EP2637877A2 - Procede de realisation d'une piece contenant un motif enfoui et piece ainsi obtenue - Google Patents

Procede de realisation d'une piece contenant un motif enfoui et piece ainsi obtenue

Info

Publication number
EP2637877A2
EP2637877A2 EP11775954.8A EP11775954A EP2637877A2 EP 2637877 A2 EP2637877 A2 EP 2637877A2 EP 11775954 A EP11775954 A EP 11775954A EP 2637877 A2 EP2637877 A2 EP 2637877A2
Authority
EP
European Patent Office
Prior art keywords
substrates
hollow volume
trench
hollow
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11775954.8A
Other languages
German (de)
English (en)
Inventor
Fabienne Dragin
Chrystel Deguet
Alain-Marcel Rey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2637877A2 publication Critical patent/EP2637877A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/22Removing surface-material, e.g. by engraving, by etching
    • B44C1/227Removing surface-material, e.g. by engraving, by etching by etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/06Designs or pictures characterised by special or unusual light effects produced by transmitted light, e.g. transparencies, imitations of glass paintings
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C15/00Other forms of jewellery
    • A44C15/004Jewellery with monograms or other inscription
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1064Partial cutting [e.g., grooving or incising]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces

Definitions

  • the invention relates to a method for manufacturing complex parts comprising embedded buried engraved structures with a micron resolution (that is to say on a micrometer scale) and produced by molecular bonding of elementary substrates.
  • the invention thus makes it possible in particular to manufacture a part containing a buried pattern whose dimensions are at most micrometric.
  • dimensions at most micrometric denotes a buried pattern whose largest dimension is typically less than 1 mm and preferably less than 500pm or 250pm.
  • Micro-technologies are thus, in particular, used to make elementary components, for example a spiral spring silicon (used in particular by "Ulysse Nardin ®").
  • the document FR - 2 926 747 (CEA - invention of A. REY and C. DEGUET) relates to an object comprising a graphic element carried on a support and method of producing such an object; such an object is provided with at least one graphic element, comprising at least one etched layer according to a pattern of the graphic element, a first face of said layer being disposed facing a face of at least one substrate at least partially transparent, a second face, opposite to the first face, of said layer being covered by at least one passivation layer secured to at least one face of at least one support by molecular adhesion and forming, with the support, a monolithic structure .
  • the etched layer is formed, before etching, by deposition on the substrate; after etching, this etched layer is embedded in the passivation layer also formed by deposition.
  • the document FR - 2 926 748 (CEA - invention of A. REY, J. F. CLERC, A. SOUBIE) relates to an object provided with a graphic element carried on a support and method of producing such an object.
  • This object is provided with at least one graphic element and comprises at least one at least partially transparent substrate of which at least one face comprises troughs forming a pattern of the graphic element filled with at least one material, said face of the substrate being secured at least one side of at least one support by molecular adhesion, the substrate and the support forming a monolithic structure.
  • the graphic elements have a specific appearance, either by the material of the etched layer, or by the filling material, which leads in practice to a choice limited to shades of gray, or yellow in the case of gold.
  • CMOS or CCD image sensors that use small colored pixels but these are not intended for the preservation of still images.
  • the object of the invention is to overcome the above-mentioned shortcomings, by proposing a method of producing parts comprising colored buried engravings, in a wide range of possible colors and hues, on a micrometric or even nanometric scale, within assembled structures. as long as possible.
  • the invention proposes for this purpose a method for producing a part containing a buried pattern whose dimensions are at most micrometric, according to which
  • first and second substrates are prepared, at least one of which is transparent, at least one trench being formed in at least one of these substrates from a surface intended to be adhered to the other substrate,
  • the first and second substrates are assembled by bonding by molecular adhesion, the said at least one trench delimiting a hollow volume whose configuration defines the buried pattern, this hollow volume communicating with the outside of the assembly of the first and second substrates, and then
  • a dye fluid is circulated in this hollow to color at least some walls.
  • the process of the invention is applied to the production of transparent complex parts, advantageously formed of transparent crystals, which may be natural or synthetic.
  • the hollow volume communicates with the outside along the bonding interface by molecular adhesion (which is simple to implement but with long communication paths); alternatively, the hollow volume communicates with the outside through channels arranged transversely to the interface of Molecular adhesion bonding (the communication paths may be shorter, but this in practice involves crossing one of the substrates),
  • Trenches are provided in each of the first and second substrates, these trenches communicating with each other by delimiting said hollow volume (this allows a wide variety of patterns),
  • the trenches are formed while forming internal studs, forming spacers adapted to extend between the bottom of a trench in one of the substrates until contact with the other substrate,
  • continuous internal partitions are formed delimiting at least two chambers in the hollow volume, each of the chambers communicating with the outside, different coloring fluids being supplied to each of these chambers (alternatively, the chambers are separated by continuous partitions); ; these partitions can be formed of contiguous blocks,
  • the coloring fluid contains a colored substance, for example metallic or organic particles whose mean diameter is at most one hundred nanometers (this average diameter may be chosen according to the dimensions of the trenches),
  • each of the first and second substrates is transparent; preferably the two substrates are in the same material (the bonding interface by molecular adhesion is in this case substantially invisible),
  • the trenches are created by engraving through lithographic masks
  • At least some of the walls of the hollow volume are applied with a treatment adapted to increase its roughness
  • the invention also covers a part obtained by such a method, that is to say a part containing a buried pattern whose dimensions are at more micrometric, comprising first and second substrates at least one of which is transparent and which are adhered to one another by molecular adhesion, at least one hollow volume being formed in one and / or the other of substrates in the immediate vicinity of the bonding interface, opening outwards, at least some of the walls of this hollow volume being covered with a color component; this coloring component may consist of coloring particles; this component may, alternatively, be part (or consist of) of a colored liquid at least partially filling the hollow volume.
  • the part (which may be a piece of jewelery or clockwork) thus defined preferably has advantageous characteristics derived from those mentioned in connection with the process; among them we can mention in particular:
  • the two substrates are of the same material (the piece thus produced is apparently a monolithic piece, since the interface is then substantially invisible),
  • the hollow volume comprises studs extending over the entire height of this hollow volume
  • the hollow volume comprises several chambers, at least some walls are covered with coloring components of different colors, respectively.
  • These coloring components may be coloring particles or colored liquids, these coloring particles and / or these liquids having different colors from one chamber to another (there may be a coloring liquid in a chamber and coloring particles in an other room).
  • FIG. 1 is a sectional view of a crystalline substrate covered with a lithography mask
  • FIG. 2 is another view after etching through the mask
  • FIG. 3 is another view after removal of the lithography mask
  • FIG. 4 is a sectional view of a second substrate to which is fixed by molecular adhesion the first substrate of FIGS. 1 and 2 after reversing head to tail, as well as another example of a first substrate,
  • FIG. 5 is a diagram from above showing the hollow volume existing in another example of an assembly
  • FIG. 6 is another diagram, during circulation of a dye fluid
  • FIG. 7 is another diagram of another assembly example whose volume comprises three zones substantially isolated from one another.
  • first and second substrates are prepared, at least one of which is transparent, at least one trench being formed in at least one of these substrates from a surface to be adhered to the other substrate; this trench opens outwards on the edge of this substrate or on the face of this substrate which is opposite to the bonding face,
  • the first and second substrates are assembled by bonding by molecular adhesion (or direct bonding), said at least one trench delimiting a hollow volume whose configuration defines the buried pattern, this hollow volume communicating with the outside of the assembly of the first and second substrates (through the aforementioned through passages), and
  • a dye fluid is circulated in this hollow to color at least some walls.
  • Figure 1 shows a first substrate, denoted 1 1, in which one will define, by etching, at least one trench.
  • This first substrate 1 1 is advantageously transparent, being amorphous (glass %) or crystalline (sapphire, quartz, diamond ). It is advantageously a crystal.
  • etching mask 12 it can be mineral (metal, oxide such as silica %) or organic (photosensitive resin ).
  • an etching of the first substrate under the surface 11A is carried out through the mask 12. It may be an isotropic or anisotropic chemical etching or a dry etching plasma, reactive ion etching or ion milling, in particular).
  • etching may be an isotropic or anisotropic chemical etching or a dry etching plasma, reactive ion etching or ion milling, in particular).
  • the mask is removed (see FIG. 3) without degrading the surface 11A (alternatively, it may be provided that the subsequent surface preparation treatment eliminates any degradation).
  • Trenches can be structured on demand:
  • o profile of etching edges vertical or inclined sides
  • o engraving background smooth bottom or "frosted” bottom thanks to a roughness obtained by the etching process
  • the other of the substrates is also provided with trenches.
  • This other substrate is here also advantageously transparent, amorphous or crystalline (see what is stated above about the first substrate), preferably consisting of a crystal also.
  • the two substrates 1 1 and 21 are in the same material, so that the transparency properties are identical.
  • the melting temperature of substrates 11 and 21 is greater than 25 ° C and, preferably, greater than 200 ° C, 400 ° C or 1000 ° C.
  • the configuration of the trenches formed in one and / or the other of the substrates is chosen so that, together, these trenches delimit, after the subsequent gluing step, a hollow volume whose configuration defines the buried pattern to be produced.
  • a surface treatment can be performed (deposition of a layer for chemical functionalization, PVD or CVD deposition, etc.), this surface treatment can also be removed selectively, for example by chemical mechanical polishing. , on the upper parts of the trenches, to eliminate the traces of the etching step.
  • micro-etched crystals can then be machined mechanically according to the desired shapes (for example according to a heart shape for a jewel).
  • the trenches defined in one and / or the other of the substrates are such that the hollow volume communicates with the outside (this will emerge later), at least after this possible machining step to delimit the contours of the future bonded assembly .
  • Crystal assembly The different substrates or natural or synthetic crystals, with microscopic etchings or without etching, are assembled together by direct bonding, that is to say by molecular bonding, without intermediate adhesive layer.
  • the substrates advantageously receive a specific surface treatment, known per se (adaptation of roughness, flatness, cleaning, surface preparation (wet and / or dry activation)); they are then brought into contact with precise positioning if necessary, especially if complementary trenches are provided in each of the substrates.
  • the direct bonding is reinforced by a heat treatment, for example between 200 to 950 ° C depending on the desired strength and the materials used. The temperature of this heat treatment, however, remains below the melting point of the substrates 11, 21.
  • the substrate 1 1 of FIGS. 1 to 3 has much smaller lateral dimensions than those of the second substrate 21. Indeed, this figure 4 represents, in its right part, another example of complementarity between another first substrate, denoted 1 1 ', and this second substrate 21.
  • the second substrate has undergone etching only to form channels 25 extending from the bonding surface, transversely thereto (here perpendicular to it), up to the opposite face, thanks to which the hollow volume 26 delimited by the trenches in the first substrate communicates with the outside.
  • the second substrate comprises a trench 27 disposed opposite one (13 '') of the trenches 13A 'and 13B', so as to jointly form a hollow volume 26 'located partly in the first substrate 1 1 and in part in the second substrate 21 (in the example considered, this trench 27 in front of a projecting portion of this substrate, placing in communication the right and left portions of the trench 13B ').
  • Providing trenches in each of the substrates makes it possible to perform complex configurations.
  • the difference in depth of the trenches 13A 'and 13B', on the one hand, and 27, on the other hand, may make it possible, during the subsequent coloring step, to obtain slightly different shades by means of the same dye fluid.
  • Unrepresented trenches constitute external communication channels (not shown) located along the bonding interface.
  • the bonding interface of the left part is noted I and that of the right part is noted ⁇ .
  • One or more cut crystals can be glued with an adhesive substance or by molecular bonding to the surface of one of the substrates to make macroscopic patterns, for example decorative purposes.
  • the hollow volume may include a plurality of pads and / or partitions extending from its bottom in one of the substrates to the other of the substrates; in fact, the hollow volumes may have, parallel to the bonding interface by molecular adhesion, dimensions much greater than the depth of these volumes: the presence of such studs makes it possible, in the manner of spacers, to maintain a constant spacing between the bottom of a given hollow volume, in a substrate, and the surface of the other substrate, which can contribute to a uniform coloration in the hollow volume in question; in addition, these pads contribute to bonding by molecular adhesion.
  • a step of staining the substrates after their assembly is carried out.
  • the coloration is obtained by injecting a colored fluid substance in at least some of the hollow volumes defined by the trenches at the bonding interface.
  • the colored fluid substance infiltrates by capillarity and thus allows the coloration of the hollow volume considered.
  • infiltration paths between the etched parts and the bonded portions of the crystals are used; by referring as an example to the left-hand part of FIG. 4, such an infiltration path is constituted by one of the channels 25 of FIG. 4, the other channel allowing the evacuation of the gas trapped during the bonding and repressed by the penetration of said fluid.
  • the colored fluid substance may be in liquid or gaseous form.
  • a multicolored coloration can be obtained by the definition of different unicolour infiltration paths. Similarly, it is possible to promote shade variations by color blends.
  • It may be a fluid, for example a solvent, loaded with coloring particles which may advantageously be deposited on the walls of the hollow volume.
  • the capillarity infiltration dynamic depends on the size of infiltration paths and hollow volumes, the distance to be covered by infiltration, and the viscosity of the fluid substance; in the case of multiple hollow volumes, a compromise must be found between the number of infiltration paths and the number of hollow volumes in series (if all the hollow volumes are in series, the infiltration dynamic will be slow; infiltration paths specific to each hollow volume, the dynamics will be faster, but at the cost of a possibly complex path of infiltration paths.If necessary, this infiltration can be performed at a temperature above room temperature to reduce the viscosity.
  • the dye fluid when it is a gas, it can be thought that it flows easily in the hollow volume.
  • it when it is a liquid, it may be difficult to circulate in the hollow volume
  • a way to promote the injection and circulation of the fluid, especially when it comes to a liquid, is to apply a heat treatment that helps to reduce the viscosity of the fluid, but also, where appropriate, promote the evaporation of the constituent solvent of the fluid when it is a liquid.
  • the communication orifices are advantageously sealed after circulating a sufficient quantity of fluid (see below).
  • FIG. 5 schematically represents the assembly 31 of an etched transparent substrate and of an unetched transparent substrate and the pattern formed by the trenches is buried in this assembly at the bonding interface.
  • the part of this assembly in which there is a trenchless molecular adhesion bonding is hatched, whereas a much clearer area represents a hollow volume 36 (the substrates are not identified as such since they are transparent).
  • pads 37 are distributed inside this hollow volume (as well as near its periphery).
  • Input / output paths 35 are here arranged in the plane of the interface (or at least in close proximity thereto).
  • coloring fluid is placed in communication with one of the infiltration paths 35, here the path located at the top in FIG. 6.
  • the configuration of the studs is such that that they leave running paths between the entry / exit paths 35; these roads can branch out and then regroup near the exit road.
  • the fluid infiltrates by capillarity from the entry path to the exit path between the pads; advantageously, the configuration of FIG. 6 corresponds to the spatial configuration in which the assembly 31 is located, that is to say that the face through which the coloring fluid (above the plane of the figure) penetrates is located above the face through which this fluid can leave this assembly (below the plane of the figure); in other words, the circulation can be obtained by capillary gravitation.
  • the color of the hollow volume will be all the more homogeneous that the fluid will have access to the entire hollow volume.
  • the coloring results either from the deposition of coloring particles on the walls of the hollow volume, in particular its walls (or faces) parallel to the interface bonding, but also its side walls, or the presence of the colored fluid itself in the hollow volume. It is understood in the case of the deposition of particles that the trapping effect of the coloring particles on these walls depends on their surface state, and that it may be interesting that the surfaces of these walls are not too smooth. It is also understood that, when the coloration results mainly from the presence of fluid trapped in the hollow volume, the circulation of this fluid may be very limited (for example just sufficient to allow the total or partial filling of the hollow volume). Of course, coloring particles may be deposited on the walls (lateral or otherwise) as well as a consequence of a significant flow of fluid that consequently a fluid imprisonment.
  • FIG. 7 represents a variant representing an assembly 41 in which the hollow volume 46, provided with studs 47, is divided into three independent chambers denoted 46A, 46B and 46C.
  • the separation between the chambers is here carried out by continuous walls 48A and 48B; these walls are here represented in white, being independent of the rest of the substrates (it may indeed be areas added after etching, as the pads, alternatively, these partitions and / or these pads may be areas not etched when the engraving of the trenches constituting the hollow volume).
  • the partitions can be formed of contiguous blocks.
  • the entry / exit infiltration paths are not shown, being located perpendicular to the plane of the figure; there are specific paths for each of the rooms. By passing coloring fluids of different colors, three zones of different colors are obtained.
  • Colored solutions with nanoparticles in solution may in particular be used.
  • These nanoparticles may be metal particles of very small size, for example gold particles (Au) of the order of a few nm in size which may be up to about 100 nm.
  • Au gold particles
  • These particles can be protected by a carapace that will give them a good temperature resistance, for example a zirconia shell (Zr0 2 ) around gold particles. This modifies the optical properties, which must be taken into account when designing the implementation of the process.
  • the choice of materials and the size of the nanoparticles will be made according to the desired color characteristics.
  • the particles may in particular be of mineral type, and comprise, for example, an oxide, such as an oxide of iron, chromium, manganese, or aluminum, or mixtures of such oxides, or comprise a metal or a alloy, such as spinel, or chromium, or cobalt.
  • an oxide such as an oxide of iron, chromium, manganese, or aluminum, or mixtures of such oxides, or comprise a metal or a alloy, such as spinel, or chromium, or cobalt.
  • the particles may also be of organic type, phthalocyanine type, for example.
  • the particles can also be formed using particles with surface plasmon effect, Au, Ag, Pt type, or with the aid of organic molecules included in a mineral matrix.
  • the particles may be coated in refractory materials of the Alumina, or Zirconia, or Zircon type.
  • the particles may be suspended in a solvent; when the coloration is intended to be given by fluid trapped in the hollow volume, the color is advantageously stable throughout the volume of this fluid.
  • the invention can find applications in various industrial, cultural or artistic fields.
  • complex watch parts for example housings or mechanical assemblies
  • the substrates can be transparent.
  • the trenches can be obtained by depositing material around the areas intended to form the hollow volumes.
  • the separations between the chambers can be formed by continuous partitions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de réalisation d'une pièce contenant un motif enfoui dont les dimensions sont au plus micrométriques, selon lequel - on prépare des premier et second substrats dont l'un au moins est transparent, au moins une tranchée étant ménagée dans l'un au moins de ces substrats à partir d'une surface destinée à être collée à l'autre substrat, - on assemble les premier et second substrats par collage par adhésion moléculaire, ladite au moins une tranchée délimitant un volume creux (36) dont la configuration définit le motif enfoui, ce volume creux communiquant avec l'extérieur de l'assemblage des premier et second substrats, puis - on fait circuler au moins temporairement un fluide colorant dans ce creux pour en colorer au moins certaines parois.

Description

PROCÉDÉ DE RÉALISATION D'UNE PIÈCE CONTENANT UN MOTIF ENFOUI ET PIÈCE AINSI OBTENUE
Domaine technique
L'invention concerne un procédé de fabrication de pièces complexes comportant des structures gravées enfouies colorées avec une résolution micronique (c'est-à-dire à l'échelle du micromètre) et réalisées par assemblage par adhérence moléculaire de substrats élémentaires.
L'invention permet donc notamment de fabriquer une pièce contenant un motif enfoui dont les dimensions sont au plus micrométriques. Par dimensions au plus micrométriques, on désigne un motif enfoui dont la plus grande dimension est typiquement inférieure à 1 mm et, de préférence, inférieure à 500pm ou 250pm.
Elle trouve des applications dans divers domaines industriels, culturels ou artistiques. Elle peut ainsi s'appliquer dans l'industrie horlogère, pour réaliser des graphismes ou des décorations semi-transparentes de très hautes qualités dans les verres de montre ou les fonds de boîtier. Dans le domaine de la joaillerie, elle peut être mise en œuvre pour réaliser des pierres comportant des décorations ou textes aux dimensions micrométriques, voire nanométriques.
Etat de la technique
Dans les domaines précités de la joaillerie et de la bijouterie ou des produits horlogers, les techniques de la micromécanique, de la micro connectique et l'utilisation de composants électroniques sont largement répandues. Les micro-technologies sont ainsi, notamment, utilisées pour faire des composants élémentaires, par exemple un ressort spiral en silicium (utilisé notamment par « Ulysse Nardin ® »).
En revanche il n'existe pas d'applications connues de réalisation de pièces complexes composées de cristaux ou d'autres substrats, éventuellement micro-usinés ou comportant des gravures microscopiques, et assemblés de manière définitive. A fortiori, il n'existe pas d'applications connues de réalisation de pièces complexes comportant des gravures micrométriques, voire nanométriques colorées, au sein de structures complexes.
La réalisation de gravures microscopiques pour de la décoration, des graphismes ou des textes est connue. Plusieurs sociétés comme « Graphilux International », « Norsam » ou « Lightsmith » proposent des gravures réalisées en surface sur des supports généralement peu robustes ; toutefois ces gravures ne semblent pas présenter des propriétés élevées de durabilité et de robustesse mécanique. A titre d'exemple, dans le document FR - 2 851 496 de Jean-Louis Savoyet et al, la réalisation solidaire de l'objet avec son graphisme est proposée par collage, sertissage ou inclusion. Ces techniques présentent plusieurs limitations. Les colles sont des matériaux organiques pouvant, d'une part, présenter une durée de vie limitée et, d'autre part, une évolution de leur propriété optique dégradant la lisibilité des graphismes. Le sertissage permet un assemblage mécanique solide mais n'assure pas la robustesse d'un point de vue intégrité de l'objet avec son graphisme pouvant par exemple assurer une traçabilité inviolable. En effet, le sertissage est démontable sans détruire l'objet.
Par ailleurs, on connaît des technologies de réalisation d' images extrêmement robustes à l'échelle micronique avec une excellente définition, qui permettent d'éviter les limitations précitées. On peut citer à ce propos les deux documents suivants.
Le document FR - 2 926 747 (CEA - invention de A. REY et C. DEGUET) concerne un objet comportant un élément graphique reporté sur un support et procédé de réalisation d'un tel objet ; un tel objet est muni d'au moins un élément graphique, comportant au moins une couche gravée selon un motif de l'élément graphique, une première face de ladite couche étant disposée en regard d'une face d'au moins un substrat au moins partiellement transparent, une seconde face, opposée à la première face, de ladite couche étant recouverte par au moins une couche de passivation solidarisée à au moins une face d'au moins un support par adhésion moléculaire et formant, avec le support, une structure monolithique. En pratique, la couche gravée est formée, avant gravure, par dépôt sur le substrat ; après gravure, cette couche gravée est enrobée dans la couche de passivation formée également par dépôt.
Le document FR - 2 926 748 (CEA - invention de A. REY, J.F. CLERC, A. SOUBIE) concerne un objet muni d'un élément graphique reporté sur un support et procédé de réalisation d'un tel objet. Cet objet est muni d'au moins un élément graphique et comporte au moins un substrat au moins partiellement transparent dont au moins une face comprend des creux formant un motif de l'élément graphique remplis par au moins un matériau, ladite face du substrat étant solidarisée à au moins une face d'au moins un support par adhésion moléculaire, le substrat et le support formant une structure monolithique.
On peut noter que, selon ces documents, les éléments graphiques ont une apparence déterminée, soit par le matériau de la couche gravée, soit par le matériau de remplissage, ce qui conduit en pratique à un choix limité à des nuances de gris, ou à du jaune dans le cas de l'or.
Par ailleurs, il existe de nombreuses techniques pour faire de l'impression d'images couleurs sur des supports souples ou rigides. Cependant les techniques connues à ce jour ne permettent pas de reproduire des images couleurs fixes de très petites dimensions utilisant des pixels à l'échelle micrométrique, voire nanométrique. Elles ne permettent pas non plus de reproduire des images résistantes aux agressions mécaniques (rayures), chimiques, biologiques (moisissures) et thermiques (incendie).
Dans un domaine technique différent, on sait réaliser des capteurs d'image CMOS ou CCD qui utilisent des pixels colorés de petite dimension mais ceux-ci ne sont pas destinés à la conservation d'images fixes.
Exposé de l'invention
L'invention a pour objet de pallier aux insuffisances précitées, en proposant un procédé de réalisation de pièces comportant des gravures enfouies colorées, dans une large gamme de couleurs et de teintes possibles, à l'échelle micrométrique voire nanométrique, au sein de structures assemblées de manière aussi durable que possible. L'invention propose à cet effet un procédé de réalisation d'une pièce contenant un motif enfoui dont les dimensions sont au plus micrométriques, selon lequel
- on prépare des premier et second substrats dont l'un au moins est transparent, au moins une tranchée étant ménagée dans l'un au moins de ces substrats à partir d'une surface destinée à être collée à l'autre substrat,
- on assemble les premier et second substrats par collage par adhésion moléculaire, ladite au moins une tranchée délimitant un volume creux dont la configuration définit le motif enfoui, ce volume creux communiquant avec l'extérieur de l'assemblage des premier et second substrats, puis
- on fait circuler au moins temporairement un fluide colorant dans ce creux pour en colorer au moins certaines parois.
De manière préférée, le procédé de l'invention est appliqué à la réalisation de pièces complexes transparentes, avantageusement formées de cristaux transparents, qui peuvent être naturels ou synthétiques.
On comprend que le procédé de l'invention présente de nombreux avantages, parmi lesquels on peut citer les suivants :
o il permet de réaliser des pièces complexes à partir d'un substrat (par exemple un cristal) monolithique de grande dimension, difficiles voire impossibles à réaliser par usinage mécanique,
o il permet aussi de faire des assemblages de plusieurs types de substrats choisis pour leurs propriétés physiques (couleur... ), chimique ou mécanique,
o il confère aux pièces réalisées une robustesse, une fiabilité et une durabilité sans égal.
Selon des caractéristiques avantageuses éventuellement combinées :
- le volume creux communique avec l'extérieur le long de l'interface de collage par adhésion moléculaire (ce qui est simple à réaliser mais avec de longs chemins de communication) ; en variante, le volume creux communique avec l'extérieur par des canaux disposés transversalement à l'interface de collage par adhésion moléculaire (les chemins de communication peuvent être plus courts, mais cela implique en pratique une traversée de l'un des substrats),
- on ménage des tranchées dans chacun des premier et second substrats, ces tranchées communiquant entre elles en délimitant ledit volume creux (cela permet une grande variété de motifs),
- on forme les tranchées tout en formant des plots internes, formant des entretoises, adaptés à s'étendre entre le fond d'une tranchée dans l'un des substrats jusqu'au contact avec l'autre substrat,
- on forme des cloisons internes continues délimitant au moins deux chambres dans le volume creux, chacune des chambres communiquant avec l'extérieur, des fluides colorants différents étant amenés dans chacune de ces chambres (en variante, les chambres sont séparées par des cloisons continues) ; ces cloisons peuvent être formées de plots contigus,
- le fluide colorant contient une substance colorée, par exemple des particules métalliques ou organique dont le diamètre moyen est d'au plus une centaine de nanomètres (ce diamètre moyen peut être choisi en fonction des dimensions des tranchées),
- chacun des premier et second substrats est transparent ; de préférence les deux substrats sont en un même matériau (l'interface de collage par adhésion moléculaire est dans ce cas sensiblement invisible),
- les tranchées sont ménagées par gravure au travers de masques de lithographie,
- on applique à certaines au moins des parois du volume creux un traitement adapté à en augmenter la rugosité,
- on laisse à demeure, dans le volume creux, une partie du fluide colorant injecté ; cela peut permettre renforcer la coloration obtenue et/ou donner des effets de couleur pouvant varier.
On comprend qu'il est avantageux, après la circulation du fluide colorant, d'obturer les passages de communication du volume creux avec l'extérieur, surtout si du fluide colorant reste dans le volume creux.
L'invention couvre également une pièce obtenue par un tel procédé, c'est-à-dire une pièce contenant un motif enfoui dont les dimensions sont au plus micrométriques, comportant de premier et second substrats dont l'un au moins est transparent et qui sont collés l'un à l'autre par adhésion moléculaire, au moins un volume creux étant ménagé dans l'un et/ou l'autre des substrats à proximité immédiate de l'interface de collage, en débouchant vers l'extérieur, certaines au moins des parois de ce volume creux étant recouvertes d'un composant colorant ; ce composant colorant peut être constitué de particules colorantes ; ce composant peut, en variante, faire partie (voire être constitué) d'un liquide coloré remplissant au moins partiellement ce volume creux.
La pièce (qui peut être une pièce de joaillerie ou d'horlogerie) ainsi définie comporte de préférences des caractéristiques avantageuses découlant de celles mentionnées à propos du procédé ; parmi elles on peut citer en particulier :
- les deux substrats sont transparents
- les deux substrats sont d'un même matériau (la pièce ainsi réalisée constitue en apparence une pièce monolithique, car l'interface est alors sensiblement invisible),
- le volume creux comporte des plots s'étendant sur toute la hauteur de ce volume creux,
- le volume creux comporte plusieurs chambres dont au moins certaines parois sont recouvertes de composants colorants de couleurs différentes, respectivement. Ces composants colorants peuvent être des particules colorantes ou des liquides colorés, ces particules colorantes et/ou ces liquides ayant des couleurs qui différent d'une chambre à l'autre (il peut y avoir un liquide colorant dans une chambre et des particules colorantes dans une autre chambre).
Ces pièces peuvent trouver des applications dans de nombreux domaines :
o le luxe avec des pièces complexes pour l'horlogerie ou des assemblages de pierre sans sertissage pour la joaillerie,
o mais aussi la décoration,
o voire la préservation de données ultra pérennes. Il est à noter que les procédés connus ne mettaient pas en œuvre de formation de tranchées non remplies d'un matériau solide, avec des états de surface contrôlés pour remplir des fonctions optiques ou physiques.
Description de l'invention
Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée à titre d'exemple illustratif non limitatif en regard des dessins annexés sur lesquels :
- la figure 1 est une vue en coupe d'un substrat cristallin recouvert d'un masque de lithographie,
- la figure 2 en est une autre vue après gravure au travers du masque,
- la figure 3 en est une autre vue après élimination du masque de lithographie,
- la figure 4 est une vue en coupe d'un second substrat auquel est fixé par adhésion moléculaire, le premier substrat des figures 1 et 2 après retournement tête bêche, ainsi qu'un autre exemple de premier substrat,
- la figure 5 est un schéma de dessus, représentant le volume en creux existant au sein d'un autre exemple d'assemblage,
- la figure 6 en est un autre schéma, en cours de circulation d'un fluide colorant, et
- la figure 7 est un autre schéma d'un autre exemple d'assemblage dont le volume comporte trois zones sensiblement isolées entre elles.
Procédé de fabrication de gravures microscopiques
Les figures représentent de manière schématique le procédé de l'invention selon lequel
- on prépare des premier et second substrats dont l'un au moins est transparent, au moins une tranchée étant ménagée dans l'un au moins de ces substrats à partir d'une surface destinée à être collée à l'autre substrat ; cette tranchée débouche vers l'extérieur, sur la tranche de ce substrat ou sur la face de ce substrat qui est opposée à la face de collage,
- on assemble les premier et second substrats par collage par adhésion moléculaire (ou collage direct), ladite au moins une tranchée délimitant un volume creux dont la configuration définit le motif enfoui, ce volume creux communiquant avec l'extérieur de l'assemblage des premier et second substrats (par les passages débouchants précités), puis
- on fait circuler au moins temporairement un fluide colorant dans ce creux pour en colorer au moins certaines parois.
Ainsi, la figure 1 représente un premier substrat, noté 1 1 , dans lequel on va définir, par gravure, au moins une tranchée.
Ce premier substrat 1 1 est avantageusement transparent, en étant amorphe (verre... ) ou cristallin (saphir, quartz, diamant... ). Il s'agit avantageusement d'un cristal.
On commence (voir la figure 1 ) par recouvrir une surface 1 1A de ce substrat par un masque de gravure 12 ; celui-ci peut être minéral (métal, oxyde tel que silice... ) ou organique (résine photosensible... ).
On procède ensuite (voir la figure 2) à une gravure du premier substrat sous la surface 1 1 A, au travers du masque 12. Il peut s'agir d'une gravure chimique isotrope ou anisotrope, ou d'une gravure sèche (mode plasma, gravure ionique réactive ou un usinage ionique, notamment). Sur cette figure 2, on observe deux tranchées 13A et 13B ainsi obtenues. Ces tranchées ont des profondeurs choisies, éventuellement différentes, typiquement de l'ordre de quelques 10 nanomètres à quelques centaines de micromètres.
On enlève ensuite (voir la figure 3), par tout moyen connu approprié, le masque sans dégrader la surface 1 1 A (en variante, on peut prévoir que le traitement ultérieur de préparation de surface élimine une éventuelle dégradation).
Les tranchées peuvent être structurées à la demande :
o profil des bords de gravure : flancs verticaux ou inclinés, o fond de gravure : fond lisse ou fond « dépoli » grâce à une rugosité obtenue par le procédé de gravure,
o profondeur : adaptée à la demande voire, gravure localement traversante.
Dans l'exemple ici considéré, l'autre des substrats, noté 21 à la figure 4, est également muni de tranchées. Cet autre substrat est ici également avantageusement transparent, amorphe ou cristallin (voir ce qui est précisé ci- dessus à propos du premier substrat), de préférence constitué d'un cristal également.
De manière préférée, les deux substrats 1 1 et 21 sont en un même matériau, de sorte que les propriétés de transparence sont identiques.
La température de fusion des substrats 1 1 et 21 est supérieure à 25°C et, de préférence, supérieure à 200°C, 400°C ou 1000°C.
La configuration des tranchées ménagées dans l'un et/ou l'autre des substrats est choisie en sorte que, conjointement, ces tranchées délimitent, après l'étape ultérieure de collage, un volume creux dont la configuration définit le motif enfoui à réaliser.
Après enlèvement du masque de gravure, un traitement de surface peut être réalisé (dépôt d'une couche pour fonctionnalisation chimique, dépôt PVD ou CVD... ), ce traitement de surface peut aussi être enlevé sélectivement, par exemple par polissage mécano-chimique, sur les parties hautes des tranchées, pour éliminer les traces de l'étape de gravure.
Ces cristaux micro-gravés peuvent ensuite être usinés mécaniquement selon les formes souhaitées (par exemple suivant une forme de cœur pour un bijou).
Les tranchées définies dans l'un et/ou l'autre des substrats sont telles que le volume creux communique avec l'extérieur (cela ressortira plus loin), au moins après cette éventuelle étape d'usinage pour délimiter les contours du futur ensemble collé.
Assemblage des cristaux Les différents substrats ou cristaux naturels ou synthétiques, avec des gravures microscopiques ou sans gravure, sont assemblés ensemble par collage direct, c'est-à-dire par collage moléculaire, sans couche adhésive intermédiaire.
Pour cela les substrats reçoivent avantageusement un traitement de surface spécifique, connu en soi (adaptation de la rugosité, de la planéité, nettoyage, préparation de surface (activation humide et/ou sèche)) ; ils sont ensuite mis en contact avec un positionnement précis si nécessaire, surtout si des tranchées complémentaires sont ménagées dans chacun des substrats. Le collage direct est renforcé par un traitement thermique, par exemple compris entre 200 à 950°C suivant la robustesse souhaitée et les matériaux utilisés. La température de ce traitement thermique reste cependant inférieure à la température de fusion des substrats 1 1 , 21 .
A la figure 4, le substrat 1 1 des figures 1 à 3 (voir la partie gauche de cette figure) est de dimensions latérales très inférieures à celles du second substrat 21 . En effet, cette figure 4 représente, en sa partie droite, un autre exemple de complémentarité entre un autre premier substrat, noté 1 1 ', et ce second substrat 21 .
Dans la partie gauche de la figure 4, le second substrat n'a subi de gravure que pour former des canaux 25 s'étendant depuis la surface de collage, transversalement à celle-ci (ici perpendiculairement à celle-ci), jusqu'à la face opposée, grâce auxquels le volume creux 26 délimité par les tranchées ménagées dans le premier substrat communique avec l'extérieur.
Il doit être compris ici que cette communication avec l'extérieur peut aussi se faire par l'intermédiaire d'un (ou plusieurs) autre(s) volume(s) creux.
Dans la partie droite, le second substrat comporte une tranchée 27 disposée en regard de l'une (13Β') des tranchées 13A' et 13B', en sorte de former conjointement un volume creux 26' situé en partie dans le premier substrat 1 1 ' et en partie dans le second substrat 21 (dans l'exemple considéré, cette tranchée 27 en face d'une portion en saillie de ce substrat, en mettant en communication des parties droite et gauche de la tranchée 13B'). Le fait de prévoir des tranchées dans chacun des substrats permet de réaliser des configurations complexes. La différence de profondeur des tranchées 13A' et 13B', d'une part, et 27, d'autre part, peut permettre, lors de l'étape ultérieure de coloration, d'obtenir des teintes légèrement différentes au moyen d'un même fluide colorant. Des tranchées non représentées constituent des canaux de communication avec l'extérieur (non représentés) situés le long de l'interface de collage.
L'interface de collage de la partie gauche est noté I et celui de la partie droite est noté Γ.
Un ou plusieurs cristaux taillés (voir l'octogone 30 de la figure 4) peuvent être collés à l'aide d'une substance adhésive ou par collage moléculaire à la surface de l'un des substrats pour réaliser des dessins macroscopiques, par exemple à des fins décoratives. Il peut en effet y avoir plusieurs substrats collés par toute leur surface à un même substrat muni en outre de motifs décoratifs ; en variante, il peut y avoir deux substrats dont chacun déborde vis-à-vis de l'autre, l'un et/ou l'autre de ces substrats portant en outre un ou plusieurs motif(s) décoratif(s).
En se référant aux figures 5 à 7, le volume creux peut comporter une pluralité de plots et/ou de cloisons s'étendant à partir de son fond dans l'un des substrats vers l'autre des substrats ; en effet, les volumes creux peuvent avoir, parallèlement à l'interface de collage par adhésion moléculaire, des dimensions très supérieures à la profondeur de ces volumes : la présence de tels plots permet, à la manière d'entretoises, de maintenir un écartement constant entre le fond d'un volume creux donné, dans un substrat, et la surface de l'autre substrat, ce qui peut contribuer à une coloration homogène dans le volume creux considéré ; en outre, ces plots contribuent au collage par adhésion moléculaire.
On comprend que l'interface entre les substrats est d'autant moins visible que les matériaux constitutifs des deux substrats ont des compositions et des propriétés voisines ; cette interface est sensiblement invisible dans le cas de substrats réalisés en des matériaux identiques.
Coloration des cristaux assemblés. Selon l'invention, on procède à une étape de coloration des substrats après leur assemblage. La coloration est obtenue par injection d'une substance fluide colorée, dans certains au moins des volumes creux définis par les tranchées au niveau de l'interface de collage. La substance fluide colorée s'infiltre par capillarité et permet ainsi la coloration du volume creux considéré. Pour cela, des chemins d'infiltration existant entre les parties gravées et les parties collées des cristaux sont utilisés ; en se référant à titre d'exemple à la partie gauche de la figure 4, un tel chemin d'infiltration est constitué par l'un des canaux 25 de la figure 4, l'autre canal permettant l'évacuation du gaz emprisonné lors du collage et refoulé par la pénétration dudit fluide.
La substance fluide colorée peut être sous forme liquide ou gazeuse. Une coloration multicolore peut être obtenue par la définition de différents chemins d'infiltration unicolore. De même, il est possible de favoriser des variations de nuance par des mélanges des couleurs. Il peut s'agir d'un fluide, par exemple un solvant, chargé en particules colorantes qui peuvent avantageusement se déposer sur les parois du volume creux.
On comprend que la dynamique d'infiltration par capillarité dépend de la dimension des chemins d'infiltration et des volumes creux, de la distance à parcourir par infiltration, et de la viscosité de la substance fluide ; en cas de volumes creux multiples, un compromis est à trouver entre le nombre de chemins d'infiltration et le nombre de volumes creux en série (si tous les volumes creux sont en série, la dynamique d'infiltration sera lente ; si on affecte des chemins d'infiltration spécifiques à chaque volume creux, la dynamique sera plus rapide, mais au prix d'un cheminement éventuellement complexe des chemins d'infiltration. En tant que de besoin, cette infiltration peut être effectuée à une température supérieure à la température ambiante pour réduire la viscosité.
En effet, lorsque le fluide colorant est un gaz, on peut penser qu'il circule facilement dans le volume creux. Par contre, lorsqu'il s'agit d'un liquide, il peut y avoir des difficultés à le faire circuler dans le volume creux Une manière de favoriser l'injection et la circulation du fluide, notamment lorsqu'il s'agit d'un liquide, est d'appliquer un traitement thermique contribuant à réduire la viscosité du fluide, mais aussi, le cas échéant, favoriser l'évaporation du solvant constitutif du fluide lorsqu'il est un liquide.
Lorsqu'il est souhaité d'emprisonner du fluide colorant dans le volume creux, les orifices de communication sont avantageusement obturés après avoir fait circuler une quantité suffisante de fluide (voir plus loin).
La figure 5 représente, de manière schématique, l'assemblage 31 d'un substrat transparent gravé et d'un substrat transparent non gravé et le motif formé par les tranchées est enfoui dans cet assemblage à l'interface de collage. Pour des raisons de lisibilité, la partie de cet assemblage dans laquelle il y a un collage par adhésion moléculaire sans tranchées est hachurée, tandis qu'une zone bien plus claire représente un volume creux 36 (les substrats ne sont pas identifiés en tant que tels, puisqu'ils sont transparents). Comme expliqué ci-dessus, des plots 37 sont répartis à l'intérieur de ce volume creux (ainsi que près de sa périphérie). Des chemins d'entrée/sortie 35 (correspondant aux chemins d'infiltration de la figure 4) sont ici disposés dans le plan de l'interface (ou au moins à proximité immédiate de celui-ci).
Lors de l'étape de coloration (voir la figure 6), du fluide colorant est mis en communication avec l'un des chemins d'infiltration 35, ici le chemin situé en partie haute sur la figure 6. La configuration des plots est telle qu'ils laissent subsister des chemins de circulation entre les chemins d'entrée/sortie 35 ; ces chemins de circulation peuvent se ramifier puis se regrouper à proximité du chemin de sortie. Le fluide s'infiltre par capillarité depuis le chemin d'entrée jusqu'au chemin de sortie entre le plots ; de manière avantageuse, la configuration de la figure 6 correspond à la configuration spatiale dans laquelle se situe l'assemblage 31 , c'est-à-dire que la face par laquelle pénètre le fluide colorant (au dessus du plan de la figure) est située au dessus de la face par laquelle ce fluide peut quitter cet assemblage (en dessous du plan de la figure) ; en d'autres termes, la circulation peut être obtenue par gravitation capillaire. La coloration du volume creux sera d'autant plus homogène que le fluide aura pu accéder à l'ensemble du volume creux.
La coloration résulte, soit du dépôt de particules colorantes sur les parois du volume creux, notamment ses parois (ou faces) parallèles à l'interface de collage, mais aussi ses parois latérales, soit de la présence du fluide coloré lui-même dans le volume creux. On comprend dans le cas du dépôt de particules que l'effet de piégeage des particules colorantes sur ces parois dépend de leur état de surface, et qu'il peut être intéressant que les surfaces de ces parois ne soient pas trop lisses. On comprend également que, lorsque la coloration résulte principalement de la présence de fluide emprisonné dans le volume creux, la circulation de ce fluide peut être très limitée (par exemple juste suffisante pour permettre le remplissage total ou partiel du volume creux). Bien entendu, des particules colorantes peuvent être déposées sur les parois (latérales ou non) aussi bien en conséquence d'une circulation significative de fluide qu'en conséquence d'un emprisonnement de fluide.
La figure 7 représente une variante représentant un assemblage 41 dans lequel le volume creux 46, muni de plots 47, est divisé en trois chambres indépendantes notées 46A, 46B et 46C. La séparation ente les chambres est ici réalisée par des parois continues 48A et 48B ; ces parois soient ici représentées en blanc, en étant indépendantes du reste des substrats (il peut en effet s'agir de zones ajoutées après gravure, comme les plots ; en variante, ces cloisons et/ou ces plots peuvent être des zones non gravées lors de la gravure des tranchées constitutives du volume creux). Les cloisons peuvent être formées de plots contigus.
Les chemins d'infiltration d'entrée/sortie ne sont pas représentés, étant situés perpendiculairement au plan de la figure ; il y a des chemins spécifiques pour chacune des chambres. En faisant passer des fluides colorants de couleurs différentes, on obtient trois zones de couleurs différentes.
On comprend que plus les chemins d'entrée/sortie sont courts, moins il y a de risques de coloration en dehors des zones voulues ; toutefois, ce risque peut être minimisé en rendant très lisses les parois de ces chemins.
Des solutions colorées avec des nano particules en solution peuvent notamment être utilisées. Ces nano particules peuvent être des particules métalliques de très petite taille, par exemple des particules d'or (Au) de l'ordre de quelques nm de taille pouvant aller jusqu'à environ 100nm. Ces particules peuvent être protégées par une carapace qui leur donnera une bonne résistance à la température, par exemple une carapace en Zircone (Zr02) autour de particules d'or. Celle-ci modifie les propriétés optiques, ce dont il faudra tenir compte lors de la conception des modalités de mise en œuvre du procédé. Le choix des matériaux et la taille des nano particules seront faits en fonction des caractéristiques de couleur souhaitées.
En jouant sur la taille et la densité des particules (par exemple des particules d'or qui viennent d'être décrites), on peut obtenir, par phénomène de diffraction, des couleurs différentes (jaune, rouge, vert... ) ainsi que des nuances de couleur adaptables à la demande..
D'autres particules colorantes peuvent être utilisées. Ainsi, les particules peuvent notamment être de type minéral, et comporter par exemple un oxyde, tel qu'un oxyde de fer, de chrome, de manganèse, ou d'aluminium, ou des mélanges de tels oxydes, ou comporter un métal ou un alliage, tel qu'une spinelle, ou du chrome, ou du cobalt.
Les particules peuvent également être de type organique, de type phtalocyanine par exemple.
Les particules peuvent aussi être formées à l'aide de particules à effet plasmon de surface, de type Au, Ag, Pt, ou encore à l'aide de molécules organiques incluses dans une matrice minérale.
En variante, les particules peuvent être enrobées dans des matériaux réfractaires de type Alumine, ou Zircone, ou Zircon.
Les particules peuvent être en suspension dans un solvant ; lorsque la coloration est destinée à être donnée par du fluide emprisonné dans le volume creux, la couleur est avantageusement stable dans T'ensemble du volume de ce fluide.
Les assemblages ainsi obtenus après cette étape de coloration peuvent être de tailles très variées, même si les proportions relatives entre les contours de cet assemblage et les dimensions des volumes creux sont en réalité très différentes de celles correspondant aux figures.
Ces assemblages, qui constituent les pièces que l'on cherchait à réaliser, peuvent faire l'objet, notamment si l'on souhaite y maintenir le fluide coloré introduit, d'un enrobage visant à sceller de manière hermétique (par exemple au moyen de résines ou d'un polymère ou d'une colle ou encore par fusion locale du matériau (on utilise parfois l'expression de « queusotage », ou « exhaust sealing » en anglais), lorsque la fusion se fait après vidage du gaz contenu dans le volume creux)) l'intérieur des volumes creux en colmatant les chemins d'infiltration en entrée/sortie.
Avantages particuliers apportés par l'invention
On appréciera que la présente invention permet de réaliser : o des pièces complexes composées de plusieurs cristaux o assemblés entre eux par adhésion moléculaire
o avec des motifs, canaux ou réseaux fluidiques enfouis
o ces derniers pouvant être étanches ou débouchants pour permettre le remplissage de la substance colorée,
o ces derniers pouvant avoir des revêtements ou traitements de surface apportent plusieurs avantages fondamentaux,
o l'usage de plusieurs substances colorées permettant d'obtenir une ou plusieurs couleurs dans des volumes creux préalablement définis. Applications industrielles de l'invention
L'invention peut trouver des applications dans divers domaines industriels, culturels ou artistiques.
Pour l'industrie horlogère, des pièces complexes de montre (par exemple boîtiers ou sous ensembles mécaniques) peuvent être réalisés par assemblage par adhérence moléculaire de cristaux usinés ou micro-usinés. Cela peut trouver, notamment, des applications dans les montres dites de type « squelette ».
Dans le domaine de la joaillerie, des pierres, avec ou sans décorations ou textes réalisés par des gravures aux dimensions micrométriques (voire nanométriques), peuvent être assemblées sans assemblage ou sertissage avec des métaux. Ces pièces peuvent avoir des formes complexes et particulièrement mettre en valeur les cristaux les composant avec des transparences ou des effets optiques maximaux grâce à l'absence de parties métalliques opaques à la lumière.
Toutefois, diverses variantes peuvent être identifiées à propos des modalités particulières définies ci-dessus. C'est ainsi, notamment, qu'un seul des substrats peut être transparent. Les tranchées peuvent être obtenues par dépôt de matière autour des zones destinées à former les volumes creux. Les séparations entre les chambres peuvent être formées par des cloisons continues.

Claims

REVENDICATIONS
1 . Procédé de réalisation d'une pièce contenant un motif enfoui, selon lequel
- on prépare des premier et second substrats (1 1 , 1 1 ' ; 12) dont l'un au moins est transparent, au moins une tranchée (13A, 13B, 13A, 13B', 27) étant ménagée dans l'un au moins l'un de ces substrats à partir d'une surface destinée à être collée à l'autre substrat,
- on assemble les premier et second substrats par collage par adhésion moléculaire, ladite au moins une tranchée délimitant un volume creux (26, 26', 36, 46) dont la configuration définit le motif enfoui, ce volume creux communiquant avec l'extérieur de l'assemblage des premier et second substrats, puis
- on fait circuler au moins temporairement un fluide colorant dans ce creux pour en colorer au moins certaines parois.
2. Procédé selon la revendication 1 , caractérisé en ce que le volume creux communique avec l'extérieur le long (35) de l'interface de collage par adhésion moléculaire.
3. Procédé selon la revendication 1 , caractérisé en ce que le volume creux communique avec l'extérieur par des canaux (25) disposés transversalement à l'interface de collage par adhésion moléculaire.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on ménage des tranchées (13A, 13B', 27) dans chacun des premier et second substrats, ces tranchées communiquant entre elles en délimitant ledit volume creux.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on forme les tranchées tout en formant des plots internes (37, 47), adaptés à s'étendre entre le fond d'une tranchée dans l'un des substrats jusqu'au contact avec l'autre substrat.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'on forme des cloisons continues délimitant au moins deux chambres (46A, 46B, 46C) dans le volume creux, chacune des chambres communiquant avec l'extérieur, des fluides colorants différents étant amenés dans chacune de ces chambres.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le fluide colorant contient des particules métalliques ou organiques ayant un diamètre moyen d'au plus une centaine de nanomètres.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'on applique à certaines au moins des parois du volume creux un traitement adapté à en augmenter la rugosité.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on laisse à demeure, dans le volume creux, du fluide colorant.
10. Pièce (1 1 -12, 31 , 41 ) contenant un motif enfoui, comportant de premier et second substrats (1 1 , 1 1 ', 12) dont l'un au moins est transparent et qui sont collés l'un à l'autre par adhésion moléculaire, au moins un volume creux (26, 26', 36, 46) étant ménagé dans l'un et/ou l'autre des substrats à proximité immédiate de l'interface de collage, en débouchant vers l'extérieur, certaines au moins des parois de ce volume creux étant recouvertes d'un composant colorant.
1 1 . Pièce selon la revendication 10, caractérisée en ce que les deux substrats sont transparents.
12. Pièce selon la revendication 10 ou la revendication 1 1 , caractérisé en ce que le volume creux comporte des plots (37, 47) s'étendant sur toute la hauteur de ce volume creux.
13. Pièce selon l'une quelconque des revendications 10 à 12, caractérisée en ce que le volume creux comporte plusieurs chambres (46A,
46B, 46C) dont les parois sont revêtues de composants colorants de couleurs différentes, respectivement.
14. Pièce selon l'une quelconque des revendications 10 à 13, caractérisé en ce que le composant colorant fait partie d'un fluide emprisonné dans le volume creux.
15. Procédé selon l'une quelconque des revendications 1 à 9 ou pièce selon l'une quelconque des revendications 10 à 14, dans lequel les dimensions du motif enfoui sont au plus micrométriques.
EP11775954.8A 2010-11-08 2011-10-27 Procede de realisation d'une piece contenant un motif enfoui et piece ainsi obtenue Withdrawn EP2637877A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059214A FR2967016B1 (fr) 2010-11-08 2010-11-08 Procédé de réalisation d'une pièce contenant un motif enfoui dont les dimensions sont au plus micrométriques, et pièce ainsi obtenue
PCT/EP2011/068819 WO2012062585A2 (fr) 2010-11-08 2011-10-27 Procede de realisation d'une piece contenant un motif enfoui et piece ainsi obtenue

Publications (1)

Publication Number Publication Date
EP2637877A2 true EP2637877A2 (fr) 2013-09-18

Family

ID=44343683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11775954.8A Withdrawn EP2637877A2 (fr) 2010-11-08 2011-10-27 Procede de realisation d'une piece contenant un motif enfoui et piece ainsi obtenue

Country Status (4)

Country Link
US (1) US20130266768A1 (fr)
EP (1) EP2637877A2 (fr)
FR (1) FR2967016B1 (fr)
WO (1) WO2012062585A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556911A1 (fr) * 2018-04-19 2019-10-23 Comadur S.A. Procédé de structuration d'un motif décoratif ou technique dans un objet réalisé en un matériau amorphe, semi-cristallin ou cristallin au moins partiellement transparent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130055A1 (de) * 1991-09-10 1993-03-11 Josef Hobelsberger Verfahren zum anbringen von gravuren auf eine oberflaeche eines eiskoerpers, insbesondere eines solchen aus klareis, sowie eiskoerper mit gravur
FR2851496B1 (fr) * 2003-02-20 2005-05-27 Savoyet Jean Louis P J Moyens et dispositifs de protection d'un graphisme lithographique reporte sur un objet pouvant contenir un dispositif electronique de reperage.
FR2888402B1 (fr) * 2005-07-06 2007-12-21 Commissariat Energie Atomique Procede d'assemblage de substrats par depot d'une couche mince de collage d'oxyde ou de nitrure et structure ainsi assemblee
FR2926748B1 (fr) * 2008-01-25 2010-04-02 Commissariat Energie Atomique Objet muni d'un element graphique reporte sur un support et procede de realisation d'un tel objet.
FR2926747B1 (fr) 2008-01-25 2011-01-14 Commissariat Energie Atomique Objet comportant un element graphique reporte sur un support et procede de realisation d'un tel objet.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012062585A2 *

Also Published As

Publication number Publication date
FR2967016B1 (fr) 2012-12-07
WO2012062585A2 (fr) 2012-05-18
US20130266768A1 (en) 2013-10-10
FR2967016A1 (fr) 2012-05-11
WO2012062585A3 (fr) 2012-07-12

Similar Documents

Publication Publication Date Title
EP1893542B1 (fr) Piece technique ou decorative associant un materiau transparent et un materiau amorphe a base de silice et son procede de fabrication
EP2140406B1 (fr) Carte incorporant un affichage electronique
EP2237698B1 (fr) Objet muni d'un element graphique reporte sur un support et procede de realisation d'un tel objet
EP3555709B1 (fr) Element d'habillage ou cadran d'horlogerie en materiau non conducteur
EP1734420B1 (fr) Boîtier fermé par une glace avec un joint invisible ou pouvant être décoré et procédés de fabrication
WO2013178412A1 (fr) Elément céramique incrusté d'au moins un décor en céramique composite
EP3709102B1 (fr) Composant d'horlogerie ou de bijouterie a base ceramique et a decor structure
EP2856903A1 (fr) Elément céramique incrusté d'au moins un décor en céramique
CH696475A5 (fr) Organe d'affichage analogique en matériau cristallin, pièce d'horlogerie pourvue d'un tel organe d'affichage et procédé pour sa fabrication.
EP3564758A1 (fr) Procédé de fabrication de composants horlogers comprenant un revêtement décoratif en aventurine
EP2438479A1 (fr) Procède de fabrication d'images colorées avec une résolution micronique enfouies dans un support très robuste et très pérenne
CH714234B1 (fr) Procédé de fabrication d'une pièce et une pièce pour l'horlogerie ou la joaillerie, avec une surface comprenant du titane coloré par oxydation.
EP2637877A2 (fr) Procede de realisation d'une piece contenant un motif enfoui et piece ainsi obtenue
EP3699695A1 (fr) Composant multidecors et/ou multicolore d'horlogerie avec structure en céramique
FR2809101A3 (fr) Procede pour fabriquer des carreaux en verre, des bordures en verre, des panneaux ornementaux en verre et similaire
EP3232276B1 (fr) Composant de mouvement horloger
EP2491437B1 (fr) Procédé de coloration sélective, composant transparent a structure cellulaire resultant d'un tel procede
EP3892151A1 (fr) Composant horloger et procédé de fabrication d'un composant horloger
EP3623877A1 (fr) Procédé de fabrication d'un composant horloger
CH715872A2 (fr) Composant multidécors et/ou multicolore d'horlogerie comportant une structure en un matériau dur tel une céramique.
WO2024028403A1 (fr) Composant horloger et procédé de réalisation d'un composant horloger
WO2024028402A1 (fr) Composant horloger et procédé de réalisation d'un composant horloger
FR2810099A1 (fr) Procede de fabrication d'un disque diffuseur pour un dispositif de signaux lumineux
CH715927A2 (fr) Procédé de fabrication d'un composant d'horlogerie ou de bijouterie à base céramique et à décor structuré.
EP3671365A1 (fr) Cadran de piece d'horlogerie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130426

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150501