EP2591232B1 - Device for optically measuring the curvature of a rotor blade of a wind power plant - Google Patents

Device for optically measuring the curvature of a rotor blade of a wind power plant Download PDF

Info

Publication number
EP2591232B1
EP2591232B1 EP11721259.7A EP11721259A EP2591232B1 EP 2591232 B1 EP2591232 B1 EP 2591232B1 EP 11721259 A EP11721259 A EP 11721259A EP 2591232 B1 EP2591232 B1 EP 2591232B1
Authority
EP
European Patent Office
Prior art keywords
camera
rotor
blade
marking
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11721259.7A
Other languages
German (de)
French (fr)
Other versions
EP2591232A1 (en
Inventor
Fabio Bertolotti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec SSB Wind Systems GmbH
Original Assignee
Nidec SSB Wind Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec SSB Wind Systems GmbH filed Critical Nidec SSB Wind Systems GmbH
Publication of EP2591232A1 publication Critical patent/EP2591232A1/en
Application granted granted Critical
Publication of EP2591232B1 publication Critical patent/EP2591232B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0091Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • F05B2270/8041Cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a device for optically measuring the curvature of a rotor blade of a wind turbine, the blade root of which is attached to a rotor hub of a rotor, with at least one light-emitting external marking attached to the rotor blade at a distance from the blade root, at least one first camera attached to the rotor blade, which receives the light emitted by the outer marking and provides first position information dependent on the relative position of the first camera to the outer marking, an evaluation device coupled to the first camera and a position detection means which detects the relative position of the first camera to the leaf root and provides second position information which is dependent on this position, the evaluation device determining at least one variable characterizing the bending of the rotor blade by evaluating the position information.
  • the WO 2009/143848 A2 discloses a device for the optical measurement of the curvature of a rotor blade of a wind turbine, which blade root is attached to a rotor hub of a rotor, with first light sources arranged in the blade tip of the rotor blade, one in the center of the rotor blade arranged first camera, which receives the light emitted by the first light sources, in the vicinity of the first camera attached to the rotor blade second light sources and a second camera arranged in the rotor hub, which receives the light emitted by the second light sources, wherein the Position of the first light sources relative to the rotor hub can be obtained from information provided by the cameras.
  • the WO 2009/143849 A2 describes a wind turbine rotor with a hub, at least one rotor blade attached to the hub and at least one image capture device connected to the hub or rigidly connected to the rotor blade, two or more markers being arranged on the rotor blade in such a way that the image capture device can detect the position of the markers.
  • Document NREL / TP-500-39253 published in January 2006, describes a method for measuring a rotor blade deflection, according to which an infrared camera with an infrared radiation source arranged near the blade root and reflector strips attached to the rotor blade are used.
  • the reflector strips illuminated by the infrared radiation source reflect the infrared radiation back to the camera, so that the sheet bending can be calculated by evaluating the image taken by the camera.
  • the WO 2010/054661 A2 discloses a method for monitoring the load on rotor blades of a wind power plant, which comprises a nacelle and a rotor hub rotatably mounted thereon by means of a rotor shaft, to which at least one rotor blade is attached.
  • the rotor blade comprises a reflector, the position of which changes depending on the load on the rotor blade.
  • a radiation source for electromagnetic radiation and a radiation receiver are arranged in the nacelle, a radiation path from the radiation source to the reflector and from this back to the radiation receiver being set up.
  • a deflection of the loaded rotor blade can be determined by means of a monitoring device on the basis of a change in the radiation received by the radiation receiver.
  • vibrations of the wind turbine lead to a measurement error, since these vibrations cause the camera to move.
  • a measurement error occurs because the camera is displaced due to an irreversible deformation of the camera holder and / or the rotor blade.
  • An example of such a deformation is the change from an originally circular cross section of the rotor blade near the blade root to an oval cross section, which is due to material creep under load.
  • Conventional camera-based systems for measuring blade deflection at one or more points along the rotor blade utilize a light source that illuminates one or more reflectors located at predetermined positions along the blade.
  • the light reflected by the reflectors is recorded by means of a digital camera, which for this purpose comprises a photosensitive surface.
  • a digital camera which for this purpose comprises a photosensitive surface.
  • the offset of the reflectors relative to the camera position is calculated and the sheet deflection is derived therefrom.
  • a lens with such a narrow viewing angle is used to maximize the measurement resolution in the camera so that a maximum shift of the reflector image on the photosensitive surface is achieved when the reflector (or the reflectors) experiences a maximum expected displacement under sheet load. Therefore, the area of the blade root of the rotor blade is usually not in the field of view of the camera.
  • the object of the invention is to further develop a device of the type mentioned in the introduction in such a way that errors in the determination of the sheet deflection due to camera vibrations and / or an irreversible offset of the camera can be avoided or at least reduced.
  • the curvature of the rotor blade and / or the at least one variable characterizing this curvature can be independent of the position and / or orientation be determined by the first camera.
  • the errors known from the prior art when determining the bending of the rotor blade (blade bending) can thus be significantly reduced.
  • the evaluation device is preferably coupled to the position detection means.
  • the position detection means can be provided separately from or comprise the first camera, so that in the latter case the first camera forms part of the position detection means.
  • the evaluation device preferably derives the bending of the rotor blade from the at least one variable that characterizes the bending of the rotor blade.
  • the at least one variable which characterizes the bending of the rotor blade corresponds to the blade bending of the rotor blade.
  • a plurality of light-emitting outer markings are attached to the rotor blade at a distance from the blade root, which preferably have a different distance from the blade root, the first camera receiving the light emitted by the outer markings, and the one provided by the first camera first position information is dependent on the relative position of the first camera to the outer markings.
  • the measuring accuracy in particular can be increased.
  • the first location information characterizes in particular the relative position of the first camera to the outer markings.
  • the evaluation device determines in particular the relative position of the blade root to the outer mark or marks.
  • the relative position of the blade root to the outer mark or markings in particular forms position information which is independent of the position of the first camera and which preferably characterizes or describes the bending of the rotor blade.
  • the evaluation device calculates the relative position of the first camera to the leaf root, in particular by evaluating the second position information. Furthermore, the evaluation device, in particular by evaluating the first position information, calculates the relative position of the first camera to the outer mark or markings. The evaluation device preferably determines the relative position of the leaf root to the outer mark or marks from the relative position of the first camera to the leaf root and from the relative position of the first camera to the outer mark or marks.
  • a point of the leaf root or a point in the region of the leaf root preferably forms a reference point which represents the position of the leaf root.
  • This reference point is preferably on the blade axis of the rotor blade and / or preferably on the end of the rotor blade facing the hub.
  • this position can thus be replaced by the position of the reference point.
  • the evaluation device determines, as the at least one variable characterizing the bending of the rotor blade, the relative position of the reference point to the outer mark or markings.
  • the outer marking or the outer markings are preferably each designed as a light source or as a reflector illuminated by a light source.
  • the outer marking or the outer markings are each through the end of a light-guiding optical waveguide, such as a light-guiding optical fiber, in particular glass fiber, into which light is preferably coupled by means of one or more light sources.
  • the light source or sources are e.g. formed by one or more light emitting diodes.
  • the reflector or reflectors are preferably designed to be retro-reflective and can therefore also be referred to as retro-reflectors.
  • the spectral sensitivity of the first camera is particularly adapted to the light.
  • the light can be in the visible spectrum. However, it is preferably infrared light.
  • the first camera preferably records at least one image of or from the outer markings and makes this available, in particular in the form of image data, as the first position information of the evaluation device.
  • the evaluation device preferably determines from the image data using at least one image evaluation method the relative position of the first camera to the outer mark or markings.
  • the first camera is attached to or in the rotor, in particular by means of a holder.
  • the first camera is preferably fastened to or in the region of the blade root on the rotor by means of the holder.
  • the first camera is fastened to a partition in the rotor blade, in particular by means of the holder.
  • a partition serves e.g. to prevent maintenance personnel and / or objects from falling into the rotor blade.
  • One or more through openings can be provided in the partition, through which one or more optical signals or light beams pass, which are used in connection with the device according to the invention.
  • the position detection means comprises at least one or more tension or strain sensors attached to the holder, by means of which a change in shape of the holder is detected.
  • the second position information provided by the position detection means is dependent on the detected change in shape.
  • the position of the first camera relative to the leaf root can be determined by detecting the change in shape of the holder.
  • the position detection means comprises at least one other arranged on or in the area of the blade root or in the rotor hub Camera, by means of which a change in position of the first camera is detected, which is attached to the rotor blade.
  • the second position information provided by the position detection means depends on the relative position of the first camera to the other camera. This enables the relative position of the first camera to the leaf root to be determined.
  • the other camera preferably forms part of the position detection means.
  • the first camera is arranged in particular in the field of view of the other camera.
  • the other camera is attached to the rotor blade, the blade bearing or the rotor hub, for example.
  • the other camera is preferably rigidly attached to the rotor hub, in particular to a part of the blade bearing rigidly connected to the rotor hub.
  • the other camera can additionally detect a rotation of the first camera about the blade axis of the rotor blade relative to the rotor hub and / or the other camera. Such a rotation occurs, for example, when the rotor blade is rotated about its blade axis relative to the rotor hub (which is also referred to as "pitching").
  • the other camera can additionally detect a rotation of the rotor blade about its blade axis relative to the rotor hub.
  • a rotation of the rotor blade about its blade axis relative to the rotor hub is preferably additionally determined by means of the evaluation device.
  • the other camera preferably records at least one image from the first camera and makes this available, in particular in the form of image data, as the second position information of the evaluation device.
  • the evaluation device preferably calculates the relative position from the image data using at least one image evaluation method the first camera to the other camera.
  • the other camera is preferably arranged on or in the area of the blade root or in the rotor hub.
  • the evaluation device calculates, in particular, the relative position of the first camera to the leaf root from the image data.
  • the position detection means comprises at least one light-emitting inner marking attached to or in the region of the blade root on the rotor, a second camera which is stationary with respect to the first camera receiving the light emitted by the inner marking.
  • the second position information provided by the position detection means depends on the position of the first camera relative to the inner marking. This enables the relative position of the first camera to the leaf root to be determined.
  • the second camera forms part of the position detection means.
  • the position detection means comprises a plurality of light-emitting inner markings attached to or in the area of the blade root on the rotor, which are preferably positioned at different locations, the second camera which is stationary with respect to the first camera receiving the light emitted by the inner markings.
  • the second position information provided by the position detection means depends on the position of the first camera relative to the inner markings. This enables the relative position of the first camera to the leaf root to be determined.
  • the the second camera forms part of the position detection means.
  • the first camera is arranged in a region of the rotor hub opposite the rotor blade and is fastened thereon.
  • the first camera preferably forms part of the position detection means.
  • a second camera is not absolutely necessary.
  • At least one mirror is permanently connected to the first camera and preferably arranged in its field of view, by means of which the light emitted by the inner mark or markings is reflected in the direction of the first camera.
  • a plurality of mirrors connected to the first camera and preferably arranged in its field of view are provided, by means of which the light emitted by the inner mark or markings is reflected in the direction of the first camera.
  • the first camera preferably forms part of the position detection means.
  • a second camera is not absolutely necessary.
  • the second camera is provided, the cameras being arranged in particular in close spatial proximity to one another.
  • the cameras are preferably closed summarized in one structural unit.
  • the second camera is coupled to the evaluation device.
  • the first, the second and / or the third variant can also be combined with one another.
  • the inner marking or the inner markings are preferably each formed as a light source or as a reflector illuminated by a light source.
  • the inner marking or the inner markings are each through the end of a light-guiding optical waveguide, such as a light-guiding optical fiber, in particular glass fiber, into which light is preferably coupled by means of one or more light sources.
  • the light source or sources are e.g. formed by one or more light emitting diodes.
  • the reflector or reflectors are preferably designed to be retro-reflective and can therefore also be referred to as retro-reflectors.
  • the second camera preferably records at least one image of the interior markings and makes them available in the form of image data as the second position information of the evaluation device.
  • the evaluation device calculates the relative position of the first camera or second camera to the inner mark or markings from the image data. Since the two cameras are stationary with respect to one another, the evaluation device uses the calculated relative position of the second camera to determine the relative position of the inner markings.
  • the position of the first camera can be derived from the inner markings.
  • the image obtained from the inner mark (s) by means of the second camera is preferably a different image than the image obtained from the outer mark (s) by means of the first camera.
  • the image obtained from the inner mark or markings and from the outer mark or markings by means of the first camera is preferably a common image if only one camera is used.
  • the rotor blade comprises a cavity in which the outer marking or the outer markings are arranged.
  • the first camera is preferably also arranged in the cavity.
  • the first camera can be arranged in the rotor hub.
  • the other or second camera is preferably arranged in the cavity.
  • the other or second camera can also be arranged in the rotor hub.
  • the inner marking or the inner markings are preferably arranged in the cavity.
  • the inner marking or the inner markings are preferably attached to the rotor blade, to the blade bearing or to the rotor hub.
  • the inner marking or the inner markings are rigidly attached to the rotor hub, in particular to a part of the blade bearing rigidly connected to the rotor hub.
  • the second camera additionally rotates the first camera and / or the second camera about the blade axis of the Rotor blade can be detected relative to the rotor hub and / or the inner mark (s).
  • a rotation occurs, for example, when the rotor blade rotates about its blade axis relative to the rotor hub.
  • the second camera can additionally detect a rotation of the rotor blade about its blade axis relative to the rotor hub.
  • a rotation of the rotor blade about its blade axis relative to the rotor hub is preferably additionally determined by means of the evaluation device.
  • the wind turbine can be developed in accordance with all of the configurations explained in connection with the device according to the invention.
  • the disclosure also relates to a method for optically measuring the bending of the rotor blade of a wind turbine by means of a device according to the invention.
  • the disclosure relates to the use of a device according to the invention for optically measuring the bending of the rotor blade of a wind turbine.
  • FIG. 1 A wind power plant 1 can be seen, a tower 3 standing on a foundation 2 being connected to a machine house 4 at its end facing away from the foundation 2.
  • the machine house 4 comprises a machine support 5, on which a rotor 6 is rotatably mounted about a rotor axis 7, which has a rotor hub 8 and rotor blades 9 and 10 connected thereto, which are each rotatable about their blade axis 11 and 12 relative to the rotor hub 8 .
  • Each of the rotor blades 9 and 10 is mechanically coupled to a blade angle adjustment drive 13 or 14, by means of which the respective rotor blade can be rotated about the associated blade axis.
  • the rotor 6 is mechanically coupled to an electrical generator 16 which is arranged in the machine house 4 and is fastened to the machine carrier 5.
  • the rotor 6 is rotated about its rotor axis 7 by wind 15, the rotational energy of the rotor 6 being largely converted into electrical energy by means of the generator 16.
  • a wind power plant control 17 is provided, by means of which, among other things, the blade angle adjustment drives are controlled.
  • Fig. 2 shows a schematic and partial representation of the rotor 6 in viewing direction A.
  • Fig. 1 wherein on the rotor hub 8, a third rotor blade 18 is rotatably mounted about its blade axis 20 by means of a blade bearing 19 (in Fig. 1 the rotor blade 18 is covered by the rotor hub 8).
  • the rotor blade 18 is mechanically coupled to a schematically indicated blade angle adjustment drive 58 and can be rotated about the blade axis 20 by means of this.
  • the blade bearings 21 and 22 for the rotor blades 9 and 10 are also shown.
  • Fig. 2 also shows a device (measuring device) 56 fully or at least partially integrated in the rotor 6 according to a first embodiment not covered by the claimed subject matter, which is explained below.
  • the end of the rotor blade 18 fastened to the blade bearing 19 is referred to as the blade root 23, two light-emitting inner markings 24 and 25 being arranged in the region of the blade root 23 and being attached to the rotor blade 18.
  • the inner markings 24 and 25 can also be attached to the sheet bearing 19.
  • a camera 27 is arranged in a cavity 26 of the rotor blade 18 and attached to the rotor blade 18.
  • Two mirrors 28 and 29 are fixedly connected to the camera 27 and reflect the light emitted by the inner markings 24 and 25 onto a photosensitive surface 30 of the camera 27.
  • the beam path of the light emitted by the inner marking 24 is identified by the reference symbol 31 and the beam path of the light emitted by the inner marking 25 is identified by the reference symbol 32.
  • the outer markings 33 and 34 are two light-emitting outer markings 33 and 34 in the Cavity 26 arranged and attached to the rotor blade 18.
  • the light emitted by the outer markings 33 and 34 impinges on the photosensitive surface 30 of the camera 27, the beam path of the light emitted by the outer mark 33 being identified by the reference symbol 35 and the beam path of the light emitted by the outer marker 34 by the reference symbol 36 .
  • the camera 27 is electrically connected to a schematically illustrated evaluation device 37, which is fastened in the rotor blade 18, in the rotor hub 8 or at another suitable location of the wind turbine 1.
  • the evaluation device 37 can also be formed by the wind power plant controller 17.
  • the image 45 taken by the camera 27 is supplied to the evaluation device 37 in the form of electronic image data 38, the image data 38 depending on the relative position of the camera 27 to the outer markings 33 and 34 and first position information dependent on the relative position of the camera 27 to the inner markings 24 and 25 include second location information.
  • the evaluation device 37 uses at least one image evaluation method to calculate the relative position of the camera 27 to the leaf root 23 and the relative position of the camera 27 to the outer markings 33 and 34. From the calculated positions, the evaluation device then determines the relative position of the leaf root 23 to the outer markings 33 and 34, this relative position characterizing the bending of the rotor blade 18.
  • Fig. 3 is a schematic and partial representation of the rotor 6 with a measuring device 56 according to a second embodiment falling under the claimed subject matter of the invention, wherein similar or identical features to the first embodiment are designated by the same reference numerals as in the first embodiment.
  • a camera 39 with a photosensitive surface 40 is provided in the cavity 26, on which the light emitted by the inner markings 24 and 25 is incident.
  • the fields of vision of the cameras extend in particular or essentially in opposite directions.
  • Each of the cameras 27 and 39 is electrically connected to the evaluation device 37 and transmits electronic image data 38 and 41 to it.
  • the image data 38 from the camera 27 include first position information that is dependent on the relative position of the camera 27 to the outer markings 33 and 34 , wherein the image data 41 supplied by the camera 39 comprise second position information which is dependent on the relative position of the camera 39 to the leaf root 23.
  • the cameras 27 and 39 are arranged fixed to one another and form a compact structural unit.
  • the evaluation device 37 calculates the relative position of the camera 39 to the leaf root 23 from the image data 41. Since the two cameras are fixed to one another, this position also characterizes the relative position of the camera 27 to the leaf root 23, so that the relative Position of the camera 27 to the leaf root 23 is calculated by means of the evaluation device 37. Furthermore, by means of the evaluation device 37 Using at least one image evaluation method, the relative position of the camera 27 to the outer markings 33 and 34 is calculated from the image data 38. The evaluation device 37 then determines from the calculated positions the relative position of the blade root 23 to the outer markings 33 and 34, this relative position characterizing the bending of the rotor blade 18. According to the second embodiment, no mirrors are therefore required.
  • FIG. 4 A schematic and partial illustration of the rotor 6 with a measuring device 56 according to a third embodiment not falling under the claimed subject matter of the invention can be seen, features which are similar or identical to the previous embodiments being designated with the same reference symbols as in the previous embodiments.
  • the third embodiment is a modification of the second embodiment, wherein instead of the inner markings 24 and 25 and the second camera 39, tension or strain sensors 42 and 43 are arranged on a holder 57, by means of which the camera 27 on the blade root 23 or on the blade bearing 19 is attached.
  • a mechanical deformation of the holder 57 can be detected by means of the sensors 42 and 43, so that the sensors 42 and 43 electrically connected to the evaluation device 37 deliver deformation data 44 to the evaluation device 37.
  • the image data 38 from the camera 27 include first position information that is dependent on the relative position of the camera 27 to the outer markings 33 and 34, the deformation data 44 provided by the sensors 42 and 43 being one of the relative position of the camera 27 to the leaf root 23 dependent second location information include.
  • the evaluation device 37 calculates the relative position of the camera 27 from the leaf root 23 from the deformation data 44. Using at least one image evaluation method, the evaluation device 37 calculates the relative position of the camera 27 from the image data 38 to the outer markings 33 and 34. From the calculated relative positions The evaluation device 37 then determines the relative position of the blade root 23 to the outer markings 33 and 34, this relative position characterizing the bending of the rotor blade 18.
  • FIG. 5 A schematic and partial illustration of the rotor 6 with a measuring device 56 according to a fourth embodiment not falling under the claimed subject matter of the invention can be seen, features which are similar or identical to the previous embodiments being designated with the same reference symbols as in the previous embodiments.
  • the fourth embodiment forms a modification of the first embodiment, the camera 27 being arranged on a side of the rotor hub 8 opposite the rotor blade 18 and being fastened to the latter.
  • the light emitted by the inner markings 24 and 25 strikes the photosensitive surface 30 of the camera 27 directly, so that no mirrors are required.
  • Fig. 6 is a schematic and partial representation of the rotor 6 with a measuring device 56 according to a fifth embodiment not covered by the subject matter of the invention, with the previous Embodiments similar or identical features are denoted by the same reference numerals as in the previous embodiments.
  • a camera 39 is provided with a photosensitive surface 40, which is attached to the rotor blade 18 or to the blade bearing 19 in the area of the blade root 23.
  • the camera 27 is arranged in the field of view of the camera 39.
  • Each of the cameras 27 and 39 is electrically connected to the evaluation device 37 and transmits electronic image data 38 and 41 to it.
  • the image data 38 from the camera 27 include first position information that is dependent on the relative position of the camera 27 to the outer markings 33 and 34 , wherein the image data 41 supplied by the camera 39 comprise second position information which is dependent on the relative position of the camera 39 and the camera 27.
  • the camera 39 is preferably fixed to the leaf root 23.
  • the evaluation device 37 calculates the relative position of the camera 39 to the camera 27 from the image data 41 using at least one image evaluation method. Since the camera 39 is arranged in the area of the leaf root 23, this position also characterizes the relative position of the camera 27 to the leaf root 23 , so that the relative position of the camera 27 to the blade root 23 is calculated by means of the evaluation device 37. Furthermore, the relative position of the camera 27 to the outer markings 33 and 34 is calculated from the image data 38 by means of the evaluation device 37 using at least one image evaluation method. Thereafter, the evaluation device 37 determines from the calculated positions the relative position of the blade root 23 to the outer markings 33 and 34, this relative position determining the bending of the rotor blade 18 characterized. Thus, according to the fifth embodiment, no mirrors are required.
  • Fig. 7 is a schematic and partial representation of the rotor 6 with a measuring device according to a modification of the fifth embodiment not falling under the claimed subject matter of the invention, the blade bearing 19 having a blade bearing part 66 rigidly connected to the rotor hub 8 by means of bolt 65 and a blade part rigidly connected to the by means of bolt 67
  • Rotor blade 18 comprises connected blade bearing part 68.
  • the blade bearing 19 is designed here as a ball bearing, the balls of the blade bearing 19 being indicated schematically and identified by the reference number 69.
  • a bracket 70 carrying the camera 39 is placed on the bolt 65 shown and screwed onto it by means of a nut 71, so that the camera 39 is held rigidly on the blade bearing part 66 and thus also rigidly on the rotor hub 8.
  • the evaluation device 37 thus preferably also calculates the angle of rotation of the rotor blade 18 about the blade axis 20 relative to the rotor hub 8.
  • an image 45 recorded by the camera 27 according to the first and / or fourth embodiment can be seen in a schematic representation, the regions 46 and 47 representing the images of the outer markings 33 and 34 in the non-bent state of the rotor blade 18. If the rotor blade 18 is bent, the images of the External markings in image 45, which is indicated by arrows 59 and 60. The areas 48 and 49 thereby mark the images of the outer markings 33 and 34 in the bent state of the rotor blade 18. The position of the images of the outer markings in the image 45 thus represents the first position information. Since the position of the areas 46 and 47 in the image 45 is known, the displacement of the areas 48 and 49 relative to the areas 46 and 47 can also be determined by means of the evaluation device 37.
  • the areas 50 and 51 of the image 45 represent the images of the inner markings 24 and 25 in an original position of the camera 27. If the camera 27 is offset relative to the leaf root 23, the images of the inner markings in the image 45 shift as a result of Arrows 61 and 62 is indicated. The areas 52 and 53 thereby mark the images of the inner markings 24 and 25 after the offset of the camera 27. The position of the images of the inner markings in the image 45 thus represents the second position information. Since the position of areas 50 and 51 in image 45 is known, the displacement of areas 52 and 53 relative to areas 50 and 51 can also be determined by means of evaluation device 37.
  • the markings 33 and 34 and possibly the markings 24 and 25 are preferably each formed by a light source according to a first variant.
  • at least one, several or all of the markings are formed by reflectors 54, which are illuminated by one or more light sources 55, which is shown schematically Fig. 9 evident which shows the marking 33 in the form of a reflector 54.
  • the light emitted by the light source 55 is identified by the reference symbol 63.
  • At least one, several or all of the markings are formed by optical waveguides 64, into which light 63 is coupled by means of one or more light sources 55, which is shown schematically Fig. 10 can be seen, which shows the marking 33 in the form of an optical waveguide 64.
  • a separate light source can be provided for each marking designed as a reflector or optical waveguide. However, it is also possible for several or all reflectors or optical waveguides to be supplied with light from the same light source. For example, a common or separate light source can be provided for the outer markings 33 and 34. Furthermore, a common or a separate light source can be provided for the inner markings 24 and 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Wind Motors (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur optischen Messung der Biegung eines Rotorblatts einer Windkraftanlage, welches mit seiner Blattwurzel an einer Rotornabe eines Rotors befestigt ist, mit wenigstens einer im Abstand zur Blattwurzel am Rotorblatt befestigten, Licht emittierenden Außenmarkierung, wenigstens einer am Rotorblatt befestigten ersten Kamera, welche das von der Außenmarkierung emittierte Licht empfängt und eine von der relativen Lage der ersten Kamera zu der Außenmarkierung abhängige erste Lageinformation zur Verfügung stellt, einer mit der ersten Kamera gekoppelten Auswerteeinrichtung und einem Positionserfassungsmittel, welches die relative Lage der ersten Kamera zu der Blattwurzel erfasst und eine von dieser Lage abhängige zweite Lageinformation zur Verfügung stellt, wobei die Auswerteeinrichtung wenigstens eine die Biegung des Rotorblatts charakterisierende Größe unter Auswertung der Lageinformationen bestimmt.The invention relates to a device for optically measuring the curvature of a rotor blade of a wind turbine, the blade root of which is attached to a rotor hub of a rotor, with at least one light-emitting external marking attached to the rotor blade at a distance from the blade root, at least one first camera attached to the rotor blade, which receives the light emitted by the outer marking and provides first position information dependent on the relative position of the first camera to the outer marking, an evaluation device coupled to the first camera and a position detection means which detects the relative position of the first camera to the leaf root and provides second position information which is dependent on this position, the evaluation device determining at least one variable characterizing the bending of the rotor blade by evaluating the position information.

Die WO 2009/143848 A2 offenbart eine Vorrichtung zur optischen Messung der Biegung eines Rotorblatts einer Windkraftanlage, welches mit seiner Blattwurzel an einer Rotornabe eines Rotors befestigt ist, mit in der Blattspitze des Rotorblatts angeordneten ersten Lichtquellen, einer in der Mitte des Rotorblatts angeordneten ersten Kamera, welche das von den ersten Lichtquellen emittierte Licht empfängt, in der Nähe der ersten Kamera am Rotorblatt befestigten zweiten Lichtquellen und einer in der Rotornabe angeordneten zweiten Kamera, welche das von den zweiten Lichtquellen emittierte Licht empfängt, wobei die Position der ersten Lichtquellen relativ zu der Rotornabe aus von den Kameras gelieferten Informationen gewonnen werden kann.The WO 2009/143848 A2 discloses a device for the optical measurement of the curvature of a rotor blade of a wind turbine, which blade root is attached to a rotor hub of a rotor, with first light sources arranged in the blade tip of the rotor blade, one in the center of the rotor blade arranged first camera, which receives the light emitted by the first light sources, in the vicinity of the first camera attached to the rotor blade second light sources and a second camera arranged in the rotor hub, which receives the light emitted by the second light sources, wherein the Position of the first light sources relative to the rotor hub can be obtained from information provided by the cameras.

Die WO 2009/143849 A2 beschreibt einen Windturbinenrotor mit einer Nabe, mindestens einem an der Nabe befestigten Rotorblatt und mindestens einer mit der Nabe oder starr mit dem Rotorblatt verbundenen Bilderfassungsvorrichtung, wobei zwei oder mehrere Markierer derart an dem Rotorblatt angeordnet sind, dass die Bilderfassungsvorrichtung die Position der Markierer detektieren kann.The WO 2009/143849 A2 describes a wind turbine rotor with a hub, at least one rotor blade attached to the hub and at least one image capture device connected to the hub or rigidly connected to the rotor blade, two or more markers being arranged on the rotor blade in such a way that the image capture device can detect the position of the markers.

Durch die Zunahme der Länge und der Flexibilität von Rotorblättern in Windkraftanlagen arbeiten deren Steuerungen vermehrt darauf hin, während des Betriebs auftretende Belastungen und Schwingungen der Windkraftanlage zu reduzieren. Belastungen der Rotorblätter werden vornehmlich durch aerodynamische Effekte hervorgerufen. Ein direktes Messen der aerodynamischen Belastungen ist aber nicht möglich. Da die Blattbiegungen und die Blattbelastungen in einer engen Beziehung zueinander stehen, bilden Informationen über die Blattbiegungen gute Eingangsinformationen für ein Steuerungssystem einer Windkraftanlage, welches auf Basis dieser Informationen unerwünschte, zyklische Blattbelastungen reduzieren kann, die z.B. auf eine Fehlausrichtung der Rotorachse zu der Windrichtung oder auf vertikale oder horizontale Windscherungen zurückzuführen sind.Due to the increase in the length and flexibility of rotor blades in wind power plants, their controls are increasingly working to reduce loads and vibrations of the wind power plant that occur during operation. Loads on the rotor blades are primarily caused by aerodynamic effects. However, direct measurement of the aerodynamic loads is not possible. Since the blade bends and the blade loads are closely related to one another, information about the blade bends forms good input information for a control system of a wind turbine which, on the basis of this information, can reduce undesirable, cyclic blade loads which, for example, lead to misalignment of the Rotor axis to the wind direction or due to vertical or horizontal wind shear.

In dem Dokument NREL/TP-500-39253, veröffentlicht im Januar 2006, wird eine Methode zum Messen einer Rotorblattbiegung beschrieben, wonach eine in der Nähe der Blattwurzel angeordnete Infrarotkamera mit Infrarotstrahlungsquelle sowie am Rotorblatt befestigte Reflektorstreifen eingesetzt werden. Die mittels der Infrarotstrahlungsquelle beleuchteten Reflektorstreifen reflektieren die Infrarotstrahlung zurück zur Kamera, sodass die Blattbiegung durch Auswertung des von der Kamera aufgenommenen Bilds berechnet werden kann.Document NREL / TP-500-39253, published in January 2006, describes a method for measuring a rotor blade deflection, according to which an infrared camera with an infrared radiation source arranged near the blade root and reflector strips attached to the rotor blade are used. The reflector strips illuminated by the infrared radiation source reflect the infrared radiation back to the camera, so that the sheet bending can be calculated by evaluating the image taken by the camera.

Die WO 2010/054661 A2 offenbart eine Methode zur Überwachung der Belastung von Rotorblättern einer Windkraftanlage, die eine Gondel und eine an dieser mittels einer Rotorwelle drehbar gelagerte Rotornabe umfasst, an der zumindest ein Rotorblatt befestigt ist. Das Rotorblatt umfasst einen Reflektor, dessen Position sich in Abhängigkeit von der Belastung des Rotorblatts ändert. In der Gondel sind eine Strahlungsquelle für elektromagnetische Strahlung und ein Strahlungsempfänger angeordnet, wobei ein Strahlungspfad von der Strahlungsquelle zu dem Reflektor und von diesem zurück zu dem Strahlungsempfänger eingerichtet ist. Mittels einer Überwachungsvorrichtung kann eine Auslenkung des belasteten Rotorblatts auf Basis einer Änderung der von dem Strahlungsempfänger empfangenen Strahlung bestimmt werden.The WO 2010/054661 A2 discloses a method for monitoring the load on rotor blades of a wind power plant, which comprises a nacelle and a rotor hub rotatably mounted thereon by means of a rotor shaft, to which at least one rotor blade is attached. The rotor blade comprises a reflector, the position of which changes depending on the load on the rotor blade. A radiation source for electromagnetic radiation and a radiation receiver are arranged in the nacelle, a radiation path from the radiation source to the reflector and from this back to the radiation receiver being set up. A deflection of the loaded rotor blade can be determined by means of a monitoring device on the basis of a change in the radiation received by the radiation receiver.

Bei den vorgenannten Methoden führen Schwingungen der Windkraftanlage zu einem Messfehler, da diese Schwingungen eine Bewegung der Kamera verursachen. Somit wird auf der fotosensitiven Fläche der Kamera die Kamerabewegung einer durch eine Blattbiegung hervorgerufenen Bewegung des Reflektorbilds überlagert. Ferner tritt ein Messfehler dadurch auf, dass die Kamera aufgrund einer irreversiblen Deformation der Kamerahalterung und/oder des Rotorblatts verschoben wird. Ein Beispiel für eine solche Deformation ist die Änderung eines ursprünglich kreisförmigen Querschnitts des Rotorblatts in der Nähe der Blattwurzel in einen ovalen Querschnitt, was auf Materialkriechen unter Last zurückzuführen ist.With the aforementioned methods, vibrations of the wind turbine lead to a measurement error, since these vibrations cause the camera to move. Thus on the photosensitive surface of the camera overlaps the camera movement with a movement of the reflector image caused by a sheet bend. Furthermore, a measurement error occurs because the camera is displaced due to an irreversible deformation of the camera holder and / or the rotor blade. An example of such a deformation is the change from an originally circular cross section of the rotor blade near the blade root to an oval cross section, which is due to material creep under load.

Herkömmliche kamerabasierte Systeme zum Messen der Blattbiegung an einem oder an mehreren Punkten entlang des Rotorblatts nutzen eine Lichtquelle, die ein oder mehrere Reflektoren beleuchtet, die an vorbestimmten Positionen entlang des Blatts angeordnet sind. Das von den Reflektoren reflektierte Licht wird mittels einer Digitalkamera aufgenommen, die dazu eine fotosensitive Fläche umfasst. Durch Auswertung der Lage der Reflektorbilder auf der fotosensitiven Fläche wird der Versatz der Reflektoren relativ zu der Kameraposition berechnet und daraus die Blattbiegung abgeleitet. Dabei wird zum Maximieren der Messauflösung in die Kamera eine Linse mit einem derart engen Blickwinkel eingesetzt, sodass eine maximale Verschiebung des Reflektorbilds auf der fotosensitiven Fläche erzielt wird, wenn der Reflektor (oder die Reflektoren) einen maximal zu erwartenden Versatz unter Blattbelastung erfährt. Daher liegt der Bereich der Blattwurzel des Rotorblatts in der Regel nicht im Sichtfeld der Kamera.Conventional camera-based systems for measuring blade deflection at one or more points along the rotor blade utilize a light source that illuminates one or more reflectors located at predetermined positions along the blade. The light reflected by the reflectors is recorded by means of a digital camera, which for this purpose comprises a photosensitive surface. By evaluating the position of the reflector images on the photosensitive surface, the offset of the reflectors relative to the camera position is calculated and the sheet deflection is derived therefrom. A lens with such a narrow viewing angle is used to maximize the measurement resolution in the camera so that a maximum shift of the reflector image on the photosensitive surface is achieved when the reflector (or the reflectors) experiences a maximum expected displacement under sheet load. Therefore, the area of the blade root of the rotor blade is usually not in the field of view of the camera.

Mit herkömmlichen kamerabasierten Systemen zum Messen der Blattbiegung sind insbesondere folgende Probleme verbunden:

  • Durch Schwingungen der Kamera bewegt sich das Reflektorbild auf der fotosensitiven Fläche der Kamera, sodass das System diese Bewegung fälschlicherweise als Biegung des Rotorblatts interpretiert und meldet.
  • Die Position der Kamera relativ zu der Blattwurzel ändert sich mit zunehmender Zeit irreversibel, beispielsweise durch eine Deformation des Rotorblatts im Bereich der Kameraposition aufgrund von Materialkriechen (z.B. ovaler Querschnitts des Blatts), sodass ein Versatz des Reflektorbilds auf der fotosensitiven Fläche auch ohne Blattbiegung hervorgerufen wird. Folglich ergibt sich ein Fehler in der Messung der Blattbiegung.
Conventional camera-based systems for measuring sheet deflection have the following problems in particular:
  • Due to vibrations of the camera, the reflector image moves on the photosensitive surface of the camera, so that the system incorrectly interprets and reports this movement as a curvature of the rotor blade.
  • The position of the camera relative to the blade root changes irreversibly with increasing time, for example due to a deformation of the rotor blade in the area of the camera position due to material creep (e.g. oval cross-section of the blade), so that the reflector image is offset on the photosensitive surface even without sheet bending . As a result, there is an error in the measurement of the sheet bending.

Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art derart weiterzubilden, dass Fehler bei der Bestimmung der Blattbiegung aufgrund von Kameravibrationen und/oder eines irreversiblen Versatzes der Kamera vermieden oder zumindest reduziert werden können.Proceeding from this, the object of the invention is to further develop a device of the type mentioned in the introduction in such a way that errors in the determination of the sheet deflection due to camera vibrations and / or an irreversible offset of the camera can be avoided or at least reduced.

Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung nach Anspruch 1 gelöst. Bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen gegeben.This object is achieved according to the invention by a device according to claim 1. Preferred developments of the invention are given in the subclaims.

Die erfindungsgemäße Vorrichtung zur optischen Messung der Biegung eines Rotorblatts einer Windkraftanlage, welches mit seiner Blattwurzel an einer Rotornabe eines Rotors befestigt ist, umfasst

  • wenigstens eine im Abstand zur Blattwurzel am Rotorblatt befestigte, Licht emittierende Außenmarkierung,
  • wenigstens eine am Rotor befestigte erste Kamera, welche das von der Außenmarkierung emittierte Licht empfängt und eine von der relativen Lage der ersten Kamera zu der Außenmarkierung abhängige erste Lageinformation zur Verfügung stellt,
  • eine mit der ersten Kamera gekoppelte Auswerteeinrichtung,
  • ein Positionserfassungsmittel, welches die relative Lage der ersten Kamera zu der Blattwurzel erfasst und eine von dieser Lage abhängige zweite Lageinformation zur Verfügung stellt, wobei die Auswerteeinrichtung wenigstens eine die Biegung des Rotorblatts charakterisierende Größe unter Auswertung der Lageinformationen bestimmt, wobei das Positionserfassungsmittel wenigstens eine an oder im Bereich der Blattwurzel am Rotor befestigte, Licht emittierende Innenmarkierung und eine zu der ersten Kamera ortsfeste zweite Kamera umfasst, die das von der Innenmarkierung emittierte Licht empfängt, wobei die Sichtfelder der Kameras sich in oder im Wesentlichen in einander entgegengesetzte Richtungen erstrecken und die von dem Positionserfassungsmittel zur Verfügung gestellte zweite Lageinformation abhängig von der relativen Lage der ersten Kamera zu der Innenmarkierung ist.
The device according to the invention for the optical measurement of the curvature of a rotor blade of a wind turbine, which is attached with its blade root to a rotor hub of a rotor, comprises
  • at least one light-emitting outer marking attached to the rotor blade at a distance from the blade root,
  • at least one first camera attached to the rotor, which receives the light emitted by the outer marking and provides first position information that is dependent on the relative position of the first camera to the outer marking,
  • an evaluation device coupled to the first camera,
  • a position detection means which detects the relative position of the first camera to the blade root and provides second position information which is dependent on this position, the evaluation device determining at least one variable characterizing the bending of the rotor blade while evaluating the position information, the position detection means at least one or in the area of the blade root attached to the rotor, light-emitting inner marking and a fixed to the first camera second camera that receives the light emitted by the inner marking, the fields of view of the cameras extending in or substantially in opposite directions and that of the Position detection means provided second position information is dependent on the relative position of the first camera to the inner marking.

Da die erste Lageinformation die relative Lage der ersten Kamera zu der Außenmarkierung charakterisiert und die zweite Lageinformation die relative Lage der ersten Kamera zu der Blattwurzel charakterisiert, kann die Biegung des Rotorblatts und/oder die wenigstens eine diese Biegung charakterisierende Größe unabhängig von der Position und/oder der Orientierung der ersten Kamera bestimmt werden. Somit lassen sich die aus dem Stand der Technik bekannten Fehler bei der Bestimmung der Biegung des Rotorblatts (Blattbiegung) deutlich reduzieren.Since the first position information characterizes the relative position of the first camera to the outer marking and the second position information characterizes the relative position of the first camera to the blade root, the curvature of the rotor blade and / or the at least one variable characterizing this curvature can be independent of the position and / or orientation be determined by the first camera. The errors known from the prior art when determining the bending of the rotor blade (blade bending) can thus be significantly reduced.

Die Auswerteeinrichtung ist bevorzugt mit dem Positionserfassungsmittel gekoppelt. Ferner kann das Positionserfassungsmittel separat zu der ersten Kamera vorgesehen sein oder diese umfassen, sodass im letzteren Fall die erste Kamera einen Teil des Positionserfassungsmittels bildet.The evaluation device is preferably coupled to the position detection means. Furthermore, the position detection means can be provided separately from or comprise the first camera, so that in the latter case the first camera forms part of the position detection means.

Die Auswerteinrichtung leitet bevorzugt von der wenigstens einen die Biegung des Rotorblatts charakterisierenden Größe die Biegung des Rotorblatts ab. Gemäß einer Weiterbildung der Erfindung entspricht die wenigstens eine die Biegung des Rotorblatts charakterisierende Größe der Blattbiegung des Rotorblatts.The evaluation device preferably derives the bending of the rotor blade from the at least one variable that characterizes the bending of the rotor blade. According to a development of the invention, the at least one variable which characterizes the bending of the rotor blade corresponds to the blade bending of the rotor blade.

Gemäß einer Ausgestaltung der Erfindung sind im Abstand zur Blattwurzel am Rotorblatt mehrere, Licht emittierende Außenmarkierungen befestigt, die vorzugsweise eine unterschiedliche Entfernung zur Blattwurzel aufweisen, wobei die erste Kamera das von den Außenmarkierungen emittierte Licht empfängt, und wobei die von der ersten Kamera zur Verfügung gestellte erste Lageinformation abhängig von der relativen Lage der ersten Kamera zu den Außenmarkierungen ist. Durch den Einsatz mehrerer Außenmarkierungen lässt sich insbesondere die Messgenauigkeit erhöhen. Ferner ist durch das Anordnen der Außenmarkierungen in unterschiedlichen Entfernungen zur Blattwurzel ein Verlauf der Blattbiegung entlang der Blattachse bestimmbar. Die erste Lageinformation charakterisiert insbesondere die relative Lage der ersten Kamera zu den Außenmarkierungen.According to one embodiment of the invention, a plurality of light-emitting outer markings are attached to the rotor blade at a distance from the blade root, which preferably have a different distance from the blade root, the first camera receiving the light emitted by the outer markings, and the one provided by the first camera first position information is dependent on the relative position of the first camera to the outer markings. By using several external markings, the measuring accuracy in particular can be increased. Furthermore, by arranging the outer markings at different distances from the leaf root, a course of the sheet bending along the sheet axis can be determined. The first location information characterizes in particular the relative position of the first camera to the outer markings.

Als die wenigstens eine die Biegung des Rotorblatts charakterisierende Größe bestimmt die Auswerteeinrichtung insbesondere die relative Lage der Blattwurzel zu der oder den Außenmarkierungen. Dabei bildet die relative Lage der Blattwurzel zu der oder den Außenmarkierungen insbesondere eine von der Position der ersten Kamera unabhängige Lageinformation, welche vorzugsweise die Biegung des Rotorblatts charakterisiert oder beschreibt.As the at least one variable that characterizes the curvature of the rotor blade, the evaluation device determines in particular the relative position of the blade root to the outer mark or marks. The relative position of the blade root to the outer mark or markings in particular forms position information which is independent of the position of the first camera and which preferably characterizes or describes the bending of the rotor blade.

Die Auswerteeinrichtung berechnet, insbesondere unter Auswertung der zweiten Lageinformation, die relative Lage der ersten Kamera zu der Blattwurzel. Ferner berechnet die Auswerteeinrichtung, insbesondere unter Auswertung der ersten Lageinformation, die relative Lage der ersten Kamera zu der oder den Außenmarkierungen. Vorzugsweise bestimmt die Auswerteeinrichtung aus der relativen Lage der ersten Kamera zu der Blattwurzel und aus der relativen Lage der ersten Kamera zu der oder den Außenmarkierungen die relative Lage der Blattwurzel zu der oder den Außenmarkierungen.The evaluation device calculates the relative position of the first camera to the leaf root, in particular by evaluating the second position information. Furthermore, the evaluation device, in particular by evaluating the first position information, calculates the relative position of the first camera to the outer mark or markings. The evaluation device preferably determines the relative position of the leaf root to the outer mark or marks from the relative position of the first camera to the leaf root and from the relative position of the first camera to the outer mark or marks.

Bevorzugt bildet ein Punkt der Blattwurzel oder ein Punkt im Bereich der Blattwurzel einen Referenzpunkt, der die Lage der Blattwurzel repräsentiert. Dieser Referenzpunkt liegt bevorzugt auf der Blattachse des Rotorblatts und/oder vorzugsweise an dem der Nabe zugewandten Ende des Rotorblatts. Bei Bezugnahmen auf die Lage der Blattwurzel kann somit diese Lage durch die Lage des Referenzpunkts ersetzt werden. Hierdurch kann berücksichtigt werden, dass die Blattwurzel in der Regel eine Ausdehnung hat. Gemäß einer Weiterbildung der Erfindung bestimmt die Auswerteeinrichtung als die wenigstens eine die Biegung des Rotorblatts charakterisierende Größe die relative Lage des Referenzpunkts zu der oder den Außenmarkierungen.A point of the leaf root or a point in the region of the leaf root preferably forms a reference point which represents the position of the leaf root. This reference point is preferably on the blade axis of the rotor blade and / or preferably on the end of the rotor blade facing the hub. When referring to the position of the leaf root, this position can thus be replaced by the position of the reference point. This can take into account that the root of the leaf usually has an expansion. According to a development of the invention, the evaluation device determines, as the at least one variable characterizing the bending of the rotor blade, the relative position of the reference point to the outer mark or markings.

Die Außenmarkierung oder die Außenmarkierungen sind bevorzugt jeweils als Lichtquelle oder als von einer Lichtquelle angestrahlter Reflektor ausgebildet. Gemäß einer Weiterbildung der Erfindung sind die Außenmarkierung oder die Außenmarkierungen jeweils durch das Ende eines lichtführenden Lichtwellenleiters, wie z.B. einer lichtführenden optischen Faser, insbesondere Glasfaser, gebildet, in den vorzugsweise mittels einer oder mehrerer Lichtquellen Licht eingekoppelt wird. Die Lichtquelle oder die Lichtquellen sind z.B. durch eine oder mehrere Leuchtdioden gebildet. Der oder die Reflektoren sind vorzugsweise retro-reflektierend ausgebildet und können somit auch als Retro-Reflektoren bezeichnet werden.The outer marking or the outer markings are preferably each designed as a light source or as a reflector illuminated by a light source. According to a development of the invention, the outer marking or the outer markings are each through the end of a light-guiding optical waveguide, such as a light-guiding optical fiber, in particular glass fiber, into which light is preferably coupled by means of one or more light sources. The light source or sources are e.g. formed by one or more light emitting diodes. The reflector or reflectors are preferably designed to be retro-reflective and can therefore also be referred to as retro-reflectors.

Die erste Kamera ist hinsichtlich ihrer spektralen Empfindlichkeit insbesondere an das Licht angepasst. Das Licht kann im sichtbaren Spektrum liegen. Vorzugsweise handelt es sich aber um Infrarotlicht.The spectral sensitivity of the first camera is particularly adapted to the light. The light can be in the visible spectrum. However, it is preferably infrared light.

Bevorzugt nimmt die erste Kamera von der oder von den Außenmarkierungen wenigstens ein Bild auf und stellt dieses, insbesondere in Form von Bilddaten, als die erste Lageinformation der Auswerteeinrichtung zur Verfügung. Vorzugsweise bestimmt die Auswerteeinrichtung unter Anwendung wenigstens eines Bildauswertungsverfahrens aus den Bilddaten die relative Lage der ersten Kamera zu der oder den Außenmarkierungen.The first camera preferably records at least one image of or from the outer markings and makes this available, in particular in the form of image data, as the first position information of the evaluation device. The evaluation device preferably determines from the image data using at least one image evaluation method the relative position of the first camera to the outer mark or markings.

Die erste Kamera ist, insbesondere mittels einer Halterung, am oder im Rotor befestigt. Vorzugsweise ist die erste Kamera mittels der Halterung an oder im Bereich der Blattwurzel am Rotor befestigt. Beispielsweise ist die erste Kamera, insbesondere mittels der Halterung, an einer Trennwand im Rotorblatt befestigt. Eine solche Trennwand dient z.B. dazu, ein Hineinfallen von Wartungspersonal und/oder Gegenständen in das Rotorblatt zu vermeiden. In der Trennwand können eine oder mehrere Durchgangsöffnungen vorgesehen sein, durch welche ein oder mehrere optische Signale oder Lichtstrahlen hindurchtreten, die im Zusammenhang mit der erfindungsgemäßen Vorrichtung genutzt werden.The first camera is attached to or in the rotor, in particular by means of a holder. The first camera is preferably fastened to or in the region of the blade root on the rotor by means of the holder. For example, the first camera is fastened to a partition in the rotor blade, in particular by means of the holder. Such a partition serves e.g. to prevent maintenance personnel and / or objects from falling into the rotor blade. One or more through openings can be provided in the partition, through which one or more optical signals or light beams pass, which are used in connection with the device according to the invention.

Gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden Ausgestaltung umfasst das Positionserfassungsmittel wenigstens einen oder mehrere an der Halterung befestigte Spannungs- oder Dehnungssensoren, mittels welchen eine Formänderung der Halterung erfasst wird. Dabei ist die von dem Positionserfassungsmittel zur Verfügung gestellte zweite Lageinformation abhängig von der erfassten Formänderung. Durch das Erfassen der Formänderung der Halterung ist die relative Lage der ersten Kamera zu der Blattwurzel bestimmbar.According to a configuration not covered by the claimed subject matter of the invention, the position detection means comprises at least one or more tension or strain sensors attached to the holder, by means of which a change in shape of the holder is detected. The second position information provided by the position detection means is dependent on the detected change in shape. The position of the first camera relative to the leaf root can be determined by detecting the change in shape of the holder.

Gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden Ausgestaltung umfasst das Positionserfassungsmittel wenigstens eine an oder im Bereich der Blattwurzel oder in der Rotornabe angeordnete andere Kamera, mittels welcher eine Lageänderung der ersten Kamera erfasst wird, die an dem Rotorblatt befestigt ist. Dabei ist die von dem Positionserfassungsmittel zur Verfügung gestellte zweite Lageinformation abhängig von der relativen Lage der ersten Kamera zu der anderen Kamera. Hierdurch ist die relative Lage der ersten Kamera zu der Blattwurzel bestimmbar. Die andere Kamera bildet bevorzugt einen Teil des Positionserfassungsmittels. Die erste Kamera ist insbesondere im Sichtfeld der anderen Kamera angeordnet. Die andere Kamera ist z.B. am Rotorblatt, am Blattlager oder an der Rotornabe befestigt. Bevorzugt ist die andere Kamera starr an der Rotornabe, insbesondere an einem starr mit der Rotornabe verbundenen Teil des Blattlagers, befestigt. Somit ist mittels der anderen Kamera zusätzlich eine Drehung der ersten Kamera um die Blattachse des Rotorblatts relativ zu der Rotornabe und/oder der anderen Kamera erfassbar. Eine solche Drehung tritt z.B. beim Drehen des Rotorblatts um seine Blattachse relativ zu der Rotornabe auf (was auch als "Pitchen" bezeichnet wird). Insbesondere ist mittels der anderen Kamera zusätzlich eine Drehung des Rotorblatts um seine Blattachse relativ zu der Rotornabe erfassbar. Vorzugsweise wird mittels der Auswerteeinrichtung zusätzlich eine Drehung des Rotorblatts um seine Blattachse relativ zu der Rotornabe bestimmt.According to a configuration not covered by the claimed subject matter of the invention, the position detection means comprises at least one other arranged on or in the area of the blade root or in the rotor hub Camera, by means of which a change in position of the first camera is detected, which is attached to the rotor blade. The second position information provided by the position detection means depends on the relative position of the first camera to the other camera. This enables the relative position of the first camera to the leaf root to be determined. The other camera preferably forms part of the position detection means. The first camera is arranged in particular in the field of view of the other camera. The other camera is attached to the rotor blade, the blade bearing or the rotor hub, for example. The other camera is preferably rigidly attached to the rotor hub, in particular to a part of the blade bearing rigidly connected to the rotor hub. Thus, the other camera can additionally detect a rotation of the first camera about the blade axis of the rotor blade relative to the rotor hub and / or the other camera. Such a rotation occurs, for example, when the rotor blade is rotated about its blade axis relative to the rotor hub (which is also referred to as "pitching"). In particular, the other camera can additionally detect a rotation of the rotor blade about its blade axis relative to the rotor hub. A rotation of the rotor blade about its blade axis relative to the rotor hub is preferably additionally determined by means of the evaluation device.

Bevorzugt nimmt die andere Kamera von der ersten Kamera wenigstens ein Bild auf und stellt dieses, insbesondere in Form von Bilddaten, als die zweite Lageinformation der Auswerteeinrichtung zur Verfügung. Vorzugsweise berechnet die Auswerteeinrichtung unter Anwendung wenigstens eines Bildauswertungsverfahrens aus den Bilddaten die relative Lage der ersten Kamera zu der anderen Kamera. Die andere Kamera ist aber vorzugsweise an oder im Bereich der Blattwurzel oder in der Rotornabe angeordnet. Somit berechnet die Auswerteeinrichtung unter Anwendung wenigstens eines Bildauswertungsverfahrens aus den Bilddaten insbesondere die relative Lage der ersten Kamera zu der Blattwurzel.The other camera preferably records at least one image from the first camera and makes this available, in particular in the form of image data, as the second position information of the evaluation device. The evaluation device preferably calculates the relative position from the image data using at least one image evaluation method the first camera to the other camera. However, the other camera is preferably arranged on or in the area of the blade root or in the rotor hub. Thus, using at least one image evaluation method, the evaluation device calculates, in particular, the relative position of the first camera to the leaf root from the image data.

Gemäß der Erfindung umfasst das Positionserfassungsmittel wenigstens eine an oder im Bereich der Blattwurzel am Rotor befestigte, Licht emittierende Innenmarkierung, wobei eine zu der ersten Kamera ortsfeste zweite Kamera das von der Innenmarkierung emittierte Licht empfängt. Dabei ist die von dem Positionserfassungsmittel zur Verfügung gestellte zweite Lageinformation abhängig von der relativen Lage der ersten Kamera zu der Innenmarkierung. Hierdurch ist die relative Lage der ersten Kamera zu der Blattwurzel bestimmbar. Die zweite Kamera bildet hierbei einen Teil des oder das Positionserfassungsmittel.According to the invention, the position detection means comprises at least one light-emitting inner marking attached to or in the region of the blade root on the rotor, a second camera which is stationary with respect to the first camera receiving the light emitted by the inner marking. The second position information provided by the position detection means depends on the position of the first camera relative to the inner marking. This enables the relative position of the first camera to the leaf root to be determined. The second camera forms part of the position detection means.

Gemäß einer Weiterbildung der Erfindung umfasst das Positionserfassungsmittel mehrere an oder im Bereich der Blattwurzel am Rotor befestigte, Licht emittierende Innenmarkierungen, die vorzugsweise an unterschiedlichen Orten positioniert sind, wobei die zu der ersten Kamera ortsfeste zweite Kamera das von den Innenmarkierungen emittierte Licht empfängt. Dabei ist die von dem Positionserfassungsmittel zur Verfügung gestellte zweite Lageinformation abhängig von der relativen Lage der ersten Kamera zu den Innenmarkierungen. Hierdurch ist die relative Lage der ersten Kamera zu der Blattwurzel bestimmbar. Die zweite Kamera bildet hierbei einen Teil des oder das Positionserfassungsmittel.According to a development of the invention, the position detection means comprises a plurality of light-emitting inner markings attached to or in the area of the blade root on the rotor, which are preferably positioned at different locations, the second camera which is stationary with respect to the first camera receiving the light emitted by the inner markings. The second position information provided by the position detection means depends on the position of the first camera relative to the inner markings. This enables the relative position of the first camera to the leaf root to be determined. The the second camera forms part of the position detection means.

Gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden ersten Variante ist die erste Kamera in einem dem Rotorblatt gegenüberliegenden Bereich der Rotornabe angeordnet und an dieser befestigt. Bei der ersten Variante bildet die erste Kamera bevorzugt einen Teil des Positionserfassungsmittels. Eine zweite Kamera ist hierbei nicht zwingend erforderlich ist.According to a first variant, which is not covered by the claimed subject matter of the invention, the first camera is arranged in a region of the rotor hub opposite the rotor blade and is fastened thereon. In the first variant, the first camera preferably forms part of the position detection means. A second camera is not absolutely necessary.

Gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden zweiten Variante ist wenigstens ein fest mit der ersten Kamera verbundener und vorzugsweise in deren Sichtfeld angeordneter Spiegel vorgesehen, mittels welchem das von der oder den Innenmarkierungen emittierte Licht in Richtung auf die erste Kamera reflektiert wird. Gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden Abwandlung der zweiten Variante sind mehrere mit der ersten Kamera verbundene und vorzugsweise in deren Sichtfeld angeordnete Spiegel vorgesehen, mittels welchen das von der oder den Innenmarkierungen emittierte Licht in Richtung auf die erste Kamera reflektiert wird. Bei der zweiten Variante und/oder deren Abwandlung bildet die erste Kamera bevorzugt einen Teil des Positionserfassungsmittels. Eine zweite Kamera ist hierbei nicht zwingend erforderlich ist.According to a second variant, which is not covered by the claimed subject matter of the invention, at least one mirror is permanently connected to the first camera and preferably arranged in its field of view, by means of which the light emitted by the inner mark or markings is reflected in the direction of the first camera. According to a modification of the second variant which does not fall under the claimed subject matter of the invention, a plurality of mirrors connected to the first camera and preferably arranged in its field of view are provided, by means of which the light emitted by the inner mark or markings is reflected in the direction of the first camera. In the second variant and / or its modification, the first camera preferably forms part of the position detection means. A second camera is not absolutely necessary.

Gemäß einer unter den beanspruchten Erfindungsgegenstand fallenden dritten Variante ist die zweite Kamera vorgesehen, wobei die Kameras insbesondere in enger räumlicher Nähe zueinander angeordnet sind. Vorzugsweise sind die Kameras zu einer baulichen Einheit zusammengefasst. Insbesondere ist die zweite Kamera mit der Auswerteeinrichtung gekoppelt.According to a third variant covered by the claimed subject matter of the invention, the second camera is provided, the cameras being arranged in particular in close spatial proximity to one another. The cameras are preferably closed summarized in one structural unit. In particular, the second camera is coupled to the evaluation device.

Die erste, die zweite und/oder die dritte Variante können auch miteinander kombiniert werden.The first, the second and / or the third variant can also be combined with one another.

Die Innenmarkierung oder die Innenmarkierungen sind bevorzugt jeweils als Lichtquelle oder als von einer Lichtquelle angestrahlter Reflektor ausgebildet. Gemäß einer Weiterbildung der Erfindung sind die Innenmarkierung oder die Innenmarkierungen jeweils durch das Ende eines lichtführenden Lichtwellenleiters, wie z.B. einer lichtführenden optischen Faser, insbesondere Glasfaser, gebildet, in den vorzugsweise mittels einer oder mehrerer Lichtquellen Licht eingekoppelt wird. Die Lichtquelle oder die Lichtquellen sind z.B. durch eine oder mehrere Leuchtdioden gebildet. Der oder die Reflektoren sind vorzugsweise retro-reflektierend ausgebildet und können somit auch als Retro-Reflektoren bezeichnet werden.The inner marking or the inner markings are preferably each formed as a light source or as a reflector illuminated by a light source. According to a development of the invention, the inner marking or the inner markings are each through the end of a light-guiding optical waveguide, such as a light-guiding optical fiber, in particular glass fiber, into which light is preferably coupled by means of one or more light sources. The light source or sources are e.g. formed by one or more light emitting diodes. The reflector or reflectors are preferably designed to be retro-reflective and can therefore also be referred to as retro-reflectors.

Bevorzugt nimmt die zweite Kamera von der oder den Innenmarkierungen wenigstens ein Bild auf und stellt dieses insbesondere in Form von Bilddaten als die zweite Lageinformation der Auswerteeinrichtung zur Verfügung. Vorzugsweise berechnet die Auswerteeinrichtung unter Anwendung wenigstens eines Bildauswertungsverfahrens aus den Bilddaten die relative Lage der ersten Kamera oder zweiten Kamera zu der oder den Innenmarkierungen. Da die beiden Kameras ortsfest zueinander sind, ist mittels der Auswerteeinrichtung aus der berechneten relativen Lage der zweiten Kamera zu der oder den Innenmarkierungen die relative Lage der ersten Kamera zu der oder den Innenmarkierungen ableitbar. Das mittels der zweiten Kamera von der oder den Innenmarkierungen gewonnene Bild ist vorzugsweise ein anderes Bild als das Bild, das mittels der ersten Kamera von der oder den Außenmarkierungen gewonnen wird. Gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden Alternative ist das mittels der ersten Kamera von der oder den Innenmarkierungen und von der oder den Außenmarkierungen gewonnene Bild bevorzugt ein gemeinsames Bild, wenn lediglich eine Kamera verwendet wird.The second camera preferably records at least one image of the interior markings and makes them available in the form of image data as the second position information of the evaluation device. Preferably, using at least one image evaluation method, the evaluation device calculates the relative position of the first camera or second camera to the inner mark or markings from the image data. Since the two cameras are stationary with respect to one another, the evaluation device uses the calculated relative position of the second camera to determine the relative position of the inner markings The position of the first camera can be derived from the inner markings. The image obtained from the inner mark (s) by means of the second camera is preferably a different image than the image obtained from the outer mark (s) by means of the first camera. According to an alternative not covered by the claimed subject matter of the invention, the image obtained from the inner mark or markings and from the outer mark or markings by means of the first camera is preferably a common image if only one camera is used.

Gemäß einer Ausgestaltung der Erfindung umfasst das Rotorblatt einen Hohlraum, in dem die Außenmarkierung oder die Außenmarkierungen angeordnet sind. Bevorzugt ist auch die erste Kamera in dem Hohlraum angeordnet. Gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden Alternative kann die erste Kamera in der Rotornabe angeordnet sein. Vorzugsweise ist die andere oder zweite Kamera in dem Hohlraum angeordnet. Alternativ kann die andere oder zweite Kamera auch in der Rotornabe angeordnet sein. Bevorzugt ist die Innenmarkierung oder sind die Innenmarkierungen in dem Hohlraum angeordnet.According to one embodiment of the invention, the rotor blade comprises a cavity in which the outer marking or the outer markings are arranged. The first camera is preferably also arranged in the cavity. According to an alternative not falling under the claimed subject matter of the invention, the first camera can be arranged in the rotor hub. The other or second camera is preferably arranged in the cavity. Alternatively, the other or second camera can also be arranged in the rotor hub. The inner marking or the inner markings are preferably arranged in the cavity.

Die Innenmarkierung oder die Innenmarkierungen sind bevorzugt am Rotorblatt, am Blattlager oder an der Rotornabe befestigt. Gemäß einer Weiterbildung der Erfindung sind die Innenmarkierung oder die Innenmarkierungen starr an der Rotornabe, insbesondere an einem starr mit der Rotornabe verbundenen Teil des Blattlagers, befestigt. Somit ist mittels der zweiten Kamera zusätzlich eine Drehung der ersten Kamera und/oder der zweiten Kamera um die Blattachse des Rotorblatts relativ zu der Rotornabe und/oder der oder den Innenmarkierungen erfassbar. Eine solche Drehung tritt z.B. beim Drehen des Rotorblatts um seine Blattachse relativ zu der Rotornabe auf. Insbesondere ist mittels der zweiten Kamera zusätzlich eine Drehung des Rotorblatts um seine Blattachse relativ zu der Rotornabe erfassbar. Vorzugsweise wird mittels der Auswerteeinrichtung zusätzlich eine Drehung des Rotorblatts um seine Blattachse relativ zu der Rotornabe bestimmt.The inner marking or the inner markings are preferably attached to the rotor blade, to the blade bearing or to the rotor hub. According to a development of the invention, the inner marking or the inner markings are rigidly attached to the rotor hub, in particular to a part of the blade bearing rigidly connected to the rotor hub. Thus, the second camera additionally rotates the first camera and / or the second camera about the blade axis of the Rotor blade can be detected relative to the rotor hub and / or the inner mark (s). Such a rotation occurs, for example, when the rotor blade rotates about its blade axis relative to the rotor hub. In particular, the second camera can additionally detect a rotation of the rotor blade about its blade axis relative to the rotor hub. A rotation of the rotor blade about its blade axis relative to the rotor hub is preferably additionally determined by means of the evaluation device.

Die Offenbarung betrifft ferner eine Windkraftanlage mit

  • einem durch Wind um eine Rotorachse drehbaren Rotor, der eine Rotornabe und wenigstens ein an der Rotornabe befestigtes und sich von dieser in Richtung einer quer oder im Wesentlichen quer zur Rotorachse verlaufenden Blattachse wegerstreckendes Rotorblatt umfasst,
  • wenigstens einem elektrischen Generator, der mit dem Rotor mechanisch gekoppelt und von diesem antreibbar ist, und
  • einer erfindungsgemäßen Vorrichtung zur optischen Messung der Biegung des Rotorblatts.
The disclosure also relates to a wind turbine
  • a rotor which can be rotated about a rotor axis by wind and which comprises a rotor hub and at least one rotor blade fastened to the rotor hub and extending therefrom in the direction of a blade axis running transversely or essentially transversely to the rotor axis,
  • at least one electrical generator which is mechanically coupled to the rotor and can be driven by the latter, and
  • an inventive device for optical measurement of the bending of the rotor blade.

Die Windkraftanlage kann gemäß allen im Zusammenhang mit der erfindungsgemäßen Vorrichtung erläuterten Ausgestaltungen weitergebildet sein.The wind turbine can be developed in accordance with all of the configurations explained in connection with the device according to the invention.

Die Offenbarung betrifft auch ein Verfahren zur optischen Messung der Biegung des Rotorblatts einer Windkraftanlage mittels einer erfindungsgemäßen Vorrichtung.The disclosure also relates to a method for optically measuring the bending of the rotor blade of a wind turbine by means of a device according to the invention.

Ferner betrifft die Offenbarung die Verwendung einer erfindungsgemäßen Vorrichtung zur optischen Messung der Biegung des Rotorblatts einer Windkraftanlage.Furthermore, the disclosure relates to the use of a device according to the invention for optically measuring the bending of the rotor blade of a wind turbine.

Bevorzugt wird die Blattbiegung folgendermaßen bestimmt:

  • In einem ersten Schritt wird die relative Lage der ersten Kamera zu der Blattwurzel unter Auswertung der zweiten Lageinformation berechnet.
  • In einem zweiten Schritt wird die relative Lage der ersten Kamera zu der oder den Außenmarkierungen unter Auswertung der ersten Lageinformation berechnet.
  • In einem dritten Schritt wird aus den in dem ersten Schritt und in dem zweiten Schritt berechneten Lagen die relative Lage der Blattwurzel zu der oder den Außenmarkierungen bestimmt.
The sheet bending is preferably determined as follows:
  • In a first step, the relative position of the first camera to the leaf root is calculated by evaluating the second position information.
  • In a second step, the relative position of the first camera to the outer mark or markings is calculated by evaluating the first position information.
  • In a third step, the relative position of the leaf root to the outer mark or marks is determined from the positions calculated in the first step and in the second step.

Die oben genannten Schritte werden bevorzugt mittels der Auswerteeinrichtung durchgeführt.The above-mentioned steps are preferably carried out by means of the evaluation device.

Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichnung beschrieben. In der Zeichnung zeigen:

Fig. 1
eine schematische Ansicht einer Windkraftanlage,
Fig. 2
eine schematische und teilweise Darstellung des aus Fig. 1 ersichtlichen Rotors mit einer Vorrichtung gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden ersten Ausführungsform,
Fig. 3
eine schematische und teilweise Darstellung des Rotors mit einer Vorrichtung gemäß einer unter den beanspruchten Erfindungsgegenstand fallenden zweiten Ausführungsform,
Fig. 4
eine schematische und teilweise Darstellung des Rotors mit einer Vorrichtung gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden dritten Ausführungsform,
Fig. 5
eine schematische und teilweise Darstellung des Rotors mit einer Vorrichtung gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden vierten Ausführungsform,
Fig. 6
eine schematische und teilweise Darstellung des Rotors mit einer Vorrichtung gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden fünften Ausführungsform,
Fig. 7
eine schematische und teilweise Darstellung des Rotors mit einer Vorrichtung gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden Abwandlung der fünften Ausführungsform,
Fig. 8
ein mittels einer Kamera aufgenommenes Bild in schematischer Darstellung,
Fig. 9
eine Lichtquelle und einen Reflektor einer Vorrichtung gemäß einer Variante der Ausführungsformen und
Fig. 10
eine Lichtquelle und einen Lichtwellenleiter einer Vorrichtung gemäß einer anderen Variante der Ausführungsformen.
The invention is described below using preferred embodiments with reference to the drawing. The drawing shows:
Fig. 1
a schematic view of a wind turbine,
Fig. 2
a schematic and partial representation of the Fig. 1 visible rotor with a device according to a first embodiment not covered by the claimed subject matter,
Fig. 3
2 shows a schematic and partial illustration of the rotor with a device according to a second embodiment covered by the claimed subject matter of the invention,
Fig. 4
2 shows a schematic and partial illustration of the rotor with a device according to a third embodiment not covered by the claimed subject matter of the invention,
Fig. 5
2 shows a schematic and partial illustration of the rotor with a device according to a fourth embodiment not covered by the claimed subject matter of the invention,
Fig. 6
2 shows a schematic and partial illustration of the rotor with a device according to a fifth embodiment not covered by the claimed subject matter of the invention,
Fig. 7
2 shows a schematic and partial illustration of the rotor with a device according to a modification of the fifth embodiment not covered by the subject matter of the invention,
Fig. 8
an image taken by a camera in a schematic representation,
Fig. 9
a light source and a reflector of a device according to a variant of the embodiments and
Fig. 10
a light source and an optical waveguide of a device according to another variant of the embodiments.

Aus Fig. 1 ist eine Windkraftanlage 1 ersichtlich, wobei ein auf einem Fundament 2 aufstehender Turm 3 an seinem dem Fundament 2 abgewandten Ende mit einem Maschinenhaus 4 verbunden ist. Das Maschinenhaus 4 umfasst einen Maschinenträger 5, an dem ein Rotor 6 um eine Rotorachse 7 drehbar gelagert ist, der eine Rotornabe 8 und damit verbundene Rotorblätter 9 und 10 aufweist, die jeweils um ihre Blattachse 11 bzw. 12 relativ zu der Rotornabe 8 drehbar sind. Jedes der Rotorblätter 9 und 10 ist mit einem Blattwinkelverstellantrieb 13 bzw. 14 mechanisch gekoppelt, mittels welchem das jeweilige Rotorblatt um die zugehörige Blattachse drehbar ist. Der Rotor 6 ist mechanisch mit einem elektrischen Generator 16 gekoppelt, der in dem Maschinenhaus 4 angeordnet und an dem Maschinenträger 5 befestigt ist. Der Rotor 6 wird durch Wind 15 um seine Rotorachse 7 gedreht, wobei die Rotationsenergie des Rotors 6 zu einem großen Teil mittels des Generators 16 in elektrische Energie umgewandelt wird. Für den kontrollierten Betrieb der Windkraftanlage 1 ist eine Windkraftanlagensteuerung 17 vorgesehen, mittels welcher unter anderem die Blattwinkelverstellantriebe gesteuert werden.Out Fig. 1 A wind power plant 1 can be seen, a tower 3 standing on a foundation 2 being connected to a machine house 4 at its end facing away from the foundation 2. The machine house 4 comprises a machine support 5, on which a rotor 6 is rotatably mounted about a rotor axis 7, which has a rotor hub 8 and rotor blades 9 and 10 connected thereto, which are each rotatable about their blade axis 11 and 12 relative to the rotor hub 8 . Each of the rotor blades 9 and 10 is mechanically coupled to a blade angle adjustment drive 13 or 14, by means of which the respective rotor blade can be rotated about the associated blade axis. The rotor 6 is mechanically coupled to an electrical generator 16 which is arranged in the machine house 4 and is fastened to the machine carrier 5. The rotor 6 is rotated about its rotor axis 7 by wind 15, the rotational energy of the rotor 6 being largely converted into electrical energy by means of the generator 16. For the controlled operation of the wind power plant 1, a wind power plant control 17 is provided, by means of which, among other things, the blade angle adjustment drives are controlled.

Fig. 2 zeigt eine schematische und teilweise Darstellung des Rotors 6 in Blickrichtung A aus Fig. 1, wobei an der Rotornabe 8 ein drittes Rotorblatt 18 mittels eines Blattlagers 19 um seine Blattachse 20 drehbar gelagert ist (in Fig. 1 ist das Rotorblatt 18 durch die Rotornabe 8 verdeckt). Wie die Rotorblätter 9 und 10 ist auch das Rotorblatt 18 mit einem schematisch angedeuteten Blattwinkelverstellantrieb 58 mechanisch gekoppelt und mittels diesem um die Blattachse 20 drehbar. Auch sind die Blattlager 21 und 22 für die Rotorblätter 9 und 10 dargestellt. Fig. 2 shows a schematic and partial representation of the rotor 6 in viewing direction A. Fig. 1 , wherein on the rotor hub 8, a third rotor blade 18 is rotatably mounted about its blade axis 20 by means of a blade bearing 19 (in Fig. 1 the rotor blade 18 is covered by the rotor hub 8). Like the rotor blades 9 and 10, the rotor blade 18 is mechanically coupled to a schematically indicated blade angle adjustment drive 58 and can be rotated about the blade axis 20 by means of this. The blade bearings 21 and 22 for the rotor blades 9 and 10 are also shown.

Fig. 2 zeigt ferner eine ganz oder zumindest teilweise in den Rotor 6 integrierte Vorrichtung (Messvorrichtung) 56 gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden ersten Ausführungsform, die nachfolgend erläutert wird. Das an dem Blattlager 19 befestigte Ende des Rotorblatts 18 wird als Blattwurzel 23 bezeichnet, wobei im Bereich der Blattwurzel 23 zwei Licht emittierende Innenmarkierungen 24 und 25 angeordnet und an dem Rotorblatt 18 befestigt sind. Alternativ können die Innenmarkierungen 24 und 25 auch an dem Blattlager 19 befestigt sein. Im Abstand zu der Blattwurzel 23 ist in einem Hohlraum 26 des Rotorblatts 18 eine Kamera 27 angeordnet und an dem Rotorblatt 18 befestigt. Mit der Kamera 27 sind zwei Spiegel 28 und 29 fest verbunden, welche das von den Innenmarkierungen 24 und 25 emittierte Licht auf eine fotosensitive Fläche 30 der Kamera 27 reflektieren. Der Strahlengang des von der Innenmarkierung 24 emittierten Lichts ist dabei mit dem Bezugszeichen 31 und der Strahlengang des von der Innenmarkierung 25 emittierten Lichts mit dem Bezugszeichen 32 gekennzeichnet. Fig. 2 also shows a device (measuring device) 56 fully or at least partially integrated in the rotor 6 according to a first embodiment not covered by the claimed subject matter, which is explained below. The end of the rotor blade 18 fastened to the blade bearing 19 is referred to as the blade root 23, two light-emitting inner markings 24 and 25 being arranged in the region of the blade root 23 and being attached to the rotor blade 18. Alternatively, the inner markings 24 and 25 can also be attached to the sheet bearing 19. At a distance from the blade root 23, a camera 27 is arranged in a cavity 26 of the rotor blade 18 and attached to the rotor blade 18. Two mirrors 28 and 29 are fixedly connected to the camera 27 and reflect the light emitted by the inner markings 24 and 25 onto a photosensitive surface 30 of the camera 27. The beam path of the light emitted by the inner marking 24 is identified by the reference symbol 31 and the beam path of the light emitted by the inner marking 25 is identified by the reference symbol 32.

Im Abstand zu der Blattwurzel 23 und der Kamera 27 sind zwei Licht emittierende Außenmarkierungen 33 und 34 in dem Hohlraum 26 angeordnet und an dem Rotorblatt 18 befestigt. Das von den Außenmarkierungen 33 und 34 emittierte Licht trifft auf die fotosensitive Fläche 30 der Kamera 27 auf, wobei der Strahlengang des von der Außenmarkierung 33 emittierten Lichts mit dem Bezugszeichen 35 und der Strahlengang des von der Außenmarkierung 34 emittierten Lichts mit dem Bezugszeichen 36 gekennzeichnet ist.At a distance from the blade root 23 and the camera 27 are two light-emitting outer markings 33 and 34 in the Cavity 26 arranged and attached to the rotor blade 18. The light emitted by the outer markings 33 and 34 impinges on the photosensitive surface 30 of the camera 27, the beam path of the light emitted by the outer mark 33 being identified by the reference symbol 35 and the beam path of the light emitted by the outer marker 34 by the reference symbol 36 .

Die Kamera 27 ist elektrisch mit einer schematisch dargestellten Auswerteeinrichtung 37 verbunden, die im Rotorblatt 18, in der Rotornabe 8 oder an einer anderen geeigneten Stelle der Windkraftanlage 1 befestigt ist. Beispielsweise kann die Auswerteeinrichtung 37 auch durch die Windkraftanlagensteuerung 17 gebildet sein. Das von der Kamera 27 aufgenommene Bild 45 (siehe Fig. 8) wird in Form von elektronischen Bilddaten 38 der Auswerteeinrichtung 37 zugeführt, wobei die Bilddaten 38 eine von der relativen Lage der Kamera 27 zu den Außenmarkierungen 33 und 34 abhängige erste Lageinformation und eine von der relativen Lage der Kamera 27 zu den Innenmarkierungen 24 und 25 abhängige zweite Lageinformation umfassen.The camera 27 is electrically connected to a schematically illustrated evaluation device 37, which is fastened in the rotor blade 18, in the rotor hub 8 or at another suitable location of the wind turbine 1. For example, the evaluation device 37 can also be formed by the wind power plant controller 17. The image 45 taken by the camera 27 (see Fig. 8 ) is supplied to the evaluation device 37 in the form of electronic image data 38, the image data 38 depending on the relative position of the camera 27 to the outer markings 33 and 34 and first position information dependent on the relative position of the camera 27 to the inner markings 24 and 25 include second location information.

Die Auswerteeinrichtung 37 berechnet unter Anwendung wenigstens eines Bildauswertungsverfahrens die relative Lage der Kamera 27 zu der Blattwurzel 23 sowie die relative Lage der Kamera 27 zu den Außenmarkierungen 33 und 34. Aus den berechneten Lagen bestimmt die Auswerteeinrichtung dann die relative Lage der Blattwurzel 23 zu den Außenmarkierungen 33 und 34, wobei diese relative Lage die Biegung des Rotorblatts 18 charakterisiert.The evaluation device 37 uses at least one image evaluation method to calculate the relative position of the camera 27 to the leaf root 23 and the relative position of the camera 27 to the outer markings 33 and 34. From the calculated positions, the evaluation device then determines the relative position of the leaf root 23 to the outer markings 33 and 34, this relative position characterizing the bending of the rotor blade 18.

Aus Fig. 3 ist eine schematische und teilweise Darstellung des Rotors 6 mit einer Messvorrichtung 56 gemäß einer unter den beanspruchten Erfindungsgegenstand fallenden zweiten Ausführungsform ersichtlich, wobei zu der ersten Ausführungsform ähnliche oder identische Merkmale mit denselben Bezugszeichen wie bei der ersten Ausführungsform bezeichnet sind. Zusätzlich zu der Kamera 27 ist in dem Hohlraum 26 eine Kamera 39 mit einer fotosensitiven Fläche 40 vorgesehen, auf welche das von den Innenmarkierungen 24 und 25 emittierte Licht auftrifft. Die Sichtfelder der Kameras erstrecken sich dabei insbesondere in oder im Wesentlichen in einander entgegengesetzte Richtungen. Jede der Kameras 27 und 39 ist mit der Auswerteeinrichtung 37 elektrisch verbunden und übermittelt an diese elektronische Bilddaten 38 bzw. 41. Dabei umfassen die Bilddaten 38 von der Kamera 27 eine von der relativen Lage der Kamera 27 zu den Außenmarkierungen 33 und 34 abhängige erste Lageinformation, wobei die von der Kamera 39 gelieferten Bilddaten 41 eine von der relativen Lage der Kamera 39 zu der Blattwurzel 23 abhängige zweite Lageinformation umfassen. Die Kameras 27 und 39 sind ortsfest zueinander angeordnet und bilden eine kompakte bauliche Einheit.Out Fig. 3 is a schematic and partial representation of the rotor 6 with a measuring device 56 according to a second embodiment falling under the claimed subject matter of the invention, wherein similar or identical features to the first embodiment are designated by the same reference numerals as in the first embodiment. In addition to the camera 27, a camera 39 with a photosensitive surface 40 is provided in the cavity 26, on which the light emitted by the inner markings 24 and 25 is incident. The fields of vision of the cameras extend in particular or essentially in opposite directions. Each of the cameras 27 and 39 is electrically connected to the evaluation device 37 and transmits electronic image data 38 and 41 to it. The image data 38 from the camera 27 include first position information that is dependent on the relative position of the camera 27 to the outer markings 33 and 34 , wherein the image data 41 supplied by the camera 39 comprise second position information which is dependent on the relative position of the camera 39 to the leaf root 23. The cameras 27 and 39 are arranged fixed to one another and form a compact structural unit.

Aus den Bilddaten 41 berechnet die Auswerteeinrichtung 37 unter Anwendung wenigstens eines Bildauswertungsverfahrens die relative Lage der Kamera 39 zu der Blattwurzel 23. Da die beiden Kameras ortsfest zueinander sind, charakterisiert diese Lage auch die relative Lage der Kamera 27 zu der Blattwurzel 23, sodass die relative Lage der Kamera 27 zu der Blattwurzel 23 mittels der Auswerteeinrichtung 37 berechnet wird. Ferner wird mittels der Auswerteeinrichtung 37 unter Anwendung wenigstens eines Bildauswertungsverfahrens aus den Bilddaten 38 die relative Lage der Kamera 27 zu den Außenmarkierungen 33 und 34 berechnet. Danach bestimmt die die Auswerteeinrichtung 37 aus den berechneten Lagen die relative Lage der Blattwurzel 23 zu den Außenmarkierungen 33 und 34, wobei diese relative Lage die Biegung des Rotorblatts 18 charakterisiert. Gemäß der zweiten Ausführungsform sind somit keine Spiegel erforderlich.Using at least one image evaluation method, the evaluation device 37 calculates the relative position of the camera 39 to the leaf root 23 from the image data 41. Since the two cameras are fixed to one another, this position also characterizes the relative position of the camera 27 to the leaf root 23, so that the relative Position of the camera 27 to the leaf root 23 is calculated by means of the evaluation device 37. Furthermore, by means of the evaluation device 37 Using at least one image evaluation method, the relative position of the camera 27 to the outer markings 33 and 34 is calculated from the image data 38. The evaluation device 37 then determines from the calculated positions the relative position of the blade root 23 to the outer markings 33 and 34, this relative position characterizing the bending of the rotor blade 18. According to the second embodiment, no mirrors are therefore required.

Aus Fig. 4 ist eine schematische und teilweise Darstellung des Rotors 6 mit einer Messvorrichtung 56 gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden dritten Ausführungsform ersichtlich, wobei zu den vorherigen Ausführungsformen ähnliche oder identische Merkmale mit denselben Bezugszeichen wie bei den vorherigen Ausführungsformen bezeichnet sind. Die dritte Ausführungsform ist eine Abwandlung der zweiten Ausführungsform, wobei anstelle der Innenmarkierungen 24 und 25 und der zweiten Kamera 39 Spannungs- oder Dehnungssensoren 42 und 43 an einer Halterung 57 angeordnet sind, mittels welcher die Kamera 27 an der Blattwurzel 23 oder an dem Blattlager 19 befestigt ist. Mittels der Sensoren 42 und 43 ist eine mechanische Verformung der Halterung 57 erfassbar, sodass die elektrisch mit der Auswerteeinrichtung 37 verbundenen Sensoren 42 und 43 Verformungsdaten 44 an die Auswerteeinrichtung 37 liefern. Dabei umfassen die Bilddaten 38 von der Kamera 27 eine von der relativen Lage der Kamera 27 zu den Außenmarkierungen 33 und 34 abhängige erste Lageinformation, wobei die von den Sensoren 42 und 43 gelieferten Verformungsdaten 44 eine von der relativen Lage der Kamera 27 zu der Blattwurzel 23 abhängige zweite Lageinformation umfassen.Out Fig. 4 A schematic and partial illustration of the rotor 6 with a measuring device 56 according to a third embodiment not falling under the claimed subject matter of the invention can be seen, features which are similar or identical to the previous embodiments being designated with the same reference symbols as in the previous embodiments. The third embodiment is a modification of the second embodiment, wherein instead of the inner markings 24 and 25 and the second camera 39, tension or strain sensors 42 and 43 are arranged on a holder 57, by means of which the camera 27 on the blade root 23 or on the blade bearing 19 is attached. A mechanical deformation of the holder 57 can be detected by means of the sensors 42 and 43, so that the sensors 42 and 43 electrically connected to the evaluation device 37 deliver deformation data 44 to the evaluation device 37. The image data 38 from the camera 27 include first position information that is dependent on the relative position of the camera 27 to the outer markings 33 and 34, the deformation data 44 provided by the sensors 42 and 43 being one of the relative position of the camera 27 to the leaf root 23 dependent second location information include.

Aus den Verformungsdaten 44 berechnet die Auswerteeinrichtung 37 die relative Lage der Kamera 27 zu der Blattwurzel 23. Unter Anwendung wenigstens eines Bildauswertungsverfahrens berechnet die Auswerteeinrichtung 37 aus den Bilddaten 38 die relative Lage der Kamera 27 zu den Außenmarkierungen 33 und 34. Aus den berechneten relativen Lagen bestimmt die Auswerteeinrichtung 37 dann die relative Lage der Blattwurzel 23 zu den Außenmarkierungen 33 und 34, wobei diese relative Lage die Biegung des Rotorblatts 18 charakterisiert.The evaluation device 37 calculates the relative position of the camera 27 from the leaf root 23 from the deformation data 44. Using at least one image evaluation method, the evaluation device 37 calculates the relative position of the camera 27 from the image data 38 to the outer markings 33 and 34. From the calculated relative positions The evaluation device 37 then determines the relative position of the blade root 23 to the outer markings 33 and 34, this relative position characterizing the bending of the rotor blade 18.

Aus Fig. 5 ist eine schematische und teilweise Darstellung des Rotors 6 mit einer Messvorrichtung 56 gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden vierten Ausführungsform ersichtlich, wobei zu den vorherigen Ausführungsformen ähnliche oder identische Merkmale mit denselben Bezugszeichen wie bei den vorherigen Ausführungsformen bezeichnet sind. Die vierte Ausführungsform bildet eine Abwandlung der ersten Ausführungsform, wobei die Kamera 27 auf einer dem Rotorblatt 18 gegenüberliegenden Seite der Rotornabe 8 angeordnet und an dieser befestigt ist. Das von den Innenmarkierungen 24 und 25 emittierte Licht trifft direkt auf die fotosensitive Fläche 30 der Kamera 27 auf, sodass keine Spiegel erforderlich sind. Zur weiteren Beschreibung der vierten Ausführungsform wird auf die Beschreibung der ersten Ausführungsform verwiesen.Out Fig. 5 A schematic and partial illustration of the rotor 6 with a measuring device 56 according to a fourth embodiment not falling under the claimed subject matter of the invention can be seen, features which are similar or identical to the previous embodiments being designated with the same reference symbols as in the previous embodiments. The fourth embodiment forms a modification of the first embodiment, the camera 27 being arranged on a side of the rotor hub 8 opposite the rotor blade 18 and being fastened to the latter. The light emitted by the inner markings 24 and 25 strikes the photosensitive surface 30 of the camera 27 directly, so that no mirrors are required. For a further description of the fourth embodiment, reference is made to the description of the first embodiment.

Aus Fig. 6 ist eine schematische und teilweise Darstellung des Rotors 6 mit einer Messvorrichtung 56 gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden fünften Ausführungsform ersichtlich, wobei zu den vorherigen Ausführungsformen ähnliche oder identische Merkmale mit denselben Bezugszeichen wie bei den vorherigen Ausführungsformen bezeichnet sind. Zusätzlich zu der Kamera 27 ist eine Kamera 39 mit einer fotosensitiven Fläche 40 vorgesehen, die im Bereich der Blattwurzel 23 an dem Rotorblatt 18 oder an dem Blattlager 19 befestigt ist. Die Kamera 27 ist dabei im Sichtfeld der Kamera 39 angeordnet. Jede der Kameras 27 und 39 ist mit der Auswerteeinrichtung 37 elektrisch verbunden und übermittelt an diese elektronische Bilddaten 38 bzw. 41. Dabei umfassen die Bilddaten 38 von der Kamera 27 eine von der relativen Lage der Kamera 27 zu den Außenmarkierungen 33 und 34 abhängige erste Lageinformation, wobei die von der Kamera 39 gelieferten Bilddaten 41 eine von der relativen Lage der Kamera 39 zu der Kamera 27 abhängige zweite Lageinformation umfassen. Die Kamera 39 ist vorzugsweise ortsfest zur Blattwurzel 23.Out Fig. 6 is a schematic and partial representation of the rotor 6 with a measuring device 56 according to a fifth embodiment not covered by the subject matter of the invention, with the previous Embodiments similar or identical features are denoted by the same reference numerals as in the previous embodiments. In addition to the camera 27, a camera 39 is provided with a photosensitive surface 40, which is attached to the rotor blade 18 or to the blade bearing 19 in the area of the blade root 23. The camera 27 is arranged in the field of view of the camera 39. Each of the cameras 27 and 39 is electrically connected to the evaluation device 37 and transmits electronic image data 38 and 41 to it. The image data 38 from the camera 27 include first position information that is dependent on the relative position of the camera 27 to the outer markings 33 and 34 , wherein the image data 41 supplied by the camera 39 comprise second position information which is dependent on the relative position of the camera 39 and the camera 27. The camera 39 is preferably fixed to the leaf root 23.

Aus den Bilddaten 41 berechnet die Auswerteeinrichtung 37 unter Anwendung wenigstens eines Bildauswertungsverfahrens die relative Lage der Kamera 39 zu der Kamera 27. Da die Kamera 39 im Bereich der Blattwurzel 23 angeordnet ist, charakterisiert diese Lage auch die relative Lage der Kamera 27 zu der Blattwurzel 23, sodass die relative Lage der Kamera 27 zu der Blattwurzel 23 mittels der Auswerteeinrichtung 37 berechnet wird. Ferner wird mittels der Auswerteeinrichtung 37 unter Anwendung wenigstens eines Bildauswertungsverfahrens aus den Bilddaten 38 die relative Lage der Kamera 27 zu den Außenmarkierungen 33 und 34 berechnet. Danach bestimmt die die Auswerteeinrichtung 37 aus den berechneten Lagen die relative Lage der Blattwurzel 23 zu den Außenmarkierungen 33 und 34, wobei diese relative Lage die Biegung des Rotorblatts 18 charakterisiert. Gemäß der fünften Ausführungsform sind somit keine Spiegel erforderlich.The evaluation device 37 calculates the relative position of the camera 39 to the camera 27 from the image data 41 using at least one image evaluation method. Since the camera 39 is arranged in the area of the leaf root 23, this position also characterizes the relative position of the camera 27 to the leaf root 23 , so that the relative position of the camera 27 to the blade root 23 is calculated by means of the evaluation device 37. Furthermore, the relative position of the camera 27 to the outer markings 33 and 34 is calculated from the image data 38 by means of the evaluation device 37 using at least one image evaluation method. Thereafter, the evaluation device 37 determines from the calculated positions the relative position of the blade root 23 to the outer markings 33 and 34, this relative position determining the bending of the rotor blade 18 characterized. Thus, according to the fifth embodiment, no mirrors are required.

Aus Fig. 7 ist eine schematische und teilweise Darstellung des Rotors 6 mit einer Messvorrichtung gemäß einer nicht unter den beanspruchten Erfindungsgegenstand fallenden Abwandlung der fünften Ausführungsform ersichtlich, wobei das Blattlager 19 einen mittels Bolzen 65 starr mit der Rotornabe 8 verbundenen Blattlagerteil 66 und einen mittels Bolzen 67 starr mit dem Rotorblatt 18 verbundenen Blattlagerteil 68 umfasst. Das Blattlager 19 ist hier als Kugellager ausgebildet, wobei die Kugeln des Blattlagers 19 schematisch angedeutet und mit dem Bezugszeichen 69 gekennzeichnet sind. Eine die Kamera 39 tragende Halterung 70 ist auf den dargestellten Bolzen 65 aufgesetzt und mittels einer Mutter 71 an diesem festgeschraubt, sodass die Kamera 39 starr an dem Blattlagerteil 66 und somit auch starr an der Rotornabe 8 gehalten ist. Da eine Drehung des Rotorblatts 18 um seine Blattachse 20 auch zu einer Drehung der Kamera 27 um die Blattachse 20 führt, ist mittels der Kamera 39 eine Drehung des Rotorblatts 18 um seine Blattachse 20 beobachtbar. Die Auswerteeinrichtung 37 berechnet somit vorzugsweise auch den Verdrehwinkel des Rotorblatts 18 um die Blattachse 20 relativ zu der Rotornabe 8.Out Fig. 7 is a schematic and partial representation of the rotor 6 with a measuring device according to a modification of the fifth embodiment not falling under the claimed subject matter of the invention, the blade bearing 19 having a blade bearing part 66 rigidly connected to the rotor hub 8 by means of bolt 65 and a blade part rigidly connected to the by means of bolt 67 Rotor blade 18 comprises connected blade bearing part 68. The blade bearing 19 is designed here as a ball bearing, the balls of the blade bearing 19 being indicated schematically and identified by the reference number 69. A bracket 70 carrying the camera 39 is placed on the bolt 65 shown and screwed onto it by means of a nut 71, so that the camera 39 is held rigidly on the blade bearing part 66 and thus also rigidly on the rotor hub 8. Since a rotation of the rotor blade 18 about its blade axis 20 also leads to a rotation of the camera 27 about the blade axis 20, a rotation of the rotor blade 18 about its blade axis 20 can be observed by means of the camera 39. The evaluation device 37 thus preferably also calculates the angle of rotation of the rotor blade 18 about the blade axis 20 relative to the rotor hub 8.

Aus Fig. 8 ist ein von der Kamera 27 gemäß der ersten und/oder vierten Ausführungsform aufgenommenes Bild 45 in schematischer Darstellung ersichtlich, wobei die Bereiche 46 und 47 die Bilder der Außenmarkierungen 33 und 34 im nicht gebogenen Zustand des Rotorblatts 18 repräsentieren. Wird das Rotorblatt 18 gebogen, verschieben sich die Bilder der Außenmarkierungen in dem Bild 45, was durch Pfeile 59 und 60 angedeutet ist. Dabei kennzeichnen die Bereiche 48 und 49 die Bilder der Außenmarkierungen 33 und 34 im gebogenen Zustand des Rotorblatts 18. Die Lage der Bilder der Außenmarkierungen in dem Bild 45 repräsentiert somit die erste Lageinformation. Da die Lage der Bereiche 46 und 47 im Bild 45 bekannt ist, lässt sich mittels der Auswerteeinrichtung 37 auch die Verschiebung der Bereiche 48 und 49 gegenüber den Bereichen 46 und 47 bestimmen.Out Fig. 8 an image 45 recorded by the camera 27 according to the first and / or fourth embodiment can be seen in a schematic representation, the regions 46 and 47 representing the images of the outer markings 33 and 34 in the non-bent state of the rotor blade 18. If the rotor blade 18 is bent, the images of the External markings in image 45, which is indicated by arrows 59 and 60. The areas 48 and 49 thereby mark the images of the outer markings 33 and 34 in the bent state of the rotor blade 18. The position of the images of the outer markings in the image 45 thus represents the first position information. Since the position of the areas 46 and 47 in the image 45 is known, the displacement of the areas 48 and 49 relative to the areas 46 and 47 can also be determined by means of the evaluation device 37.

Die Bereiche 50 und 51 des Bilds 45 repräsentieren die Bilder der Innenmarkierungen 24 und 25 in einer ursprünglichen Lage der Kamera 27. Erfolgt ein Versatz der Kamera 27 relativ zu der Blattwurzel 23, so verschieben sich die Bilder der Innenmarkierungen in dem Bild 45, was durch Pfeile 61 und 62 angedeutet ist. Dabei kennzeichnen die Bereiche 52 und 53 die Bilder der Innenmarkierungen 24 und 25 nach dem Versatz der Kamera 27. Die Lage der Bilder der Innenmarkierungen in dem Bild 45 repräsentiert somit die zweite Lageinformation. Da die Lage der Bereiche 50 und 51 im Bild 45 bekannt ist, lässt sich mittels der Auswerteeinrichtung 37 auch die Verschiebung der Bereiche 52 und 53 gegenüber den Bereichen 50 und 51 bestimmen.The areas 50 and 51 of the image 45 represent the images of the inner markings 24 and 25 in an original position of the camera 27. If the camera 27 is offset relative to the leaf root 23, the images of the inner markings in the image 45 shift as a result of Arrows 61 and 62 is indicated. The areas 52 and 53 thereby mark the images of the inner markings 24 and 25 after the offset of the camera 27. The position of the images of the inner markings in the image 45 thus represents the second position information. Since the position of areas 50 and 51 in image 45 is known, the displacement of areas 52 and 53 relative to areas 50 and 51 can also be determined by means of evaluation device 37.

In den vorherigen Ausführungsformen sind die Markierungen 33 und 34 und ggf. die Markierungen 24 und 25 gemäß einer ersten Variante vorzugsweise jeweils durch eine Lichtquelle gebildet. Gemäß einer zweiten Variante sind wenigstens eine, mehrere oder alle der Markierungen durch Reflektoren 54 gebildet, die durch eine oder mehrere Lichtquellen 55 angestrahlt werden, was schematisch aus Fig. 9 ersichtlich ist, welche die Markierung 33 in Form eines Reflektors 54 zeigt. Das von der Lichtquelle 55 abgestrahlte Licht ist mit dem Bezugszeichen 63 gekennzeichnet.In the previous embodiments, the markings 33 and 34 and possibly the markings 24 and 25 are preferably each formed by a light source according to a first variant. According to a second variant, at least one, several or all of the markings are formed by reflectors 54, which are illuminated by one or more light sources 55, which is shown schematically Fig. 9 evident which shows the marking 33 in the form of a reflector 54. The light emitted by the light source 55 is identified by the reference symbol 63.

Gemäß einer dritten Variante sind wenigstens eine, mehrere oder alle der Markierungen durch Lichtwellenleiter 64 gebildet, in die mittels einer oder mehrerer Lichtquellen 55 Licht 63 eingekoppelt wird, was schematisch aus Fig. 10 ersichtlich ist, welche die Markierung 33 in Form eines Lichtwellenleiters 64 zeigt.According to a third variant, at least one, several or all of the markings are formed by optical waveguides 64, into which light 63 is coupled by means of one or more light sources 55, which is shown schematically Fig. 10 can be seen, which shows the marking 33 in the form of an optical waveguide 64.

Für jede als Reflektor oder Lichtwellenleiter ausgebildete Markierung kann eine separate Lichtquelle vorgesehen sein. Es ist aber auch möglich, dass mehrere oder alle Reflektoren oder Lichtwellenleiter von derselben Lichtquelle mit Licht versorgt werden. Beispielsweise kann für die Außenmarkierungen 33 und 34 eine gemeinsame oder jeweils eine separate Lichtquelle vorgesehen sein. Ferner kann für die Innenmarkierungen 24 und 25 eine gemeinsame oder jeweils eine separate Lichtquelle vorgesehen sein.A separate light source can be provided for each marking designed as a reflector or optical waveguide. However, it is also possible for several or all reflectors or optical waveguides to be supplied with light from the same light source. For example, a common or separate light source can be provided for the outer markings 33 and 34. Furthermore, a common or a separate light source can be provided for the inner markings 24 and 25.

BezugszeichenlisteReference list

  • 1 Windkraftanlage1 wind turbine
  • 2 Fundament2 foundation
  • 3 Turm3 tower
  • 4 Maschinenhaus4 machine house
  • 5 Maschinenträger5 machine carriers
  • 6 Rotor6 rotor
  • 7 Rotorachse7 rotor axis
  • 8 Rotornabe8 rotor hub
  • 9 Rotorblatt9 rotor blade
  • 10 Rotorblatt10 rotor blade
  • 11 Blattachse11 leaf axis
  • 12 Blattachse12 leaf axis
  • 13 Blattwinkelverstellantrieb13 blade angle adjustment drive
  • 14 Blattwinkelverstellantrieb14 blade angle adjustment drive
  • 15 Wind15 wind
  • 16 Generator16 generator
  • 17 Windkraftanlagensteuerung17 Wind turbine control
  • 18 Rotorblatt18 rotor blade
  • 19 Blattlager19 blade bearings
  • 20 Blattachse20 leaf axis
  • 21 Blattlager21 blade bearings
  • 22 Blattlager22 blade bearings
  • 23 Blattwurzel23 leaf root
  • 24 Innenmarkierung24 interior marking
  • 25 Innenmarkierung25 interior marking
  • 26 Hohlraum des Rotorblatts26 rotor blade cavity
  • 27 Kamera27 camera
  • 28 Spiegel28 mirrors
  • 29 Spiegel29 mirrors
  • 30 fotosensitive Fläche der Kamera30 photosensitive surface of the camera
  • 31 Strahlengang31 beam path
  • 32 Strahlengang32 beam path
  • 33 Außenmarkierung33 External marking
  • 34 Außenmarkierung34 External marking
  • 35 Strahlengang35 beam path
  • 36 Strahlengang36 beam path
  • 37 Auswerteeinrichtung37 Evaluation device
  • 38 Bilddaten38 image data
  • 39 Kamera39 camera
  • 40 fotosensitive Fläche der Kamera40 photosensitive surface of the camera
  • 41 Bilddaten41 image data
  • 42 Spannungs- oder Dehnungssensor42 Stress or strain sensor
  • 43 Spannungs- oder Dehnungssensor43 Stress or strain sensor
  • 44 Verformungsdaten44 Deformation data
  • 45 von der Kamera aufgenommenes Bild45 pictures taken by the camera
  • 46 Bild der Außenmarkierung ohne Biegung46 Image of the outer marking without bending
  • 47 Bild der Außenmarkierung ohne Biegung47 Image of the outside marking without bending
  • 48 Bild der Außenmarkierung mit Biegung48 Image of the outer marking with a bend
  • 49Bild der Außenmarkierung mit Biegung49 Picture of outside marking with bend
  • 50 Bild der Innenmarkierung ohne Versatz50 Image of the interior marking without offset
  • 51 Bild der Innenmarkierung ohne Versatz51 Image of the interior marking without offset
  • 52 Bild der Innenmarkierung mit Versatz52 Image of the interior marking with offset
  • 53 Bild der Innenmarkierung mit Versatz53 Image of the interior marking with offset
  • 54 Reflektor54 reflector
  • 55 Lichtquelle55 light source
  • 56 Messvorrichtung56 measuring device
  • 57 Halterung57 bracket
  • 58 Blattwinkelverstellantrieb58 blade angle adjustment drive
  • 59 Bildverschiebung59 Image shift
  • 60 Bildverschiebung60 image shift
  • 61 Bildverschiebung61 Image shift
  • 62 Bildverschiebung62 Image shift
  • 63 Licht von Lichtquelle63 Light from light source
  • 64 Lichtwellenleiter64 optical fibers
  • 65 Bolzen65 bolts
  • 66 Teil des Blattlagers66 part of the blade bearing
  • 67 Bolzen67 bolts
  • 68 Teil des Blattlagers68 part of the blade bearing
  • 69 Kugeln des Blattlagers69 balls of the leaf bearing
  • 70 Halterung70 bracket
  • 71 Mutter71 mother

Claims (11)

  1. Device for optically measuring the bending of a rotor blade (18) of a wind turbine (1) secured by its blade root (23) to a rotor hub (8) of a rotor (6), with at least one light-emitting external marking (33) secured to the rotor blade (18) at a distance from the blade root (23), at least one first camera (27) secured to the rotor blade (18), receiving light (35) emitted by the external marking (23) and providing first position information dependent on a relative position of the first camera (27) with respect to the external marking (33), an evaluation device (37) coupled to the first camera (27) and including a position detector which detects the relative position of the first camera (27) with respect to the blade root (23) and provides second position information dependent on this position, wherein the evaluation device (37) determines at least one variable characterising the bending of the rotor blade (18) by evaluating the position information, characterised in that the position detector comprises at least one light-emitting internal marking (24) secured to the rotor (6) at or in the region of the blade root (23) and a second camera (39) fixed in position relative to the first camera (27) receiving light (31) emitted by the internal marking (24), wherein the fields of vision of the cameras extend in or substantially in opposing directions and the second position information provided by the position detector is dependent on the relative position of the first camera (27) with respect to the internal marking (24).
  2. Device according to claim 1, characterised in that the at least one variable characterising the bending of the rotor blade (18) is independent of the position of the first camera (27) .
  3. Device according to any one of the preceding claims, characterised in that
    - a plurality of light-emitting external markings (33, 34) are secured to the rotor blade (18) at a distance from the blade root (23), having a different distance from the blade root (23),
    - the first camera (27) receives the light (35, 36) emitted by the external markings (33, 34), and
    - the first position information provided by the first camera (27) is dependent on the relative position of the first camera (27) with respect to the external markings (33, 34).
  4. Device according to any one of the preceding claims, characterised in that the evaluation device (37) determines the relative position of the blade root (23) with respect to the external marking(s) (33, 34) as the at least one variable characterising the bending of the rotor (18).
  5. Device according to any one of the preceding claims, characterised in that
    - the evaluation device (37) calculates the relative position of the first camera (27) with respect to the blade root (23) by evaluating the second position information,
    - the evaluation device (37) calculates the relative position of the first camera (27) with respect to the external marking(s) (33, 34) by evaluating the first position information, and
    - the evaluation device (37) determines the relative position of the blade root (23) with respect to the external marking(s) (33, 34) from the calculated positions.
  6. Device according to any one of the preceding claims, characterised in that the first camera (27) takes at least one image (45) of the external markings (33, 34) and provides this in the form of image data (38) to the evaluation device (37) as the first position information.
  7. Device according to claim 6, characterised in that the evaluation device (37) determines the relative position of the first camera (27) with respect to the external marking(s) (33, 34) from the image data (38) using at least one image evaluation method.
  8. Device according to any one of the preceding claims, characterised in that the cameras (27, 39) are arranged in close spatial proximity to each other.
  9. Device according to any one of the preceding claims, characterised in that the second camera (39) takes at least one image of the internal marking (24) and provides this in the form of image data (41) as the second position information for the evaluation device (37).
  10. Device according to any one of the preceding claims, characterised in that the rotor blade (18) comprises a hollow space (26) in which the cameras (27, 39) and the external marking (33) or the external markings (33, 34) is or are arranged.
  11. Device according to any one of the preceding claims, characterised in that the cameras (27, 39) are combined into a single structural unit.
EP11721259.7A 2010-07-05 2011-04-28 Device for optically measuring the curvature of a rotor blade of a wind power plant Active EP2591232B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010017749A DE102010017749A1 (en) 2010-07-05 2010-07-05 Device for the optical measurement of the bending of a rotor blade of a wind turbine
PCT/EP2011/056807 WO2012004020A1 (en) 2010-07-05 2011-04-28 Device for optically measuring the curvature of a rotor blade of a wind power plant

Publications (2)

Publication Number Publication Date
EP2591232A1 EP2591232A1 (en) 2013-05-15
EP2591232B1 true EP2591232B1 (en) 2020-05-06

Family

ID=44118946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11721259.7A Active EP2591232B1 (en) 2010-07-05 2011-04-28 Device for optically measuring the curvature of a rotor blade of a wind power plant

Country Status (7)

Country Link
US (1) US9261355B2 (en)
EP (1) EP2591232B1 (en)
JP (1) JP5513683B2 (en)
KR (1) KR101496688B1 (en)
CN (2) CN102313634B (en)
DE (1) DE102010017749A1 (en)
WO (1) WO2012004020A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010017749A1 (en) * 2010-07-05 2012-01-05 Ssb Wind Systems Gmbh & Co. Kg Device for the optical measurement of the bending of a rotor blade of a wind turbine
EP2453136B1 (en) * 2010-11-16 2013-07-24 Baumer Innotec AG Alignment device for measuring devices in a wind turbine rotor
DE102011011392B4 (en) 2011-02-17 2012-10-25 Ssb Wind Systems Gmbh & Co. Kg Optical measuring device for the deformation of a rotor blade of a wind turbine
DE102011014480B3 (en) 2011-03-19 2012-06-14 Ssb Wind Systems Gmbh & Co. Kg Sensor device for measuring aerodynamic loads of a rotor blade of a wind turbine
ES2475722T3 (en) * 2011-06-03 2014-07-11 Wilic S.�R.L. Wind turbine and control method to control it
CN103226060B (en) * 2012-01-31 2016-08-24 通用电气公司 The detecting system of wind turbine blade and method
FR2986864B1 (en) * 2012-02-14 2014-02-28 Snecma METHOD OF MEASURING THE DEFORMATION OF A TURBOMACHINE BLADE DURING THE OPERATION OF THE TURBOMACHINE
EP2679778B1 (en) * 2012-06-27 2019-08-21 Ansaldo Energia IP UK Limited A method for measuring geometry deformations of a turbine component
DE102013007088B4 (en) * 2013-04-24 2016-12-08 Ssb Wind Systems Gmbh & Co. Kg Wind turbine with measuring device
US10049318B2 (en) * 2013-07-09 2018-08-14 United Technologies Corporation In-situ balancing of plated polymers
US10378517B2 (en) * 2014-03-04 2019-08-13 Steffen Bunge Method for replacing the blades of a wind turbine to maintain safe operation
US20150252789A1 (en) * 2014-03-04 2015-09-10 Steffen Bunge Method for Detecting Deflection of the Blades of a Wind Turbine
US20170148152A1 (en) * 2015-11-25 2017-05-25 General Electric Company Systems and Methods for Monitoring Component Strain
WO2017103814A1 (en) * 2015-12-16 2017-06-22 Pirelli Tyre S.P.A. Device and method for the analysis of tyres
KR20180093920A (en) 2015-12-16 2018-08-22 피렐리 타이어 소시에떼 퍼 아찌오니 Apparatus and method for testing tires
EP3397938B1 (en) 2015-12-28 2019-08-28 Pirelli Tyre S.p.A. Apparatus for checking tyres
RU2722984C2 (en) 2015-12-28 2020-06-05 Пирелли Тайр С.П.А. Tire installation and method
DE102016112633A1 (en) * 2016-07-11 2018-01-11 Wobben Properties Gmbh Torsion angle measurement of a rotor blade
CN106500613B (en) * 2016-10-17 2018-12-18 合肥科博软件技术有限公司 A kind of apparatus and system for the blade deformation monitoring wind power plant
EP3339640A1 (en) * 2016-12-21 2018-06-27 Vestas Wind Systems A/S Control system for a wind turbine
EP3348827B1 (en) * 2017-01-16 2019-11-06 Siemens Gamesa Renewable Energy A/S Interior inspection of a wind turbine blade
DE102018101689A1 (en) * 2017-04-12 2018-10-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for measuring rotor blade movements of an aircraft
US10539119B2 (en) 2017-07-10 2020-01-21 WindESCo, Inc. System and method for augmenting control of a wind turbine assembly
CN109959335B (en) * 2017-12-22 2021-09-21 北京金风科创风电设备有限公司 Method, device and system for measuring displacement of tower top
CN108387183A (en) * 2018-01-31 2018-08-10 天津大学 Servo-actuated real-time measurement apparatus and its method for rotating vane whole audience dynamic deformation
EP3543522A1 (en) * 2018-03-22 2019-09-25 Siemens Gamesa Renewable Energy A/S Rotor blade monitoring system
JP6803873B2 (en) 2018-03-29 2020-12-23 三菱重工業株式会社 Inspection method inside the wind turbine wing
JPWO2020054460A1 (en) * 2018-09-10 2021-08-30 国立研究開発法人産業技術総合研究所 Wind turbine and its anomaly detection system
CN109578223A (en) * 2019-01-16 2019-04-05 远景能源(江苏)有限公司 A kind of device and corresponding detection method of the rigidity for pilot blade
CN110005581A (en) * 2019-05-14 2019-07-12 天津中德应用技术大学 A kind of monitoring and control method of wind power generation unit blade and tower headroom
PL430286A1 (en) * 2019-06-19 2020-12-28 Innovative Radar Technologies Laboratory Spółka Z Ograniczoną Odpowiedzialnością Deformation measurement system and method of deformation measurement
EP3754292A1 (en) 2019-06-19 2020-12-23 Intelligent Contruction Safety Systems Spolka Z Ograniczona Odpowiedzialnoscia A system for measuring deformations and a method for measuring deformations
CA3153024A1 (en) * 2019-10-03 2021-04-08 Morten Hartvig Hansen A method and a system for tracking motion of a blade
EP3808971A1 (en) * 2019-10-18 2021-04-21 General Electric Company System for contactless displacement measurement of a blade root of a wind turbine
GB202009315D0 (en) * 2020-06-18 2020-08-05 General Electric Renovables Espana Sl A wind turbine blade measurement system and a method of improving accuracy of a wind turbine blade measurement system
CN112901426B (en) * 2021-02-26 2022-01-11 中国华能集团清洁能源技术研究院有限公司 Wind turbine generator blade clearance monitoring device, method, system, equipment and medium
GB202106108D0 (en) * 2021-04-30 2021-06-16 Rolls Royce Plc Turbine blade creep monitoring
CN115163429A (en) * 2022-07-26 2022-10-11 明阳产业技术研究院(沈阳)有限公司 Wind power fan blade monitoring system and method and related equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10115267C2 (en) * 2001-03-28 2003-06-18 Aloys Wobben Method for monitoring a wind energy plant
DE10143539A1 (en) * 2001-09-06 2003-04-03 Daimler Chrysler Ag Method and arrangement for determining the position and orientation of an image recording device in the optical measurement of objects
DE10259680B4 (en) * 2002-12-18 2005-08-25 Aloys Wobben Rotor blade of a wind turbine
DE102004027341A1 (en) * 2004-05-27 2005-12-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Opto-electronic position and location measuring system for use with e.g. radar system, has modules computing displacement factor and rotation angle from two synchronously received images, for determining orientation parameters of system
DE102006031487B4 (en) * 2006-07-06 2011-06-16 Institut für Bahntechnik GmbH Method for contact wire lifting measurement
DE102006054667B4 (en) * 2006-11-17 2011-02-17 Windcomp Gmbh Collision Warning System for a Wind Turbine
WO2009143848A2 (en) * 2008-05-30 2009-12-03 Vestas Wind System A/S A wind turbine rotor, a wind turbine and use thereof
CN102046968A (en) * 2008-05-30 2011-05-04 维斯塔斯风力***有限公司 A wind turbine rotor, a wind turbine and use thereof
DK200801562A (en) 2008-11-12 2010-05-13 Vestas Wind Sys As Load monitoring of wind turbine blades
DE102010017749A1 (en) * 2010-07-05 2012-01-05 Ssb Wind Systems Gmbh & Co. Kg Device for the optical measurement of the bending of a rotor blade of a wind turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102313634A (en) 2012-01-11
WO2012004020A1 (en) 2012-01-12
CN102313634B (en) 2016-09-21
KR101496688B1 (en) 2015-02-27
US9261355B2 (en) 2016-02-16
US20130093879A1 (en) 2013-04-18
CN202274979U (en) 2012-06-13
EP2591232A1 (en) 2013-05-15
JP5513683B2 (en) 2014-06-04
KR20130052604A (en) 2013-05-22
DE102010017749A1 (en) 2012-01-05
JP2013533939A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
EP2591232B1 (en) Device for optically measuring the curvature of a rotor blade of a wind power plant
DE102011011392B4 (en) Optical measuring device for the deformation of a rotor blade of a wind turbine
DE102011051205B4 (en) System and method for testing wind turbines
DE102006002708B4 (en) Rotor of a wind turbine
EP3227552B1 (en) Method for the individual pitch control of rotor blades of a wind turbine, and wind turbines
EP3002455B1 (en) Method for determining the operating parameters of a wind power plant
EP2394136A1 (en) Measuring device for measuring deformations of elastically deformable objects
DE102014117914B4 (en) Method for detecting a flutter of a rotor blade of a wind turbine
EP3482182B1 (en) Measuring a torsion angle of a rotor blade
EP2707702B1 (en) Assessment of rotor blades
EP2218912A2 (en) Quality inspection for rotor blades of a wind turbine
EP2182337B1 (en) Method for the contactless determination of forces and/or torques acting on a hollow cylindrical body and a measuring system for carrying out the method
EP2511522A1 (en) Blade angle control for a rotor blade of a wind turbine
WO2013182569A1 (en) Method for installing sensors in rotor blades and installation device
DE102011016868A1 (en) Deformations and vibration spectrum spectral characteristics change measuring device for e.g. aerodynamic wing of wind-power plant rotor, has deconstructing and/or changing device modifying/destroying image structure brightness distribution
EP2458206A1 (en) Device and method for measuring the deformation of a rotor blade under stress and error compensation
DE102017115926B4 (en) Blade bending moment determination with two load sensors per rotor blade and including rotor data
EP3191791B1 (en) Method and control device for measuring a load on a rotor blade of a wind power plant
EP3775978B1 (en) Macroscopic lidar device
EP2395320A1 (en) Measuring device for measuring deformations of elastically deformable objects
DE102010056033A1 (en) Device for measuring deformation of rotor blade under load, particularly rotor blade of wind turbine, has receiver arranged at rotor blade and transmitter or reflector is arranged on rotor blade at distance from receiver
DE102012015456A1 (en) Device for detecting deformation of rotor blade used in wind energy plant, has evaluation device to determine the deformation of rotor blade by using the electromagnetic signal and received signal when reflector is in rotor region
DE102010055500A1 (en) Device for measuring deformation of rotor blade of wind turbine, has electronic camera with matrix detector and arrangement for multiple reflectors
EP2469223A1 (en) Device and method for measuring the deformation of a rotor blade under stress
EP2559895A1 (en) Method and device for determining the deformation of a rotor blade

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171215

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIDEC SSB WIND SYSTEMS GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011016670

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F03D0011000000

Ipc: F03D0001060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F03D 1/06 20060101AFI20191119BHEP

Ipc: G01M 11/08 20060101ALI20191119BHEP

Ipc: F03D 17/00 20160101ALI20191119BHEP

Ipc: G01M 5/00 20060101ALI20191119BHEP

INTG Intention to grant announced

Effective date: 20191206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016670

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016670

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210428

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210428

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1267150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 13

Ref country code: DE

Payment date: 20230418

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506