EP2592237A2 - Nozzle group control for turbines - Google Patents

Nozzle group control for turbines Download PDF

Info

Publication number
EP2592237A2
EP2592237A2 EP12189506.4A EP12189506A EP2592237A2 EP 2592237 A2 EP2592237 A2 EP 2592237A2 EP 12189506 A EP12189506 A EP 12189506A EP 2592237 A2 EP2592237 A2 EP 2592237A2
Authority
EP
European Patent Office
Prior art keywords
pump
nozzle group
valve
group control
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12189506.4A
Other languages
German (de)
French (fr)
Other versions
EP2592237B1 (en
EP2592237A3 (en
Inventor
RĂ¼diger BACKASCH
Mike Heyn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2592237A2 publication Critical patent/EP2592237A2/en
Publication of EP2592237A3 publication Critical patent/EP2592237A3/en
Application granted granted Critical
Publication of EP2592237B1 publication Critical patent/EP2592237B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines

Definitions

  • the invention relates to a nozzle group control for a turbine according to the preamble of independent claim 1.
  • thermodynamic design For turbines and in particular for steam turbines, there are different concepts of thermodynamic design, being optimized for the different operation of the system. If the turbine is almost always driven under the same load, it is usually designed as a throttle-controlled turbine. This optimizes the design of the turbine to the maximum load point.
  • the turbine is controlled in this case by nozzle groups, whereby it has a higher efficiency in the partial load range compared to the throttle-controlled turbine.
  • the structure of a nozzle group-controlled turbine consists of control valves, flow channels, nozzle segments (consisting of turbine blades in constant pressure construction), the control wheel (consisting of turbine blade in constant pressure) and the following in the flow direction blading in constant pressure or overpressure.
  • the live steam is fed through the individual control valves each a nozzle segment.
  • the admission of the individual nozzle segments takes place by the successive opening of the control valves. In each case only one control valve is opened or a maximum of two control valves moved simultaneously.
  • the control valves are driven by hydraulic Aktuartoren.
  • the actuators are connected to a central hydraulic system and are supplied via this with the required working pressure.
  • the hydraulic system is designed as an open system, that is, the hydraulic fluid is pumped out of an open hydraulic fluid reservoir and brought to the required working pressure of the control valves. Due to the hydraulic pressure, the control valves are moved to their corresponding position.
  • the hydraulic system requires large amounts of pressurized oil, a complicated installation of pipes and is therefore correspondingly complex and expensive.
  • the hydraulic fluid must be constantly under pressure in operation, which can lead to safety problems and leaks at the plant.
  • each Aktuartor has a working cylinder, which is moved by its own hydraulic pump in the desired position and thus also moves the control valve in a corresponding position.
  • the holding of the position is realized by the closing of associated solenoid valves, so that a hydrostatic pressure is built up in the working cylinders of the actuators.
  • the leakage through the associated valves is so low that a "re-pumping" is necessary only after longer time intervals.
  • Such Control valve is for example in the DE 10 2010 011 516 A1 disclosed.
  • a disadvantage of such a solution is that a separate pump with associated drive is necessary for each Aktuartor. If the pump fails, the entire nozzle group control must be switched off and the individual pump replaced. As a result, the reliability of such a system is low.
  • the nozzle group control according to the invention for a turbine in particular a steam turbine, comprising at least a first control valve and a second control valve, wherein each control valve has its own Aktuartor, which can move the respective control valve between an open and a closed position, wherein the actuators are hydraulically actuated and the hydraulic pressure required to actuate the actuators is established by a pump, characterized in that the actuators are arranged in a hydraulic circuit parallel to each other and can be controlled by a common first pump.
  • the invention makes use of the fact that the control valves are controlled in the nozzle group control in steam turbines, usually one after the other, so that a pump is sufficient and this one pump only for the Hydralikcroftkeits site a control valve must be designed. As a result, only a single pump is required for the inventive nozzle group control, instead of 4 so far.
  • actuators are arranged in a common hydraulic circuit, parallel to each other, and can be controlled by a common first pump, in contrast to the usual control with one pump per Aktuartor, a significant simplification of the nozzle group control can be achieved, resulting in significant leads to financial savings.
  • An embodiment of the invention provides that the hydraulic circuit is a closed circuit.
  • a closed circuit while a cycle is referred to, in which the hydraulic fluid does not leave the hydraulic circuit, but is pumped only in the circulation. A contact with the environment or a pump back into an open memory is eliminated. As a result, significantly less hydraulic fluid is necessary than hitherto, whereby the desire for an oil-free turbine largely taken into account.
  • a further embodiment of the invention provides that the Aktuartor has a working cylinder in which a double-sided acted upon piston is slidably disposed.
  • the double-sided acted upon cylinder can be mutually stressed in a simple manner and thus moved.
  • the reciprocal action of the piston takes place in that the hydraulic fluid is pumped from one side of the piston to the other during opening and closing operations.
  • the working cylinder has at least one valve which controls the inflow or outflow in the working cylinders.
  • the valve In order to enable a displacement and thus an adjustment of Aktuartors, the valve is controlled such that it is in an open position. To hold the piston in a certain position, the inflow and outflow to the working cylinder are then blocked.
  • the valve on the working cylinder is designed so that there is a hydrostatic drive. In this case, the holding of the position of the control valve is achieved by closing the valves on the working cylinder, whereby the hydraulic fluid can not escape from the Arbeiszylinder Beiseits the double-acting piston. Due to this hydrostatic design of the nozzle group control, it is not necessary for the pump to constantly maintain the necessary working pressure.
  • the pump can be switched off, as the position is maintained by the hydrostatic pressure in the working cylinder and a displacement of the piston in the working cylinder is not possible.
  • valve is a four-way valve. This type of valve allows a particularly simple control of the working cylinder during the closing and opening operation.
  • valve is a solenoid valve.
  • Solenoid valves are simple in construction, inexpensive and can be controlled very well. Therefore, they are particularly suitable for use in the described working cylinder.
  • a further embodiment of the invention provides that the pump is designed such that it can reverse the pumping direction.
  • the pump By reversing the pumping direction, the oil during the opening and closing process can be pumped from one side of the piston to the other, which allows a simple displacement of the piston in the working cylinder and thus a simple displacement of the control valve coupled to the Aktuartor.
  • the reversal of the pumping direction represents a particularly simple embodiment.
  • a further embodiment of the invention provides that an additional reservoir for hydraulic fluid is provided in the hydraulic circuit.
  • the hydraulic accumulator can ensure that the already low leakage losses are compensated.
  • the additional storage for the hydraulic fluid can be very small due to the low leakage losses.
  • the memory for the hydraulic fluid can be integrated, for example, in the hydraulic circuit in which the lines of the hydraulic circuit are designed to be correspondingly larger.
  • a further embodiment of the invention provides that the pump is electrically operated.
  • the electric drive for the pump enables a smooth, continuous and fast pump response.
  • the pump can also be operated by a drive other than an electric one.
  • an additional clutch can be arranged, which responds in particular in case of overload or a terminal of the pump and separates the pump from the drive.
  • additional units such as a frequency converter, can be provided.
  • a further embodiment of the invention provides that in the hydraulic circuit, a second redundant pump is arranged, which can replace the first pump if necessary.
  • a redundant pump By arranging a redundant pump, the reliability is significantly increased. If the first pump fails, the nozzle group control can continue to work without any problems. The replacement of the defective pump can be done during operation.
  • the redundant system offers clear advantages over the previous control, in which a failure of a single pump has led to complete failure of the nozzle group control.
  • the redundant pump is preferably to be driven by means of a redundant drive, so that damage to the drive of the pump does not lead to failure of the nozzle group control.
  • FIG. 1 shows a sectional view of a control stage 100 of a nozzle group control for a turbine.
  • the control stage 100 has a stator 110 with first guide vanes 111 and second guide vanes 112. Furthermore, the control stage 100 has a first flow channel 101 and a second flow channel 102.
  • the first flow channel 101 is designed in such a way that a first working fluid flowing through the first flow channel 101 is acted on by first fluid parameters and a first mass flow m1 of the first guide blade 111.
  • the second flow channel 102 is designed such that a second working fluid having second fluid parameters and a second mass flow m2 flowing through the second flow channel 102 acts on the second guide vanes 112.
  • the control level 100 can, as in FIG. 1 shown further flow channels 103, 104 have.
  • the further flow channels 103 and 104 are designed so that they can act on third guide vanes 113 and fourth vanes 114 with a working fluid such as water vapor.
  • the respective flow channels 101-104 divide the guide vanes 111-114 of the stator 110 into corresponding segments AD.
  • the first flow channel 101 is bounded by its wall and directs the working fluid flowing through it directly to the first guide vanes 111.
  • the first guide vanes 111 together with the first flow channel 101, the first segment A of the control stage 100. Accordingly, the second segment B, the third segment C and the fourth segment D formed.
  • a corresponding working fluid which may have different mass flows m1-m4 and / or different fluid parameters, flow.
  • the fluid parameters are, for example, pressures P1-P4 and flow rates C1-C4.
  • the mass flow m1-m4 and the flow parameters of the working fluid into the respective flow channel 101-104 can be regulated by control valves 121-124 arranged in the flow channels 101-104.
  • first the first control valve 121 opens, so that a first working fluid with the mass flow m1 and the first pressure P1 and the first flow velocity C1 in the direction of the first guide vanes 111 through the first flow channel 101 flows.
  • the first guide vanes 111 direct the working fluid in a predetermined direction, so that in the predetermined direction, the blades of an impeller arranged behind it are flown.
  • a second working fluid flows through the second flow channel 102 in the direction of the stator 110 and flows against the second guide vanes 112.
  • the third control valve 123 is opened, so that a third working fluid flows through the third flow channel 103 in the direction of the third vane 113.
  • the fourth control valve 124 is opened to allow a fourth working fluid to flow through the fourth flow passage 104 with a fourth mass flow m4 and a fourth flow velocity C4 toward the fourth vanes 114 ,
  • a nozzle group control is provided, whereby the working fluid, such as live steam, is fed through separate control valves 121-124 each to an associated nozzle segment A to D. As the power of the turbine increases, the control valves 121-124 open in a predetermined order.
  • the opening sequence mentioned in the aforementioned sections can be run as often as desired during turbine operation when loading the turbine as described, or when relieving the turbine in reverse order, in whole or in part. It is also possible that in special cases, two valves are opened or closed simultaneously.
  • FIG. 2 shows the control of the control valves 121 to 124 of the nozzle group control accordingly FIG. 1 ,
  • each control valve 121 to 124 has its own actuator 201 to 204.
  • the Aktuartor 201 to 204, the respective control valve 121 to 124 move between a fully open and a fully closed position, with intermediate positions of the control valves 121 to 124 are possible.
  • the actuators are hydraulically controlled.
  • each Aktuartor 201 to 204 each have a working cylinder 500 in which a double-sided acted upon piston 600 is slidably disposed.
  • Each working cylinder is connected via a hydraulic circuit 400 with a pump 300.
  • the individual actuators 201 to 204 are arranged parallel to one another in the hydraulic circuit and are actuated jointly by the pump 300.
  • the pump 300 is electronically operated and has an electric motor 700 for this purpose.
  • a clutch may additionally be provided between the motor 700 and the pump 300.
  • a pump with a different drive can also be used.
  • the process of a control valve 121 to 124 is performed by first opening the valve 700 on the corresponding power cylinder 500 and pump 300 pumping the hydraulic fluid in the appropriate direction, i.e., the pump 300 is in the same direction. the double-sided acted upon piston 600 accordingly acted upon.
  • the pump 300 is driven so that it pressurizes the double-sided piston 600 from above, whereby the hydraulic fluid at the bottom of the double-sided piston 600, can flow out of the working cylinder 500 and the piston 600 itself moved down, whereby the control valve 124 closes.
  • the pump 300 pumps the hydraulic fluid in the opposite direction, so that the piston is acted upon from below and the hydraulic fluid flows above the piston 600 from the working cylinder 500.
  • the pump 300 is only operated if one of the control valves 121 to 124 has to be actuated.
  • the pumping direction is reversible and the pumping direction depends on whether the respective control valve 121 to 124 is to be opened or closed.
  • the respective valve 700 is opened on the corresponding working cylinder 500.
  • the control valve 121 to 124 has reached the desired position, the corresponding valve 700 is closed and the pump 300 can then be switched off again.
  • a redundant system with a second pump 301 and corresponding drive 801 is provided in the exemplary embodiment, which is used in case of failure of the first pump 300.
  • the redundant system ensures that even if the first pump 300 and / or the first drive 800 fails, the nozzle group control continues to function flawlessly.
  • the defective pump 300 can be replaced during operation. This represents a major advantage over the previous systems, in which each actuator and thus each control valve has its own pump. In these systems, the entire nozzle group control failed when a single pump failed.
  • the nozzle group control according to the invention thus makes it possible to ensure a higher level of operational reliability with two pumps than was previously the case with the use of four pumps.
  • the pump 300 is equal or slightly larger in size than the pumps that were previously used to control the individual actuators.
  • an additional reservoir for hydraulic fluid can be provided.
  • the leakage due to the closed hydraulic circuit 400 is usually very low, it is sufficient to provide only a small hydraulic fluid storage. This may possibly already be formed by slightly over-dimensioning the pipeline for the hydraulic circuit 400.
  • the nozzle group control according to the invention thus enables a reduction of the necessary number of pumps from previously four to only one pump, wherein the pump power can remain unchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

The device has a main control valve (121) and an auxiliary control valve (122) that are provided with corresponding actuators (201,202). The control valves are moved between an open position and closed position. The actuators are hydraulically operated to generate hydraulic pressure by a pump (300). The actuators are arranged in parallel to each other and hydraulic system (400) is driven by pump. A working cylinder (500) is provided with a magnetic valve (700).

Description

Die Erfindung betrifft eine DĂ¼sengruppenregelung fĂ¼r eine Turbine nach dem Oberbegriff des unabhängigen Patentanspruchs 1.The invention relates to a nozzle group control for a turbine according to the preamble of independent claim 1.

FĂ¼r Turbinen und insbesondere fĂ¼r Dampfturbinen gibt es unterschiedliche Konzepte der thermodynamischen Auslegung, wobei auf den unterschiedlichen Betrieb der Anlage hin optimiert wird. Wird die Turbine fast ausnahmslos unter der gleichen Last gefahren, so wird sie Ă¼blicherweise als drosselgeregelte Turbine ausgelegt. Hierbei optimiert man die Auslegung der Turbine auf den maximalen Lastpunkt.For turbines and in particular for steam turbines, there are different concepts of thermodynamic design, being optimized for the different operation of the system. If the turbine is almost always driven under the same load, it is usually designed as a throttle-controlled turbine. This optimizes the design of the turbine to the maximum load point.

Gibt es dagegen verschiedene Lastpunkte, dann ist es sinnvoll, dass Teillastverhalten der Turbine zu berĂ¼cksichtigen. Die Turbine wird in diesem Fall durch DĂ¼sengruppen geregelt, wodurch sie im Teillastbereich einen höheren Wirkungsgrad im Vergleich zur drosselgeregelten Turbine hat.If, on the other hand, there are different load points, then it makes sense to consider the partial load behavior of the turbine. The turbine is controlled in this case by nozzle groups, whereby it has a higher efficiency in the partial load range compared to the throttle-controlled turbine.

Der Aufbau einer dĂ¼sengruppengeregelten Turbine besteht aus Regelventilen, Strömungskanälen, DĂ¼sensegmenten (bestehend aus Turbinenschaufeln in Gleichdruckbauweise), dem Regelrad (bestehend aus Turbinenschaufel in Gleichdruckbauweise) sowie der in Strömungsrichtung folgenden Beschaufelung in Gleichdruck- oder Ăœberdruckbauweise.The structure of a nozzle group-controlled turbine consists of control valves, flow channels, nozzle segments (consisting of turbine blades in constant pressure construction), the control wheel (consisting of turbine blade in constant pressure) and the following in the flow direction blading in constant pressure or overpressure.

Bei einer DĂ¼sengruppenregelung einer Dampfturbinen wird der Frischdampf durch die einzelnen Regelventile jeweils einem DĂ¼sensegment zugeleitet. Die Beaufschlagung der einzelnen DĂ¼sensegmente erfolgt durch das nacheinander Ă–ffnen der Regelventile. Dabei wird jeweils nur ein Regelventil geöffnet bzw. maximal zwei Regelventile gleichzeitig bewegt.In a nozzle group control of a steam turbine, the live steam is fed through the individual control valves each a nozzle segment. The admission of the individual nozzle segments takes place by the successive opening of the control valves. In each case only one control valve is opened or a maximum of two control valves moved simultaneously.

Bei älteren Konstruktionen wurde das sequentielle Betätigen durch einen Ventilbalken, in dem einzelne Regelventile in Hubrichtung lose befestigt sind und die bei unterschiedlichen Hubhöhen des Ventilbalkens betätigt werden, realisiert. Dadurch konnte ein einzelner Antrieb fĂ¼r mehrere Regelventile eingesetzt werden.In older constructions, sequential actuation has been accomplished by a valve bar in which individual control valves in Lifting direction are loosely attached and operated at different heights of the valve beam realized. As a result, a single drive could be used for several control valves.

Aufgrund steigender Dampfparameter werden bei heutigen Konstruktionen anstelle der Balkenventile, Einzelantriebe eingesetzt, um die erforderlichen Kräfte zu realisieren.Due to increasing steam parameters, individual drives are used in today's designs instead of the bar valves to realize the required forces.

Die Regelventile werden dabei durch hydraulische Aktuartoren angetrieben. Die Aktuartoren sind mit einer zentralen Hydraulikanlage verbunden und werden Ă¼ber diese mit dem erforderlichen Arbeitsdruck versorgt. Die Hydraulikanlage ist dabei als offene Anlage konzipiert, das heiĂŸt die HydraulikflĂ¼ssigkeit wird aus einem offenen HydraulikflĂ¼ssigkeitsspeicher herausgepumpt und auf den erforderlichen Arbeitsdruck der Regelventile gebracht. Durch den Hydraulikdruck werden die Regelventile in ihre entsprechende Lage verschoben.The control valves are driven by hydraulic Aktuartoren. The actuators are connected to a central hydraulic system and are supplied via this with the required working pressure. The hydraulic system is designed as an open system, that is, the hydraulic fluid is pumped out of an open hydraulic fluid reservoir and brought to the required working pressure of the control valves. Due to the hydraulic pressure, the control valves are moved to their corresponding position.

Die Hydraulikanlage erfordert groĂŸe unter Druck stehende Ă–lmengen, eine aufwendige Verlegung von Rohren und ist daher entsprechend aufwendig und teuer. AuĂŸerdem muss die HydraulikflĂ¼ssigkeit im Betrieb ständig unter Druck gehalten werden, was zu Sicherheitsproblemen und zu Undichtigkeiten an der Anlage fĂ¼hren kann.The hydraulic system requires large amounts of pressurized oil, a complicated installation of pipes and is therefore correspondingly complex and expensive. In addition, the hydraulic fluid must be constantly under pressure in operation, which can lead to safety problems and leaks at the plant.

Um diese Probleme zu vermeiden werden zunehmend hydrostatische Antriebe entwickelt, die dadurch gekennzeichnet sind, dass jeder Aktuartor Ă¼ber einen Arbeitszylinder verfĂ¼gt, der durch eine eigene Hydraulikpumpepumpe in die gewĂ¼nschte Position verfahren wird und damit das Regelventil ebenfalls in eine entsprechende Position bewegt. Das Halten der Position wird durch das SchlieĂŸen zugehöriger Magnetventile realisiert, so dass ein hydrostatischer Druck in den Arbeitszylindern der Aktuartoren aufgebaut wird. Die Leckage Ă¼ber die zugehörigen Ventile ist dabei so gering, dass ein "Nachpumpen" erst nach längeren Zeitintervallen notwendig ist. Ein solches Regelventil ist beispielsweise in der DE 10 2010 011 516 A1 offenbart.To avoid these problems increasingly hydrostatic drives are developed, which are characterized in that each Aktuartor has a working cylinder, which is moved by its own hydraulic pump in the desired position and thus also moves the control valve in a corresponding position. The holding of the position is realized by the closing of associated solenoid valves, so that a hydrostatic pressure is built up in the working cylinders of the actuators. The leakage through the associated valves is so low that a "re-pumping" is necessary only after longer time intervals. Such Control valve is for example in the DE 10 2010 011 516 A1 disclosed.

Nachteilig an einer solchen Lösung ist jedoch, dass fĂ¼r jeden Aktuartor eine eigene Pumpe mit zugehörigem Antrieb notwendig ist. Beim Ausfall der Pumpe muss die gesamte DĂ¼sengruppenregelung ausgeschaltet und die einzelne Pumpe ersetzt werden. Hierdurch ist die Betriebssicherheit eines solchen Systems gering.A disadvantage of such a solution, however, is that a separate pump with associated drive is necessary for each Aktuartor. If the pump fails, the entire nozzle group control must be switched off and the individual pump replaced. As a result, the reliability of such a system is low.

Ausgehend vom vorliegenden Stand der Technik ist es daher Aufgabe der Erfindung, eine DĂ¼sengruppenregelung fĂ¼r eine Turbine, insbesondere eine Dampfturbine bereitzustellen, welche einen vereinfachten Aufbau und eine verbesserte Betriebssicherheit aufweist.Based on the present state of the art, it is therefore an object of the invention to provide a nozzle group control for a turbine, in particular a steam turbine, which has a simplified structure and improved reliability.

Die Aufgabe wird gelöst durch die Merkmale des unabhängigen Patentanspruchs 1.The object is solved by the features of independent claim 1.

Ausgestaltungen der Erfindung, die einzeln oder in Kombination miteinander einsetzbar sind, sind Gegenstand der UnteransprĂ¼che.Embodiments of the invention, which are used individually or in combination with each other, are the subject of the dependent claims.

Die erfindungsgemĂ¤ĂŸe DĂ¼sengruppenregelung fĂ¼r eine Turbine, insbesondere eine Dampfturbine, umfassend wenigstens ein erstes Regelventil und ein zweites Regelventil, wobei jedes Regelventil einen eigenen Aktuartor aufweist, der das jeweilige Regelventil zwischen einer geöffneten und einer geschlossenen Position verfahren kann, wobei die Aktuartoren hydraulisch betätigbar sind und der zur Betätigung der Aktuatoren notwendige hydraulische Druck durch eine Pumpe aufgebaut wird, zeichnet sich dadurch aus, dass die Aktuartoren in einem Hydraulikkreislauf parallel zueinander angeordnet sind und von einer gemeinsamen ersten Pumpe ansteuerbar ist.The nozzle group control according to the invention for a turbine, in particular a steam turbine, comprising at least a first control valve and a second control valve, wherein each control valve has its own Aktuartor, which can move the respective control valve between an open and a closed position, wherein the actuators are hydraulically actuated and the hydraulic pressure required to actuate the actuators is established by a pump, characterized in that the actuators are arranged in a hydraulic circuit parallel to each other and can be controlled by a common first pump.

Die Erfindung macht sich dabei die Tatsache zu Nutze, dass die Regelventile bei der DĂ¼sengruppenregelung bei Dampfturbinen, Ă¼blicherweise nacheinander angesteuert werden, so dass eine Pumpe ausreicht und diese eine Pumpe auch nur fĂ¼r den HydralikflĂ¼ssigkeitsbedarf eines Regelventils ausgelegt sein muss. Hierdurch ist fĂ¼r die erfindungsgemĂ¤ĂŸe DĂ¼sengruppenregelung, anstatt bislang 4, nur noch eine einzige Pumpe erforderlich.The invention makes use of the fact that the control valves are controlled in the nozzle group control in steam turbines, usually one after the other, so that a pump is sufficient and this one pump only for the HydralikflĂ¼ssigkeitsbedarf a control valve must be designed. As a result, only a single pump is required for the inventive nozzle group control, instead of 4 so far.

Auch fĂ¼r den Fall, dass ausnahmsweise zwei Ventile zusammen bewegt werden sollen, wĂ¼rde die Pumpleistung der einen Pumpe ausreichen, wobei möglicherweise die SchlieĂŸ- und/ oder Ă–ffnungsgeschwindigkeit der Regelventile etwas reduziert ist. Diesem kann entgegen gewirkt werden, in dem die Pumpe etwas grĂ¶ĂŸer ausgelegt wird, als es fĂ¼r das Bewegen eines einzelnen Regelventils notwendig wäre.Also, in the event that two valves are to be moved together exceptionally, the pump power of a pump would be sufficient, possibly the closing and / or opening speed of the control valves is slightly reduced. This can be counteracted by making the pump slightly larger than would be necessary to move a single control valve.

Dadurch, dass die Aktuartoren in einem gemeinsamen Hydraulikkreislauf, parallel zueinander angeordnet sind, und von einer gemeinsamen ersten Pumpe ansteuerbar sind, kann im Gegensatz zu der bislang Ă¼blichen Ansteuerung mit jeweils einer Pumpe je Aktuartor, eine deutliche Vereinfachung der DĂ¼sengruppenregelung erreicht werden, was zu erheblichen finanziellen Einsparungen fĂ¼hrt.The fact that the actuators are arranged in a common hydraulic circuit, parallel to each other, and can be controlled by a common first pump, in contrast to the usual control with one pump per Aktuartor, a significant simplification of the nozzle group control can be achieved, resulting in significant leads to financial savings.

Eine Ausgestaltung der Erfindung sieht vor, dass der Hydraulikkreislauf ein geschlossener Kreislauf ist. Als geschlossener Kreislauf wird dabei ein Kreislauf bezeichnet, bei dem die HydraulikflĂ¼ssigkeit den Hydraulikkreislauf nicht verlässt, sondern lediglich im Kreislauf gepumpt wird. Ein Kontakt mit der Umgebung oder ein zurĂ¼ckpumpen in einen offenen Speicher entfällt. Hierdurch ist deutlich weniger HydraulikflĂ¼ssigkeit notwendig als bislang, wodurch dem Wunsch an eine ölfreie Turbine weitgehend Rechnung getragen.An embodiment of the invention provides that the hydraulic circuit is a closed circuit. As a closed circuit while a cycle is referred to, in which the hydraulic fluid does not leave the hydraulic circuit, but is pumped only in the circulation. A contact with the environment or a pump back into an open memory is eliminated. As a result, significantly less hydraulic fluid is necessary than hitherto, whereby the desire for an oil-free turbine largely taken into account.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Aktuartor einen Arbeitszylinder aufweist, in dem ein doppelseitig beaufschlagbarer Kolben verschieblich angeordnet ist. Zum Verschieben des Aktuartors kann der doppelseitig beaufschlagbare Zylinder auf einfache Weise wechselseitig beansprucht und damit verschoben werden. Die wechselseitige Beaufschlagung des Kolbens erfolgt dadurch, dass die HydraulikflĂ¼ssigkeit bei Ă–ffnungs- und SchlieĂŸvorgängen von einer Kolbenseite auf die andere gepumpt wird.A further embodiment of the invention provides that the Aktuartor has a working cylinder in which a double-sided acted upon piston is slidably disposed. To move the Aktuartors the double-sided acted upon cylinder can be mutually stressed in a simple manner and thus moved. The reciprocal action of the piston takes place in that the hydraulic fluid is pumped from one side of the piston to the other during opening and closing operations.

Eine weitere besondere Ausgestaltung der Erfindung sieht vor, dass der Arbeitszylinder wenigstens ein Ventil aufweist, welches den Zu- oder Abfluss in den Arbeitszylindern steuert. Um ein Verschieben und damit ein Verstellen des Aktuartors zu ermöglichen, ist das Ventil dabei derart angesteuert, dass es sich in einer geöffneten Position befindet. Zum halten des Kolbens in einer Bestimmten Position wird der Zu- und Abfluss zum Arbeitszylinder dann gesperrt. Das Ventil am Arbeitszylinder ist dabei so ausgebildet, das sich ein hydrostatischer Antrieb ergibt. Dabei wird das Halten der Position des Regelventils durch das SchlieĂŸen der Ventile am Arbeitszylinder erreicht, wodurch die HydraulikflĂ¼ssigkeit beiseits des doppelseitig beaufschlagbaren Kolbens nicht aus dem Arbeiszylinder entweichen kann. Durch diese hydrostatische Ausbildung der DĂ¼sengruppenregelung ist es nicht notwendig, dass die Pumpe ständig den notwendigen Arbeitsdruck aufrechterhalten muss. Nachdem das Regelventil eine bestimmte Position eingenommen und das Ventil den Arbeitszylinder verschlossen hat, kann die Pumpe ausgeschalten werden, da die Position durch den hydrostatischen Druck im Arbeitszylinder aufrechterhalten wird und ein Verschieben des Kolbens im Arbeitszylinder dadurch nicht möglich ist. Dadurch, dass nicht Ă¼ber die gesamte Zeitdauer ein Aufrechterhalten des Drucks in den gesamten Hydraulikleitungen erforderlich ist, ergibt sich eine erhöhte Betriebssicherheit im System.Another particular embodiment of the invention provides that the working cylinder has at least one valve which controls the inflow or outflow in the working cylinders. In order to enable a displacement and thus an adjustment of Aktuartors, the valve is controlled such that it is in an open position. To hold the piston in a certain position, the inflow and outflow to the working cylinder are then blocked. The valve on the working cylinder is designed so that there is a hydrostatic drive. In this case, the holding of the position of the control valve is achieved by closing the valves on the working cylinder, whereby the hydraulic fluid can not escape from the Arbeiszylinder Beiseits the double-acting piston. Due to this hydrostatic design of the nozzle group control, it is not necessary for the pump to constantly maintain the necessary working pressure. After the control valve has taken a certain position and the valve has closed the working cylinder, the pump can be switched off, as the position is maintained by the hydrostatic pressure in the working cylinder and a displacement of the piston in the working cylinder is not possible. The fact that it is not necessary to maintain the pressure in the entire hydraulic lines over the entire period of time, resulting in increased reliability in the system.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass das Ventil ein Vier-Zweiwegeventil ist. Diese Art von Ventil ermöglicht eine besonders einfache Ansteuerung des Arbeitszylinders während des SchlieĂŸ- und des Ă–ffnungsvorgangs.A further embodiment of the invention provides that the valve is a four-way valve. This type of valve allows a particularly simple control of the working cylinder during the closing and opening operation.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass das Ventil ein Magnetventil ist. Magnetventile sind einfach im Aufbau, preisgĂ¼nstig und lassen sich sehr gut ansteuern. Daher eignen sie sich besonders zum Einsatz beim beschrieben Arbeitszylinder.A further embodiment of the invention provides that the valve is a solenoid valve. Solenoid valves are simple in construction, inexpensive and can be controlled very well. Therefore, they are particularly suitable for use in the described working cylinder.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Pumpe derart ausgebildet ist, dass sie die Pumprichtung umkehren kann. Durch die Umkehrung der Pumprichtung kann das Ă–l beim Ă–ffnungs- und SchlieĂŸvorgang jeweils von der einen Kolbenseite auf die andere gepumpt werden, wodurch sich eine einfache Verschiebung des Kolbens im Arbeitszylinder und damit eine einfache Verschiebung des mit dem Aktuartor gekoppelten Regelventils ermöglichen lässt. Grundsätzlich wäre es auch möglich die wechselseitige Beanspruchung des doppelseitigen Kolbens durch eine Schaltung mittels Ventilen, welche im Hydraulikkreislauf angeordnet sind, zu gewährleisten. Die Umkehrung der Pumprichtung stellt allerdings eine besonders einfache Ausgestaltung dar.A further embodiment of the invention provides that the pump is designed such that it can reverse the pumping direction. By reversing the pumping direction, the oil during the opening and closing process can be pumped from one side of the piston to the other, which allows a simple displacement of the piston in the working cylinder and thus a simple displacement of the control valve coupled to the Aktuartor. In principle, it would also be possible to ensure the mutual stress of the double-sided piston by means of a circuit by means of valves which are arranged in the hydraulic circuit. The reversal of the pumping direction, however, represents a particularly simple embodiment.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass im Hydraulikkreislauf ein zusätzlicher Speicher fĂ¼r HydraulikflĂ¼ssigkeit vorgesehen ist. Der Hydraulikspeicher kann dafĂ¼r sorgen, die ohnehin geringen Leckageverluste ausgeglichen werden. Der zusätzliche Speicher fĂ¼r die HydraulikflĂ¼ssigkeit kann auf Grund der geringen Leckageverluste sehr klein ausfallen. Der Speicher fĂ¼r die HydraulikflĂ¼ssigkeit kann beispielsweise in den Hydraulikkreislauf integriert werden, in dem die Leitungen des Hydraulikkreislaufes entsprechend grĂ¶ĂŸer ausgebildet sind.A further embodiment of the invention provides that an additional reservoir for hydraulic fluid is provided in the hydraulic circuit. The hydraulic accumulator can ensure that the already low leakage losses are compensated. The additional storage for the hydraulic fluid can be very small due to the low leakage losses. The memory for the hydraulic fluid can be integrated, for example, in the hydraulic circuit in which the lines of the hydraulic circuit are designed to be correspondingly larger.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Pumpe elektrisch betrieben ist. Der elektrische Antrieb fĂ¼r die Pumpe ermöglicht ein gleichmĂ¤ĂŸiges, stufenloses und schnelles Ansprechen der Pumpe.A further embodiment of the invention provides that the pump is electrically operated. The electric drive for the pump enables a smooth, continuous and fast pump response.

Die Pumpe kann selbstverständlich auch Ă¼ber einen anderen Antrieb, als einen elektrischen, betrieben werden. Zwischen dem Motor und der Pumpe kann eine zusätzliche Kupplung angeordnet sein, die insbesondere bei Ăœberlastung oder einem Klemmen der Pumpe anspricht und die Pumpe vom Antrieb trennt. Des Weiteren können zusätzliche Aggregate, wie beispielsweise ein Frequenzumrichter, vorgesehen werden.Of course, the pump can also be operated by a drive other than an electric one. Between the motor and the pump, an additional clutch can be arranged, which responds in particular in case of overload or a terminal of the pump and separates the pump from the drive. Furthermore, additional units, such as a frequency converter, can be provided.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass im Hydraulikkreislauf eine zweite redundante Pumpe angeordnet ist, die im Bedarfsfall die erste Pumpe ersetzen kann. Durch die Anordnung einer redundanten Pumpe wird die Betriebssicherheit deutlich erhöht. Beim Ausfall der ersten Pumpe kann die DĂ¼sengruppenregelung weiter störungsfrei arbeiten. Das Ersetzen der defekten Pumpe kann dabei während des Betriebs erfolgen. Das redundante System bietet dadurch deutliche Vorteile gegenĂ¼ber der bisherigen Regelung, bei der ein Ausfall einer einzelnen Pumpe zum kompletten Versagen der DĂ¼sengruppenregelung gefĂ¼hrt hat. Die redundante Pumpe ist vorzugsweise mittels eines redundanten Antriebs anzutreiben, so dass auch schäden am Antrieb der Pumpe nicht zum versagen der DĂ¼sengruppenregelung fĂ¼hren.A further embodiment of the invention provides that in the hydraulic circuit, a second redundant pump is arranged, which can replace the first pump if necessary. By arranging a redundant pump, the reliability is significantly increased. If the first pump fails, the nozzle group control can continue to work without any problems. The replacement of the defective pump can be done during operation. The redundant system offers clear advantages over the previous control, in which a failure of a single pump has led to complete failure of the nozzle group control. The redundant pump is preferably to be driven by means of a redundant drive, so that damage to the drive of the pump does not lead to failure of the nozzle group control.

Zusammenfassend kann somit festgestellt werden, dass aufgrund der Parallelschaltung der Aktuartoren und des Betreibens der Aktuartoren Ă¼ber eine gemeinsamen Pumpe eine erhebliche Vereinfachung des Systems erreicht wird. Die Kosten können dabei deutlich verringert werden, da lediglich eine statt vier Pumpen erforderlich ist. Bei der Verwendung eines redundanten Systems verringert sich die Anzahl der Pumpen immerhin noch um die Hälfte, bei gleichzeitig deutlicher Steigerung der Betriebssicherheit, da ein Ausfall einer Pumpe nicht zum Versagen der gesamten DĂ¼sengruppenregelung fĂ¼hrt, wie dies bislang der Fall ist.In summary, it can thus be stated that, due to the parallel connection of the actuators and the actuation of the actuators via a common pump, a considerable simplification of the system is achieved. The costs can be significantly reduced, since only one instead of four pumps is required. When using a redundant system, the number of pumps is still reduced by half, at the same time significantly increasing the reliability, since a failure of a pump does not lead to the failure of the entire nozzle group control, as has been the case.

AusfĂ¼hrungsbeispiele und Vorteile der Erfindung werden nachfolgend anhand der AusfĂ¼hrungsbeispiele erläutert. Es zeigt:

Figur 1
den grundsätzlichen Aufbau einer DĂ¼sengruppenregelung in Schnittdarstellung;
Figur 2
eine schematische Darstellung der erfindungsgemĂ¤ĂŸen DĂ¼sengruppenregelung.
Embodiments and advantages of the invention will be explained below with reference to the embodiments. It shows:
FIG. 1
the basic structure of a nozzle group control in a sectional view;
FIG. 2
a schematic representation of the nozzle group control according to the invention.

Bei den Figuren handelt es sich um schematische und zum Teil vereinfachte Darstellungen, bei denen jeweils nur die fĂ¼r die Erfindung wesentlichen Bauteile dargestellt sind. Gleiche bzw. funktionsgleiche Bauteile sind figurĂ¼bergreifend mit denselben Bezugszeichen versehen.The figures are schematic and partly simplified representations in which only the essential components of the invention are shown. Same or functionally identical components are cross-figured with the same reference numerals.

Figur 1 zeigt eine Schnittdarstellung einer Regelstufe 100 einer DĂ¼sengruppenregelung fĂ¼r eine Turbine. Die Regelstufe 100 weist ein Leitrad 110 mit ersten Leitschaufeln 111 und zweiten Leitschaufeln 112 auf. Ferner weist die Regelstufe 100 einen ersten Strömungskanal 101 und einen zweiten Strömungskanal 102 auf. Der erste Strömungskanal 101 ist derart ausgebildet, dass ein durch den ersten Strömungskanal 101 strömendes erstes Arbeitsfluid mit ersten Fluidparametern und einem ersten Massenstrom m1 der ersten Leitschaufel 111 beaufschlagt. Der zweite Strömungskanal 102 ist derart ausgebildet, dass ein durch den zweiten Strömungskanal 102 strömendes zweites Arbeitsfluid mit zweiten Fluidparametern und einem zweiten Massenstrom m2 die zweiten Leitschaufeln 112 beaufschlagt. FIG. 1 shows a sectional view of a control stage 100 of a nozzle group control for a turbine. The control stage 100 has a stator 110 with first guide vanes 111 and second guide vanes 112. Furthermore, the control stage 100 has a first flow channel 101 and a second flow channel 102. The first flow channel 101 is designed in such a way that a first working fluid flowing through the first flow channel 101 is acted on by first fluid parameters and a first mass flow m1 of the first guide blade 111. The second flow channel 102 is designed such that a second working fluid having second fluid parameters and a second mass flow m2 flowing through the second flow channel 102 acts on the second guide vanes 112.

Die Regelstufe 100 kann wie in Figur 1 gezeigt weitere Strömungskanäle 103, 104 aufweisen. Die weiteren Strömungskanäle 103 und 104 sind dabei so ausgebildet, dass sie dritte Leitschaufeln 113 und vierte Leitschaufeln 114 mit einem Arbeitsfluid, wie beispielsweise Wasserdampf, beaufschlagen können. Die jeweiligen Strömungskanäle 101-104 teilen bzw. segmentieren die Leitschaufel 111-114 des Leitrades 110 in entsprechende Segmente A-D. Im AusfĂ¼hrungsbeispiel in Figur 1 wird der erste Strömungskanal 101 durch seine Wandung begrenzt und leitet das durch ihn durchströmende Arbeitsfluid direkt zu den ersten Leitschaufeln 111. Die ersten Leitschaufeln 111 bilden zusammen mit dem ersten Strömungskanal 101 das erste Segment A der Regelstufe 100. Entsprechend werden das zweite Segment B, das dritte Segment C und das vierte Segment D gebildet.The control level 100 can, as in FIG. 1 shown further flow channels 103, 104 have. The further flow channels 103 and 104 are designed so that they can act on third guide vanes 113 and fourth vanes 114 with a working fluid such as water vapor. The respective flow channels 101-104 divide the guide vanes 111-114 of the stator 110 into corresponding segments AD. In the embodiment in FIG. 1 the first flow channel 101 is bounded by its wall and directs the working fluid flowing through it directly to the first guide vanes 111. The first guide vanes 111 together with the first flow channel 101, the first segment A of the control stage 100. Accordingly, the second segment B, the third segment C and the fourth segment D formed.

Durch jeden Strömungskanal 101-104 kann ein entsprechendes Arbeitsfluid, welches unterschiedliche Massenströme m1-m4 und/oder unterschiedliche Fluidparamter aufweisen kann, strömen. Die Fluidparameter sind beispielsweise DrĂ¼cke P1-P4 und Strömungsgeschwindigkeiten C1-C4.Through each flow channel 101-104, a corresponding working fluid, which may have different mass flows m1-m4 and / or different fluid parameters, flow. The fluid parameters are, for example, pressures P1-P4 and flow rates C1-C4.

Der Massenstrom m1-m4 und die Strömungsparameter des Arbeitsfluids in den jeweiligen Strömungskanal 101-104 können durch in den Strömungskanälen 101-104 angeordnete Regelventile 121-124 geregelt werden.The mass flow m1-m4 and the flow parameters of the working fluid into the respective flow channel 101-104 can be regulated by control valves 121-124 arranged in the flow channels 101-104.

Wird die Turbine aus dem Stillstand gestartet und bis zur Vollauslastung hochgefahren, öffnet sich zunächst das erste Regelventil 121, so dass durch den ersten Strömungskanal 101 ein erstes Arbeitsfluid mit dem Massenstrom m1 und den ersten Druck P1 sowie der ersten Strömungsgeschwindigkeit C1 in Richtung erster Leitschaufeln 111 strömt. Die ersten Leitschaufeln 111 lenken das Arbeitsfluid in eine vorbestimmte Richtung, so dass in der vorbestimmten Richtung die dahinter angeordneten Laufschaufeln eines Laufrades angeströmt werden. Wenn das erste Regelventil 121 vollständig geöffnet ist und das Regelventil 121 in seinem Ventilpunkt am verlustärmsten das erste Arbeitsfluid durchströmen lässt, wird bei Bedarf zusätzlicher Leistung der Turbine das zweite Regelventil 122 geöffnet. Mit Hilfe des zweiten Regelventils 122 strömt ein zweites Arbeitsfluids durch den zweiten Strömungskanal 102 in Richtung des Leitrades 110 und strömt gegen die zweiten Leitschaufeln 112. Nachdem auch das zweite Regelventil 122 in seinem Ventilpunkt betrieben wird und somit den optimalen Wirkungsgrad aufweist, wird bei Bedarf weiterer Leistung das dritte Regelventil 123 geöffnet, so dass ein drittes Arbeitsfluid durch den dritten Strömungskanal 103 in Richtung dritte Leitschaufel 113 strömt. Wenn das dritte Regelventil 123 mit seinem Ventilpunkt betrieben wird und zusätzliche Leistung benötigt wird, wird schlieĂŸlich das vierte Regelventil 124 geöffnet, damit ein viertes Arbeitsfluid durch den vierten Strömungskanal 104 mit einem vierten Massenstrom m4 und einer vierten Strömungsgeschwindigkeit C4 in Richtung der vierten Leitschaufeln 114 strömt.If the turbine is started from a standstill and ramped up to full capacity, first the first control valve 121 opens, so that a first working fluid with the mass flow m1 and the first pressure P1 and the first flow velocity C1 in the direction of the first guide vanes 111 through the first flow channel 101 flows. The first guide vanes 111 direct the working fluid in a predetermined direction, so that in the predetermined direction, the blades of an impeller arranged behind it are flown. When the first control valve 121 is fully opened and the control valve 121 flows through the first working fluid at its lowest point in the valve point, the second control valve 122 is opened when additional power of the turbine is required. With the aid of the second control valve 122, a second working fluid flows through the second flow channel 102 in the direction of the stator 110 and flows against the second guide vanes 112. After the second control valve 122 is operated at its valve point and thus has the optimum efficiency, if necessary Performance, the third control valve 123 is opened, so that a third working fluid flows through the third flow channel 103 in the direction of the third vane 113. Finally, when the third control valve 123 is operated at its valve point and additional power is needed, the fourth control valve 124 is opened to allow a fourth working fluid to flow through the fourth flow passage 104 with a fourth mass flow m4 and a fourth flow velocity C4 toward the fourth vanes 114 ,

Somit wird eine DĂ¼sengruppenregelung bereitgestellt, wodurch das Arbeitsfluid, wie beispielsweise Frischdampf, durch getrennte Regelventile 121-124 jeweils einem zugeordneten DĂ¼sensegment A bis D zugeleitet wird. Mit steigender Leistung der Turbine öffnen sich die Regelventile 121-124 in einer vorbestimmten Reihenfolge.Thus, a nozzle group control is provided, whereby the working fluid, such as live steam, is fed through separate control valves 121-124 each to an associated nozzle segment A to D. As the power of the turbine increases, the control valves 121-124 open in a predetermined order.

Die in den vorgenannten Abschnitten genannte Öffnungssequenz kann während des Turbinenbetriebs beim Belasten der Turbine wie beschrieben, oder beim Entlasten der Turbine in umgekehrter Folge, ganz oder teilweise beliebig häufig durchlaufen werden. Es ist auch möglich, dass in besonderen Fällen zwei Ventile gleichzeitig geöffnet oder geschlossen werden.The opening sequence mentioned in the aforementioned sections can be run as often as desired during turbine operation when loading the turbine as described, or when relieving the turbine in reverse order, in whole or in part. It is also possible that in special cases, two valves are opened or closed simultaneously.

Figur 2 zeigt die Ansteuerung der Regelventile 121 bis 124 der DĂ¼sengruppenregelung entsprechend Figur 1. Zur Ansteuerung der Regelventile 121 bis 124 weist jedes Regelventil 121 bis 124 einen eigenen Aktuartor 201 bis 204 auf. Der Aktuartor 201 bis 204 kann das jeweilige Regelventil 121 bis 124 zwischen einer vollständig geöffneten und einer vollständig geschlossenen Position verfahren, wobei auch Zwischenstellungen der Regelventile 121 bis 124 möglich sind. Die Aktuartoren werden hydraulisch angesteuert. Hierzu weist jeder Aktuartor 201 bis 204 jeweils einen Arbeitszylinder 500 auf, in dem ein doppelseitig beaufschlagbarer Kolben 600 verschieblich angeordnet ist. Jeder Arbeitszylinder ist Ă¼ber einen Hydraulikkreislauf 400 mit einer Pumpe 300 verbunden. Die einzelnen Aktuartoren 201 bis 204 sind in dem hydraulischen Kreislauf parallel zueinander angeordnet und werden von der Pumpe 300 gemeinsam angesteuert. Die Pumpe 300 ist elektronisch betrieben und weist hierzu einen Elektromotor 700. Um den Motor 700 vor Ăœberlastung, z.B. im Falle eines Festsitzens der Pumpe zu schĂ¼tzen, kann zusätzlich zwischen dem Motor 700 und der Pumpe 300 eine Kupplung vorgesehen sein. Anstelle einer elektrisch betriebenen Pumpe 300 kann auch eine Pumpe mit anderem Antrieb eingesetzt werden. FIG. 2 shows the control of the control valves 121 to 124 of the nozzle group control accordingly FIG. 1 , For controlling the control valves 121 to 124, each control valve 121 to 124 has its own actuator 201 to 204. The Aktuartor 201 to 204, the respective control valve 121 to 124 move between a fully open and a fully closed position, with intermediate positions of the control valves 121 to 124 are possible. The actuators are hydraulically controlled. For this purpose, each Aktuartor 201 to 204 each have a working cylinder 500 in which a double-sided acted upon piston 600 is slidably disposed. Each working cylinder is connected via a hydraulic circuit 400 with a pump 300. The individual actuators 201 to 204 are arranged parallel to one another in the hydraulic circuit and are actuated jointly by the pump 300. The pump 300 is electronically operated and has an electric motor 700 for this purpose. In order to protect the motor 700 from overloading, eg in the event of the pump sticking, a clutch may additionally be provided between the motor 700 and the pump 300. Instead of an electrically operated pump 300, a pump with a different drive can also be used.

Da wie bereits in den AusfĂ¼hrungen zur Figur 1 erläutert, jeweils nur ein Regelventil bzw. maximal zwei Regelventile gleichzeitig angesteuert werden, reicht es aus, wenn die Pumpe 300 so ausgelegt ist, dass sie den hierzu maximal nötigen Volumenstrom und den hierzu notwendigen maximalen Hydraulikdruck aufbringen kann. Durch die Parallelschaltung der einzelnen Aktuartoren und die dadurch mögliche Ansteuerung mittels einer einzelnen Pumpe 300 vereinfacht sich die DĂ¼sengruppenregelung deutlich und es lässt sich eine deutliche Kosteneinsparung gegenĂ¼ber den bisherigen DĂ¼sengruppenregelungen, bei denen jeder Aktuartor Ă¼ber eine einzelne Pumpe angesteuert wurde, erzielen.As in the remarks to FIG. 1 explained, only one control valve or a maximum of two control valves are controlled simultaneously, it is sufficient if the pump 300 is designed so that they can muster the maximum required for this flow rate and the necessary maximum hydraulic pressure for this purpose. Due to the parallel connection of the individual actuators and the possible activation by means of a single pump 300, the nozzle group control is simplified significantly and it is possible to achieve a significant cost savings compared to the previous nozzle group regulations, in which each actuator was controlled by a single pump.

Das Verfahren eines Regelventils 121 bis 124 erfolgt dadurch, dass zunächst das Ventil 700 am entsprechenden Arbeitszylinder 500 geöffnet wird und die Pumpe 300 die HydraulikflĂ¼ssigkeit in die entsprechende Richtung pumpt, d.h. den doppelseitig beaufschlagbaren Kolben 600 entsprechend beaufschlagt. Um das Regelventil 124 beispielsweise zu schlieĂŸen, wird die Pumpe 300 derart angesteuert, dass sie den doppelseitigen Kolben 600 von oben mit DruckflĂ¼ssigkeit beaufschlagt, wodurch die HydraulikflĂ¼ssigkeit an der der Unterseite des doppelseitigen Kolben 600, aus dem Arbeitszylinder 500 ausströmen kann und der Kolben 600 sich nach unten bewegt, wodurch das Regelventil 124 schlieĂŸt. Um das Regelventil 124 zu öffnen fördert die Pumpe 300 die HydraulikflĂ¼ssigkeit in entgegen gesetzte Richtung, so dass der Kolben von unten beaufschlagt wird und die HydraulikflĂ¼ssigkeit oberhalb des Kolben 600 aus dem Arbeitszylinder 500 strömt.The process of a control valve 121 to 124 is performed by first opening the valve 700 on the corresponding power cylinder 500 and pump 300 pumping the hydraulic fluid in the appropriate direction, i.e., the pump 300 is in the same direction. the double-sided acted upon piston 600 accordingly acted upon. In order to close the control valve 124, for example, the pump 300 is driven so that it pressurizes the double-sided piston 600 from above, whereby the hydraulic fluid at the bottom of the double-sided piston 600, can flow out of the working cylinder 500 and the piston 600 itself moved down, whereby the control valve 124 closes. To open the control valve 124, the pump 300 pumps the hydraulic fluid in the opposite direction, so that the piston is acted upon from below and the hydraulic fluid flows above the piston 600 from the working cylinder 500.

Wenn der Kolben 600 eine festgelegte Lage erreicht hat, welcher einer gewĂ¼nschten Stellung des mit dem Aktuartor gekoppelten Regelventils entspricht, wird das Ventil 700 geschlossen. Hierdurch wird die HydraulikflĂ¼ssigkeit oberhalb und unterhalb des doppelseitig beaufschlagbaren Kolbens 600 im Arbeitszylinder 500 eingeschlossen und es bildet sich ein hydrostatischer Druck im Arbeitszylinder 500 aus, der den Kolben 600 in seiner Position fixiert. Hierdurch kann die Pumpe 300 ausgeschaltet werden und muss nicht, wie dies bislang bei herkömmlichen Systemen notwendig war, ständig einen Ă–ldruck im gesamten System, das heiĂŸt in dem gesamten Hydraulikkreislauf 400, aufrechterhalten. Hierdurch ergibt sich zum einen ein energieeffizienterer Betrieb, zum anderen erhöht es die Betriebssicherheit der DĂ¼sengruppenregelung, da der Hydraulikkreislauf 400 nicht ständig unter Druck stehen muss.When the piston 600 has reached a predetermined position corresponding to a desired position of the control valve coupled to the actuator, the valve 700 is closed. As a result, the hydraulic fluid is trapped above and below the double-acting piston 600 in the working cylinder 500 and it forms a hydrostatic pressure in the working cylinder 500, which fixes the piston 600 in its position. This allows the pump 300th be turned off and must not, as has heretofore been necessary in conventional systems, constantly maintain an oil pressure throughout the system, that is, in the entire hydraulic circuit 400. This results in a more energy-efficient operation, on the other hand, it increases the reliability of the nozzle group control, since the hydraulic circuit 400 does not have to be constantly under pressure.

Die Pumpe 300 wird jeweils nur betrieben, wenn eines der Regelventile 121 bis 124 betätigt werden muss. Die Pumprichtung ist dabei umkehrbar und die Pumprichtung richtet sich danach, ob das jeweilige Regelventil 121 bis 124 geöffnet oder geschlossen werden soll. Während des Pumpbetriebes ist das jeweilige Ventil 700 am entsprechenden Arbeitszylinder 500 geöffnet. Wenn das Regelventil 121 bis 124 die gewĂ¼nschte Position erreicht hat, wird das entsprechende Ventil 700 geschlossen und die Pumpe 300 kann danach wieder ausgeschaltet werden.The pump 300 is only operated if one of the control valves 121 to 124 has to be actuated. The pumping direction is reversible and the pumping direction depends on whether the respective control valve 121 to 124 is to be opened or closed. During the pumping operation, the respective valve 700 is opened on the corresponding working cylinder 500. When the control valve 121 to 124 has reached the desired position, the corresponding valve 700 is closed and the pump 300 can then be switched off again.

Um die Betriebssicherheit der DĂ¼sengruppenregelung zu erhöhen, ist im AusfĂ¼hrungsbeispiel ein redundantes System mit einer zweiten Pumpe 301 und entsprechenden Antrieb 801 vorgesehen, welches beim Ausfall der ersten Pumpe 300 zum Einsatz kommt. Das redundante System gewährleistet, dass auch beim Ausfall der ersten Pumpe 300 und/oder des ersten Antriebs 800, die DĂ¼sengruppenregelung weiter einwandfrei funktioniert. Die schadhafte Pumpe 300 kann während des Betriebes ausgewechselt werden. Dies stellt einen groĂŸen Vorteil gegenĂ¼ber den bisherigen Systemen dar, bei denen jeder Aktuartor und damit jedes Regelventil Ă¼ber eine eigene Pumpe verfĂ¼gt. Bei diesen Systemen fiel die gesamte DĂ¼sengruppenregelung beim Ausfall einer einzelnen Pumpe aus. Die erfindungsgemĂ¤ĂŸe DĂ¼sengruppenregelung ermöglicht somit mit zwei Pumpen eine höhere Betriebssicherheit zu gewährleisten, als dies bislang beim Einsatz von vier Pumpen der Fall war.In order to increase the reliability of the nozzle group control, a redundant system with a second pump 301 and corresponding drive 801 is provided in the exemplary embodiment, which is used in case of failure of the first pump 300. The redundant system ensures that even if the first pump 300 and / or the first drive 800 fails, the nozzle group control continues to function flawlessly. The defective pump 300 can be replaced during operation. This represents a major advantage over the previous systems, in which each actuator and thus each control valve has its own pump. In these systems, the entire nozzle group control failed when a single pump failed. The nozzle group control according to the invention thus makes it possible to ensure a higher level of operational reliability with two pumps than was previously the case with the use of four pumps.

Aufgrund der Tatsache, dass in der Regel nur ein Regelventil bzw. maximal zwei Regelventile gleichzeitig betätigt werden, reicht es aus, wenn die Pumpe 300 gleich bzw. leicht grĂ¶ĂŸer dimensioniert ist, als die Pumpen die bislang zur Ansteuerung der einzelnen Aktuartoren eingesetzt wurden.Due to the fact that usually only one control valve or a maximum of two control valves are actuated simultaneously, it is sufficient if the pump 300 is equal or slightly larger in size than the pumps that were previously used to control the individual actuators.

Um eventuelle Leckage aus dem System ausgleichen zu können, kann ein zusätzlicher Speicher fĂ¼r HydraulikflĂ¼ssigkeit vorgesehen werden. Da die Leckage aufgrund des geschlossenen Hydraulikkreislaufes 400 allerdings in der Regel sehr gering ist, reicht es aus, wenn man einen nur kleinen HydraulikflĂ¼ssigkeitsspeicher vorsieht. Dieser kann möglicherweise schon dadurch ausgebildet werden, dass man die Rohrleitung fĂ¼r den Hydraulikkreislauf 400 leicht Ă¼berdimensioniert.In order to be able to compensate for any leakage from the system, an additional reservoir for hydraulic fluid can be provided. However, since the leakage due to the closed hydraulic circuit 400 is usually very low, it is sufficient to provide only a small hydraulic fluid storage. This may possibly already be formed by slightly over-dimensioning the pipeline for the hydraulic circuit 400.

Zusammenfassend kann somit festgestellt werden, dass durch die erfindungsgemĂ¤ĂŸe parallele Anordnung der Aktuatoren im Hydraulikkreislauf eine Ansteuerung der Aktuatoren mittels einer einzigen Pumpe ermöglicht wird. Hierdurch ergeben sich erhebliche Kosteneinsparungen. Durch die Verwendung eines redundanten Systems, das heiĂŸt einer zusätzlichen redundanten Pumpe samt Antrieb, ergibt sich eine deutlich verbesserte Betriebssicherheit. Das redundante System gewährleistet, dass die DĂ¼sengruppenregelung auch dann noch einwandfrei funktioniert, wenn die erste Pumpe 300 bzw. der erste Antrieb 800, ausfällt. Durch den geschlossenen Hydraulikkreislauf 400 wird die Anforderung nach einer ölfreien Turbine weitgehend erfĂ¼llt. Der Ă–lbedarf ist aufgrund des geschlossenen Systems und der parallelen Anordnung der Aktuartoren sehr gering. FĂ¼r die beschriebene DĂ¼sengruppenregelung fĂ¼r eine Dampfturbine reichen ca. 10 l HydraulikflĂ¼ssigkeit aus, um die DĂ¼sengruppenregelung auszubilden.In summary, it can thus be stated that the activation of the actuators by means of a single pump is made possible by the parallel arrangement of the actuators according to the invention in the hydraulic circuit. This results in significant cost savings. By using a redundant system, that is, an additional redundant pump with drive, there is a significantly improved reliability. The redundant system ensures that the nozzle group control still functions perfectly even if the first pump 300 or the first drive 800 fails. Due to the closed hydraulic circuit 400, the requirement for an oil-free turbine is largely met. The oil requirement is very low due to the closed system and the parallel arrangement of actuators. For the described nozzle group control for a steam turbine, about 10 liters of hydraulic fluid suffice to form the nozzle group control.

Die erfindungsgemĂ¤ĂŸe DĂ¼sengruppenregelung ermöglicht somit eine Reduzierung der notwendigen Anzahl von Pumpen von bislang vier auf lediglich eine Pumpe, wobei die Pumpenleistung unverändert bleiben kann.The nozzle group control according to the invention thus enables a reduction of the necessary number of pumps from previously four to only one pump, wherein the pump power can remain unchanged.

Claims (10)

DĂ¼sengruppenregelung fĂ¼r eine Turbine, insbesondere eine Dampfturbine, umfassend wenigstens ein erstes Regelventile (121) und ein zweites Regelventil (122),
wobei jedes Regelventil (121, 122) einen eigenen Aktuartor (201, 202) aufweist, der das jeweilige Regelventil (121, 122) zwischen einer geöffneten und einer geschlossenen Position verfahren kann, wobei die Aktuartoren (201, 202) hydraulisch betätigbar sind und der zur Betätigung der Aktuartoren (201, 202) notwendige hydraulische Druck durch eine Pumpe (300) aufgebaut wird
dadurch gekennzeichnet, dass
die Aktuartoren (201, 202) in einem Hydraulikreislauf (400), parallel zueinander angeordnet sind und von einer gemeinsamen ersten Pumpe (300) ansteuerbar sind.
Nozzle group control for a turbine, in particular a steam turbine, comprising at least a first control valve (121) and a second control valve (122),
wherein each control valve (121, 122) has its own Aktuartor (201, 202), which can move the respective control valve (121, 122) between an open and a closed position, wherein the Aktuartoren (201, 202) are hydraulically actuated and the to actuate the Aktuartoren (201, 202) necessary hydraulic pressure by a pump (300) is constructed
characterized in that
the actuators (201, 202) in a hydraulic circuit (400) are arranged parallel to one another and can be actuated by a common first pump (300).
DĂ¼sengruppenregelung nach Anspruch 1.
dadurch gekennzeichnet, dass
der Hydraulikkreislauf (400) ein geschlossener Kreislauf ist.
Nozzle group control according to claim 1.
characterized in that
the hydraulic circuit (400) is a closed circuit.
DĂ¼sengruppenregelung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
der Aktuartor (201, 202) einen Arbeitszylinder (500) aufweist, in dem ein doppelseitig beaufschlagbarer Kolben (600) verschieblich angeordnet ist.
Nozzle group control according to claim 1 or 2,
characterized in that
the Aktuartor (201, 202) has a working cylinder (500) in which a double-sided acted upon piston (600) is arranged displaceably.
DĂ¼sengruppenregelung nach Anspruch 3,
dadurch gekennzeichnet, dass
der Arbeitszylinder (500) wenigstens ein Ventil (700) aufweist, welches den Zu- und oder Abfluss in den Arbeitszylinder (500) steuert.
Nozzle group control according to claim 3,
characterized in that
the working cylinder (500) has at least one valve (700) which controls the inflow and outflow into the working cylinder (500).
DĂ¼sengruppenregelung nach Anspruch 4,
dadurch gekennzeichnet, dass
das Ventil (700) ein 4/2-Wegeventl ist.
Nozzle group control according to claim 4,
characterized in that
the valve (700) is a 4/2-way valve.
DĂ¼sengruppenregelung nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass
Ventil (700) ein Magnetventil ist.
Nozzle group control according to claim 3 or 4,
characterized in that
Valve (700) is a solenoid valve.
DĂ¼sengruppenregelung nach einem der AnsprĂ¼che 3 bis 6,
dadurch gekennzeichnet, dass
die Pumpe (300) derart ausgebildet ist, dass sie die Pumprichtung umkehren kann.
Nozzle group control according to one of claims 3 to 6,
characterized in that
the pump (300) is designed such that it can reverse the pumping direction.
DĂ¼sengruppenregelung nach einem der vorherigen AnsprĂ¼che, dadurch gekennzeichnet, dass
im Hydraulikkreislauf (400) ein zusätzlicher Speicher fĂ¼r HydraulikflĂ¼ssigkeit vorgesehen ist.
Nozzle group control according to one of the preceding claims, characterized in that
in the hydraulic circuit (400) an additional reservoir for hydraulic fluid is provided.
DĂ¼sengruppenregelung nach einem der vorherigen AnsprĂ¼che, dadurch gekennzeichnet, dass
die Pumpe (300) elektrisch betrieben ist.
Nozzle group control according to one of the preceding claims, characterized in that
the pump (300) is electrically operated.
DĂ¼sengruppenregelung nach einem der vorherigen AnsprĂ¼che,
dadurch gekennzeichnet, dass
im Hydraulikkreislauf (400) eine zweite redundante Pumpe (301) angeordnet ist die im Bedarfsfall die erste Pumpe (300) ersetzen kann.
Nozzle group control according to one of the preceding claims,
characterized in that
in the hydraulic circuit (400) a second redundant pump (301) is arranged which can replace the first pump (300) if necessary.
EP12189506.4A 2011-11-09 2012-10-23 Nozzle group control for turbines Active EP2592237B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011086030A DE102011086030A1 (en) 2011-11-09 2011-11-09 Nozzle group control for turbines

Publications (3)

Publication Number Publication Date
EP2592237A2 true EP2592237A2 (en) 2013-05-15
EP2592237A3 EP2592237A3 (en) 2017-11-22
EP2592237B1 EP2592237B1 (en) 2018-08-29

Family

ID=47080362

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12189506.4A Active EP2592237B1 (en) 2011-11-09 2012-10-23 Nozzle group control for turbines

Country Status (2)

Country Link
EP (1) EP2592237B1 (en)
DE (1) DE102011086030A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011516A1 (en) 2010-03-15 2011-09-15 Robert Bosch Gmbh Drive with emergency closing function

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE614670C (en) * 1935-06-17 Aeg Device for controlling the inlet valves of steam turbines
DE825418C (en) * 1948-10-02 1951-12-17 Karl Wilcken Dipl Ing Steam power plant, consisting of a piston engine and a turbine connected to it by a gearbox
BE511177A (en) * 1951-05-09
DE1275073B (en) * 1962-11-16 1968-08-14 Bbc Brown Boveri & Cie Hydraulic speed control device for steam turbines with several nozzle groups
DE2757623A1 (en) * 1977-12-23 1979-06-28 Volkswagenwerk Ag Hydraulic drive with regulated power transmission - has DC motor for pump and short circuiting separating valve
US5295783A (en) * 1993-04-19 1994-03-22 Conmec, Inc. System and method for regulating the speed of a steam turbine by controlling the turbine valve rack actuator
DE19636746A1 (en) * 1996-09-10 1998-03-12 Siemens Ag Valve arrangement for turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011516A1 (en) 2010-03-15 2011-09-15 Robert Bosch Gmbh Drive with emergency closing function

Also Published As

Publication number Publication date
EP2592237B1 (en) 2018-08-29
DE102011086030A1 (en) 2013-05-16
EP2592237A3 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
EP3233544B1 (en) Motor vehicle chassis
EP1915538B1 (en) Circuit for controlling a double-action hydraulic drive cylinder
DE102006060351B3 (en) Hydraulic circuit arrangement for battery-driven industrial truck, has priority valve arranged to distribute volume flow flowing from pump to cylinder and load, and motor and pumps designed as motor-dual pump assembly
EP1835174B1 (en) Control device for rotor blade adjustment
WO2013189566A1 (en) Hydraulic adjusting device
DE102017106693B3 (en) Device for controlling a hydraulic machine
EP3159549B1 (en) Device for recovery of hydraulic energy in a work device and corresponding work device
DE102007018600A1 (en) Hydraulic / electrical converter
DE102014207669A1 (en) Control system for a hydraulic machine
DE3347000A1 (en) Electrohydraulic arrangement for controlling a double-acting hydraulic motor
DE2148502B2 (en) Single or multi-circuit hydraulic system
DE102016215080A1 (en) Electrohydraulic adjusting drive, method for an electrohydraulic adjusting drive and rotor
EP3601806B1 (en) Apparatus for controlling a hydraulic machine
DE102012016838B4 (en) Hydraulic control circuit for a hydraulically operated casting unit
DE102011105923A1 (en) Hydraulic drive system, such as mobile working machines, comprises two hydraulic pumps, where latter hydraulic pump has fluid inlet and fluid outlet, where fluid inlet is connected with customer over return pipeline
DE102015210350A1 (en) Hydraulic circuit for pressure medium supply of a hydraulic consumer in a closed hydraulic circuit
WO2018108615A1 (en) Hydraulic drive with fast stroke and load stroke
EP2333351B1 (en) Electro-hydraulic lifting module
DE102012012977A1 (en) Hydraulic drive
DE19654781A1 (en) Auxiliary unit to provide redundancy for power supply of flying controls actuator
EP2592237B1 (en) Nozzle group control for turbines
DE102007051185A1 (en) Hydrostatic drive for use in vehicle, has valve units connected with control lines arranged downstream of motor and connected with operating control, where valve units control operating control based on operating condition of drive
EP1967706B1 (en) Valve gear
EP3012463B1 (en) Hydraulic assembly
DE10319075B4 (en) Brake device of the hydraulic type

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 17/14 20060101AFI20171017BHEP

17P Request for examination filed

Effective date: 20171206

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1035363

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013325

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013325

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1035363

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012013325

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221017

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220617

Year of fee payment: 11

Ref country code: CZ

Payment date: 20221017

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012013325

Country of ref document: DE