EP2638550A1 - Magnetic material and a method for producing same - Google Patents

Magnetic material and a method for producing same

Info

Publication number
EP2638550A1
EP2638550A1 EP11787636.7A EP11787636A EP2638550A1 EP 2638550 A1 EP2638550 A1 EP 2638550A1 EP 11787636 A EP11787636 A EP 11787636A EP 2638550 A1 EP2638550 A1 EP 2638550A1
Authority
EP
European Patent Office
Prior art keywords
fibers
magnetic material
alloy powder
magnetic
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11787636.7A
Other languages
German (de)
French (fr)
Inventor
Dirk Ingmar Uhlenhaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB AG
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Publication of EP2638550A1 publication Critical patent/EP2638550A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to a magnetic material, consisting of a Puiververbundwerk- material, sintered from at least one magnetizable alloy powder and a method for its production.
  • Magnetic materials are known in various designs. 200 to 450 kJ / m 3 , with the energy densities in magnetic materials usually being expressed as the product (BH) max of coercive force Hc and remanence B R of the magnetic material in kJ / m 3 .
  • BH product of coercive force Hc and remanence B R of the magnetic material in kJ / m 3 .
  • Samarium cobalt is used almost exclusively, typically
  • Co17Sm2 Co17Sm2
  • iron neodymium boron typically Fe14Nd2B.
  • the magnets are produced as sintered bodies of intermetallic phases, thereby showing very low tensile strengths, for example, the tensile strength of iron neodymium-boron is about 78.5 MPa.
  • a mechanical post-processing is very expensive. Likewise, the durability under extreme conditions is severely limited, so the materials are often very susceptible to corrosion.
  • DE 26 18 425 A1 describes a manufacturing method for a magnetic material, which consists of two different phases, wherein a first phase can be ductile.
  • the material as a whole obtains ductile properties.
  • the disadvantage is that the production of the material must follow very precise boundary conditions, and that the resulting composite does not have high strengths.
  • the Erfundung is the object of the invention to provide a magnetic material of the type mentioned, which is mechanically stabii and easy and inexpensive to produce.
  • the alloy powder which makes up the magnesium material, fibers, platelets or so-called whiskers are mixed. Whiskers are understood to mean needle-shaped single crystals of a few micrometers in diameter and up to several hundred micrometers in length.
  • the alloy of alloy powder receives long-scale elements, which allows a distribution of tensile forces within the entire magnet.
  • the proportion of fibers in the mixture should be chosen so that on the one hand the desired strength is achieved and on the other hand the energy density of the material is maintained at a high level. Depending on the application, the fiber proportion can be optimized.
  • the production of a fiber-reinforced magnetic material according to the invention takes place in one step at low cost and with high cycle time.
  • the alloy powder contains rare earth components.
  • the energy density, ie the product (BH) max from coercive force H c and remanence B R , of the magnetic material is greatly increased by the use of a suitable mixture of rare earths and reaches values between 200 and 450 kJ / m 3 .
  • the fibers consist of magnetically inactive material.
  • Various organic, semi-metallic, metallic and ceramic fibers whose influence on the resulting magnetic field of the material is negligible can be used for this purpose.
  • the magnetic properties of the material can be influenced by magnetically active fibers so that the magnetic field of the material is reinforced in a defined direction.
  • a method for producing a magnetic material in which the fibers are mixed with the alloy powder and the magnet is produced from this mixture. It is advantageous that a homogeneous mixture of alloy powder and fibers is achieved before the magnet is produced for example by sintering.
  • the mixture of the components is essential in order to achieve homogeneous material properties, in particular magnetic and mechanical.
  • the fibers are aligned in one direction.
  • This anisotropy provides mechanical properties that provide improved stability in the preferred direction.
  • the fibers may be aligned in a sintered form, which is then subsequently filled with the alloy powder. For this it is essential that the alloy powder can completely fill the space between the fibers.
  • fiber compounds such as woven or knitted or nonwoven fabrics, can be filled with alloy powder and sintered to magnetic material.
  • the orientation in these fiber connections can be designed according to the mechanical and magnetic requirements.
  • the fibers are distributed isotropically in the magnetic material.
  • the magnetic material can therefore be used independently of direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a magnetic material consisting of a powder composite material, sintered from at least one magnetisable alloy powder of a high energy density. According to the invention, fibres are added to the at least one alloy powder.

Description

KSB Aktiengesellschaft  KSB Aktiengesellschaft
67227 Frankenthal  67227 Frankenthal
Beschreibung description
Magnetwerkstoff und Verfahren zu dessen Herstellung Magnetic material and process for its production
Die Erfindung betrifft einen Magnetwerkstoff, bestehend aus einem Puiververbundwerk- stoff, gesintert aus mindestens einem magnetisierbaren Legierungspulver und ein Verfahren zu dessen Hersteilung. The invention relates to a magnetic material, consisting of a Puiververbundwerk- material, sintered from at least one magnetizable alloy powder and a method for its production.
Magnetwerkstoffe sind in verschiedenen Ausführungen bekannt. Heute verwendete magnetische Werkstoffe erreichen Energiedichten von ca. 200 - 450 kJ/m3, wobei die Energiedichten in magnetischen Werkstoffen üblicherweise als das Produkt (BH)max aus Koerzitivfeldstärke Hc und Remanenz BR, des Magnetwerkstoffs in kJ/m3 angegeben werden. Eingesetzt werden fast ausschließlich Samarium-Cobalt, typischerweiseMagnetic materials are known in various designs. 200 to 450 kJ / m 3 , with the energy densities in magnetic materials usually being expressed as the product (BH) max of coercive force Hc and remanence B R of the magnetic material in kJ / m 3 . Samarium cobalt is used almost exclusively, typically
Co17Sm2, und Eisen-Neodym-Bor, typischerweise Fe14Nd2B. Die Magnete werden als Sinterkörper intermetallischer Phasen hergestellt, sie zeigen dadurch sehr niedrige Festigkeiten unter Zug, beispielsweise liegt die Zugfestigkeit von Eisen-Neodym-Bor bei etwa 78.5 MPa. Eine mechanische Nachbearbeitung ist sehr aufwändig. Ebenso ist die Haltbarkeit unter extremen Bedingungen stark eingeschränkt, so sind die Werkstoffe oft sehr korrosionsanfällig. Co17Sm2, and iron neodymium boron, typically Fe14Nd2B. The magnets are produced as sintered bodies of intermetallic phases, thereby showing very low tensile strengths, for example, the tensile strength of iron neodymium-boron is about 78.5 MPa. A mechanical post-processing is very expensive. Likewise, the durability under extreme conditions is severely limited, so the materials are often very susceptible to corrosion.
Die DE 26 18 425 A1 beschreibt ein Herstellverfahren für einen Magnetwerkstoff, der aus zwei verschiedenen Phasen besteht, wobei eine erste Phase duktil sein kann. DE 26 18 425 A1 describes a manufacturing method for a magnetic material, which consists of two different phases, wherein a first phase can be ductile.
Durch die entstehenden Grenzflächen zwischen der duktilen Phase und der spröden Phase erhält der Werkstoff insgesamt duktile Eigenschaften. Nachteilig ist jedoch, dass die Herstellung des Werkstoffs sehr genauen Randbedingungen folgen muss, sowie dass der resultierende Verbund keine hohen Festigkeiten aufweist. Due to the resulting interfaces between the ductile phase and the brittle phase, the material as a whole obtains ductile properties. The disadvantage, however, is that the production of the material must follow very precise boundary conditions, and that the resulting composite does not have high strengths.
Die DE 10 2005 003 247 B4 beschreibt einen Magnetwerkstoff, der kunststoffgebunden ist. Die Herstellung erfolgt über zwei Schritte, wobei im ersten Schritt Magnetpulver und Kunststoffbinder gemischt und verpresst werden, und im zweiten Schritt der Kunststoff aushärtet. Die Herstellung dieses Magnetwerkstoffs in mehreren Schritten äst jedoch zeitaufwändig und resultiert in einem mechanisch weichen und wenig festen Magneten mit geringer Energiedichte. DE 10 2005 003 247 B4 describes a magnetic material that is plastic-bonded. The production takes place via two steps, whereby in the first step magnetic powder and plastic binder are mixed and pressed, and in the second step the plastic hardens. However, the production of this magnetic material in several steps is very time-consuming and results in a mechanically soft and less strong magnet with a low energy density.
Der Erfändung liegt die Aufgabe zugrunde, einen Magnetwerkstoff der eingangs genannten Art zu schaffen, der mechanisch stabii und einfach und kostengünstig herstellbar ist. The Erfundung is the object of the invention to provide a magnetic material of the type mentioned, which is mechanically stabii and easy and inexpensive to produce.
Die Lösung dieser Aufgabe sieht vor, dass dem Legierungspulver, aus dem der Mag- netwerkstoff besteht, Fasern, Plättchen oder auch sogenannte Whiskers beigemischt sind. Unter Whiskern versteht man nadeiförmige Einkristalle von einigen Mikrometern Durchmesser und bis zu mehreren hundert Mikrometern Länge. Durch die Fasern erhält der Verbund aus Legierungspuiver langskalige Elemente, die eine Verteilung von Zugkräften innerhalb des gesamten Magneten ermöglicht. Somit wird die Festigkeit des Magneten erhöht und Brüche werden vermieden. Der Anteil der Fasern am Gemisch ist so zu wählen, dass einerseits die gewünschte Festigkeit erreicht wird und andererseits die Energiedichte des Werkstoffs auf hohem Niveau erhalten bleibt. Abhängig vom Anwendungsfall kann der Faseranteif optimiert sein. Die Herstellung eines erfindungsgemäßen faserverstärkten Magnetwerkstoffs erfolgt in einem Schritt kostengünstig und mit hoher Taktzeit. The solution to this problem provides that the alloy powder, which makes up the magnesium material, fibers, platelets or so-called whiskers are mixed. Whiskers are understood to mean needle-shaped single crystals of a few micrometers in diameter and up to several hundred micrometers in length. Through the fibers, the alloy of alloy powder receives long-scale elements, which allows a distribution of tensile forces within the entire magnet. Thus, the strength of the magnet is increased and fractures are avoided. The proportion of fibers in the mixture should be chosen so that on the one hand the desired strength is achieved and on the other hand the energy density of the material is maintained at a high level. Depending on the application, the fiber proportion can be optimized. The production of a fiber-reinforced magnetic material according to the invention takes place in one step at low cost and with high cycle time.
Zur Herstellung des Magnetwerkstoffs ist es besonders vorteilhaft, wenn das Legierungspulver Seltenerdanteile enthält. Die Energiedichte, also das Produkt (BH)max aus Koerzitivfeldstärke Hc und Remanenz BR, des Magnetwerkstoffs wird durch die Ver- wendung einer geeigneten Mischung aus Seltenen Erden stark erhöht und erreicht Werte zwischen 200 und 450 kJ/m3. Um eine Beeinflussung der magnetischen Eigenschaften des Magnetwerkstoffs zu verhindern ist es vorteilhaft, dass die Fasern aus magnetisch inaktivem Material bestehen. Hierzu lassen sich verschiedene organische, halbmetallische, metallische und keramische Fasern verwenden, deren Einfluss auf das resultierende Magnetfeld des Werkstof- fes verschwindend gering sind. For the production of the magnetic material, it is particularly advantageous if the alloy powder contains rare earth components. The energy density, ie the product (BH) max from coercive force H c and remanence B R , of the magnetic material is greatly increased by the use of a suitable mixture of rare earths and reaches values between 200 and 450 kJ / m 3 . In order to prevent an influence on the magnetic properties of the magnetic material, it is advantageous that the fibers consist of magnetically inactive material. Various organic, semi-metallic, metallic and ceramic fibers whose influence on the resulting magnetic field of the material is negligible can be used for this purpose.
Alternativ lassen sich jedoch die magnetischen Eigenschaften des Werkstoffs durch magnetisch aktive Fasern so beeinflussen, dass das Magnetfeld des Werkstoffs in einer definierten Richtung verstärkt wird. Alternatively, however, the magnetic properties of the material can be influenced by magnetically active fibers so that the magnetic field of the material is reinforced in a defined direction.
Erfindungsgemäß wird ein Verfahren zur Herstellung eines Magnetwerkstoffs beschrieben, bei dem die Fasern mit dem Legierungspulver gemischt werden und der Magnet aus dieser Mischung hergestellt wird. Vorteilhaft ist es, dass eine homogene Mischung aus Legierungspulver und Fasern erreicht wird, bevor der Magnet beispielsweise durch Sintern hergestellt wird. Die Mischung der Komponenten ist wesentlich, um homogene Materialeigenschaften, insbesondere magnetische und mechanische, zu erzielen. According to the invention, a method for producing a magnetic material is described in which the fibers are mixed with the alloy powder and the magnet is produced from this mixture. It is advantageous that a homogeneous mixture of alloy powder and fibers is achieved before the magnet is produced for example by sintering. The mixture of the components is essential in order to achieve homogeneous material properties, in particular magnetic and mechanical.
In einer besonderen Ausgestaltung des Verfahrens werden die Fasern in eine Richtung ausgerichtet. Durch diese Anisotropie lassen sich mechanische Eigenschaften erzielen, die in der bevorzugten Richtung für verbesserte Stabilität sorgen. Im Falle von Fasern, die Einfluss auf die magnetischen Eigenschaften des Magnetmaterials haben, lässt sich dieser durch Ausrichtung der Fasern in die bevorzugte Richtung verstärken. Eine Ausrichtung der Fasern wird erreicht, indem die Mischung aus Fasern und Legierungspulver mit definierter Geschwindigkeit in die Form geleitet wird. Die Fasern richten sich beim Fließen aus. Alternativ können die Fasern ausgerichtet in eine Sinterform gebracht sein, die dann anschließend mit dem Legierungspulver gefüllt wird. Hierzu ist es wesentlich, dass das Legierungspulver den Raum zwischen den Fasern vollständig ausfüllen kann. Auch Faserverbindungen, beispielsweise Gewebe oder Gewirke oder Vliese, können mit Legierungspulver gefüllt und zum Magnetwerkstoff gesintert werden. Die Orientierung in diesen Faserverbindungen kann entsprechend der mechanischen und magnetischen Anforderungen ausgelegt werden. Alternativ werden die Fasern isotrop im Magnetwerkstoff verteilt. Hierdurch wird keine Raumrichtung speziell bevorzugt, der Magnetwerkstoff kann also richtungsunabhängig verwendet werden. Hierzu ist es möglich, die Fasern und das Legierungspulver durch Ultraschall anzuregen, wodurch eine nicht orientierte Anregung und somit eine isotrope Verteilung der Fasern erreicht wird. In a particular embodiment of the method, the fibers are aligned in one direction. This anisotropy provides mechanical properties that provide improved stability in the preferred direction. In the case of fibers that affect the magnetic properties of the magnetic material, this can be enhanced by aligning the fibers in the preferred direction. Orientation of the fibers is achieved by passing the mixture of fibers and alloy powder into the mold at a defined rate. The fibers align when flowing. Alternatively, the fibers may be aligned in a sintered form, which is then subsequently filled with the alloy powder. For this it is essential that the alloy powder can completely fill the space between the fibers. Also, fiber compounds, such as woven or knitted or nonwoven fabrics, can be filled with alloy powder and sintered to magnetic material. The orientation in these fiber connections can be designed according to the mechanical and magnetic requirements. Alternatively, the fibers are distributed isotropically in the magnetic material. As a result, no spatial direction is particularly preferred, the magnetic material can therefore be used independently of direction. For this purpose, it is possible to excite the fibers and the alloy powder by ultrasound, whereby a non-oriented excitation and thus an isotropic distribution of the fibers is achieved.
Weitere Ausführungsformen ergeben sich aus der Kombination der bisher dargestellten und sind deshalb hier nicht weiter ausgeführt. Further embodiments result from the combination of the previously shown and are therefore not further elaborated here.

Claims

Patentansprüche claims
Magnetwerkstoff bestehend aus einem Pulververbundwerkstoff, gesintert aus mindestens einem magnetisierbaren Legierungspulver dadurch gekennzeichnet, dass dem mindestens einen Legierungspulver Fasern beigemischt sind. Magnetic material consisting of a powder composite material, sintered from at least one magnetizable alloy powder characterized in that the at least one alloy powder fibers are admixed.
Magnetwerkstoff nach Anspruch 1 , dadurch gekennzeichnet, dass das Legierungspulver Seltenerdanteile enthält. Magnetic material according to claim 1, characterized in that the alloy powder contains rare earth components.
Magnetwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Fasern aus magnetisch inaktivem Material bestehen. Magnetic material according to claim 1 or 2, characterized in that the fibers consist of magnetically inactive material.
Magnetwerkstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Fasern aus hochschmelzendem und / oder hochmoduligem und / oder hochfestem Material bestehen. Magnetic material according to one of claims 1 to 3, characterized in that the fibers consist of refractory and / or high-modulus and / or high-strength material.
Verfahren zur Herstellung eines Magnetwerkstoffs nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Fasern mit dem Legierungspulver gemischt werden und der Magnet aus dieser Mischung hergestellt wird. Method for producing a magnetic material according to one of Claims 1 to 4, characterized in that the fibers are mixed with the alloy powder and the magnet is produced from this mixture.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Fasern in eine Vorzugsrichtung ausgerichtet werden. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Fasern isotrop verteilt werden. A method according to claim 5, characterized in that the fibers are aligned in a preferred direction. A method according to claim 5, characterized in that the fibers are distributed isotropically.
EP11787636.7A 2010-11-10 2011-11-02 Magnetic material and a method for producing same Withdrawn EP2638550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010043704A DE102010043704A1 (en) 2010-11-10 2010-11-10 Magnetic material and process for its production
PCT/EP2011/069201 WO2012062624A1 (en) 2010-11-10 2011-11-02 Magnetic material and a method for producing same

Publications (1)

Publication Number Publication Date
EP2638550A1 true EP2638550A1 (en) 2013-09-18

Family

ID=45023805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11787636.7A Withdrawn EP2638550A1 (en) 2010-11-10 2011-11-02 Magnetic material and a method for producing same

Country Status (5)

Country Link
US (1) US20130243638A1 (en)
EP (1) EP2638550A1 (en)
CN (1) CN103270563A (en)
DE (1) DE102010043704A1 (en)
WO (1) WO2012062624A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630674B (en) * 2013-12-18 2015-05-13 天津市纺织纤维检验所 Method for qualitative analysis of magnetic functional fiber and quantitative analysis of intertexture
CN105427988A (en) * 2015-11-27 2016-03-23 宁波科星材料科技有限公司 High temperature resistant samarium cobalt permanent magnet and preparation method thereof
CN105427985A (en) * 2015-11-27 2016-03-23 宁波科星材料科技有限公司 High-performance samarium cobalt permanent magnet material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833697A (en) * 1969-02-14 1974-09-03 Melpar Inc Process for consolidation and extrusion of fiber-reinforced composites
CH601481A5 (en) 1975-05-05 1978-07-14 Far Fab Assortiments Reunies
JP3057593B2 (en) * 1994-02-10 2000-06-26 株式会社三協精機製作所 Rare earth-iron based resin bonded magnet and method of manufacturing the same
KR100420541B1 (en) * 1998-12-07 2004-03-02 스미토모 긴조쿠 고잔 가부시키가이샤 Resin-bonded magnet
JP2002373806A (en) * 2001-06-13 2002-12-26 Daido Electronics Co Ltd Neodymium-based bond magnet and forming method thereof
US6596096B2 (en) * 2001-08-14 2003-07-22 General Electric Company Permanent magnet for electromagnetic device and method of making
JP2003082236A (en) * 2001-09-11 2003-03-19 Bridgestone Corp Resin magnet composition
US6872325B2 (en) * 2002-09-09 2005-03-29 General Electric Company Polymeric resin bonded magnets
DE102005003247B4 (en) 2005-01-24 2008-06-19 Vacuumschmelze Gmbh & Co. Kg Pressing method for producing plastic-bonded magnets with high energy density

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012062624A1 *

Also Published As

Publication number Publication date
DE102010043704A1 (en) 2012-05-10
US20130243638A1 (en) 2013-09-19
WO2012062624A1 (en) 2012-05-18
CN103270563A (en) 2013-08-28

Similar Documents

Publication Publication Date Title
DE3005573A1 (en) PERMANENT MAGNET
DE60212876T2 (en) CORROSION-RESISTANT RARE-ELEMENT MAGNET
DE202011000656U1 (en) Improved pole piece for MRI systems with permanent magnets
DE1944432A1 (en) Permanent magnet
US20180122570A1 (en) Bonded permanent magnets produced by big area additive manufacturing
DE102014219893A1 (en) Grain boundary diffusion process for rare earth magnets
DE10333486A1 (en) Magnetic encoder
DE102013105075B4 (en) Resin molded body and method for its production
DE102015115217A1 (en) High-temperature hybrid permanent magnet
DE102013100989A1 (en) Manufacturing method of a bonded magnet
EP2638550A1 (en) Magnetic material and a method for producing same
EP2668655B1 (en) Synthesis of magnetic composites
DE102007026503B4 (en) Process for producing a magnetic layer on a substrate and printable magnetizable paint
DE102018109218A1 (en) Magnet, magnetic structure and rotation angle detector
DE102009018061A1 (en) Superconducting coil, in particular for a magnetic resonance apparatus, and potting compound, in particular for the production of a superconducting coil
DE102020130671A1 (en) COMPOSITE MAGNETS AND METHOD FOR MANUFACTURING COMPOSITE MAGNETS
DE102020128947A1 (en) PROCESS FOR MANUFACTURING ANISOTROPIC MAGNETIC POWDER FROM RARE EARTH ELEMENT
DE102020113223A1 (en) Sintered R2M17 MAGNET AND METHOD FOR MANUFACTURING R2M17 MAGNET
DE102012204083A1 (en) Nanoparticles, permanent magnet, motor and generator
DE102014217761A1 (en) Anisotropic soft magnetic material with moderate anisotropy and low coercive field strength and its production process
DE102012213837B3 (en) Rare earth-free, corrosion-resistant permanent- or soft magnet for use in motors, generators, speakers or data storage devices, has carbon nanotubes embedded in non-magnetic or magnetic matrix, and are filled with Heusler compound particles
WO2015078619A1 (en) Permanent magnet having increased coercivity
WO2012003846A1 (en) Stator for a magnetic transmission and method for producing same
DE102013207194A1 (en) Method for producing a magnetic powder and a magnet
DE102020130672A1 (en) COMPOSITE MAGNETS AND METHOD FOR MANUFACTURING COMPOSITE MAGNETS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160601