidification of the solder regularly causes the rupture of the ceramic.
Enfin, d' autres joints corapressifs à base de mica, ou simplement métalliques, ont été proposés : leur mise en place nécessite un volume important et un serrage extérieur très important, difficile à contrôler et à maintenir en température pour obtenir une étanchéité efficace sans rupture de la cellule en cours de chauffage. En effet, aux températures de fonctionnement, le serrage très important implique du fluage, et donc des variations de dimensions de composants des électrolyseurs et donc au mieux une perte d' étanchéité .  Finally, other corapressive joints based on mica, or simply metallic, have been proposed: their installation requires a large volume and a very large external tightening, difficult to control and maintain in temperature to obtain an effective seal without rupture of the cell being heated. Indeed, at operating temperatures, the very large clamping involves creep, and therefore component size variations of the electrolysers and therefore at best a loss of tightness.
Pour pallier aux défauts de chacune de ces solutions classiques, il a déjà été proposé d' associer plusieurs de ces solutions, comme par exemple avec des joints composites en mica et verre.  To overcome the defects of each of these conventional solutions, it has already been proposed to combine several of these solutions, such as with mica and glass composite joints.
Le but de l' invention est de proposer une autre solution d' étanchéité entre deux espaces occupés par des gaz réactifs entre eux.  The object of the invention is to propose another sealing solution between two spaces occupied by reactive gases with one another.
Un but particulier de l' invention est de proposer une autre solution d' étanchéité susceptible de venir compléter et sécuriser une solution d' étanchéité existante dans un réacteur d' électrolyse de l' eau à hautes températures (EHT) ou dans un réacteur constituant une pile à combustible, notamment de type SOFC. EXPOSÉ DE L'INVENTION A particular object of the invention is to propose an alternative sealing solution capable of completing and securing an existing sealing solution in a high temperature water electrolysis (EHT) reactor or in a reactor constituting a fuel cell, in particular of the SOFC type. STATEMENT OF THE INVENTION
Pour ce faire, l' invention a pour objet un dispositif formant joint d' étanchéité pour séparer deux espaces aptes à être occupés chacun par un gaz, les deux gaz étant réactifs entre eux pour former un fluide, le dispositif comprenant au moins une plaque et une chambre, dite chambre tampon, séparant les deux espaces, la chambre tampon étant apte à être occupée par le même fluide que celui formé par réaction des deux gaz réactifs entre eux. To do this, the subject of the invention is a device forming a seal for separating two spaces each capable of being occupied by a gas, the two gases being reactive with one another to form a fluid, the device comprising at least one plate and a chamber, called buffer chamber, separating the two spaces, the buffer chamber being adapted to be occupied by the same fluid as that formed by reaction of the two reactive gases with each other.
Selon l' invention :  According to the invention:
- un des deux espaces est séparé de la chambre par une première portion d' appui et une portion de plaque en regard ;  - One of the two spaces is separated from the chamber by a first support portion and a plate portion facing;
- l' autre des deux espaces est séparé de la chambre par une deuxième portion d' appui et une portion de plaque en regard ;  - the other of the two spaces is separated from the chamber by a second support portion and a plate portion facing;
- chacune des première et deuxième portions d' appui forme avec la portion de plaque en regard une zone d' appui définissant un raicrocanal ; les microcanaux étant des volumes poreux délimités par les rugosités de surface des portions d' appui et des portions de plaque ;  - Each of the first and second support portions form with the plate portion facing a bearing zone defining a microchannel; the microchannels being porous volumes delimited by the surface roughness of the support portions and plate portions;
l' écoulement des gaz réactifs dans les microcanaux est principalement de type moléculaire.  the flow of reactive gases in the microchannels is mainly molecular.
On précise ici que dans le cadre de 1' invention, on entend par microcanal, un canal fiuidique de hauteur d' ordre micrométrique défini par les rugosités de surface des portions d' appui et plaque, c' est-à-dire typiquement un canal dont la hauteur ou autrement dit la profondeur est de l' ordre de quelques dizaines de μm (micromètres) . Typiquement également, un microcanal défini par les rugosités de surface des portions d' appui et plaque a une largeur de 1' ordre d' une cinquantaine à une centaine de μιτι (micromètres) . It is specified here that in the context of the invention, the term "microchannel" is understood to mean a fluid channel of micrometric height defined by the surface roughness of the support and plate portions, that is to say typically a channel. whose height or in other words the depth is of the order a few tens of microns (microns). Typically also, a microchannel defined by the surface roughness of the support and plate portions has a width of the order of from fifty to a hundred μιτι (micrometers).
Autrement dit, les inventeurs ont défini un nouveau type de joint d' étanchéité : contrairement aux joints selon V état de i' art pour lesquels on cherche à leur conférer une fonction barrière parfaite, ici on définit une zone d' étanchéité imparfaite contrôlée par 1' écoulement moléculaire et une chambre tampon dans laquelle les deux gaz réactifs en présence sont susceptibles de se combiner entre eux. D' ailleurs, dans certaines configurations, l'une des deux surfaces est très rugueuse voire poreuse, ce qui rend ά' autant plus utopique ce type de solution barrière selon l' état de l'art.  In other words, the inventors have defined a new type of seal: unlike state-of-the-art gaskets for which it is desired to give them a perfect barrier function, here an imperfect sealing zone controlled by 1 is defined. molecular flow and a buffer chamber in which the two reactive gases in the presence are capable of combining with each other. Moreover, in some configurations, one of the two surfaces is very rough or even porous, which makes this kind of barrier solution according to the state of the art even more utopian.
Autrement dit encore, le dispositif formant joint selon l' invention est un joint pneumatique qui consiste à ralentir le déplacement d' au moins un des deux gaz réactifs, c' est-à-dire celui qui possède la plus petite masse molaire, par effet stérique. On interpose devant la molécule du gaz réactif en question une barrière de molécules de masse molaire plus importante et en quantité plus importante. Le fluide résultant de la réaction entre les deux gaz réactifs, et présent à l' intérieur de la chambre tampon, présente une section efficace de collision bien plus importante que celle de chacun des deux gaz réactifs. Ainsi, grâce au dispositif selon l' invention, on diminue nécessairement la diffusion moléculaire des gaz réactifs à l'intérieur des microcanaux. Dans 1' application préférée où l' on cherche à étancher un espace d' hydrogène H2 par rapport à un espace d' oxygène O2, ,ne chambre tampon occupée par de la vapeur d' eau de section efficace bien plus importante implique une diffusion moléculaire d' H2 et d' 02 moindre dans les microcanaux. En outre, la chambre tampon selon 1' invention permet de stabiliser les échanges de gaz réactifs entre les deux espaces, c' est-à-dire de diminuer au plus le gradient entre ces deux espaces. In other words, the seal device according to the invention is a pneumatic seal which consists in slowing the displacement of at least one of the two reactive gases, ie the one which has the smallest molar mass, by effect steric. In front of the molecule of the reactive gas in question is interposed a barrier of molecules of greater molar mass and in greater quantity. The fluid resulting from the reaction between the two reactive gases, and present inside the buffer chamber, has a collision cross section much larger than that of each of the two reactive gases. Thus, thanks to the device according to the invention, the molecular diffusion of the gases is necessarily reduced. reagents inside the microchannels. In the preferred application where it is desired to seal a hydrogen space H 2 with respect to an oxygen space O 2, a buffer chamber occupied by water vapor having a much larger cross section requires molecular diffusion of H 2 and less 0 2 in the microchannels. In addition, the buffer chamber according to the invention makes it possible to stabilize the exchanges of reactive gases between the two spaces, that is to say to reduce at most the gradient between these two spaces.
Enfin, le fluide tampon dans la chambre diminue le taux de réaction entre les deux gaz réactifs. Dans l'application préférée susmentionnée, la vapeur d' eau dans la chambre diminue le taux de réaction entre H2 et 02 provenant chacun de l' un des espaces de part et d'autre de la chambre. Dans 1' application préférée, la section efficace de collision est évaluée respectivement à : Finally, the buffer fluid in the chamber decreases the reaction rate between the two reactive gases. In the aforementioned preferred application, the water vapor in the chamber decreases the reaction rate between H 2 and O 2 from each of one of the spaces on either side of the chamber. In the preferred application, the collision cross section is evaluated respectively at:
- 0,282 nm pour H2 ; - 0.282 nm for H 2 ;
- 0,317 nm pour la vapeur d' eau ;  - 0.317 nm for water vapor;
- 0,346 pour 02. - 0.346 for 0 2 .
Afin de dimensionner la chambre tampon, 1' homme du métier veillera à chercher un compromis entre les différentes fonctions d' utilisation de 1' étanchéité à réaliser, liées notamment aux contraintes de conception et d' utilisation du système pneumatique des gaz réactifs, c' est -à-dire les conditions d'occupation des espaces selon l' invention.  In order to size the buffer chamber, one skilled in the art will seek to find a compromise between the various functions of use of the seal to achieve, particularly related to the design and use constraints of the pneumatic system of reactive gases, c ' that is to say, the occupation conditions of the spaces according to the invention.
Ces contraintes sont les suivantes :  These constraints are as follows:
- la force de compression utilisée pour réaliser l' étanchéité, - la hauteur et la largeur de la chambre tampon, - the compression force used to achieve the seal, - the height and width of the buffer chamber,
- la température de fonctionnement du réacteur électrochimique dans lequel le dispositif d' étanchéité est intégré,  the operating temperature of the electrochemical reactor in which the sealing device is integrated,
- les pressions des gaz réactifs.  the pressures of the reactive gases.
Le dimensionnement (hauteur et largeur) de la chambre tampon est fait préférentiellement en fonction des contraintes d' utilisation du joint. Plus la pression sera faible et la température élevée, plus la chambre tampon devra être volumineuse afin de permettre la transformation des gaz réactifs entre eux.  The dimensioning (height and width) of the buffer chamber is preferably made according to the constraints of use of the seal. The lower the pressure and the higher the temperature, the larger the buffer chamber will be to allow the transformation of the reactive gases between them.
Le volume de gaz doit aussi permettre d'absorber la chaleur issue de la réaction.  The volume of gas must also make it possible to absorb the heat resulting from the reaction.
L' homme de l' art veille à ce que la force de compression permette à la fois de réaliser principalement les conditions d' écoulement moléculaire (de type Knudsen) entre les portions d' appui et les portions de plaque correspondantes dans les zones d' appui et ne pas développer un fluage trop important de la structure (plaque et portions d' appui) .  Those skilled in the art will ensure that the compressive force allows at the same time mainly the molecular flow conditions (Knudsen type) to be achieved between the bearing portions and the corresponding plate portions in the zones of the invention. support and not develop too much creep of the structure (plate and support portions).
De préférence, on réalise la structure du joint d' étanchéité au niveau des portions d'appui avec la même technologie et les mêmes procédés que le reste des pièces utilisées, telles que les plaques.  Preferably, the structure of the seal is made at the support portions with the same technology and the same processes as the rest of the parts used, such as the plates.
Selon un mode de réalisation avantageux, les parois de la chambre et les portions d' appui sont formées dans un même élément de séparation intercalé entre lesdits deux espaces.  According to an advantageous embodiment, the walls of the chamber and the support portions are formed in the same separating element interposed between said two spaces.
Typiquement, l'élément de séparation est constitué d'une tôle emboutie. Un élément de séparation fabriqué par emboutissage a pour avantages de pouvoir être fabriqué en grande série et à bas coûts . Pour un élément de séparation fabriqué par ce procédé, on veille à choisir une épaisseur de tôle suffisamment fine pour permettre un emboutissage aisé, mais suffisamment important pour que la réserve d' éléments mineurs de l' alliage (typiquement Al ou Cr) soit suffisante pour permettre une protection à l' oxydation pendant toute sa durée d'utilisation. L'homme de l'art sélectionne les matériaux les plus appropriés en fonction de l' application (gaz réactifs, température...) et de la manière d'intégration du joint : placé dans une configuration de déplacement, respectivement de force, constant (e) l'homme de l'art veille en effet éventuellement à limiter la relaxation respectivement le fluage de l' élément de séparation de manière à pouvoir maintenir un effort de serrage suffisant dans le temps, et ainsi rétablir l' étanchéité après un cyclage thermique dudit . Typically, the separating element consists of a stamped sheet. A separation element manufactured by stamping has the advantages of being mass-produced and low-cost. For a separating element produced by this method, care is taken to choose a thickness of sheet sufficiently thin to allow easy stamping, but large enough so that the reserve of minor elements of the alloy (typically Al or Cr) is sufficient to allow protection against oxidation throughout its life. The person skilled in the art selects the most appropriate materials according to the application (reactive gases, temperature, etc.) and the manner of integrating the seal: placed in a configuration of displacement, respectively of force, constant (e) the person skilled in the art in fact ensures that the relaxation or creep of the separating element can be limited so as to maintain a sufficient clamping force over time, and thus restore the tightness after cycling. thermal of said.
La tôle emboutie peut être avantageusement en alliage de base Nickel, tel que Inconel 600, Inconel 718, Haynes 230. Elle peut être aussi en acier inoxydable, tel que AISI 310S, AISI 316L, AISI 430.  The stamped sheet may advantageously be made of nickel base alloy, such as Inconel 600, Inconel 718, Haynes 230. It may also be made of stainless steel, such as AISI 310S, AISI 316L, AISI 430.
L' invention concerne aussi un réacteur électrochimique comprenant au moins un dispositif formant joint d' étanchéité tel que décrit ci-dessus, dans lequel les espaces de part et d' autre séparés par le joint d' étanchéité sont les espaces de circulation des gaz réactifs à l'intérieur du réacteur. Selon, un mode de réalisation dans lequel le réacteur comprend un empilement de cellules électrochimiques élémentaires formées chacune d' une cathode, d' une anode et d' un électrolyte intercalé entre la cathode et l' anode, au moins une plaque interconnectrice étant agencée entre deux cellules élémentaires adjacentes et en contact électrique avec une électrode d' une des deux cellules élémentaires et une électrode de l' autre des deux cellules élémentaires, la plaque interconnectrice délimitant au moins un compartiment cathodique et au moins un compartiment anodique pour la circulation de gaz respectivement à la cathode et l' anode, on prévoit que le compartiment cathodique ou le compartiment anodique constitue avantageusement un des deux espaces séparés par le dispositif formant joint d' étanchéité . The invention also relates to an electrochemical reactor comprising at least one gasket device as described above, in which the spaces on either side separated by the gasket are the circulation spaces for the reactive gases. inside the reactor. According to an embodiment in which the reactor comprises a stack of elementary electrochemical cells each formed of a cathode, an anode and an electrolyte interposed between the cathode and the anode, at least one interconnecting plate being arranged between two adjacent elementary cells and in electrical contact with an electrode of one of the two elementary cells and an electrode of the other of the two elementary cells, the interconnecting plate delimiting at least one cathode compartment and at least one anode compartment for the circulation of gases respectively at the cathode and the anode, it is expected that the cathode compartment or the anode compartment is advantageously one of two spaces separated by the seal device.
Avantageusement, il peut s' agir d' un réacteur pour électroiyse de l' eau à hautes températures, destiné à fonctionner à des températures supérieures à 450 °C, typiquement comprises entre 600 °C et 1000°C.  Advantageously, it may be a reactor for electrolysis of water at high temperatures, intended to operate at temperatures above 450 ° C., typically between 600 ° C. and 1000 ° C.
Il peut aussi s' agir avantageusement d' un réacteur constituant une pile à combustible de type SOFC, destiné à fonctionner à des températures comprises entre 600°C et 800°C.  It can also be advantageously a reactor constituting a SOFC fuel cell, intended to operate at temperatures between 600 ° C and 800 ° C.
Typiquement, une pile à combustible de type SOFC destinée à fonctionner destinée à fonctionner avec des gaz à des pressions aux environs de la pression atmosphérique. Dans une telle pile, de préférence, la chambre tampon présente les dimensions suivantes : - hauteur comprise entre 100 et 500 μm, la hauteur étant définie comme étant la distance entre le fond de la chambre et la surface d' appui ; Typically, an SOFC fuel cell intended to operate to operate with gases at pressures around atmospheric pressure. In such a stack, preferably, the buffer chamber has the following dimensions: height between 100 and 500 μm, the height being defined as the distance between the bottom of the chamber and the support surface;
- largeur au moins égale à 500 μm, largeur étant définie comme étant la distance minimale entre les deux portions d' appui de l' élément de séparation.  width at least equal to 500 μm, width being defined as being the minimum distance between the two support portions of the separating element.
De préférence encore, la force d' appui entre les portions d' appui et les portions de plaque est comprise entre 0.1 N/mm et 10 N/mm.  More preferably, the force of support between the support portions and the plate portions is between 0.1 N / mm and 10 N / mm.
La chambre tampon est de préférence de forme annulaire autour d' un espace de récupération de l'hydrogène produit.  The buffer chamber is preferably annular in shape around a space for recovering hydrogen produced.
Typiquement, pour une pile à combustible de type SOFC, fonctionnant autour de la pression atmosphérique et à 700 °C :  Typically, for a SOFC type fuel cell, operating around atmospheric pressure and at 700 ° C:
- une tôle d'épaisseur 0,2 mm d'épaisseur d' Inconel 600 en tant qu' élément de séparation, permet de répondre à la fois aux problèmes de corrosion et de tenue mécanique dans le temps,  - a sheet thickness of 0.2 mm thickness of Inconel 600 as a separating element, allows to meet both the problems of corrosion and mechanical strength over time,
- une hauteur de chambre tampon comprise entre 100 à 500 μτη et une largeur d' au moins 500 um sont adaptées .  a buffer chamber height of between 100 and 500 μτη and a width of at least 500 μm are adapted.
BRÈVE DESCRIPTION DES DESSINS BRIEF DESCRIPTION OF THE DRAWINGS
D' autres avantages et caractéristiques de 1' invention ressortiront mieux à la lecture de la description détaillée, faite à titre illustratif et non limitatif, en référence aux figures suivantes parmi lesquelles : - la figure 1 est une vue schématique montrant le fonctionnement d' un dispositif formant joint d' étanchéité selon l'invention, Other advantages and features of the invention will emerge more clearly on reading the detailed description, given by way of non-limiting illustration, with reference to the following figures among which: - Figure 1 is a schematic view showing the operation of a seal forming device according to the invention,
- la figure 2 est une vue en perspective d' un élément d' un dispositif selon un premier mode de réalisation de l' invention,  FIG. 2 is a perspective view of an element of a device according to a first embodiment of the invention,
- la figure 3 est une vue en semi- perspective d' un dispositif selon un deuxième mode de réalisation selon l' invention,  FIG. 3 is a semi-perspective view of a device according to a second embodiment according to the invention,
- la figure 4 est une vue en coupe partielle de la figure 3,  FIG. 4 is a partial sectional view of FIG. 3;
- la figure 5 est une vue schématique montrant un dispositif formant joint d' étanchéité selon 1' invention selon un autre mode de réalisation,  FIG. 5 is a schematic view showing a device forming a seal according to the invention according to another embodiment,
- la figure 6 est une vue schématique montrant un dispositif formant joint d' étanchéité selon 1' invention selon un autre mode de réalisation,  FIG. 6 is a schematic view showing a device forming a seal according to the invention according to another embodiment,
- les figures 7A à 7C représentent les courbes du libre parcours moyen respectivement de 1' air, de l' hydrogène H2, et de la vapeur d' eau H20 en fonction de la pression et de la température, le libre parcours moyen permettant de définir un écoulement principalement moléculaire souhaité avec un joint d' étanchéité selon l' invention, FIGS. 7A to 7C show the curves of the average free path respectively of air, of hydrogen H 2, and of water vapor H 2 0 as a function of pressure and temperature, the mean free path to define a desired molecularly desired flow with a seal according to the invention,
- la figure 8 est une représentation schématique de différents types d' écoulement en fonction du nombre de Knudsen permettant de définir un écoulement principalement moléculaire à partir du libre parcours moyen. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS - Figure 8 is a schematic representation of different types of flow as a function of the Knudsen number to define a predominantly molecular flow from the mean free range. DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Le dispositif formant joint d' étanchéité est décrit ci-dessous en référence à l' électrolyse de l' eau (EHT) ou à une pile à combustible de type SOFC. The seal device is described below with reference to electrolysis of water (EHT) or a SOFC fuel cell.
Le dispositif formant joint d' étanchéité selon l' invention comprend un premier espace 1 occupé par de l' hydrogène H2 et un deuxième espace 2 occupé par de l' oxygène 02. The sealing device according to the invention comprises a first space 1 occupied by hydrogen H 2 and a second space 2 occupied by oxygen O 2 .
Il comprend un élément de séparation 4 comprenant deux portions d' appui 40, 41 maintenues en appui contre une seule plaque d' appui 5 avec une force de compression donnée qui permet d' obtenir un écoulement principalement de type moléculaire des molécules de gaz réactifs dans les microcanaux définis 60, 61 (voir flèches). Les microcanaux 60, 61 sont des volumes poreux délimités par les rugosités de surface des portions d' appui 40, 41 et des portions de la plaque 5.  It comprises a separating element 4 comprising two support portions 40, 41 held in abutment against a single support plate 5 with a given compression force which makes it possible to obtain a predominantly molecular type flow of the reactive gas molecules in the microchannels defined 60, 61 (see arrows). The microchannels 60, 61 are porous volumes delimited by the surface roughness of the bearing portions 40, 41 and portions of the plate 5.
Une chambre tampon 7 est délimitée par les portions d' appui 40, 41 où, pour que cette caractéristique perdure, il faut que la différence de pression entre les chambres oxygène et hydrogène ne soit pas trop élevée (quelques bars) afin que la chambre tampon 7 reste le lieu de réaction des gaz. Les dimensions (hauteur H et largeur L comme montrées en figure 4) de la chambre tampon 7 sont déterminées de telle manière à permettre en son sein une réaction des deux gaz réactifs 02 , H2 entre eux. A buffer chamber 7 is delimited by the support portions 40, 41 where, in order for this characteristic to persist, the pressure difference between the oxygen and hydrogen chambers must not be too high (a few bars) so that the buffer chamber 7 remains the reaction place of the gases. The dimensions (height H and width L as shown in FIG. 4) of the buffer chamber 7 are determined in such a way as to allow a reaction of the two reactive gases O 2 , H 2 therebetween.
Le phénomène physique obtenu avec le dispositif selon l' invention est une réaction de recombinaison - contrôlée au niveau géométrique - des deux constituants soit typiquement de la production de la vapeur d' eau par la recombinaison de molécules d' hydrogène et d' oxygène {voir figure 1} . Une fois cette vapeur d' eau obtenue, elle présente des caractéristiques avantageuses telles que : The physical phenomenon obtained with the device according to the invention is a recombination reaction - geometrically controlled - of two constituents are typically the production of water vapor by the recombination of molecules of hydrogen and oxygen (see Figure 1). Once this water vapor has been obtained, it has advantageous characteristics such as:
- sa capacité à absorber la chaleur issue de la recombinaison (capacité calorifique molaire de la molécule d' eau est plus élevée que pour H2 et 02} ; - its ability to absorb the heat resulting from the recombination (molar heat capacity of the water molecule is higher than for H 2 and 0 2 };
- une viscosité et une masse molaire plus élevées que celle de l' hydrogène, ce qui va ralentir la fuite, quel que soit son mécanisme (type convectif ou diffusif) ;  a viscosity and a molar mass higher than that of hydrogen, which will slow down the leak, whatever its mechanism (convective or diffusive type);
- la création d' une surpression par rapport aux deux espaces situées de part et d' autre qui va participer aussi au ralentissement de la fuite.  - the creation of an overpressure compared to the two spaces located on both sides which will also participate in the slowdown of the leak.
Un tel phénomène est en effet obtenu car au départ on a de l' oxygène d' un côté (dans l' espace 2) , de l' hydrogène de l' autre (dans 1" espace 1) . La chambre tampon 7 (au centre) va progressivement se remplir de vapeur d' eau, si elle ne l' est pas initialement. On suppose ici que les gaz réactifs 02l H2 et vapeur d' eau H20 sont en équipression. Such a phenomenon is indeed obtained because at the beginning one has oxygen on one side (in space 2), hydrogen on the other (in 1 "space 1). center) will gradually fill with water vapor, if it is not initially filled in. It is assumed here that the reactive gases 0 21 H 2 and water vapor H 2 O are in equipressure.
Par le phénomène de diffusion, quatre écoulements de type moléculaire (Knudsen) vont s'établir avec des cinétiques différentes.  By the diffusion phenomenon, four molecular type flows (Knudsen) will be established with different kinetics.
Entre l' espace 2 et la chambre tampon 7 , il y a les écoulements suivants :  Between space 2 and buffer chamber 7, there are the following flows:
- 02 → H20 - 0 2 → H 2 0
H20→ 02. H 2 0 → 0 2 .
Entre l'espace 1 et la chambre tampon 7, il y a les écoulements suivants : - H2 → H2O Between the space 1 and the buffer chamber 7, there are the following flows: - H 2 → H 2 O
- H20 -→ H2 - H 2 0 - → H 2
Chacun des microcanaux 60, 61, ou autrement dit zones de fuite, défini entre une portion d' appui 40, 41 et la plaque d'appui 5 laisse passer deux gaz qui ne réagissent pas mais qui se contrarient au niveau de l' écoulement.  Each of the microchannels 60, 61, or in other words leakage zones, defined between a bearing portion 40, 41 and the support plate 5 passes two gases which do not react but which are counter-controlled at the level of the flow.
Compte tenu de la facilité avec laquelle 1' hydrogène circule, celui-ci va donc s' accumuler dans la chambre tampon 7. Cet accroissement va avoir deux conséquences :  Given the ease with which the hydrogen circulates, it will accumulate in the buffer chamber 7. This increase will have two consequences:
- diminuer le gradient de concentration entre la chambre 7 et l' espace 1, et donc limiter son écoulement ;  - decrease the concentration gradient between the chamber 7 and the space 1, and thus limit its flow;
- contribuer à l' augmentation de la pression dans la chambre 7.  - to contribute to the increase of the pressure in the chamber 7.
Ces deux phénomènes tendent à ralentir la diffusion de l'hydrogène.  These two phenomena tend to slow the diffusion of hydrogen.
Comme de l' oxygène arrive aussi dans la chambre tampon 7, il réagit avec l'hydrogène dilué pour former de la vapeur d'eau. Cette vapeur d'eau participe à maintenir la concentration de celle-ci à un niveau d'équilibre ainsi qu'à l'augmentation de pression.  Since oxygen also arrives in the buffer chamber 7, it reacts with the diluted hydrogen to form water vapor. This water vapor helps maintain the concentration of the latter at an equilibrium level and at the pressure increase.
Globalement, la chambre tampon 7 se retrouve en surpression par rapport aux deux espaces 1, 2 à isoler.  Overall, the buffer chamber 7 is in overpressure with respect to two spaces 1, 2 to isolate.
La formation d' une telle séparation par un fluide non réactif (vapeur d' eau) est particulièrement utile dans le cas où les gaz sont régulièrement renouvelés de part et d' autre de la chambre tampon 7, ce qui est le cas dans les electrolyseurs EHT ou piles à combustible de type SOFC. The formation of such a separation by a non - reactive fluid (water vapor) is particularly useful in the case where the gases are regularly renewed on both sides of the buffer chamber 7, this is the case in electrolysers EHT or fuel cells type SOFC.
Ce procédé permet de s' affranchir d' une amenée d' un gaz tampon et donc d' une complexité supplémentaire.  This method makes it possible to overcome a supply of a buffer gas and therefore an additional complexity.
On peut réaliser la chambre tampon 7 facilement à partir de formes embouties (figure 2) .  The buffer chamber 7 can be made easily from stamped shapes (FIG. 2).
Ces formes embouties peuvent être directement intégrées dans un composant usuel dr un réacteur électrochimique (plaque interconnectrice) . These forms stamped can be directly integrated in a common component r of an electrochemical reactor (interconnection plate).
En figures 3 et 4, on a illustré un dispositif formant joint d' étanchéité selon l' invention qui constitue ce que l' on désigne usuellement par un joint d' étanchéité de type « stand alone ».  In FIGS. 3 and 4, there is illustrated a device forming a seal according to the invention which constitutes what is usually referred to as a "stand alone" seal.
Sur ces figures 3 et 4 , il est prévu deux chambres tampon 7 afin d' étancher les deux côtés de la p1aque emboutie .  In these figures 3 and 4, there are two buffer chambers 7 for sealing both sides of the stamped plate.
Le dispositif formant joint d' étanchéité selon l'invention constitue en quelque sorte un joint d' étanchéité dynamique qui consiste à maîtriser les fuites par écoulement moléculaire (de type Knudsen) . Il est ainsi tout à fait adapté aux applications électrochimiques à hautes températures de fonctionnement car il permet de laisser glisser deux pièces en contact (élément de séparation et plaque d' appui) , ce qui autorise des dilatations différentielles importantes.  The seal forming device according to the invention is a sort of dynamic seal which consists in controlling leakage by molecular flow (Knudsen type). It is thus perfectly suited to electrochemical applications with high operating temperatures because it makes it possible to let two pieces slide in contact (separating element and support plate), which allows large differential expansions.
Les avantages du dispositif formant un joint d' étanchéité selon l' invention qui vient d' être décrite sont nombreux. Outre le gain éventuel en qualité d' étanchéité par rapport aux solutions selon l' état de l'art, la réalisation de la chambre tampon n'a que très peu d' impact sur le coût dans un électrolyseur EHT ou une pile à combustible de type SOFC puisqu' elle consiste en une légère modification de la forme de 1' embouti . The advantages of the device forming a seal according to the invention which has just been described are numerous. In addition to the potential gain in sealing quality compared with state - of - the - art solutions, the realization of the buffer chamber has very little impact on the cost in an EHT electrolyser or a fuel cell. SOFC type since it consists of a slight modification of the shape of the stamp.
Par ailleurs, il peut se rajouter à un joint d' étanchéité déjà existant.  In addition, it can be added to an already existing seal.
En outre, il permet de mieux localiser la zone de dégagement de chaleur dans un empilement de cellules électrochimiques d' un réacteur, et donc sa prise en compte dans le design de celui-ci.  In addition, it makes it possible to better locate the zone of heat release in a stack of electrochemical cells of a reactor, and thus its consideration in the design thereof.
Bien que décrite en référence aux applications d' électrolyse à hautes températures ou piles à combustible, l' invention peut s' appliquer dans d' autres réacteurs électrochimiques pour lesquels on cherche à trouver une étanchéité performante.  Although described with reference to applications of high temperature electrolysis or fuel cells, the invention can be applied in other electrochemical reactors for which it is sought to find a high performance seal.
Comme déjà mentionné, lorsqu' intégré directement dans un réacteur, le dispositif selon l'invention ne nécessite qu'une seule chambre tampon.  As already mentioned, when integrated directly into a reactor, the device according to the invention requires only a single buffer chamber.
Cela étant, en fonction de la place et de la force de compression disponibles pour intégrer 1' élément de séparation dans un réacteur électrochimique, il est tout à fait possible d' envisager de mettre plusieurs chambres tampons en série .  However, depending on the space and compressive force available to integrate the separation element into an electrochemical reactor, it is quite possible to consider putting several buffer chambers in series.
La plaque d' appui 5 sur laquelle s' appuie 1' élément de séparation 4 montré aux figures 2 à 4 est plane : il va de soi qu' elle peut avoir toute autre forme qui est en appui avec deux portions d'appui 40, 41 de l'élément de séparation. Un exemple d'une autre forme est montré en figure 5. The support plate 5 on which the separating element 4 shown in FIGS. 2 to 4 is supported is flat: it goes without saying that it can have any other shape that bears with two bearing portions 40, 41 of the separating element. An example of another form is shown in Figure 5.
Enfin, un seul élément de séparation 4 est montré aux figures 2 à 4 : selon l' invention, on peut bien entendu intégrer un autre élément de séparation 4' dans une même chambre tampon 7 comme représenté en figure 6. Cet autre élément de séparation 4' peut par exemple être une pièce supplémentaire en tôle emboutie.  Finally, a single separating element 4 is shown in FIGS. 2 to 4: according to the invention, it is of course possible to integrate another separating element 4 'in the same buffer chamber 7 as represented in FIG. 6. This other separation element 4 'can for example be an additional piece of stamped sheet.
Dans l' application préférée qui vient d' être décrite, la rugosité initiale des surfaces des matériaux constituant le joint (élément de séparation 4 ortions d' appui 40, 41} et la portée (plaque d'appui 5) en vis-à-vis aura typiquement un écart moyen arithmétique de Ra<0,4 μm, obtenu par polissage, voire par le soin apporté aux surfaces lors de l' élaboration.  In the preferred application which has just been described, the initial roughness of the surfaces of the materials constituting the gasket (separating element 4 supporting ortions 40, 41) and the bearing surface (bearing plate 5) vis-à- vis will typically have an arithmetic average deviation of Ra <0.4 μm, obtained by polishing, or even by the care given to the surfaces during the elaboration.
Il va de soi que moins les états de surface des portions de d' appui et portions de plaque sont rugueux et plus l' étanchéité obtenu grâce au joint selon l' invention est bonne et le régime d' écoulement dans les microcanaux 60, 61 est moléculaire de type Knudsen plutôt que de type de Darcy.  It goes without saying that the less the surface states of the support portions and the plate portions are rough, the more the seal obtained thanks to the seal according to the invention is good and the flow regime in the microchannels 60, 61 is molecular type Knudsen rather than Darcy type.
Pour une étanchéité à réaliser entre une portée métallique (plaque d' appui métallique) et un joint métallique (élément de séparation métallique 4} , une force linéique de 0,5 N par mm de joint permet d' obtenir un régime d' écoulement moléculaire de type Knudsen, à condition que le matériau du joint utilisé (élément de séparation métallique 4) soit suffisamment mou à la température d' utilisation, par exemple un acier ferritique de type AISI 430 à 600°C, et que sa rugosité initiale soit faible (Ra<0,4 μm) et que les pressions dans les espaces 1, 2 et 7 soient autour de la pression atmosphérique. Dans ces conditions, plus la force d' appui linéique est importante et plus on tend à obtenir un régime d'écoulement moléculaire. For a tightness to be achieved between a metal bearing (metal support plate) and a metal seal (metal separation element 4), a linear force of 0.5 N per mm of joint makes it possible to obtain a molecular flow regime of the Knudsen type, provided that the material of the seal used (metal separating element 4) is sufficiently soft at the temperature of use, for example ferritic steel of type AISI 430 at 600 ° C, and that its initial roughness is low (Ra <0.4 μm) and that pressures in spaces 1, 2 and 7 are around the atmospheric pressure. Under these conditions, the greater the linear support force is and the more one tends to obtain a molecular flow regime.
On décrit maintenant deux méthodes différentes envisagées par les inventeurs pour déterminer le régime d' écoulement à travers les microcanaux 60, 61 selon l' invention définis par les états de rugosité des portions d' appui et de la plaque d' appui .  Two different methods envisaged by the inventors are now described for determining the flow regime through the microchannels 60, 61 according to the invention defined by the roughness states of the support portions and the support plate.
La première méthode consiste à comparer la valeur du libre parcours moyen des gaz réactifs, ici respectivement H2 et 02 et du fluide formé par la réaction, ici la vapeur d' eau, avec les dimensions des microcanaux définis par les états de rugosité des portions d' appui et de la plaque d' appui .  The first method consists of comparing the value of the mean free path of the reactive gases, here respectively H2 and O2, and of the fluid formed by the reaction, in this case water vapor, with the dimensions of the microchannels defined by the roughness states of the portions. support and support plate.
Pour déterminer un régime d' écoulement au niveau d' une zone de fuite, il est connu de comparer la valeur du libre parcours moyen de (s) espèce (s) en jeu avec la taille du défaut qui va être à l' origine de la fuite : voir publication [1]. Pour un joint métallique, deux types de fuite peuvent se produire : par permêation (à travers le joint) et par les microporosités situées à l'interface joint/portée . Pour les joints métalliques (éléments de séparation) envisagés dans le cadre de l' invention, avec des états de surface peux rugueux, la fuite par permêation est inférieure de plus d' un ordre de grandeur aux fuites d' interfaces . On néglige donc cette fuite par permêation. La mesure des microporosités situés à 1' interface permet donc de connaître l' ordre de grandeur des microcanaux à l'origine de la fuite. Il va de soi ici qu' on envisage un état de surface uniforme et de faible rugosité sur toutes les portions d' appui et de plaque, c' est-à-dire sans aucune microporosité de taille largement supérieure à l'interface. In order to determine a flow regime at the level of a leakage zone, it is known to compare the value of the average free path of the species at risk with the size of the defect which is going to be at the origin of flight: see publication [1]. For a metal seal, two types of leakage can occur: through permeation (through the seal) and micropores at the joint / span interface. For metallic joints (separating elements) envisaged in the context of the invention, with roughness of surface conditions, leakage by permeation is more than an order of magnitude less than leakage of interfaces. This leakage is therefore neglected by permeation. The measurement of the microporosities located at the interface therefore makes it possible to know the order of size of the microchannels at the origin of the leak. It goes without saying here that a uniform and low roughness surface condition is envisaged on all the support and plate portions, that is to say without any microporosity of size much greater than the interface.
Le libre parcours moyen λ d' un fluide peut être exprimé par l' équation suivante : The mean free path λ of a fluid can be expressed by the following equation:
équation (1) dans laquelle : equation (1) in which:
λ désigne le libre parcours moyen en m ; λ denotes the average free path in m;
η désigne la viscosité dynamique en Pa.s ; η denotes the dynamic viscosity in Pa s;
R désigne la constante universelle des gaz parfaits (8,314) en J.mo-1.k-1; ; R denotes the universal constant of perfect gases (8,314) in J.mo-1.k-1; ;
T désigne la température en degré Kelvin ;  T denotes the temperature in Kelvin degree;
P la pression en Pa ; P the pressure in Pa;
M désigne la masse molaire du fluide en g/mol.  M denotes the molar mass of the fluid in g / mol.
Le libre parcours moyen du fluide augmente donc en fonction de la température et de la viscosité dynamique du fluide, mais diminue en fonction de la pression et la masse molaire.  The average free path of the fluid therefore increases as a function of the temperature and the dynamic viscosity of the fluid, but decreases as a function of the pressure and the molar mass.
On a représenté aux figures 7A, 7B et 7C pour les trois gaz de l' application préférée, à savoir respectivement l' air, l' hydrogène et la vapeur d' eau, la courbe représentative du libre parcours moyen en fonction de la température et de la pression auxquelles ils sont soumis. On voit que pour les trois gaz le libre parcours moyen augmente avec la température et diminue de manière très significative avec la pression.  FIGS. 7A, 7B and 7C are shown for the three gases of the preferred application, namely respectively air, hydrogen and water vapor, the representative curve of the average free path as a function of temperature and the pressure they are subjected to. We see that for the three gases the average free path increases with temperature and decreases very significantly with the pressure.
Pour la vapeur d' eau, le libre parcours moyen est à peu près du même niveau que l' air (vers 0,5μm à pression atmosphérique et à 700°C) . Pour 1' hydrogène, le libre parcours moyen est plus important. Ceci corrobore les valeurs relatives de section efficace de collision, celle de l' hydrogène étant inférieure à celles de l' oxygène et de la vapeur d'eau sensiblement égales. For the water vapor, the average free path is about the same level as the air (towards 0.5μm at atmospheric pressure and at 700 ° C). For hydrogen, the average free path is more important. This corroborates the relative collision cross section values, that of hydrogen being lower than those of substantially equal oxygen and water vapor.
Pour estimer le régime d' écoulement d' un gaz {écoulement dans un milieu poreux suivant une loi de type Darcy ou un écoulement moléculaire) , on utilise le nombre de Knudsen Kn défini par le rapport entre le libre parcours moyen et la longueur caractéristique du canal où a lieu l'écoulement, par exemple le diamètre d'un capillaire. Le schéma de la figure 8 illustre bien les différents types d' écoulement en fonction de la valeur du nombre de Knudsen. On estime que l' on commence à avoir une contribution significative de l'écoulement moléculaire à partir de Kn=0,l ; au-delà de Kn=10, on n' a plus qu' un seul régime d' écoulement moléculaire. Ainsi, dans le schéma de la figure 8 :  To estimate the flow regime of a gas flow in a porous medium according to a Darcy type law or a molecular flow, the Knudsen Kn number defined by the ratio between the mean free path and the characteristic length of the channel where the flow takes place, for example the diameter of a capillary. The diagram in Figure 8 illustrates the different types of flow as a function of the value of the Knudsen number. It is estimated that one begins to have a significant contribution of molecular flow from Kn = 0.1; beyond Kn = 10, there is only one molecular flow regime. Thus, in the diagram of Figure 8:
A désigne un libre écoulement moléculaire ; A denotes a free molecular flow;
B désigne un écoulement en régime transitoire ; B is transient flow;
C désigne un écoulement glissant ;  C denotes a slippery flow;
D désigne un écoulement en régime continu. Autrement dit, selon cette première méthode de détermination, à pression et température données, dès lors que la longueur caractéristique des microcanaux selon l' invention devient inférieure à une valeur égale à 10 fois le libre parcours moyen, le joint d' étanchéité selon l' invention peut être considéré comme commençant à être efficace. Le joint est le plus efficace à partir d' une longueur caractéristique de microcanal inférieure à 0,1 fois le libre parcours moyen. D denotes a continuous flow. In other words, according to this first method of determination, at given pressure and temperature, since the characteristic length of the microchannels according to the invention becomes less than a value equal to 10 times the mean free path, the seal according to the invention. invention can be considered as starting to be effective. Gasket is the most efficient from a characteristic microchannel length less than 0.1 times the mean free path.
La deuxième méthode consiste à mesurer le débit massique d' une fuite en fonction de la surpression de part et d'autre d'un joint d' étanchéité . Si la relation est de forme quadratique, alors on considère qu' il s' agit plutôt d' un écoulement de type de Darcy. Si la relation est linéaire, alors on considère qu' il s' agit plutôt d' un écoulement moléculaire .  The second method consists in measuring the mass flow rate of a leak as a function of the overpressure on both sides of a seal. If the relation is of quadratic form, then one considers that it is rather a flow of type of Darcy. If the relation is linear, then we consider that it is rather a molecular flow.
Par ailleurs, si l' on prend en compte les débits volumiques normes, on peut les exprimer avec les équations suivantes pour des mesures de fuite d' air et de l'な : pour un régime d' écoulement molaire de t e Knudsen ; On the other hand, taking into account the standard volume flow rates, we can express them with the following equations for air leakage measurements and the な: for a molar flow regime of Knudsen;
(3) : pour un régime de (3): for a scheme of
Darcy ;  Darcy;
équations (2} et (3} dans lesquelles : equations (2) and (3) in which:
et désignent respectivement les and designate respectively the
volumes d' air normé d' H2 et de l' air Nm3/s ; standard air volumes of H2 and air Nm 3 / s;
σH2 et σair désignent respectivement le diamètre efficace de collision d' H2 et de l' air en nanomètres (nm) ; σ H2 and σ air respectively denote the effective collision diameter of H2 and air in nanometers (nm);
MH2 et Mair désignent respectivement la masse molaire d' H2 et de l' air en g/mol. Ainsi, la comparaison des rapports V^^!V^ expérimentaux et théoriques permet aussi d' évaluer le type d' écoulement dans les microcanaux selon 1' invention . MH2 and Mair respectively denote the molar mass of H2 and air in g / mol. Thus, comparison of the experimental and theoretical ratios allows also to evaluate the type of flow in the microchannels according to the invention.
Référence citée Reference cited
[1] : J. Martin, « Etanchêité en mécanique », B 5 420, Techniques de l'ingénieur, édition en ligne 2009.  [1]: J. Martin, "Etanchêité en mécanique", B 5 420, Engineering Techniques, online edition 2009.

Claims

REVENDICATIONS
1. Dispositif formant joint d' étanchéité pour séparer deux espaces (1, 2) occupés chacun par un gaz, les deux gaz étant réactifs entre eux pour former un fluide, le dispositif comprenant au moins une plaque (5) et une chambre, dite chambre tampon (7) , séparant les deux espaces (1, 2), la chambre tampon étant apte à être occupée par le même fluide que celui formé par réaction des deux gaz réactifs entre eux, caractérisé en ce que : 1. Device forming a seal to separate two spaces (1, 2) each occupied by a gas, the two gases being reactive with each other to form a fluid, the device comprising at least one plate (5) and a chamber, called buffer chamber (7), separating the two spaces (1, 2), the buffer chamber being adapted to be occupied by the same fluid as that formed by reaction of the two reactive gases with one another, characterized in that:
un (1} des deux espaces est séparé de la chambre (7) par une première portion d'appui (40) et une portion de plaque (5} en regard ;  one (1) of the two spaces is separated from the chamber (7) by a first bearing portion (40) and a plate portion (5) facing each other;
l'autre (2) des deux espaces est séparé de la chambre (7) par une deuxième portion d' appui et une portion de plaque {5) en regard ;  the other (2) of the two spaces is separated from the chamber (7) by a second support portion and a plate portion (5) facing each other;
chacune des première et deuxième portion d'appui (40, 41} forme avec la portion de plaque en regard une zone d'appui définissant un microcanal (60, 61) ; les microcanaux (60, 61) étant des volumes poreux délimités par les rugosités de surface des portions d'appui (40, 41) et des portions de plaque ;  each of the first and second bearing portions (40, 41) forms with the plate portion facing a bearing zone defining a microchannel (60, 61), the microchannels (60, 61) being porous volumes delimited by the surface roughness of the bearing portions (40, 41) and plate portions;
l' écoulement des gaz réactifs dans les microcanaux (60, 61) est principalement de type moléculaire .  the flow of reactive gases in the microchannels (60, 61) is predominantly molecular.
2. Dispositif formant joint d' étanchéité selon la revendication 1, dans lequel les parois de la chambre (7) et les portions d'appui (40, 41) sont formées dans un même élément de séparation (4) intercalé entre lesdits deux espaces . The seal device according to claim 1, wherein the walls of the chamber (7) and the bearing portions (40, 41) are formed in the same separating element (4) interposed between said two spaces.
3. Dispositif formant joint d' étanchéité selon la revendication 2, dans lequel l'élément de séparation est constitué d'une tôle emboutie. 3. Seal forming device according to claim 2, wherein the separating element consists of a stamped sheet.
4. Dispositif formant joint d' étanchéité selon la revendication 3, dans lequel la tôle est en alliage de base Nickel, tel que Inconel 600, Inconel 718, Haynes 230. The seal device of claim 3, wherein the sheet is Nickel base alloy, such as Inconel 600, Inconel 718, Haynes 230.
5. Dispositif formant joint d' étanchéité selon la revendication 3, dans lequel la tôle est en acier inoxydable, tel que AISI 310S, AISI 316L, AISI 430. The seal device of claim 3, wherein the sheet is made of stainless steel, such as AISI 310S, AISI 316L, AISI 430.
6. Réacteur ëlectrochimique comprenant au moins un dispositif formant joint d' étanchéité selon l'une des revendications 1 à 5, dans lequel les espaces (1, 2) séparés par le joint d' étanchéité sont les espaces de circulation des gaz réactifs à l' intérieur du réacteur. 6. Electrochemical reactor comprising at least one seal device according to one of claims 1 to 5, wherein the spaces (1, 2) separated by the seal are the circulation spaces of the reactive gases to the gasket. inside the reactor.
7. Réacteur électrochimique selon la revendication 6, comprenant un empilement de cellules électrochimiques élémentaires formées chacune d' une cathode, d' une anode et d' un électrolyte intercalé entre la cathode et I' anode, au moins une plaque interconnectrice étant agencée entre deux cellules élémentaires adjacentes et en contact électrique avec une électrode d' une des deux cellules élémentaires et une électrode de l' autre des deux cellules élémentaires, la plaque interconnectrice délimitant au moins un compartiment cathodique et au moins un compartiment anodique pour la circulation de gaz respectivement à la cathode et l' anode, dans lequel le compartiment cathodique ou le compartiment anodique constitue un des deux espaces séparés par le dispositif formant joint d' étanchéité . 7. Electrochemical reactor according to claim 6, comprising a stack of elementary electrochemical cells each formed of a cathode, an anode and an electrolyte interposed between the cathode and the anode, at least one interconnecting plate being arranged between two electrodes. adjacent elementary cells and in electrical contact with an electrode of one of the two elementary cells and an electrode of the other of the two elementary cells, the interconnecting plate delimiting at least one cathode compartment and at least one anode compartment for the circulation of gases respectively at the cathode and the anode, in which the cathode compartment or the anode compartment constitutes one of two spaces separated by the seal device.
8. Réacteur pour électrolyse de l'eau à hautes températures selon la revendication 6 ou 7 , destiné à fonctionner à des températures supérieures à 450°C, typiquement comprises entre 600°C et 1000°C. 8. Reactor for electrolysis of high temperature water according to claim 6 or 7, intended to operate at temperatures above 450 ° C, typically between 600 ° C and 1000 ° C.
9. Réacteur selon la revendication 6 ou 7 constituant une pile à combustible de type SOFC, destiné à fonctionner à des températures comprises entre 6Q0°C et 1000°C. 9. Reactor according to claim 6 or 7 constituting a SOFC type fuel cell, intended to operate at temperatures between 60 ° C and 1000 ° C.
10. Pile à combustible de type SOFC selon la revendication 9, destinée à fonctionner avec des gaz à des pressions aux environs de la pression atmosphérique . 10. The SOFC fuel cell of claim 9 for operating with gases at pressures around atmospheric pressure.
11. Pile à combustible de type SOFC selon la revendication 10, dans laquelle la chambre tampon (7) présente les dimensions suivantes : The SOFC fuel cell according to claim 10, wherein the buffer chamber (7) has the following dimensions:
- hauteur comprise entre 100 et 500 μνα, la hauteur étant définie comme étant la distance entre le fond de la chambre et la surface d' appui ; - largeur au moins égale à 500 μηα, largeur étant définie comme étant la distance minimale entre les deux portions df appui de l' élément de séparation. - height between 100 and 500 μνα, the height being defined as the distance between the bottom of the chamber and the support surface; - width at least equal to 500 μηα, width being defined as the minimum distance between the two support portions f of the separation element.
12. Pile à combustible du type SOFC selon la revendication 11, dans laquelle la force df appui entre les portions dr appui et les portions de plaque est comprise entre 0,1 N/mm et 10 N/mm. 12. The fuel cell of the SOFC according to claim 11, wherein the force f between the support of r support portions and the plate portions is between 0.1 N / mm and 10 N / mm.
EP11785455.4A 2010-11-23 2011-11-23 Device forming a seal between two spaces having mutually reactive gases, and use in high temperature steam electrolysis (htse) units and in solid oxide fuel cells (sofc) Withdrawn EP2643878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059639A FR2967695B1 (en) 2010-11-23 2010-11-23 DEVICE FORMING SEAL BETWEEN TWO REACTIVE GAS SPACES BETWEEN THEM, APPLICATION TO HIGH TEMPERATURE WATER VAPOR ELECTROLYSERS (EVHT) AND TO SOFC-TYPE FUEL CELLS
PCT/EP2011/070828 WO2012069543A1 (en) 2010-11-23 2011-11-23 Device forming a seal between two spaces having mutually reactive gases, and use in high temperature steam electrolysis (htse) units and in solid oxide fuel cells (sofc)

Publications (1)

Publication Number Publication Date
EP2643878A1 true EP2643878A1 (en) 2013-10-02

Family

ID=44115678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11785455.4A Withdrawn EP2643878A1 (en) 2010-11-23 2011-11-23 Device forming a seal between two spaces having mutually reactive gases, and use in high temperature steam electrolysis (htse) units and in solid oxide fuel cells (sofc)

Country Status (10)

Country Link
US (1) US20130244136A1 (en)
EP (1) EP2643878A1 (en)
JP (1) JP2013545896A (en)
KR (1) KR20140009255A (en)
CN (1) CN103339778A (en)
BR (1) BR112013012662A2 (en)
CA (1) CA2818620A1 (en)
FR (1) FR2967695B1 (en)
WO (1) WO2012069543A1 (en)
ZA (1) ZA201303830B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957361B1 (en) 2010-03-12 2012-04-20 Commissariat Energie Atomique HIGH TEMPERATURE (EHT) ELECTROLYSIS WITH ENHANCED OPERATING SAFETY
FR2964393B1 (en) 2010-09-06 2012-09-28 Commissariat Energie Atomique HIGH TEMPERATURE (EHT) ELECTROLYSIS WITH ENHANCED OPERATING SAFETY
FR2976054B1 (en) 2011-05-31 2013-07-05 Commissariat Energie Atomique RECEIVER FOR SOLAR POWER PLANT WITH EXTENDED LIFE
JP2021157872A (en) * 2020-03-25 2021-10-07 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Sub gasket, fuel cell, and method for inspecting the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693636B2 (en) * 1990-10-17 1997-12-24 株式会社東芝 Fuel cell
JP2001271194A (en) * 2000-03-28 2001-10-02 Shinko Pantec Co Ltd Electrolytic cell and method for assembling electrolytic cell
CA2419334C (en) * 2000-08-18 2009-09-15 Global Thermoelectric Inc. High temperature gas seals
JP3571687B2 (en) * 2000-12-07 2004-09-29 本田技研工業株式会社 Method for manufacturing seal-integrated separator
JP3571696B2 (en) * 2001-01-30 2004-09-29 本田技研工業株式会社 Fuel cell and fuel cell stack
US7285350B2 (en) * 2002-09-27 2007-10-23 Questair Technologies Inc. Enhanced solid oxide fuel cell systems
JP5193435B2 (en) * 2006-05-11 2013-05-08 東芝燃料電池システム株式会社 Solid polymer electrolyte fuel cell
JP2008262843A (en) * 2007-04-13 2008-10-30 Nissan Motor Co Ltd Surface treatment method of separator for fuel cell
FR2921389B1 (en) * 2007-09-25 2010-03-12 Commissariat Energie Atomique HIGH TEMPERATURE ELECTROLYSER WITH HYDROGEN RECOVERY DEVICE.
FR2921390B1 (en) * 2007-09-25 2010-12-03 Commissariat Energie Atomique HIGH TEMPERATURE ELECTROLYSIS HOMOGENIZING TEMPERATURE DEVICE.
FR2925140B1 (en) * 2007-12-13 2010-02-19 Commissariat Energie Atomique SUPERPLASTIC SEAL, PREFERABLY FOR ELECTROCHEMICAL CELL SYSTEM
FR2933160B1 (en) * 2008-06-25 2010-09-10 Commissariat Energie Atomique ASSEMBLY COMPRISING AN INTERCAL SEAL SEAL BETWEEN TWO COMPONENTS OF DIFFERENT MEDIUM THERMAL EXPANSION COEFFICIENT, SEAL SEAL, APPLICATION TO THE SEALING OF EHT ELECTROLYSIS AND FUEL CELLS

Also Published As

Publication number Publication date
BR112013012662A2 (en) 2016-09-06
US20130244136A1 (en) 2013-09-19
JP2013545896A (en) 2013-12-26
ZA201303830B (en) 2014-01-29
CA2818620A1 (en) 2012-05-31
KR20140009255A (en) 2014-01-22
FR2967695A1 (en) 2012-05-25
WO2012069543A1 (en) 2012-05-31
CN103339778A (en) 2013-10-02
FR2967695B1 (en) 2012-12-21

Similar Documents

Publication Publication Date Title
EP2071216B1 (en) Superplastic seal, preferably for a system with electrochemical cells
EP2193226B1 (en) High temperature electrolyser with hydrogen recovery device
WO2012069543A1 (en) Device forming a seal between two spaces having mutually reactive gases, and use in high temperature steam electrolysis (htse) units and in solid oxide fuel cells (sofc)
EP2250656B1 (en) Device to prevent overpressure in a supercapacitor
EP3078071B1 (en) Seal for an electrochemical device, process for manufacturing and fitting the seal and this device
EP3183379B1 (en) Method for high-temperature electrolysis or co-electrolysis, method for producing electricity by means of an sofc fuel cell, and associated interconnectors, reactors and operating methods
EP1866990B1 (en) Polymer membrane fuel cell
EP3621137B1 (en) Separator for fuel cell having homogenized gas distribution
WO2009156373A1 (en) Assembly comprising a seal interposed between two components with different mean thermal expansion coefficients, associated seal, application to the sealing of eht electrolyzers and sofc fuel cells
EP2231901B1 (en) Sealed flexible link between a metal substrate and a ceramic substrate, method of producing such a link, and application of the method to sealing high-temperature electrolyzers and fuel cells
EP1220346A1 (en) Composite basic element and seal thereof for a fuel cell and method for fabricating of said assembly
EP2756535B1 (en) Method for evaluating the sealing of a bipolar structure for an electrochemical generator
EP2681791B1 (en) Fuel cell comprising an anode chamber comprising a surface for condensing and removing water and method for condensing and removing water formed in said chamber
EP2684146B1 (en) Method to estimate the tightness of a gasket
FR3041482A1 (en) DETERMINING A SPATIAL DISTRIBUTION OF A THERMAL EVACUATION PARAMETER OF AN ELECTROCHEMICAL CELL
FR3076953A1 (en) CELL ASSEMBLY FOR POWER ADAPTATION OF ELECTROCHEMICAL REACTORS
FR3059759B1 (en) HYDROGEN STORAGE TANK HAVING A PLURALITY OF SEAL SEALS
EP1938408B1 (en) Solid seal which is obtained by means of thermal spraying
FR3118319A1 (en) Method for manufacturing a flow guide for an electrochemical reactor
FR2964393A1 (en) HIGH TEMPERATURE (EHT) ELECTROLYSIS WITH ENHANCED OPERATING SAFETY
WO2005016494A1 (en) Method for assembling a gas separation membrane on a support
FR3040240A1 (en) FUEL CELL WITH INTEGRATED WATER MANAGEMENT LAYER AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160601