EP2636774B1 - Regenerated cellulose fibres and process for their preparation - Google Patents

Regenerated cellulose fibres and process for their preparation Download PDF

Info

Publication number
EP2636774B1
EP2636774B1 EP13000476.5A EP13000476A EP2636774B1 EP 2636774 B1 EP2636774 B1 EP 2636774B1 EP 13000476 A EP13000476 A EP 13000476A EP 2636774 B1 EP2636774 B1 EP 2636774B1
Authority
EP
European Patent Office
Prior art keywords
process according
weight
carbon nanoparticles
fibres
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13000476.5A
Other languages
German (de)
French (fr)
Other versions
EP2636774A1 (en
Inventor
Bernhard Müller
Axel Russler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glanzstoff Bohemia sro
Original Assignee
Glanzstoff Bohemia sro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glanzstoff Bohemia sro filed Critical Glanzstoff Bohemia sro
Publication of EP2636774A1 publication Critical patent/EP2636774A1/en
Application granted granted Critical
Publication of EP2636774B1 publication Critical patent/EP2636774B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • D01F2/10Addition to the spinning solution or spinning bath of substances which exert their effect equally well in either

Definitions

  • the invention relates to a process for the production of cellulosic regenerated fibers by spinning from a cellulosic spinning solution admixed with anisotropic carbon nanoparticles, the dimension of which is greater in a particle main axis than in the orthogonal particle secondary axes, and on a cellulosic regenerated fiber produced in particular by this process.
  • a critical factor in the use of cellulosic fibers in the area of mechanically stressed workpieces and products is the tensile fiber elongation or the fiber-specific modulus of elasticity.
  • the viscose process in which cellulose in the form of high-quality pulps is converted to cellulose xanthate by means of alkalization and derivatization with CS 2 and this, in solution in sodium hydroxide in an acidic bath, in turn is regenerated to cellulose, is one of the oldest processes for regenerated cellulose production. It also makes it possible to produce fibers from non-spinnable forms of cellulose and, moreover, to impart to it special properties, in particular special mechanical and morphological properties, which in the case of natural spinnable forms of cellulose, eg. B. the seed hair of cotton, are not found.
  • the filament process as a special form of the viscose process is used to obtain endless, especially mechanically strong cellulose fibers. These fibers are used in particular as reinforcement and reinforcing material. Their main application can be found in the so-called tire cord, where they guarantee the strength and flexibility of the tire material, especially for particularly high-quality tires.
  • hybrid yarns In practical application, for this reason, so-called hybrid yarns must be produced if required by fibers with increased modulus, which in addition to the cellulosic fiber still contain a fiber with a particularly high modulus, in particular aramid is used.
  • the production of such hybrid fibers is expensive and expensive.
  • CFRPs carbon nanotubes
  • CMOS complementary metal-oxide-semiconductor
  • WO 2008/034 939 A1 relates to the production of electrically conductive fibers in the viscose process by the admixture of CNT or other nanoscale carbon species and uses for this purpose the effect that the conductivity of the materials with increasingly higher carbon contents increases, as it has long been known in the addition of conductive carbon black. In this case, relatively high admixtures are required. An influence on the mechanical properties is not considered.
  • the invention has for its object to provide a method of the type mentioned, can be obtained by the cellulosic regenerated without the need for subsequent production of hybrid yarns, but which achieve their mechanical properties.
  • this object is achieved in that the particle main axes are aligned by stretching the freshly spun, still plastic Regeneratmaschinen by at least 20% in accordance with an anisotropy direction parallel to the fiber direction.
  • the improvement of the mechanical properties takes place by means of additives.
  • the aggregates used are special carbon modifications that can be obtained through novel processes and whose industrial use is still limited but in strong growth.
  • These novel carbon species are carbon nanoparticles, which means that at least one of the particle dimensions is in the nanoscale range. Usually, this range is undershot defined by dimensions greater than 100 nm.
  • These nanoscale carbon bodies can roughly be divided into three groups, the carbon tubes (CNT, carbon nanotubes, single walled (SWCNT), double walled (DWCNT) and multi walled (MWCNT) and some other special forms with e.g. B. spiral appearance) with a fibrous form and a slightly different aspect ratio, spherical shaped bodies such as fullerenes and planar carbon species (graphenes), which can occur in one and several layers.
  • CNT carbon tubes
  • SWCNT single walled
  • DWCNT double walled
  • MWCNT multi walled
  • the surfaces of untreated carbon particles are usually hydrophobic due to their aromatic structure. This is not a problem if the particles of a likewise hydrophobic or aromatic embossed matrix, such as those found in many plastics, are to be incorporated. However, if the matrix chosen is of a hydrophilic character, as is the case with cellulose due to the OH groups contained in it thereby impairing the incorporation of the particles into the matrix and thus also the respective power transmission. As a result, the reinforcing potential of the admixture can not be fully exploited.
  • the carbon particles are surface-modified insofar as they carry groups by chemical reaction on their surface, which shift the character of the particles or their behavior from hydrophobic to hydrophilic.
  • Such modifications are possible in particular by the introduction of OH groups or COOH groups by targeted oxidation reactions.
  • the mentioned groups are able to interact with the OH groups of the cellulose and form hydrogen bonds.
  • a much better integration into the cellulose matrix is achieved, and the strength-increasing potential of the admixture can be utilized more favorably.
  • An additional positive side effect of a hydrophilic surface modification of the nanoscale carbon particles is their simplified dispersion in aqueous systems, as a result of which better results in the singulation of the particles are achieved or the mechanical and energy expenditure for sufficient dispersion decreases.
  • Another essential aspect of the invention described here is based on the strong stretching of the spun fiber in combination with a retarded coagulation and regeneration of cellulose xanthate dissolved in sodium hydroxide solution.
  • This retardation of the coagulation and in particular the regeneration process which is brought about for example by the addition of zinc salts, is a customary in the production of high-strength viscose fibers measure.
  • By stretching the freshly regenerated, but still plastic cellulose threads results in an alignment of the individual cellulose chains in the direction of orientation of the fiber produced. This happens a closer approximation of the individual cellulose chains by their molecular orientation and an increase in crystallinity.
  • Exemplary for the production of fibers by the process of the invention is the preparation of viscose from high purity sulphate pulp with an alpha-cellulose content of 97.9% by alkalization in caustic soda, pressing and pre-ripening, sulfidation with CS 2 and dissolving in sodium hydroxide, followed by filtration and degassing and ripeness of the viscose to obtain a spinnable solution.
  • This viscose is mixed with 0.1% MWCNT, based on the mass of cellulose in the viscose solution.
  • MWCNT based on the mass of cellulose in the viscose solution.
  • the appropriate amount of MWCNT is dispersed in an ultrasonic bath and, after successful homogeneous dispersion, mechanically stirred into the spinning mass until again a homogeneous dispersion is present.
  • the resulting MWCNT-containing dope is passed through spinnerets in a sulfuric acid-containing spinning bath and coagulated and regenerated there.
  • the resulting filaments are then directly stretched, washed, dried and wound.
  • the single drawing figure shows force-strain diagrams for three different fiber examples.
  • the short-dashed line labeled "0% CNT best” refers to a fiber without the addition of carbon nanoparticles.
  • the long-dashed or solid line denoted "0.1% CNT variant 1" and "0.1% CNT variant 2" relates to a fiber of the same composition with an addition of 0.1% by weight of CNT, with only the single-dispersion in the dope has been made in various ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung cellulosischer Regeneratfasern durch Spinnen aus einer cellulosischen Spinnlösung, der anisotrope Kohlenstoffnanopartikel beigemischt sind, deren Dimension in einer Partikelhauptachse größer ist als in den dazu orthogonalen Partikelnebenachsen, und auf eine insbesondere nach diesem Verfahren hergestellte cellulosische Regeneratfaser.The invention relates to a process for the production of cellulosic regenerated fibers by spinning from a cellulosic spinning solution admixed with anisotropic carbon nanoparticles, the dimension of which is greater in a particle main axis than in the orthogonal particle secondary axes, and on a cellulosic regenerated fiber produced in particular by this process.

Es besteht eine stetig wachsende ökologische Notwendigkeit, Werkstoffe auf Basis nachwachsender Rohstoffe zu verwenden. Gleichzeitig dürfen diese Werkstoffe jedoch in ihren Materialeigenschaften nicht hinter etablierten Werkstoffen aus fossilen Quellen zurückstehen.There is a steadily growing ecological need to use materials based on renewable raw materials. At the same time, however, these materials must not lag behind established materials from fossil sources in their material properties.

Cellulosische Fasern haben bezüglich ihrer Materialeigenschaften durch verschiedene, stetig verbesserte Verfahren eine Fülle bemerkenswerter Eigenschaftsgrößen erreicht. Dennoch gibt es noch Materialeigenschaften, die bislang mit den etablierten Prozessen nicht erreichbar sind.Cellulosic fibers have achieved a wealth of remarkable properties in terms of their material properties through various, constantly improved processes. Nevertheless, there are still material properties that are not yet achievable with the established processes.

Ein kritischer Faktor bei der Verwendung von cellulosischen Fasern im Bereich mechanisch beanspruchter Werkstücke und Produkte ist die Faserdehnung bei Zugbelastung bzw. der faserspezifische E-Modul.A critical factor in the use of cellulosic fibers in the area of mechanically stressed workpieces and products is the tensile fiber elongation or the fiber-specific modulus of elasticity.

Die bislang besten diesbezüglichen Werte für cellulosische Fasern werden mit dem Viskoseverfahren in seiner Ausprägung als Filamentverfahren zur Herstellung hochfester Fasern erreicht.The hitherto best values for cellulosic fibers in this respect are achieved with the viscose process in its form as a filament process for producing high-strength fibers.

Das Viskoseverfahren, wobei Cellulose in Form von qualitativ hochwertigen Zellstoffen über Alkalisierung und Derivatisierung mit CS2 zu Cellulosexanthogenat überführt wird und dieses, gelöst in Natronlauge in einem säurehaltigen Bad, wiederum zur Cellulose regeneriert wird, ist eines der ältesten Verfahren zur Regeneratcelluloseherstellung. Es erlaubt, auch aus nicht spinnbaren Formen von Cellulose Fasern herzustellen und diesen überdies noch besondere Eigenschaften, insbesondere besondere mechanische und morphologische Eigenschaften, zu verleihen, welche bei natürlichen spinnbaren Formen der Cellulose, z. B. den Samenhaaren der Baumwolle, nicht zu finden sind.The viscose process, in which cellulose in the form of high-quality pulps is converted to cellulose xanthate by means of alkalization and derivatization with CS 2 and this, in solution in sodium hydroxide in an acidic bath, in turn is regenerated to cellulose, is one of the oldest processes for regenerated cellulose production. It also makes it possible to produce fibers from non-spinnable forms of cellulose and, moreover, to impart to it special properties, in particular special mechanical and morphological properties, which in the case of natural spinnable forms of cellulose, eg. B. the seed hair of cotton, are not found.

Das Filamentverfahren als Spezialform des Viskoseverfahrens wird angewandt, um endlose, besonders mechanisch feste Cellulosefasern zu erhalten. Diese Fasern werden insbesondere als Bewehrungs- und Verstärkungsmaterial eingesetzt. Ihre Hauptanwendung finden sie im sog. Reifencord, wo sie insbesondere bei besonders hochwertigen Reifen die Stärke und Flexibilität des Reifenmaterials garantieren.The filament process as a special form of the viscose process is used to obtain endless, especially mechanically strong cellulose fibers. These fibers are used in particular as reinforcement and reinforcing material. Their main application can be found in the so-called tire cord, where they guarantee the strength and flexibility of the tire material, especially for particularly high-quality tires.

Die besonderen Festigkeiten und geringen Dehnungskoeffizienten solcher Filamentviskosen entstehen durch die Verwendung von Zellstoffen mit besonders hohen α-Cellulosegehalten, eine besondere Fahrweise der Viskoseherstellung sowie des Spinnens und Verstreckens. Auf diese Weise können verschiedene Qualitäten hergestellt werden, welche für die Verwendung in Reifencord in die Kategorien Super 1 bis Super 3 mit zunehmender Festigkeit eingeteilt werden.The particular strengths and low expansion coefficients of such filament viscoses are produced by the use of celluloses with particularly high α-cellulose contents, a special procedure of viscose production, as well as spinning and drawing. In this way, various qualities can be made, which are classified for use in tire cord in the categories Super 1 to Super 3 with increasing strength.

Eine weitere bedeutende Zunahme der erreichbaren mechanischen Eigenschaften, insbesondere einer weiter verringerten Zugdehnung durch weitere Optimierung des Prozesses und der verwendeten Rohstoffe, ist sehr limitiert, da es sich beim Viskoseverfahren um einen reifen Prozeß handelt, der von seinen Materialeigenschaften weitgehend an die technisch erreichbaren Grenzen stößt.Another significant increase in the achievable mechanical properties, in particular a further reduced tensile strain by further optimization of the process and the raw materials used, is very limited, since it is the viscose process is a mature process, which comes from its material properties largely to the technically achievable limits.

In der praktischen Anwendung müssen aus diesem Grund bei Bedarf von Fasern mit erhöhtem Modulus sogenannte Hybridgarne hergestellt werden, welche neben der cellulosischen Faser noch eine Faser mit besonders hohem Modulus enthalten, wobei insbesondere Aramid zur Anwendung kommt. Die Herstellung solcher Hybridfasern ist jedoch aufwendig und kostspielig.In practical application, for this reason, so-called hybrid yarns must be produced if required by fibers with increased modulus, which in addition to the cellulosic fiber still contain a fiber with a particularly high modulus, in particular aramid is used. However, the production of such hybrid fibers is expensive and expensive.

Kompositwerkstoffe aus Kohlenstoffnanoteilchen, insbesondere CNT (carbon nano tubes), mit Cellulose sind in der Literatur bereits beschrieben. Meist handelt es sich hierbei jedoch um Herstellungsverfahren, die nicht dem Viskoseverfahren folgen, etwa das direkte Lösen von Cellulose in sogenannten ionischen Flüssigkeiten, Dimethylacetamid/LiCl oder in NMMO (Lyocellprozeß). WO 2008/034 939 A1 betrifft die Herstellung elektrisch leitender Fasern im Viskoseverfahren durch die Beimischung von CNT oder anderen nanoskaligen Kohlenstoffspezies und nutzt hierfür den Effekt, daß die Leitfähigkeit der Werkstoffe mit zunehmend höheren Kohlenstoffgehalten ansteigt, wie es bei der Zugabe von Leitruß seit langem bekannt ist. Dabei sind verhältnismäßig hohe Beimengungen erforderlich. Eine Beeinflussung der mechanischen Eigenschaften wird nicht in Betracht gezogen.Composite materials of carbon nanoparticles, in particular carbon nanotubes (CNTs), with cellulose have already been described in the literature. In most cases, however, these are production processes which do not follow the viscose process, for example the direct dissolution of cellulose in so-called ionic liquids, dimethylacetamide / LiCl or in NMMO (lyocell process). WO 2008/034 939 A1 relates to the production of electrically conductive fibers in the viscose process by the admixture of CNT or other nanoscale carbon species and uses for this purpose the effect that the conductivity of the materials with increasingly higher carbon contents increases, as it has long been known in the addition of conductive carbon black. In this case, relatively high admixtures are required. An influence on the mechanical properties is not considered.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, durch das cellulosische Regeneratfasern ohne die Notwendigkeit der anschließenden Herstellung von Hybridgarnen erhalten werden können, welche jedoch deren mechanische Eigenschaften erreichen.The invention has for its object to provide a method of the type mentioned, can be obtained by the cellulosic regenerated without the need for subsequent production of hybrid yarns, but which achieve their mechanical properties.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Partikelhauptachsen durch Verstrecken der frisch ersponnenen, noch plastischen Regeneratfasern um wenigstens 20 % gemäß einer zur Faserrichtung parallelen Anisotropierichtung ausgerichtet werden.According to the invention this object is achieved in that the particle main axes are aligned by stretching the freshly spun, still plastic Regeneratfasern by at least 20% in accordance with an anisotropy direction parallel to the fiber direction.

Erfindungsgemäß erfolgt die Verbesserung der mechanischen Eigenschaften, insbesondere die Erhöhung der Zugfestigkeit, durch Zuschlagstoffe. Bei den verwendeten Zuschlagstoffen handelt es sich um spezielle Kohlenstoffmodifikationen, die über neuartige Prozesse gewonnen werden können und deren industrielle Nutzung bislang noch begrenzt ist, sich jedoch in starkem Wachstum befindet. Diese neuartigen Kohlenstoffspezies sind Kohlenstoffnanopartikel, was bedeutet, daß mindestens eine der Partikeldimensionen im nanoskaligen Bereich liegt. Für gewöhnlich wird dieser Bereich durch ein Unterschreiten von Abmessungen größer 100 nm definiert. Diese nanoskaligen Kohlenstoffkörper können grob in drei Gruppen aufgeteilt werden, die Kohlenstoffröhren bzw. -fasern (CNT, carbon nano tubes, mit single walled (SWCNT), double walled (DWCNT) und multi walled (MWCNT) sowie einige weitere spezielle Formen mit z. B. gewundener Erscheinung) mit faserförmiger Ausprägung und einem leicht unterschiedlichem Aspektverhältnis, sphärisch geformte Körper wie Fullerene und planare Kohlenstoffspezies (Graphene), welche ein- und mehrlagig auftreten können.According to the invention, the improvement of the mechanical properties, in particular the increase of the tensile strength, takes place by means of additives. The aggregates used are special carbon modifications that can be obtained through novel processes and whose industrial use is still limited but in strong growth. These novel carbon species are carbon nanoparticles, which means that at least one of the particle dimensions is in the nanoscale range. Usually, this range is undershot defined by dimensions greater than 100 nm. These nanoscale carbon bodies can roughly be divided into three groups, the carbon tubes (CNT, carbon nanotubes, single walled (SWCNT), double walled (DWCNT) and multi walled (MWCNT) and some other special forms with e.g. B. spiral appearance) with a fibrous form and a slightly different aspect ratio, spherical shaped bodies such as fullerenes and planar carbon species (graphenes), which can occur in one and several layers.

All diesen Kohlenstoffmodifikationen ist eigen, daß sie extrem hohe spezifische Festigkeiten besitzen bzw. die höchsten bekannten überhaupt. Diese Eigenschaften können, wenn diese Stoffe einem anderen Material zugemischt werden, in gewissem Umfang auf dieses übergehen. So sind Kompositwerkstoffe möglich, die sich durch hervorragende mechanische Eigenschaften auszeichnen, dies gilt insbesondere für die spezifischen Eigenschaften im Verhältnis zur Dichte des entstehenden Kompositwerkstoffs und tritt bereits bei sehr geringen Beimengungen in meßbarem Umfang auf.All these carbon modifications are peculiar in that they have extremely high specific strengths or the highest known ever. These properties may, to some extent, be transferred to these materials when these substances are mixed into another material. Thus, composite materials are possible which are characterized by excellent mechanical properties, this is especially true for the specific properties in relation to the density of the resulting composite material and occurs even at very low admixtures in a measurable extent.

Entscheidende Voraussetzung für eine solche Eigenschaftsänderung durch Beimischung der genannten Kohlenstoffnanopartikel ist deren möglichst homogene, aggregat- und konglomeratfreie Verteilung in der Matrix. Dies ist umso entscheidender, als bei nanoskaligen Körpern durch deren extrem große spezifische Oberfläche entsprechend starke gegenseitige Anziehungskräfte wirken. Diese Anziehungskräfte bewirken die vermehrte Bildung von Agglomeraten und Konglomeraten, welche eine Vereinzelung der Partikel während der Dispergierung stark erschweren, so daß diese in der Regel nicht mit einfachen mechanischen Rührern erreicht werden kann. Möglichkeiten zur Dispergierung dieser Teilchen bietet die Anwendung von Ultraschall oder besonders starken Scherkräften z. B. in Homogenisatoren. Zumeist bedient man sich der Beimischung verschiedener oberflächenaktiver Substanzen während der Dispersionsherstellung, um diese anschließend auch durch sterische, elektrostatische oder elektrosterische Stabilisierung vor neuerlicher Aggregatbildung zu bewahren. Bleiben größere Gebilde aus nichtvereinzelten Partikeln von Zusatzstoffen in der fertigen Faser erhalten, so können diese die Festigkeitseigenschaften der Fasern durch die Bildung von mechanischen Schwachstellen negativ beeinflussen.Decisive prerequisite for such a property change by admixture of the mentioned carbon nanoparticles is their homogeneous, aggregate- and conglomerate-free distribution in the matrix. This is all the more crucial as nanoscale bodies have correspondingly strong mutual forces of attraction due to their extremely large specific surface area. These attractions cause the increased formation of agglomerates and conglomerates, which greatly aggravate a separation of the particles during the dispersion, so that they can not be achieved in general with simple mechanical stirrers. Ways to disperse these particles offers the use of ultrasound or particularly strong shear forces z. B. in homogenizers. In most cases, the use of various surface-active substances during dispersal production is used in order to subsequently protect them from renewed aggregate formation by steric, electrostatic or electrosteric stabilization. If larger structures are obtained from non-isolated particles of additives in the finished fiber, these can adversely affect the strength properties of the fibers through the formation of mechanical weak points.

Die Oberflächen unbehandelter Kohlenstoffpartikel sind in der Regel durch ihren aromatischen Aufbau hydrophob. Dies stellt kein Problem dar, wenn die Partikel einer ebenfalls hydrophoben bzw. aromatisch geprägten Matrix, wie sie etwa in vielen Kunststoffen zu finden ist, beigemengt werden sollen. Ist die gewählte Matrix jedoch von hydrophilem Charakter, wie es bei der Cellulose durch die in ihr enthaltenen OH-Gruppen der Fall ist, so ist dadurch die Einbindung der Partikel in die Matrix und damit auch die jeweilige Kraftübertragung beeinträchtigt. Dadurch kann das verstärkende Potential der Beimischung nicht vollständig ausgeschöpft werden.The surfaces of untreated carbon particles are usually hydrophobic due to their aromatic structure. This is not a problem if the particles of a likewise hydrophobic or aromatic embossed matrix, such as those found in many plastics, are to be incorporated. However, if the matrix chosen is of a hydrophilic character, as is the case with cellulose due to the OH groups contained in it thereby impairing the incorporation of the particles into the matrix and thus also the respective power transmission. As a result, the reinforcing potential of the admixture can not be fully exploited.

Dies gelingt in wesentlich besserem Umfang, wenn die Kohlenstoffpartikel insofern oberflächenmodifiziert sind, als sie durch chemische Reaktion an ihrer Oberfläche Gruppen tragen, welche den Charakter der Teilchen bzw. deren Verhalten von hydrophob zu hydrophil verschieben. Solche Modifikationen sind insbesondere durch das Einbringen von OH-Gruppen oder COOH-Gruppen durch gezielte Oxidationsreaktionen möglich. Die erwähnten Gruppen sind in der Lage, mit den OH-Gruppen der Cellulose zu wechselwirken und Wasserstoffbrückenbindungen auszubilden. Dadurch wird eine wesentlich bessere Einbindung in die Cellulosematrix erreicht, und das festigkeitssteigernde Potential der Beimischung kann günstiger ausgenutzt werden.This is achieved to a much better extent if the carbon particles are surface-modified insofar as they carry groups by chemical reaction on their surface, which shift the character of the particles or their behavior from hydrophobic to hydrophilic. Such modifications are possible in particular by the introduction of OH groups or COOH groups by targeted oxidation reactions. The mentioned groups are able to interact with the OH groups of the cellulose and form hydrogen bonds. As a result, a much better integration into the cellulose matrix is achieved, and the strength-increasing potential of the admixture can be utilized more favorably.

Modifikationen der Kohlenstoffspezies durch Einbringung von OH- und COOH-Gruppen sind bereits kommerziell erhältlich, jedoch sind auch andere Gruppen als Oberflächenmodifizierung der genannten Nanopartikel denkbar, die zu einer verbesserten Einbindung in die Cellulosematrix und dadurch erhöhten Festigkeitswerten des entstehenden Werkstoffs führen. Insbesondere sind auch solche Oberflächenmodifikationen denkbar, welche im weiteren entweder während des Prozesses, z. B. im Spinnbad, oder aber durch eine entsprechende Nachbehandlung kovalente Bindungen zur Cellulosematrix ausbilden und dadurch eine weitere Verbesserung der Einbindung und Steigerung der mechanischen Materialeigenschaften, insbesondere der Zugdehnung, bewirken.Modifications of the carbon species by introduction of OH and COOH groups are already commercially available, but other groups are also conceivable as surface modification of said nanoparticles, which lead to improved integration into the cellulose matrix and thus increased strength values of the resulting material. In particular, such surface modifications are conceivable which in the further either during the process, for. B. in the spinning bath, or by covalent bonds to the cellulose matrix form by a corresponding treatment and thereby further improve the involvement and increase the mechanical material properties, in particular the tensile strain cause.

Ein zusätzlicher positiver Nebeneffekt einer hydrophilen Oberflächenmodifikation der nanoskaligen Kohlenstoffpartikel ist deren vereinfachte Dispergierung in wäßrigen Systemen, wodurch bessere Ergebnisse in der Vereinzelung der Partikel erzielt werden, bzw. der maschinelle und energetische Aufwand für eine ausreichende Dispergierung sinkt.An additional positive side effect of a hydrophilic surface modification of the nanoscale carbon particles is their simplified dispersion in aqueous systems, as a result of which better results in the singulation of the particles are achieved or the mechanical and energy expenditure for sufficient dispersion decreases.

Ein weiterer wesentlicher Aspekt der hier beschriebenen Erfindung beruht auf der starken Verstreckung der ersponnenen Faser in Kombination mit einer retardierten Koagulation und Regeneration des in Natronlauge gelösten Cellulosexanthogenats. Diese Retardierung des Koagulations- und insbesondere des Regenerationsprozesses, die beispielsweise durch eine Zugabe von Zinksalzen herbeigeführt wird, ist eine bei der Herstellung von hochfesten Viskosefasern übliche Maßnahme. Durch die Verstreckung der frisch regenerierten, aber noch plastischen Cellulosefäden ergibt sich eine Ausrichtung der einzelnen Celluloseketten in der Orientierungsrichtung der hergestellten Faser. Dadurch kommt es zu einer größeren Annäherung der einzelnen Celluloseketten durch deren molekulare Orientierung und einer Steigerung der Kristallinität. Das sich erst dadurch ausbildende Gefüge in der Faser und die bei seiner Entstehung wirksamen Kräfte führen dann zu einer gerichteten Orientierung der anisotropen Zuschlagstoffe. Dadurch kann gewährleistet werden, daß die molekulare Ausrichtung der Celluloseketten und auch der zugesetzten Kohlenstoffnanoteilchen, insbesondere Kohlenstoffnanoröhrchen, weit überwiegend in Faserrichtung ist, d. h. daß die Orientierungsverteilung der Partikelhauptachsen in der Faserrichtung ein Maximum annimmt. Dadurch entstehen Fasern mit besonders ausgeprägt niedriger Zugdehnung.Another essential aspect of the invention described here is based on the strong stretching of the spun fiber in combination with a retarded coagulation and regeneration of cellulose xanthate dissolved in sodium hydroxide solution. This retardation of the coagulation and in particular the regeneration process, which is brought about for example by the addition of zinc salts, is a customary in the production of high-strength viscose fibers measure. By stretching the freshly regenerated, but still plastic cellulose threads results in an alignment of the individual cellulose chains in the direction of orientation of the fiber produced. This happens a closer approximation of the individual cellulose chains by their molecular orientation and an increase in crystallinity. The resulting structure in the fiber and the forces acting on it then lead to a directed orientation of the anisotropic additives. It can thereby be ensured that the molecular orientation of the cellulose chains and also of the added carbon nanoparticles, in particular carbon nanotubes, is predominantly in the fiber direction, ie that the orientation distribution of the main particle axes in the fiber direction assumes a maximum. This results in fibers with a particularly pronounced low tensile strain.

Beispielhaft für die Herstellung von Fasern nach dem erfindungsgemäßen Verfahren ist die Bereitung von Viskose aus hochreinem Sulfatzellstoff mit einem alpha-Cellulosegehalt von 97,9 % durch Alkalisierung in Natronlauge, Abpressen und Vorreife, Sulfidierung mit CS2 und Lösen in Natronlauge, anschließender Filtration und Entgasung sowie Reife der Viskose, um eine spinnfähige Lösung zu erhalten.Exemplary for the production of fibers by the process of the invention is the preparation of viscose from high purity sulphate pulp with an alpha-cellulose content of 97.9% by alkalization in caustic soda, pressing and pre-ripening, sulfidation with CS 2 and dissolving in sodium hydroxide, followed by filtration and degassing and ripeness of the viscose to obtain a spinnable solution.

Diese Viskose wird versetzt mit 0,1 % MWCNT, bezogen auf die Masse der Cellulose in der Viskoselösung. Dafür wird die entsprechende Menge MWCNT in einem Ultraschallbad dispergiert und nach erfolgreicher homogener Dispergierung mechanisch in die Spinnmasse eingerührt, bis auch hier wiederum eine homogene Dispersion vorliegt.This viscose is mixed with 0.1% MWCNT, based on the mass of cellulose in the viscose solution. For this purpose, the appropriate amount of MWCNT is dispersed in an ultrasonic bath and, after successful homogeneous dispersion, mechanically stirred into the spinning mass until again a homogeneous dispersion is present.

Die so erhaltene MWCNT-haltige Spinnmasse wird über Spinndüsen in ein schwefelsäurehaltiges Spinnbad geleitet und dort koaguliert und regeneriert. Die entstehenden Filamente werden direkt anschließend verstreckt, gewaschen, getrocknet und aufgespult.The resulting MWCNT-containing dope is passed through spinnerets in a sulfuric acid-containing spinning bath and coagulated and regenerated there. The resulting filaments are then directly stretched, washed, dried and wound.

In der folgenden Tabelle werden Meßwerte von MWCNT-verstärkten Viskose-Filamentfasern (Beispiel) angegeben und mit den Eigenschaften einer unverstärkten Viskose-Filamentfaser verglichen. Beide Produkte wurden unter Verwendung derselben Spinnviskose und bei gleichen Spinnbedingungen (u. a. Spinnbadzusammensetzung, Verstreckungsgrad, Trocknungstemperatur etc.) erhalten. Es ist bereits bei einer sehr geringen Zugabe von MWCNT zur Cellulosematrix von nur 0,1 % eine Verringerung der Dehnung bei einer Belastung mit 45 N um über 50 % gegenüber der Standardviskose feststellbar. Bruchlast [N] Dehnung bei 45 N [%] Standardviskose (Filamentverfahren) 75,6 3,6 Beispiel, Standard + 0,1 % MWCNT 78,9 2,3 Veränderung Standard : Beispiel [%] + 4,3 - 56,5 In the following table measured values of MWCNT-reinforced viscose filament fibers (example) are given and compared with the properties of an unreinforced viscose filament fiber. Both products were obtained using the same spinning viscose and under the same spinning conditions (including spinning bath composition, degree of stretching, drying temperature, etc.). Even with a very small addition of MWCNT to the cellulose matrix of only 0.1%, it is already possible to detect a reduction in the elongation at a load of 45 N by more than 50% compared to the standard viscose. Breaking load [N] Elongation at 45 N [%] Standard viscose (filament method) 75.6 3.6 Example, standard + 0.1% MWCNT 78.9 2.3 Change Standard: Example [%] + 4,3 - 56.5

Die einzige Zeichnungsfigur zeigt Kraft-Dehnungs-Diagramme für drei verschiedene Faserbeispiele. Die mit "0 % CNT best" bezeichnete kurzgestrichelte Linie betrifft eine Faser ohne einen Zusatz von Kohlenstoffnanopartikeln. Die mit "0,1 % CNT Variante 1" und "0,1 % CNT Variante 2" bezeichnete langgestrichelte bzw. durchgezogene Linie betrifft eine Faser der gleichen Zusammensetzung mit einem Zusatz von 0,1 Gew.-% CNT, wobei lediglich die Eindispergierung in die Spinnmasse auf verschiedene Weise vorgenommen worden ist.The single drawing figure shows force-strain diagrams for three different fiber examples. The short-dashed line labeled "0% CNT best" refers to a fiber without the addition of carbon nanoparticles. The long-dashed or solid line denoted "0.1% CNT variant 1" and "0.1% CNT variant 2" relates to a fiber of the same composition with an addition of 0.1% by weight of CNT, with only the single-dispersion in the dope has been made in various ways.

Claims (20)

  1. A process for producing cellulosic regenerated fibres by spinning from a cellulosic spinning solution mixed with anisotropic carbon nanoparticles the dimension of which in a particle main axis is greater than in the particle minor axes orthogonal to the latter, characterised in that the particle main axes are orientated by extending the freshly spun, still plastic regenerated fibres in an anisotropic direction parallel to the fibre direction, the extension of the fibres being at least 20 %.
  2. The process according to Claim 1, characterised in that the content of carbon nanoparticles in the spinning solution is max. 10 % by weight, in particular max. 5 % by weight, preferably max. 2 % by weight, more preferably max. 1 % by weight, and advantageously max. 0.5 % by weight.
  3. The process according to Claim 1 or 2, characterised in that the content of carbon nanoparticles in the spinning solution is at least 0.01 % by weight, in particular at least 0.05 % by weight, preferably at least 0.1 % by weight, and more preferably at least 0.2 % by weight.
  4. The process according to any of Claims 1 to 3, characterised in that the process is implemented as a viscous process, in particular for the production of continuous fibres.
  5. The process according to any of Claims 1 to 4, characterised in that the process is implemented in two consecutive spinning baths as a two-bath spinning process.
  6. The process according to any of Claims 1 to 5, characterised in that the extension of the fibres is in the range of up to 120 %, preferably in the range of 40 % to 100 %.
  7. The process according to any of Claims 1 to 6, characterised in that the carbon nanoparticles are one-, two- or multi-walled carbon nanotubes or fullerenes or graphenes.
  8. The process according to any of Claims 1 to 7, characterised in that the carbon nanoparticles are not surface-modified.
  9. The process according to any of Claims 1 to 7, characterised in that the carbon nanoparticles are surface-modified.
  10. The process according to Claim 9, characterised in that the surface modification is dependent upon the introduction of hydroxyl groups (OH) or of carboxyl groups (COOH).
  11. The process according to Claim 9, characterised by a type of surface modification that allows good embedding into the cellulose matrix by means of the formation of intermolecular forces.
  12. The process according to Claim 9, characterised by a type of surface modification that allows covalent bonding to the cellulose.
  13. The process according to any of Claims 1 to 12, characterised in that the length of the carbon nanoparticles in the particle main axis is between 5 nm and 250 nm.
  14. The process according to any of Claims 1 to 13, characterised in that the spinning solution is produced using cell materials with a high α cellulose content that is in particular greater than 94 %, preferably greater than 97 %.
  15. The process according to any of Claims 1 to 14, characterised in that the carbon nanoparticles mixed into the spinning solution are distributed free from aggregates and conglomerates.
  16. Cellulosic regenerated fibres with spun in anisotropic carbon nanoparticles, the dimension of which in a particle main axis is greater than in the particle minor axes orthogonal to the latter, characterised in that the particle main axes are orientated in an anisotropic direction parallel to the fibre direction.
  17. The cellulosic regenerated fibres according to Claim 16, characterised in that they are produced by a process according to any of Claims 1 to 14.
  18. The use of a continuous fibre produced by a process according to any of Claims 1 to 15 - implemented as a filament process and/or of a cellulosic regenerated fibre formed as a continuous fibre according to Claim 16 as a reinforcing and strengthening material and/or in tyre cord.
  19. Tyre cord, characterised by a cellulosic regenerated fibre formed as a continuous fibre that is formed according to Claim 16 and/or produced by a process implemented as a filament process according to any of Claims 1 to 15.
  20. A tyre, characterised in that the tyre material of the tyre has a tyre cord according to Claim 19.
EP13000476.5A 2012-03-09 2013-01-31 Regenerated cellulose fibres and process for their preparation Active EP2636774B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201210004807 DE102012004807A1 (en) 2012-03-09 2012-03-09 Cellulosic regenerated fibers and process for their preparation

Publications (2)

Publication Number Publication Date
EP2636774A1 EP2636774A1 (en) 2013-09-11
EP2636774B1 true EP2636774B1 (en) 2015-11-18

Family

ID=47665864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13000476.5A Active EP2636774B1 (en) 2012-03-09 2013-01-31 Regenerated cellulose fibres and process for their preparation

Country Status (2)

Country Link
EP (1) EP2636774B1 (en)
DE (1) DE102012004807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757790A (en) * 2017-01-17 2017-05-31 国家纳米科学中心 A kind of anti-oxidant static spinning membrane and its preparation method and application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2889400A1 (en) * 2013-12-24 2015-07-01 SAPPI Netherlands Services B.V. Cellulosic fibres or filaments reinforced with inorganic particles and method for the production thereof
CN103866421B (en) * 2014-02-25 2016-03-16 西安工程大学 A kind of preparation method of mosquito-proof regenerated celulose fibre
CN109505020B (en) * 2018-12-12 2021-06-22 广东双虹新材料科技有限公司 Viscose spinning solution containing coiled carbon fibers, preparation method thereof and viscose

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805179B1 (en) * 2000-02-23 2002-09-27 Centre Nat Rech Scient PROCESS FOR OBTAINING MACROSCOPIC FIBERS AND TAPES FROM COLLOIDAL PARTICLES, IN PARTICULAR CARBON NANOTUBES
DE10336473A1 (en) * 2003-08-08 2005-03-03 Degussa Ag Molding composition and moldings used for dissipating electric charge, e.g. antistatic packaging, structural part in zone protected from explosion or electromagnetic screening, contains electroconductive cellulose fibers in polymer matrix
KR100595751B1 (en) * 2004-11-11 2006-07-03 주식회사 효성 The Process for preparing a cellulose fiber
DE102006033591B4 (en) * 2006-07-18 2008-10-16 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Process for stabilizing the spinning solution in the production of cellulosic composite moldings
US20100234503A1 (en) * 2006-08-10 2010-09-16 Khabashesku Valery N Polymer composites mechanically reinforced with alkyl and urea functionalized nanotubes
WO2008034939A1 (en) 2006-09-04 2008-03-27 Natucell Ay Functionalized cellulose - carbon nanotube nanocomposites and hybride materials
FR2921075B1 (en) * 2007-09-18 2010-03-12 Arkema France CONTINUOUS PROCESS FOR OBTAINING COMPOSITE FIBERS BASED ON COLLOIDAL PARTICLES AND DEVICE FOR IMPLEMENTING SAID METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757790A (en) * 2017-01-17 2017-05-31 国家纳米科学中心 A kind of anti-oxidant static spinning membrane and its preparation method and application

Also Published As

Publication number Publication date
EP2636774A1 (en) 2013-09-11
DE102012004807A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
EP3010941B1 (en) Method for producing saccharide fibres
AT514475B1 (en) Polysaccharide fiber and process for its preparation
EP2190917B1 (en) Cellulose suspension and method for the production thereof
EP2981639B1 (en) Polysaccharide fibres with an increased fibrillation tendency and method for the production thereof
EP2981640B1 (en) Polysaccharide fibres and method for the production thereof
AT514123B1 (en) Polysaccharide film and process for its preparation
WO2014201483A1 (en) Polysaccharide fibres and method for producing same
EP2636774B1 (en) Regenerated cellulose fibres and process for their preparation
AT505787A1 (en) lyocell
AT518061B1 (en) Modified viscose fiber
DE2064969A1 (en) Radial tires. Elimination from: 2055320
DE102006016979B4 (en) Process for the production of a nano-composite material and apparatus for its production
EP0876522A1 (en) Process for producing cellulose fibres and fibres produced thereby
AT405949B (en) REGENERATED CELLULOSIC SHAPED BODY
KR101352086B1 (en) Cellulose-based filament fiber comprising clay
DE1469024C (en) Process for the production of thread, fibers, films or shapes by shaping viscose or cellulose derivatives
Hooshmand Process and properties of continuous fibers based on cellulose nanocrystals and nanofibers
DE19812954A1 (en) Viscose fibre production from cellulose or a spinning solution
EP2664697B2 (en) Flame retardant cellulose regenerated fibers and process for their preparation
EP3536833A1 (en) Lyocell fibres without mannan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: D01D 5/06 20060101AFI20140630BHEP

Ipc: D01F 1/10 20060101ALI20140630BHEP

Ipc: D01F 2/02 20060101ALI20140630BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140918

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20141218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150521

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 761631

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001462

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160318

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001462

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

26N No opposition filed

Effective date: 20160819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230120

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240124

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240201

Year of fee payment: 12