EP2591144A1 - Method for forming a metal deposit on the surface of a substrate, and uses thereof - Google Patents

Method for forming a metal deposit on the surface of a substrate, and uses thereof

Info

Publication number
EP2591144A1
EP2591144A1 EP11743287.2A EP11743287A EP2591144A1 EP 2591144 A1 EP2591144 A1 EP 2591144A1 EP 11743287 A EP11743287 A EP 11743287A EP 2591144 A1 EP2591144 A1 EP 2591144A1
Authority
EP
European Patent Office
Prior art keywords
metal
substrate
temperature
metal oxide
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11743287.2A
Other languages
German (de)
French (fr)
Other versions
EP2591144B1 (en
Inventor
Jean-François SILVAIN
Cécile VINCENT
Jean-Marc Heintz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2591144A1 publication Critical patent/EP2591144A1/en
Application granted granted Critical
Publication of EP2591144B1 publication Critical patent/EP2591144B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to a method for depositing metals, and in particular copper, on a substrate.
  • metals and in particular of copper, on substrates can be achieved by various techniques:
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • PVD and CVD deposition techniques require sophisticated and expensive equipment. They are not more adaptable to any type of support. They also have the disadvantage of implementing polluting solvents.
  • iii) by chemical deposition by aqueous route It generally consists in carrying out an oxy-reduction reaction in an aqueous medium in the presence of a catalyst. The reaction product is adsorbed on a substrate to form a thin metal film.
  • aqueous chemical deposition does not allow selective deposition of metal on certain areas of the substrate for example. The deposition performed is not always sufficiently well fixed to the substrate (simple adsorption).
  • the object of the present invention is therefore to provide a process for deposition of metals, and in particular of copper, simple and inexpensive, for making selective and resistant deposits on all types of substrates. This object is achieved by the method which will be described hereinafter and which is the subject of the present invention.
  • the present invention relates to a method of forming a metal deposit on the surface of a solid substrate, said method being characterized in that it comprises at least:
  • step 3) a step of heat treatment of the mixture obtained above at the end of step 2), at a temperature ranging from 100 to 400 ° C; it being understood that said step 3) is carried out only when a metal is used in step 2) above, said step 3) being furthermore conducted at a temperature below the melting temperature of the metal in question and at the air for oxidizing said metal and obtaining a metal oxide;
  • a reduction step under a reducing atmosphere at a temperature of between 0.1 T f and a temperature below T f , T f being the melting temperature, expressed in Kelvin, of the metal oxide obtained in step 3) or the metal oxide used in step 2), to cause the reduction of said metal oxide and the concomitant sublimation of the metal and / or the metal oxide and then the fixing of the metal atoms on the phosphorus atoms groups -OP or on the sulfur atoms of the OS groups or on the free oxygen atom of the groups OPO or -OSO bonded to the substrate.
  • the chemical bonds connecting the oxygen atoms to the surface of the substrate are iono-covalent bonds.
  • the functionalization step is a phosphatation or sulfurization step. It is preferably carried out by immersion of the substrate in a phosphating agent, respectively a sulphurizing agent, said agents being liquid or in solution in a solvent.
  • the term "phosphating agent” means any phosphorus compound capable of leading to the formation of -O-P or -O-P-O groups on the surface of the substrate.
  • the phosphating agent is preferably chosen from phosphoric acid, phosphoric esters such as the product sold under the trade name Beycostat® C213 by the company Ceca-Gerland, ethylphosphate or butylphosphate.
  • sulfurizing agent is understood to mean any sulfur compound capable of leading to the formation of -O-S or -O-S-O groups on the surface of the substrate.
  • the sulfurizing agent is preferably sulfuric acid.
  • the solvent of the phosphating or sulfurization agent is preferably selected from water, lower alcohols such as ethanol, ketones such as 2-butanone and mixtures thereof.
  • the functionalization step 1) can be carried out on the entire surface of the substrate or on certain zones only. When only a portion of the surface of the substrate is to be functionalized, then the areas on which no - ⁇ - ⁇ , -O-P-O, -O-S or -O-S-O groups should be attached are masked prior to the first step.
  • This preliminary masking step can be carried out by any appropriate technique known to those skilled in the art, such as for example by applying a thermosensitive resin mask in the case of flat substrates.
  • the functionalization step is generally carried out at a temperature below the thermal decomposition temperature of the substrate and preferably at a temperature below the solvent evaporation temperature. This functionalization step is preferably carried out at a temperature ranging from 60 to 200 ° C., and even more preferably from 80 to 100 ° C.
  • the duration of the functionalization step generally varies from 15 minutes to 4 hours, and even more preferably from 30 minutes to 1 hour.
  • the process according to the invention makes it possible to deposit a metal on any type of solid support.
  • substrates that can be used according to the process of the invention, mention may be made of powder substrates such as diamond powders and silicon carbide powders, substrates in the form of microfibers and nano fibers such as carbon fibers and alumina fibers, flat substrates such as substrates made of alumina, carbon or silicon.
  • the process can then be carried out further.
  • a step of drying the substrate is preferably carried out in an oven, at a temperature ranging from 80 to 120 ° C.
  • metal or metal oxide sublimating at low temperature metals and metal oxides sublimating at a temperature T less than or equal to 0.5 T f , T f being the melting temperature , expressed in Kelvin, of the metal or metal oxide considered.
  • the metals and metal oxides which sublimate at low temperature are preferably chosen from metals and metal oxides which sublimate at a temperature generally below 1000 ° C., and even more particularly below 500 ° C.
  • the particles of metal or metal oxide used in the second step preferably have a size ranging from 10 nm to 100 ⁇ m and even more preferably from 100 nm to 50 ⁇ m.
  • Step 2) of mixing the substrate with the particles of the metal or of the metal oxide may for example be carried out in a powder mixer (when it is substrates in the form of powder or fibers, such as by example a rotary mixer), or by covering the substrate with a layer of particles of the metal or of the metal oxide (in the case of flat substrates).
  • a powder mixer when it is substrates in the form of powder or fibers, such as by example a rotary mixer
  • covering the substrate with a layer of particles of the metal or of the metal oxide (in the case of flat substrates).
  • the temperature at which the mixture of the substrate is made with the particles of the metal or of the metal oxide is not critical and may vary depending on the nature of the metal or metal oxide used, between the temperature room temperature and 250 ° C.
  • step 2) of mixing the substrate with the particles may vary from 30 minutes to 2 hours, and even more preferably the duration of this mixing step is about 1 hour.
  • the heat treatment step 3) is carried out at a temperature ranging from 200 to 400 ° C., it being understood that this temperature is chosen according to the nature of the metal to be oxidized, so that within this temperature range it is lower than the melting temperature of the metal considered.
  • This heat treatment step makes it possible to oxidize the metal when a metal is used in step 2) of mixing the substrate with the metal particles, but also to thermally decompose the organic species originating from the phosphating agent or sulfurization and solvent when a solvent is used.
  • the reduction step 4) (also called “deoxidation step”) may for example be carried out by exposing the substrate to an argon atmosphere at 5% by volume of hydrogen for a period ranging from 1 to 2 hours.
  • the reduction step 4) is preferably carried out at a temperature ranging from 200 to 700 ° C.
  • This step makes it possible to reduce the metal oxide and / or to sublimate the metal oxide and / or the metal in order to allow the condensation of the metal atoms on the phosphorus, sulfur or oxygen atoms of the -OP groups, OPO, -OS or -OSO (germination sites). It is important to note that during the different steps of the process according to the invention, the particles of metal or metal oxide used never go into the liquid state.
  • the metal oxide or the metal in question can be sublimated at a temperature below its theoretical sublimation temperature, which is why the temperatures recommended to achieve the Stage 4) may be less than the sublimation temperature of the metal or metal oxide in question, but nevertheless be sufficient to cause sublimation thereof.
  • the material obtained according to the invention is a composite material consisting of a substrate comprising a metal deposit.
  • the material obtained at the end of the process according to the invention is a material in powder form (powder substrate comprising a coating of metal, especially copper), that can then be densified, for example by hot uniaxial compression (650 ° C, 15 bar, 20 min, under vacuum).
  • the present invention is illustrated by the following exemplary embodiments, to which it is however not limited.
  • FC - milled micrometric carbon fiber
  • Nanoscale carbon fibers having a diameter of about 150 nm, and a length of up to about ten microns, sold under the trade name VGCNF by Showa Denko;
  • a copper deposit was made on carbon microfibers using a phosphoric ester as a phosphating agent.
  • the resulting mixture was then heated at 400 ° C for 1 hour in air to cause oxidation of the dendritic copper and thermal decomposition of all organic species.
  • the resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C. in order to cause the conversion of copper oxide to metallic copper and the concomitant sublimation of the copper oxide and / or metallic copper and then fixing the metallic copper on the substrate for future shaping (hot pressing type).
  • FIG. 1 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of copper (magnification ⁇ 10,000).
  • Example 2
  • the carbon fibers were then rinsed with distilled water and dried.
  • the functionalized carbon microfibers were then mixed in a planetary mixer at room temperature for about 4 hours with 6.62 g of dendritic copper micron powder previously oxidized by calcination in air for about 1 hour at 400 ° C.
  • the resulting mixture was then heated to a temperature of 400 ° C under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
  • FIG. 2 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of copper (magnification ⁇ 2200).
  • a lead deposit was made on carbon microfibers using orthophosphoric acid as a phosphating agent.
  • Second step Mixing of the functionalized substrate with the oxidized lead particles
  • the functionalized carbon microfibers were then mixed in a planetary mixer for about 4 hours at room temperature with 4.29 g of oxidized lead micron powder.
  • the resulting mixture was then deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
  • FIG. 3 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of lead (magnification ⁇ 1120).
  • a copper deposit was made on alumina fibers using a phosphoric ester as a phosphating agent.
  • the resulting mixture was then heated to 400 ° C for 1 hour in air.
  • the resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
  • FIG. 4 is a photograph taken by scanning electron microscopy of the alumina fibers after the deposition of copper (magnification x 5000).
  • a copper deposit was made on a silicon carbide substrate using a phosphoric ester as a phosphating agent.
  • the resulting mixture was then heated to 400 ° C for 1 hour in air.
  • the resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
  • FIG. 5 is a photograph taken by scanning electron microscopy of the substrate after the deposition of copper (magnification ⁇ 10,000).
  • a copper deposit was made on diamond powder using a phosphoric ester as a phosphating agent.
  • the resulting mixture was then heated to 400 ° C for 1 hour in air.
  • FIG. 6 is a photograph taken by scanning electron microscopy of the diamond powder after the deposition of copper (magnification x 2800).
  • a copper deposit was made on a silicon substrate using a phosphoric ester as a phosphating agent.
  • the resulting substrate was then heated to a temperature of 400 ° C for 1 hour in air.
  • the resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
  • FIG. 7 is a photograph taken by scanning electron microscopy of the silicon substrate after the deposition of copper (magnification ⁇ 15170).
  • the copper / diamond composite material was prepared by hot uniaxial compression (650 ° C., 15 bar, 20 min, under vacuum) of the diamond powder prepared above in Example 6.
  • the thermal conductivity of the copper / diamond composite produced by this technique and then densified by hot uniaxial compression was then measured with a laser flash scanner sold under the trade name LFA 457. MicroFlash® by the company Netzsch. It was found to be superior to that obtained for a conventional comparative alloy copper / diamond composite prepared by simple mechanical mixing of the diamond and copper powder and densified by hot uniaxial pressing under the same conditions for the same volume fraction: 485 W / mK (diamond copper composite according to the invention)> 400 W / mK (comparative diamond copper composite not forming part of the invention).
  • Cu / D composites were prepared under the same conditions as those described above in Example 6 with MBD6 diamond powder, by varying the volume fraction of the powder. compared to copper (10%, 20%, 30% and 40%) in order to study the effect of this variation on density, thermal conductivity (measured by the LFA 457 MicroFlash® analyzer) and the thermal coefficient (measured with the aid of a horizontal dilatometer sold under the reference DIL 402C by the company Netzsch) of the corresponding materials, after uniaxial heat compression.
  • FIG. 8 represents the evolution of the relative densities (in%) of the various Cu / D composites as a function of the diamond volume fraction.
  • FIG. 9 represents the evolution of the thermal conductivity (in W m -1 .K -1 ) as a function of the diamond volume fraction, the curve whose points are solid squares corresponding to Maxwell's predictive model (Maxwell JC A Treatise on Electricity and Magnetism, Oxford University Press, 1873) and the curve whose points are solid triangles corresponding to the experimental data.
  • Figure 10 shows the evolution of the coefficient of thermal expansion (10 -6 ° C- 1 ) as a function of the diamond volume fraction, the curve whose points are solid squares corresponds to the predictive model of Kerner (Kerner EH., The elastic and thermo-plastic properties of composite media, Proceedings of the Physical Society of London, 1956, 69 (8), 808-813) and the curve whose points are solid triangles corresponds to the experimental data.
  • results of FIG. 8 show that the method of depositing copper on the functionalized diamond particles makes it possible to obtain dense composite materials, with relative densities of between 97 and 100%, which proves the efficiency of the copper deposition as a chemical bonding agent between the matrix and the reinforcements.
  • results of FIG. 9 show that the thermal conductivities increase with the percentage of reinforcement (diamond powder) and follow the theoretical trend.
  • a copper deposit was made on carbon microfibers using sulfuric acid as a sulfurizing agent.
  • K223HG carbon microfibers were immersed in 100 ml of 20% by weight sulfuric acid (H 2 SO 4 ) in distilled water for 30 min at 80 ° C. with magnetic stirring.
  • the carbon fibers were then rinsed with distilled water and dried.
  • the functionalized carbon microfibers were then mixed in a planetary mixer at room temperature for about 4 hours with 4.5 g of copper micron powder.
  • the resulting mixture was then heated at 400 ° C for 2 hours in air to cause oxidation of the copper.
  • the resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 2 hours at 400 ° C.
  • FIG. 11 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of copper.

Abstract

The present invention relates to a method for forming a metal deposit on the surface of a solid substrate, said method including at least: 1) a step of functionalizing the surface of the substrate by means of -O-P, -O-P-O, -O-S, or -O-S-O groupings; 2) a step of mixing the substrate with metal or metal-oxide particles sublimated at a low temperature; 3) a step of heat-treating the substrate obtained above after step 2), it being understood that said step 3) is only carried out when a metal is utilized in the above step 2), said step 3) also being carried out at a temperature that is lower than the temperature for melting the metal in question and further being carried out in the air so as to oxidize said metal; and 4) a step of reducing the metal oxide obtained in step 3) or the metal oxide utilized in step 2) in a reducing atmosphere at a temperature of 0.1 Tf to a temperature that is lower than Tf, Tf being the melting temperature expressed in Kelvin, reducing said metal oxide and concomitantly sublimating the metal and/or metal oxide, and then bonding the metal atoms to the phosphorus atoms of the -O-P groupings, to the sulfur atoms of the O-S groupings, or to the free oxygen atom of the O-P-O or -O-S-O groupings connected to the substrate. The invention also relates to the uses of the method, in particular for preparing reinforcements for powder metallurgy, for casting, or for improving the thermal conductivity of materials.

Description

PROCEDE DE FORMATION D'UN DEPOT METALLIQUE A LA SURFACE D'UN SUBSTRAT ET APPLICATIONS PROCESS FOR FORMING A METAL DEPOSITION AT THE SURFACE OF A SUBSTRATE AND APPLICATIONS
La présente invention est relative à un procédé de dépôt de métaux, et en particulier de cuivre, sur un substrat. The present invention relates to a method for depositing metals, and in particular copper, on a substrate.
Le dépôt de métaux, et en particulier de cuivre, sur des substrats présente un intérêt, notamment dans les cas suivants :  The deposition of metals, and in particular of copper, on substrates is of interest, in particular in the following cases:
- il permet de favoriser le mouillage des substrats, par exemple si ceux si doivent être incorporés dans une matrice liquide,  it makes it possible to promote the wetting of the substrates, for example if those if they must be incorporated in a liquid matrix,
- il permet le brasage métal-céramique par pré-métallisation de la céramique, it allows the metal-ceramic brazing by pre-metallization of the ceramic,
- il permet d'optimiser la conductivité électrique et/ou thermique de surfaces de matériaux isolants. it makes it possible to optimize the electrical and / or thermal conductivity of surfaces of insulating materials.
Le dépôt de métaux, et en particulier de cuivre, sur des substrats peut être réalisé par différentes techniques :  The deposition of metals, and in particular of copper, on substrates can be achieved by various techniques:
i) par dépôt physique en phase vapeur (PVD) : ce procédé consiste par exemple à réaliser une pulvérisation cathodique du métal dans un réacteur dans lequel est placé le substrat à revêtir. L'application d'une différence de potentiel entre la cible (cathode) et les parois du réacteur au sein d'une atmosphère raréfiée permet la création d'un plasma froid. Sous l'effet du champ électrique, les espèces positives du plasma se trouvent attirées par la cible et entrent en collision avec cette dernière. Elles communiquent alors leur quantité de mouvement, provoquant ainsi la pulvérisation des atomes métalliques sous forme de particules neutres qui se condensent sur le substrat pour y former un film métallique. Ce type de technique est par exemple décrit dans A. Billard et F. Perry, « Pulvérisation cathodique magnétron », Techniques de l'Ingénieur, Traité de Matériaux, M 1 654-1.  i) by physical vapor deposition (PVD): this process consists for example in sputtering the metal in a reactor in which the substrate to be coated is placed. The application of a potential difference between the target (cathode) and the reactor walls in a rarefied atmosphere allows the creation of a cold plasma. Under the effect of the electric field, the positive species of the plasma are attracted to the target and collide with it. They then communicate their momentum, causing the metallic atoms to atomize in the form of neutral particles that condense on the substrate to form a metal film. This type of technique is for example described in A. Billard and F. Perry, "Magnetron cathodic sputtering", Techniques of the Engineer, Treaty of Materials, M 1 654-1.
ii) par dépôt chimique en phase vapeur (CVD) : selon cette technique, le substrat est exposé à un ou plusieurs précurseurs métalliques en phase gazeuse, qui réagissent et/ou se décomposent à la surface du substrat pour générer le dépôt du métal (S. Audisio, « Dépots chimiques à partir d'une phase gazeuse », Techniques de l'Ingénieur, Traité de Matériaux, M 1 660-1). Le dépôt peut être assisté par plasma.  ii) chemical vapor deposition (CVD): according to this technique, the substrate is exposed to one or more metal phase precursors in the gas phase, which react and / or decompose on the surface of the substrate to generate the deposition of the metal (S Audisio, "Chemical deposits from a gaseous phase", Techniques of the Engineer, Treatise of Materials, M 1 660-1). The deposit can be assisted by plasma.
Les techniques de dépôt par PVD et par CVD nécessitent un appareillage sophistiqué et onéreux. Elles ne sont de plus pas adaptables à tout type de support. Elles présentent également l'inconvénient de mettre en œuvre des solvants polluants. iii) par dépôt chimique par voie aqueuse : Il consiste généralement à réaliser une réaction d'oxy do-réduction en milieu aqueux en présence d'un catalyseur. Le produit de la réaction s'adsorbe sur un substrat pour y former un film métallique mince. Cependant, le dépôt chimique par voie aqueuse ne permet pas un dépôt sélectif de métal sur certaines zones du substrat par exemple. Le dépôt effectué n'est pas toujours suffisamment bien fixé au substrat (simple adsorption). PVD and CVD deposition techniques require sophisticated and expensive equipment. They are not more adaptable to any type of support. They also have the disadvantage of implementing polluting solvents. iii) by chemical deposition by aqueous route: It generally consists in carrying out an oxy-reduction reaction in an aqueous medium in the presence of a catalyst. The reaction product is adsorbed on a substrate to form a thin metal film. However, aqueous chemical deposition does not allow selective deposition of metal on certain areas of the substrate for example. The deposition performed is not always sufficiently well fixed to the substrate (simple adsorption).
Le but de la présente invention est donc de pourvoir à un procédé de dépôt de métaux, et en particulier de cuivre, simple et peu coûteux, permettant de réaliser des dépôts sélectifs et résistants, sur tout type de substrats. Ce but est atteint par le procédé qui va être décrit ci-après et qui fait l'objet de la présente invention.  The object of the present invention is therefore to provide a process for deposition of metals, and in particular of copper, simple and inexpensive, for making selective and resistant deposits on all types of substrates. This object is achieved by the method which will be described hereinafter and which is the subject of the present invention.
La présente invention a pour objet un procédé de formation d'un dépôt métallique à la surface d'un substrat solide, ledit procédé étant caractérisé en ce qu'il comprend au moins :  The present invention relates to a method of forming a metal deposit on the surface of a solid substrate, said method being characterized in that it comprises at least:
1) une étape de fonctionnalisation d'au moins une partie de la surface du substrat par des groupements -Ο-Ρ,-0-P-O, -O-S ou -O-S-O, lesdits groupements étant liés à la surface du substrat par l'intermédiaire d'un atome d'oxygène, ladite fonctionnalisation étant réalisée par mise en contact du substrat avec un agent de phosphatation, respectivement de sulfuration ;  1) a step of functionalizing at least a portion of the surface of the substrate with -Ο-Ρ, -O-PO, -OS or -OSO groups, said groups being bonded to the surface of the substrate via an oxygen atom, said functionalization being carried out by bringing the substrate into contact with a phosphating or sulfurization agent;
2) une étape de mélange du substrat avec des particules d'un métal ou d'un oxyde métallique se sublimant à basse température, soit simultanément à l'étape 1) de fonctionnalisation, soit après ladite étape 1) de fonctionnalisation ;  2) a step of mixing the substrate with particles of a metal or metal oxide sublimating at low temperature, either simultaneously with the functionalization step 1) or after said functionalization step 1);
3) une étape de traitement thermique du mélange obtenu ci-dessus à l'issue de l'étape 2), à une température variant de 100 à 400°C ; étant entendu que ladite étape 3) n'est réalisée que lorsqu'un métal est utilisé à l'étape 2) ci-dessus, ladite étape 3) étant en outre conduite à une température inférieure à la température de fusion du métal considéré et à l'air pour oxyder ledit métal et obtenir un oxyde métallique ;  3) a step of heat treatment of the mixture obtained above at the end of step 2), at a temperature ranging from 100 to 400 ° C; it being understood that said step 3) is carried out only when a metal is used in step 2) above, said step 3) being furthermore conducted at a temperature below the melting temperature of the metal in question and at the air for oxidizing said metal and obtaining a metal oxide;
4) une étape de réduction sous atmosphère réductrice, à une température comprise entre 0, 1 Tf et une température inférieure à Tf, Tf étant la température de fusion, exprimée en Kelvin, de l'oxyde métallique obtenu à l'étape 3) ou de l'oxyde métallique utilisé à l'étape 2), pour provoquer la réduction dudit l'oxyde métallique et la sublimation concomitante du métal et/ou de l'oxyde métallique puis la fixation des atomes métalliques sur les atomes de phosphore des groupements -O-P ou sur les atomes de soufre des groupements O-S ou sur l'atome d'oxygène libre des groupements O-P-O ou -O-S-O liés au substrat. Les liaisons chimiques reliant les atomes d'oxygène à la surface du substrat sont des liaisons iono-covalentes. 4) a reduction step under a reducing atmosphere, at a temperature of between 0.1 T f and a temperature below T f , T f being the melting temperature, expressed in Kelvin, of the metal oxide obtained in step 3) or the metal oxide used in step 2), to cause the reduction of said metal oxide and the concomitant sublimation of the metal and / or the metal oxide and then the fixing of the metal atoms on the phosphorus atoms groups -OP or on the sulfur atoms of the OS groups or on the free oxygen atom of the groups OPO or -OSO bonded to the substrate. The chemical bonds connecting the oxygen atoms to the surface of the substrate are iono-covalent bonds.
L'étape de fonctionnalisation est une étape de phosphatation ou de sulfuration. Elle est de préférence réalisée par immersion du substrat dans un agent de phosphatation, respectivement un agent de sulfuration, lesdits agents étant liquides ou en solution dans un solvant.  The functionalization step is a phosphatation or sulfurization step. It is preferably carried out by immersion of the substrate in a phosphating agent, respectively a sulphurizing agent, said agents being liquid or in solution in a solvent.
Selon l'invention, on entend par agent de phosphatation, tout composé phosphoré capable de conduire à la formation de groupements -O-P ou -O-P-O à la surface du substrat. L'agent de phosphatation est de préférence choisi parmi l'acide phosphorique, les esters phosphoriques tels que le produit vendu sous la dénomination commerciale Beycostat ® C213 par la société CECA-GERLAND, l'éthylphosphate ou le butylphosphate.  According to the invention, the term "phosphating agent" means any phosphorus compound capable of leading to the formation of -O-P or -O-P-O groups on the surface of the substrate. The phosphating agent is preferably chosen from phosphoric acid, phosphoric esters such as the product sold under the trade name Beycostat® C213 by the company Ceca-Gerland, ethylphosphate or butylphosphate.
Selon l'invention, on entend par agent de sulfuration, tout composé soufré capable de conduire à la formation de groupements -O-S ou -O-S-O à la surface du substrat. L'agent de sulfuration est de préférence l'acide sulfurique.  According to the invention, the term "sulphurizing agent" is understood to mean any sulfur compound capable of leading to the formation of -O-S or -O-S-O groups on the surface of the substrate. The sulfurizing agent is preferably sulfuric acid.
Le solvant de l'agent de phosphatation ou de sulfuration est de préférence choisi parmi l'eau, les alcools inférieurs tels que l'éthanol, les cétones tels que la 2-butanone et leurs mélanges.  The solvent of the phosphating or sulfurization agent is preferably selected from water, lower alcohols such as ethanol, ketones such as 2-butanone and mixtures thereof.
Selon le procédé conforme à l'invention, l'étape 1) de fonctionnalisation peut être réalisée sur la totalité de la surface du substrat ou bien sur certaines zones uniquement. Lorsqu'une partie seulement de la surface du substrat doit être fonctionnalisée, alors les zones sur lesquelles il convient de ne pas fixer de groupements -Ο-Ρ,-0-P-O, -O-S ou -O-S-O sont masquées préalablement à la première étape. Cette étape préalable de masquage peut être réalisée par toute technique approprié connue de l'homme du métier, telle que par exemple par application d'un masque en résine thermosensible dans le cas des substrats plans.  According to the process according to the invention, the functionalization step 1) can be carried out on the entire surface of the substrate or on certain zones only. When only a portion of the surface of the substrate is to be functionalized, then the areas on which no -Ο-Ρ, -O-P-O, -O-S or -O-S-O groups should be attached are masked prior to the first step. This preliminary masking step can be carried out by any appropriate technique known to those skilled in the art, such as for example by applying a thermosensitive resin mask in the case of flat substrates.
L'étape de fonctionnalisation est généralement réalisée à une température inférieure à la température de décomposition thermique du substrat et de préférence à une température inférieure à la température d'évaporation du solvant. Cette étape de fonctionnalisation est de préférence réalisée à une température variant de 60 à 200°C, et encore plus préférentiellement de 80 à 100°C.  The functionalization step is generally carried out at a temperature below the thermal decomposition temperature of the substrate and preferably at a temperature below the solvent evaporation temperature. This functionalization step is preferably carried out at a temperature ranging from 60 to 200 ° C., and even more preferably from 80 to 100 ° C.
La durée de l'étape de fonctionnalisation varie généralement de 15 min à 4 heures, et encore plus préférentiellement de 30 min à 1 heure.  The duration of the functionalization step generally varies from 15 minutes to 4 hours, and even more preferably from 30 minutes to 1 hour.
Le procédé conforme à l'invention permet de déposer un métal sur tout type de support solide. Parmi les substrats utilisables selon le procédé de l'invention, on peut mentionner les substrats sous forme de poudre tels que les poudres de diamant et les poudres de carbure de silicium, les substrats sous forme de microfibres et de nano fibres telles que les fibres de carbone et les fibres d'alumine, les substrats plans tels que les substrats en alumine, carbone ou silicium. The process according to the invention makes it possible to deposit a metal on any type of solid support. Among the substrates that can be used according to the process of the invention, mention may be made of powder substrates such as diamond powders and silicon carbide powders, substrates in the form of microfibers and nano fibers such as carbon fibers and alumina fibers, flat substrates such as substrates made of alumina, carbon or silicon.
Selon une forme de réalisation particulière du procédé de l'invention, et lorsque l'étape de fonctionnalisation et l'étape de mélange du substrat avec les particules de métal ou d'oxyde métallique sont réalisées de façon séparée, le procédé peut alors en outre comprendre, après l'étape de fonctionnalisation du substrat, une étape de séchage du substrat. Cette étape de séchage est de préférence réalisée en étuve, à une température variant de 80 à 120°C environ.  According to a particular embodiment of the process of the invention, and when the functionalization step and the step of mixing the substrate with the metal or metal oxide particles are carried out separately, the process can then be carried out further. to understand, after the step of functionalizing the substrate, a step of drying the substrate. This drying step is preferably carried out in an oven, at a temperature ranging from 80 to 120 ° C.
Au sens de la présente invention, on entend par « métal ou oxyde métallique se sublimant à basse température », les métaux et oxydes métalliques se sublimant à une température T inférieure ou égale à 0,5 Tf, Tf étant la température de fusion, exprimée en Kelvin, du métal ou de l'oxyde métallique considéré. For the purposes of the present invention, the term "metal or metal oxide sublimating at low temperature", metals and metal oxides sublimating at a temperature T less than or equal to 0.5 T f , T f being the melting temperature , expressed in Kelvin, of the metal or metal oxide considered.
Selon l'invention, les métaux et oxydes métalliques se sublimant à basse température sont de préférence choisis parmi les métaux et oxydes métalliques se sublimant à une température généralement inférieure à 1000°C, et encore plus particulièrement inférieure à 500°C.  According to the invention, the metals and metal oxides which sublimate at low temperature are preferably chosen from metals and metal oxides which sublimate at a temperature generally below 1000 ° C., and even more particularly below 500 ° C.
Les métaux se sublimant à basse température sont de préférence choisis parmi le cuivre (température de sublimation (TS = 727°C), le plomb (TS = 342°C), le nickel et le magnésium, ces températures de sublimation étant données pour une pression de vapeur dans le milieu extérieur d'environ 10"8 Torr. The metals sublimating at low temperature are preferably selected from copper (sublimation temperature (TS = 727 ° C.), lead (TS = 342 ° C.), nickel and magnesium, these sublimation temperatures being given for vapor pressure in the external environment of about 10 "8 Torr.
Les oxydes métalliques se sublimant à basse température peuvent être choisis parmi l'oxyde de cuivre dendritique (TS = à partir de 250°C), l'oxyde de plomb (TS = à partir de 200°C) et l'oxyde de nickel (TS = à partir de 300°C), ces températures de sublimation étant données pour une pression de vapeur dans le milieu extérieur d'environ 10" Torr. The metal oxides which sublimate at low temperature can be chosen from dendritic copper oxide (TS = from 250 ° C.), lead oxide (TS = from 200 ° C.) and nickel oxide. (TS = from 300 ° C), these sublimation temperatures being given for a vapor pressure in the external medium of about 10 " Torr.
Les particules de métal ou d'oxyde métallique utilisées lors de la deuxième étape ont de préférence une taille variant de 10 nm à 100 μηι et encore plus préférentiellement de 100 nm à 50 μηι.  The particles of metal or metal oxide used in the second step preferably have a size ranging from 10 nm to 100 μm and even more preferably from 100 nm to 50 μm.
L'étape 2) de mélange du substrat avec les particules du métal ou de l'oxyde métallique peut par exemple être réalisée dans un mélangeur à poudres (lorsqu'il s'agit de substrats sous forme de poudre ou de fibres, tel que par exemple un mélangeur rotatif), ou bien par recouvrement du substrat par une couche de particules du métal ou de l'oxyde métallique (cas des substrats plans). Bien entendu, la température à laquelle est réalisée le mélange du substrat avec les particules du métal ou de l'oxyde métallique n'est pas critique et peut varier en fonction de la nature du métal ou de l'oxyde métallique utilisé, entre la température ambiante et 250°C. Step 2) of mixing the substrate with the particles of the metal or of the metal oxide may for example be carried out in a powder mixer (when it is substrates in the form of powder or fibers, such as by example a rotary mixer), or by covering the substrate with a layer of particles of the metal or of the metal oxide (in the case of flat substrates). Of course, the temperature at which the mixture of the substrate is made with the particles of the metal or of the metal oxide is not critical and may vary depending on the nature of the metal or metal oxide used, between the temperature room temperature and 250 ° C.
La durée de l'étape 2) de mélange du substrat avec les particules peut varier de 30 min à 2 heures, et encore plus préférentiellement la durée de cette étape de mélange est d'environ 1 heure.  The duration of step 2) of mixing the substrate with the particles may vary from 30 minutes to 2 hours, and even more preferably the duration of this mixing step is about 1 hour.
Selon une forme de réalisation préférée de l'invention, l'étape 3) de traitement thermique est réalisée à une température variant de 200 à 400°C, étant entendu que cette température est choisie en fonction de la nature du métal à oxyder, de telle sorte qu'au sein de cette gamme de température elle soit inférieure à la température de fusion du métal considéré. Cette étape de traitement thermique permet d'oxyder le métal lorsqu'un métal est utilisé à l'étape 2) de mélange du substrat avec les particules de métal, mais également de décomposer thermiquement les espèces organiques provenant de l'agent de phosphatation ou de sulfuration et du solvant lorsqu'un solvant est utilisé.  According to a preferred embodiment of the invention, the heat treatment step 3) is carried out at a temperature ranging from 200 to 400 ° C., it being understood that this temperature is chosen according to the nature of the metal to be oxidized, so that within this temperature range it is lower than the melting temperature of the metal considered. This heat treatment step makes it possible to oxidize the metal when a metal is used in step 2) of mixing the substrate with the metal particles, but also to thermally decompose the organic species originating from the phosphating agent or sulfurization and solvent when a solvent is used.
L'étape 4) de réduction (encore appelée « étape de désoxy dation ») peut par exemple être réalisée par exposition du substrat à une atmosphère d'argon à 5% en volume d'hydrogène pendant une durée variant de 1 à 2 heures.  The reduction step 4) (also called "deoxidation step") may for example be carried out by exposing the substrate to an argon atmosphere at 5% by volume of hydrogen for a period ranging from 1 to 2 hours.
L'étape 4) de réduction est de préférence réalisée à une température variant de 200 à 700°C. Cette étape permet de réduire l'oxyde métallique et/ou de sublimer l'oxyde métallique et/ou le métal afin de permettre la condensation des atomes de métalliques sur les atomes de phosphore, de soufre ou d'oxygène des groupements -O-P, -O-P-O, -O-S ou -O-S-O (sites de germination). Il est important de noter qu'au cours des différentes étapes du procédé conforme à l'invention, les particules de métal ou d'oxyde métallique utilisées ne passent jamais à l'état liquide. La taille nanométrique de ces particules fait qu'au cours de l'étape 4), l'oxyde métallique ou le métal considéré peut se sublimer à une température inférieure à sa température théorique de sublimation, c'est pourquoi les températures préconisées pour réaliser l'étape 4) peuvent être inférieures à la température de sublimation du métal ou de l'oxyde métallique considéré mais néanmoins être suffisantes provoquer sa sublimation.  The reduction step 4) is preferably carried out at a temperature ranging from 200 to 700 ° C. This step makes it possible to reduce the metal oxide and / or to sublimate the metal oxide and / or the metal in order to allow the condensation of the metal atoms on the phosphorus, sulfur or oxygen atoms of the -OP groups, OPO, -OS or -OSO (germination sites). It is important to note that during the different steps of the process according to the invention, the particles of metal or metal oxide used never go into the liquid state. The nanometric size of these particles makes that during step 4), the metal oxide or the metal in question can be sublimated at a temperature below its theoretical sublimation temperature, which is why the temperatures recommended to achieve the Stage 4) may be less than the sublimation temperature of the metal or metal oxide in question, but nevertheless be sufficient to cause sublimation thereof.
Le matériau obtenu conformément à l'invention est un matériau composite constitué d'un substrat comportant un dépôt métallique.  The material obtained according to the invention is a composite material consisting of a substrate comprising a metal deposit.
Lorsque le matériau obtenu à l'issu du procédé conforme à l'invention est un matériau sous forme de poudre (substrat en poudre comportant un revêtement de métal, notamment de cuivre), celui peut ensuite être densifié, par exemple par compression uniaxiale à chaud (650°C, 15 bar, 20 min, sous vide). When the material obtained at the end of the process according to the invention is a material in powder form (powder substrate comprising a coating of metal, especially copper), that can then be densified, for example by hot uniaxial compression (650 ° C, 15 bar, 20 min, under vacuum).
L'invention a également pour objet les utilisations du procédé conforme à l'invention et tel que décrit précédemment, et notamment pour :  The subject of the invention is also the uses of the process according to the invention and as described above, and in particular for:
- la préparation de renforts pour la métallurgie des poudres,  - the preparation of reinforcements for the metallurgy of powders,
- la préparation de renforts pour la fonderie,  - the preparation of reinforcements for the foundry,
- améliorer la conductivité thermique des matériaux.  - improve the thermal conductivity of the materials.
La présente invention est illustrée par les exemples de réalisation suivants, auxquels elle n'est cependant pas limitée.  The present invention is illustrated by the following exemplary embodiments, to which it is however not limited.
EXEMPLES  EXAMPLES
Les matières premières utilisées dans les exemples qui suivent sont listées ci-après :  The raw materials used in the examples that follow are listed below:
- Fibres de carbone (FC) micrométriques broyées ayant un diamètre de 10 μηι environ, vendues sous les dénominations commerciales K223HG, XN100 et CN80C par la société Mitsubishi, leur longueur étant comprise entre 30 et 300 μηι et plus précisément aux alentours de 10 μηι ;  - milled micrometric carbon fiber (FC) having a diameter of approximately 10 μηι, sold under the trade names K223HG, XN100 and CN80C by Mitsubishi, their length being between 30 and 300 μηι and more precisely around 10 μηι;
- Fibres de carbone (FC) nanométriques ayant un diamètre d'environ 150 nm, et une longueur pouvant aller jusqu'à une dizaine de microns, vendues sous la dénomination commerciale VGCNF par la société Showa Denko ;  Nanoscale carbon fibers (FC) having a diameter of about 150 nm, and a length of up to about ten microns, sold under the trade name VGCNF by Showa Denko;
- Fibres d'alumine d'un diamètre d'environ 10 μηι vendues sous la dénomination commerciale Alumina Short Fibers par la société Saffil ;  Alumina fibers with a diameter of approximately 10 μηι sold under the trade name Alumina Short Fibers by Saffil;
- Particules de carbure de silicium vendues sous la dénomination commerciale LS5 par la société Lonza ;  - Silicon carbide particles sold under the trade name LS5 by the company Lonza;
- Poudre de diamant vendue sous la dénomination commerciale MBD4, MBD6 ou MBD8 par la société Henan Zhongxin Industry ;  Diamond powder sold under the trade name MBD4, MBD6 or MBD8 by Henan Zhongxin Industry;
- Substrat de silicium vendu sous la dénomination commerciale Wafer Si monocristallin par la société Prolog Semicor ;  Silicon substrate sold under the trade name Wafer Si monocrystalline by Prolog Semicor;
- Poudre micronique de cuivre dendritique vendue sous la dénomination commerciale CHL10 par la société Ecka Granules Poudmet ;  Micron powder of dendritic copper sold under the trade name CHL10 by Ecka Granules Poudmet;
- Poudre micronique de plomb oxydé vendue sous la dénomination commerciale Lead Powder 200 Mesh par la société Alfa Aesar ; - Ester phosphorique vendu sous la dénomination commerciale Beycostat ® C213 par la société CECA-GERLAND ; - Lead micron powder oxidized sold under the trade name Lead Powder 200 Mesh by the company Alfa Aesar; Phosphoric ester sold under the trade name Beycostat® C213 by the company CECA-GERLAND;
- Acide orthophosphorique en solution aqueuse à 85 % en poids vendu par la société Acros Organics ;  - orthophosphoric acid in aqueous solution at 85% by weight sold by the company Acros Organics;
- Acide sulfurique en solution aqueuse à 20 % en poids, vendu par la société J. T. Baker ;  Sulfuric acid in aqueous solution at 20% by weight, sold by J. T. Baker;
- Solvants : éthanol ; butanone ; (sociétés Acros Organics ou Fisher Bioblock) - Solvents: ethanol; butanone; (companies Acros Organics or Fisher Bioblock)
Ces matières premières ont été utilisées telles que reçues des fabricants, sans purification supplémentaire. These raw materials were used as received from manufacturers, without further purification.
Exemple 1  Example 1
Dépôt de cuiyre sur des fibres de carbone micrométriques Deposit of cuiyre on micrometric carbon fibers
Dans cet exemple, un dépôt de cuivre a été réalisé sur des microfibres de carbone en utilisant un ester phosphorique à titre d'agent phosphatation. In this example, a copper deposit was made on carbon microfibers using a phosphoric ester as a phosphating agent.
1) Première étape : Fonctionnalisation du substrat (phosphatation) et mélange simultané du substrat avec du cuiyre  1) First step: Functionalisation of the substrate (phosphatation) and simultaneous mixing of the substrate with cuiyre
4,29 g de cuivre dendritique, 0,71 g de microfibres de carbone K223HG, 3,5 mL d'un mélange éthanol / butanone (1 :2 ; v:v) et 0,025 g de Beycostat ® C 213 ont été mélangés au mélangeur planétaire pendant environ 4 h à température ambiante.  4.29 g of dendritic copper, 0.71 g of K223HG carbon microfibers, 3.5 ml of an ethanol / butanone mixture (1: 2, v: v) and 0.025 g of Beycostat® C 213 were mixed with planetary mixer for about 4 hours at room temperature.
2) Deuxième étape : Oxydation du cuiyre  2) Second step: Oxidation of the cuiyre
Le mélange résultant a ensuite été porté à une température de 400°C pendant 1 heure sous air afin de provoquer l'oxydation du cuivre dendritique et la décomposition thermique de toutes les espèces organiques.  The resulting mixture was then heated at 400 ° C for 1 hour in air to cause oxidation of the dendritic copper and thermal decomposition of all organic species.
3) Troisième étape : Dépôt du cuiyre sur le substrat  3) Third step: Depositing the cuiyre on the substrate
Le mélange oxydé résultant a été désoxydé sous atmosphère réductrice Ar/H2 pendant 1 heure à 400°C afin de provoquer la transformation de l'oxyde de cuivre en cuivre métallique ainsi que la sublimation concomitante de l'oxyde de cuivre et/ou du cuivre métallique puis la fixation du cuivre métallique sur le substrat en vue d'une mise en forme future (type pressage à chaud). The resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C. in order to cause the conversion of copper oxide to metallic copper and the concomitant sublimation of the copper oxide and / or metallic copper and then fixing the metallic copper on the substrate for future shaping (hot pressing type).
La figure 1 annexée est une photographie prise en microscopie électronique à balayage des fibres de carbone après le dépôt de cuivre (grossissement x 10000). Exemple 2 The appended FIG. 1 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of copper (magnification × 10,000). Example 2
Dépôt de cuiyre sur des fibres de carbone micrométriques Deposit of cuiyre on micrometric carbon fibers
Dans cet exemple un dépôt de cuivre a été réalisé sur des microfibres de carbone en utilisant de l'acide orthophosphorique à titre d'agent de phosphatation. In this example a copper deposit was made on carbon microfibers using orthophosphoric acid as a phosphating agent.
1) Première étape : Fonctionnalisation du substrat (phosphatation)  1) First step: Functionalisation of the substrate (phosphatation)
710 mg de microfibres de carbone ont été immergés dans 2 mL d'acide orthophosphorique (H3PO4) dilué dans de l'eau distillée (1 :3, v/v) pendant 20 min à 80°C sous agitation magnétique. 710 mg of carbon microfibers were immersed in 2 ml of orthophosphoric acid (H 3 PO 4 ) diluted in distilled water (1: 3, v / v) for 20 min at 80 ° C. with magnetic stirring.
Les fibres de carbone ont ensuite été rincées à l'eau distillée puis séchées. The carbon fibers were then rinsed with distilled water and dried.
2) Deuxième étape : Mélange du substrat fonctionnalisé avec du cuiyre dendritique oxydé 2) Second step: Mixing of the functionalized substrate with oxidized dendritic cuiyre
Les microfibres de carbone fonctionnalisées ont ensuite été mélangées dans un mélangeur planétaire, à température ambiante, pendant environ 4 heures, à 6,62 g de poudre micronique de cuivre dendritique préalablement oxydé par calcination sous air pendant environ 1 heure à 400°C.  The functionalized carbon microfibers were then mixed in a planetary mixer at room temperature for about 4 hours with 6.62 g of dendritic copper micron powder previously oxidized by calcination in air for about 1 hour at 400 ° C.
3) Troisième étape : Dépôt du cuiyre  3) Third step: Cuiyre deposit
Le mélange résultant a ensuite été porté à une température de 400°C sous atmosphère réductrice Ar/H2 pendant 1 heure à 400°C. The resulting mixture was then heated to a temperature of 400 ° C under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
La figure 2 annexée est une photographie prise en microscopie électronique à balayage des fibres de carbone après le dépôt de cuivre (grossissement x 2200).  The appended FIG. 2 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of copper (magnification × 2200).
Exemple 3  Example 3
Dépôt de plomb sur des fibres de carbone  Lead deposition on carbon fibers
Dans cet exemple un dépôt de plomb a été réalisé sur des microfibres de carbone en utilisant de l'acide orthophosphorique à titre d'agent de phosphatation.  In this example a lead deposit was made on carbon microfibers using orthophosphoric acid as a phosphating agent.
1) Première étape : Fonctionnalisation du substrat (phosphatation)  1) First step: Functionalisation of the substrate (phosphatation)
710 mg de microfibres de carbone K223HG ont été immergés dans 2 mL d'acide orthophosphorique (H3PO4) dilué dans de l'eau distillée (1 :3, v/v) pendant 20 min à 80°C sous agitation magnétique. 710 mg of K223HG carbon microfibers were immersed in 2 ml of orthophosphoric acid (H 3 PO 4 ) diluted in distilled water (1: 3, v / v) for 20 min at 80 ° C. with magnetic stirring.
Les fibres de carbone ont ensuite été rincées à l'eau distillée puis séchées. 2) Deuxième étape : Mélange du substrat fonctionnalisé avec les particules de plomb oxydé The carbon fibers were then rinsed with distilled water and dried. 2) Second step: Mixing of the functionalized substrate with the oxidized lead particles
Les microfibres de carbone fonctionnalisées ont ensuite été mélangées dans un mélangeur planétaire pendant environ 4 heures à température ambiante avec 4,29 g de poudre micronique de plomb oxydé.  The functionalized carbon microfibers were then mixed in a planetary mixer for about 4 hours at room temperature with 4.29 g of oxidized lead micron powder.
3) Troisième étape : Dépôt de plomb  3) Third step: Lead deposit
Le mélange résultant a ensuite été désoxydé sous atmosphère réductrice Ar/H2 pendant 1 heure à 400°C. The resulting mixture was then deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
La figure 3 annexée est une photographie prise en microscopie électronique à balayage des fibres de carbone après le dépôt de plomb (grossissement x 1 120).  The appended FIG. 3 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of lead (magnification × 1120).
Exemple 4  Example 4
Dépôt de cuiyre sur des fibres d'alumine  Deposit of cuiyre on alumina fibers
Dans cet exemple, un dépôt de cuivre a été réalisé sur des fibres d'alumine en utilisant un ester phosphorique à titre d'agent de phosphatation.  In this example, a copper deposit was made on alumina fibers using a phosphoric ester as a phosphating agent.
1) Première étape : Fonctionnalisation du substrat et mélange simultané du substrat avec le cuiyre  1) First step: Functionalisation of the substrate and simultaneous mixing of the substrate with the cuiyre
4,29 g de cuivre dendritique, 710 mg de microfibres d'alumine, 3,5 mL d'un mélange éthanol / butanone (1 :2 ; v:v) et 0,2 g de Beycostat ® C 213 ont été mélangés au mélangeur planétaire pendant environ 4 h à température ambiante.  4.29 g of dendritic copper, 710 mg of alumina microfibers, 3.5 ml of an ethanol / butanone mixture (1: 2, v: v) and 0.2 g of Beycostat® C 213 were mixed with planetary mixer for about 4 hours at room temperature.
2) Deuxième étape : Oxydation du cuiyre  2) Second step: Oxidation of the cuiyre
Le mélange résultant a ensuite été porté à une température de 400°C pendant 1 heure sous air.  The resulting mixture was then heated to 400 ° C for 1 hour in air.
3) Troisième étape : Dépôt du cuiyre  3) Third step: Cuiyre deposit
Le mélange oxydé résultant a été désoxydé sous atmosphère réductrice Ar/H2 pendant 1 heure à 400°C. The resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
La figure 4 annexée est une photographie prise en microscopie électronique à balayage des fibres d'alumine après le dépôt de cuivre (grossissement x 5000).  The appended FIG. 4 is a photograph taken by scanning electron microscopy of the alumina fibers after the deposition of copper (magnification x 5000).
Exemple 5  Example 5
Dépôt de cuiyre sur un substrat en carbure de silicium  Deposit of cuiyre on a silicon carbide substrate
Dans cet exemple, un dépôt de cuivre a été réalisé sur un substrat en carbure de silicium en utilisant un ester phosphorique à titre d'agent de phosphatation. 1) "Première étape : Fonctionnalisation du substrat et mélange simultané du substrat avec du cuiyre In this example, a copper deposit was made on a silicon carbide substrate using a phosphoric ester as a phosphating agent. 1) " First step: Functionalisation of the substrate and simultaneous mixing of the substrate with cuiyre
4,29 g de cuivre dendritique, 710 mg de poudre de carbure de silicium, 3,5 mL d'un mélange éthanol / butanone (1 :2 ; v:v) et 0,2 g de Beycostat ® C 213 ont été mélangés au mélangeur planétaire pendant environ 4 h à température ambiante.  4.29 g of dendritic copper, 710 mg of silicon carbide powder, 3.5 mL of ethanol / butanone (1: 2; v: v) and 0.2 g of Beycostat® C 213 were mixed at the planetary mixer for about 4 hours at room temperature.
2) Deuxième étape : Oxydation du cuiyre  2) Second step: Oxidation of the cuiyre
Le mélange résultant a ensuite été porté à une température de 400°C pendant 1 heure sous air.  The resulting mixture was then heated to 400 ° C for 1 hour in air.
3) Troisième étape : Dépôt de cuiyre  3) Third step: Cuiyre deposit
Le mélange oxydé résultant a été désoxydé sous atmosphère réductrice Ar/H2 pendant 1 heure à 400°C. The resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
La figure 5 annexée est une photographie prise en microscopie électronique à balayage du substrat après le dépôt de cuivre (grossissement x 10000).  The attached FIG. 5 is a photograph taken by scanning electron microscopy of the substrate after the deposition of copper (magnification × 10,000).
Exemple 6  Example 6
Dépôt de cuiyre sur de la poudre de diamant  Deposit of cuiyre on diamond powder
Dans cet exemple, un dépôt de cuivre a été réalisé sur de la poudre de diamant en utilisant un ester phosphorique à titre d'agent de phosphatation.  In this example, a copper deposit was made on diamond powder using a phosphoric ester as a phosphating agent.
1) Première étape : Fonctionnalisation su substrat et mélange simultané du substrat avec le cuiyre  1) First step: Functionalisation of the substrate and simultaneous mixing of the substrate with the cuiyre
4,29 g de cuivre dendritique, 710 mg de poudre de diamant, 3,5 mL d'un mélange éthanol / butanone (1 :2 ; v:v) et 0,2 g de Beycostat ® C 213 ont été mélangés au mélangeur planétaire pendant environ 4 h à température ambiante.  4.29 g of dendritic copper, 710 mg of diamond powder, 3.5 mL of ethanol / butanone (1: 2; v: v) and 0.2 g of Beycostat® C 213 were mixed with the mixer planetary for about 4 hours at room temperature.
2) Deuxième étape : Oxydation du cuiyre  2) Second step: Oxidation of the cuiyre
Le mélange résultant a ensuite été porté à une température de 400°C pendant 1 heure sous air.  The resulting mixture was then heated to 400 ° C for 1 hour in air.
3) Troisième étape : Dépôt du cuiyre  3) Third step: Cuiyre deposit
Le mélange oxydé résultant a été désoxydé sous atmosphère réductrice Ar/H2 pendant 1 heure à 400°C. La figure 6 annexée est une photographie prise en microscopie électronique à balayage de la poudre de diamant après le dépôt de cuivre (grossissement x 2800). The resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C. The appended FIG. 6 is a photograph taken by scanning electron microscopy of the diamond powder after the deposition of copper (magnification x 2800).
Exemple 7  Example 7
Dépôt de cuiyre sur un substrat de silicium  Deposit of cuiyre on a silicon substrate
Dans cet exemple, un dépôt de cuivre a été réalisé sur un substrat de silicium en utilisant un ester phosphorique à titre d'agent de phosphatation.  In this example, a copper deposit was made on a silicon substrate using a phosphoric ester as a phosphating agent.
1) Première étape : Fonctionnalisation du substrat et mélange simultané du substrat avec du cuiyre  1) First step: Functionalization of the substrate and simultaneous mixing of the substrate with cuiyre
4,29 g de cuivre dendritique, le substrat de silicium (dimensions : environ 1 cm x 1 cm), 3,5 mL d'un mélange éthanol / butanone (1 :2 ; v:v) et 0,2 g de Beycostat ® C 213 ont été mélangés au mélangeur planétaire pendant environ 4 h à température ambiante.  4.29 g of dendritic copper, the silicon substrate (dimensions: approximately 1 cm × 1 cm), 3.5 ml of an ethanol / butanone mixture (1: 2; v: v) and 0.2 g of Beycostat ® C 213 were mixed with the planetary mixer for approximately 4 hours at room temperature.
2) Deuxième étape : Oxydation du cuiyre  2) Second step: Oxidation of the cuiyre
Le substrat résultant a ensuite été porté à une température de 400°C pendant 1 heure sous air.  The resulting substrate was then heated to a temperature of 400 ° C for 1 hour in air.
3) Troisième étape : Dépôt de cuiyre  3) Third step: Cuiyre deposit
Le mélange oxydé résultant a été désoxydé sous atmosphère réductrice Ar/H2 pendant 1 heure à 400°C. The resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 1 hour at 400 ° C.
La figure 7 annexée est une photographie prise en microscopie électronique à balayage du substrat de silicium après le dépôt de cuivre (grossissement x 15170).  The attached FIG. 7 is a photograph taken by scanning electron microscopy of the silicon substrate after the deposition of copper (magnification × 15170).
Exemple 8  Example 8
Etude de la conductivité thermique et de la densité d'un matériau composite cuiyre/diamant  Study of the thermal conductivity and density of a composite material cuiyre / diamond
La matériau composite cuivre/diamant a été préparé par compression uniaxiale à chaud (650°C, 15 bar, 20 min, sous vide) de la poudre de diamant préparée ci-dessus à l'exemple 6.  The copper / diamond composite material was prepared by hot uniaxial compression (650 ° C., 15 bar, 20 min, under vacuum) of the diamond powder prepared above in Example 6.
La conductivité thermique du composite cuivre/diamant élaboré par cette technique puis densifié par compression uniaxiale à chaud (650°C, 15 bar, 20 min, sous vide) a ensuite été mesurée avec un analyseur à flash laser vendu sous la dénomination commerciale LFA 457 MicroFlash® par la société Netzsch. Elle a été trouvée supérieure à celle obtenue pour un composite comparatif classique cuivre allié/diamant préparé par simple mélange mécanique de la poudre de diamant et de cuivre et densifié par pressage uniaxial à chaud dans les mêmes conditions pour une même fraction volumique : 485 W/m.K (composite cuivre diamant conforme à l'invention) > 400 W/m.K (composite cuivre diamant comparatif ne faisant pas partie de l'invention). The thermal conductivity of the copper / diamond composite produced by this technique and then densified by hot uniaxial compression (650 ° C., 15 bar, 20 min, under vacuum) was then measured with a laser flash scanner sold under the trade name LFA 457. MicroFlash® by the company Netzsch. It was found to be superior to that obtained for a conventional comparative alloy copper / diamond composite prepared by simple mechanical mixing of the diamond and copper powder and densified by hot uniaxial pressing under the same conditions for the same volume fraction: 485 W / mK (diamond copper composite according to the invention)> 400 W / mK (comparative diamond copper composite not forming part of the invention).
Par ailleurs, d'autres composites cuivre/diamant (Cu/D) ont été préparés dans les mêmes conditions que celles décrites ci-dessus à l'exemple 6 avec de la poudre de diamant MBD6, en faisant varier la fraction volumique de la poudre de diamant par rapport au cuivre (10%, 20%, 30% et 40%) dans le but d'étudier l'effet de cette variation sur la densité, la conductivité thermique (mesurée par l'analyseur LFA 457 MicroFlash®) et le coefficient thermique (mesuré à l'aide d'un dilatomètre horizontal vendu sous la référence DIL 402C par la société Netzsch) des matériaux correspondants, après compression uniaxiale à chaud.  Furthermore, other copper / diamond (Cu / D) composites were prepared under the same conditions as those described above in Example 6 with MBD6 diamond powder, by varying the volume fraction of the powder. compared to copper (10%, 20%, 30% and 40%) in order to study the effect of this variation on density, thermal conductivity (measured by the LFA 457 MicroFlash® analyzer) and the thermal coefficient (measured with the aid of a horizontal dilatometer sold under the reference DIL 402C by the company Netzsch) of the corresponding materials, after uniaxial heat compression.
Les résultats sont présentés sur les figures 8, 9 et 10 annexées.  The results are shown in Figures 8, 9 and 10 attached.
La figure 8 représente l'évolution des densités relatives (en %) des différents composites Cu/D en fonction de la fraction volumique en diamant.  FIG. 8 represents the evolution of the relative densities (in%) of the various Cu / D composites as a function of the diamond volume fraction.
La figure 9 représente l'évolution de la conductivité thermique (en W.m^.K"1) en fonction de la fraction volumique en diamant, la courbe dont les points sont des carrés pleins correspondant au modèle prédictif de Maxwell (Maxwell JC. A Treatise on Electricity and Magnetism ; Oxford Universtity Press, 1873) et la courbe dont les points sont des triangles pleins correspondant aux données expérimentales. FIG. 9 represents the evolution of the thermal conductivity (in W m -1 .K -1 ) as a function of the diamond volume fraction, the curve whose points are solid squares corresponding to Maxwell's predictive model (Maxwell JC A Treatise on Electricity and Magnetism, Oxford University Press, 1873) and the curve whose points are solid triangles corresponding to the experimental data.
La figure 10 représente l'évolution du coefficient d'expansion thermique (10"6oC_1) en fonction de la fraction volumique en diamant ; la courbe dont les points sont des carrés pleins correspond au modèle prédictif de Kerner (Kerner EH., The elastic and thermo-plastic properties of composite média, Proc. of the Physical Society of London, 1956, 69(8), 808-813) et la courbe dont les points sont des triangles pleins correspond aux données expérimentales. Figure 10 shows the evolution of the coefficient of thermal expansion (10 -6 ° C- 1 ) as a function of the diamond volume fraction, the curve whose points are solid squares corresponds to the predictive model of Kerner (Kerner EH., The elastic and thermo-plastic properties of composite media, Proceedings of the Physical Society of London, 1956, 69 (8), 808-813) and the curve whose points are solid triangles corresponds to the experimental data.
Les résultats de la figure 8 montrent que le procédé de dépôt de cuivre sur les particules de diamant fonctionnalisées permet d'obtenir des matériaux composites denses, avec des densités relatives comprises entre 97 et 100 %, ce qui prouve l'efficacité du dépôt de cuivre comme agent de liaison chimique entre la matrice et les renforts. Les résultats de la figure 9 montrent que les conductivité thermiques augmentent avec le pourcentage de renfort (poudre de diamant) et suivent la tendance théorique. The results of FIG. 8 show that the method of depositing copper on the functionalized diamond particles makes it possible to obtain dense composite materials, with relative densities of between 97 and 100%, which proves the efficiency of the copper deposition as a chemical bonding agent between the matrix and the reinforcements. The results of FIG. 9 show that the thermal conductivities increase with the percentage of reinforcement (diamond powder) and follow the theoretical trend.
Les résultats de la figure 10 montrent que la diminution du coefficient d'expansion thermique est inversement proportionnel à la fraction volumique en diamant (12.10"6 C1) et suivent la tendance théorique. The results of FIG. 10 show that the decrease in the coefficient of thermal expansion is inversely proportional to the diamond volume fraction (12 × 10 -6 C 1 ) and follow the theoretical trend.
Exemple 9  Example 9
Dépôt de cuiyre sur des fibres de carbone  Deposit of cuiyre on carbon fibers
Dans cet exemple, un dépôt de cuivre a été réalisé sur des microfibres de carbone en utilisant de l'acide sulfurique à titre d'agent de sulfuration.  In this example, a copper deposit was made on carbon microfibers using sulfuric acid as a sulfurizing agent.
1) Première étape : Fonctionnalisation du substrat (sulfuration)  1) First step: Functionalisation of the substrate (sulphidation)
700 mg de microfibres de carbone K223HG ont été immergés dans 100 mL d'acide sulfurique (H2SO4) à 20 % en masse dans de l'eau distillée pendant 30 min à 80°C sous agitation magnétique. 700 mg of K223HG carbon microfibers were immersed in 100 ml of 20% by weight sulfuric acid (H 2 SO 4 ) in distilled water for 30 min at 80 ° C. with magnetic stirring.
Les fibres de carbone ont ensuite été rincées à l'eau distillée puis séchées. The carbon fibers were then rinsed with distilled water and dried.
2) Deuxième étape : Mélange du substrat fonctionnalisé avec du cuiyre dendritique 2) Second stage: Mixing of the functionalized substrate with dendritic cuiyre
Les microfibres de carbone fonctionnalisées ont ensuite été mélangées dans un mélangeur planétaire, à température ambiante, pendant environ 4 heures, à 4,5 g de poudre micronique de cuivre.  The functionalized carbon microfibers were then mixed in a planetary mixer at room temperature for about 4 hours with 4.5 g of copper micron powder.
3) Troisième étape : Oxydation du cuiyre  3) Third step: Oxidation of cuiyre
Le mélange résultant a ensuite été porté à une température de 400°C pendant 2 heures sous air afin de provoquer l'oxydation du cuivre.  The resulting mixture was then heated at 400 ° C for 2 hours in air to cause oxidation of the copper.
4) Quatrième étape : Dépôt du cuiyre sur le substrat  4) Fourth step: Depositing the cuiyre on the substrate
Le mélange oxydé résultant a été désoxydé sous atmosphère réductrice Ar/H2 pendant 2 heures à 400°C. The resulting oxidized mixture was deoxidized under a reducing atmosphere Ar / H 2 for 2 hours at 400 ° C.
La figure 1 1 annexée est une photographie prise en microscopie électronique à balayage des fibres de carbone après le dépôt de cuivre.  The attached FIG. 11 is a photograph taken by scanning electron microscopy of the carbon fibers after the deposition of copper.

Claims

REVENDICATIONS
1. Procédé de formation d'un dépôt métallique à la surface d'un substrat solide, ledit procédé étant caractérisé en ce qu'il comprend au moins : A method of forming a metal deposit on the surface of a solid substrate, said method being characterized in that it comprises at least:
1) une étape de fonctionnalisation d'au moins une partie de la surface du substrat par des groupements -Ο-Ρ,-0-P-O, -O-S ou -O-S-O, lesdits groupements étant liés à la surface du substrat par l'intermédiaire d'un atome d'oxygène, ladite fonctionnalisation étant réalisée par mise en contact du substrat avec un agent de phosphatation, respectivement de sulfuration ;  1) a step of functionalizing at least a portion of the surface of the substrate with -Ο-Ρ, -O-PO, -OS or -OSO groups, said groups being bonded to the surface of the substrate via an oxygen atom, said functionalization being carried out by bringing the substrate into contact with a phosphating or sulfurization agent;
2) une étape de mélange du substrat avec des particules d'un métal ou d'un oxyde métallique se sublimant à basse température, soit simultanément à l'étape 1) de fonctionnalisation, soit après ladite étape de fonctionnalisation ;  2) a step of mixing the substrate with particles of a metal or a metal oxide sublimating at low temperature, either simultaneously with the functionalization step 1) or after said functionalization step;
3) une étape de traitement thermique du mélange obtenu ci-dessus à l'issue de l'étape 2), à une température variant de 100 à 400C ; étant entendu que ladite étape 3) n'est réalisée que lorsqu'un métal est utilisé à l'étape 2) ci-dessus, ladite étape 3) étant en outre conduite à une température inférieure à la température de fusion du métal considéré et à l'air pour oxyder ledit métal et obtenir un oxyde métallique ;  3) a step of heat treatment of the mixture obtained above at the end of step 2), at a temperature ranging from 100 to 400C; it being understood that said step 3) is carried out only when a metal is used in step 2) above, said step 3) being furthermore conducted at a temperature below the melting temperature of the metal in question and at the air for oxidizing said metal and obtaining a metal oxide;
4) une étape de réduction sous atmosphère réductrice, à une température comprise entre 0, 1 Tf et une température inférieure à Tf, Tf étant la température de fusion, exprimée en Kelvin, de l'oxyde métallique obtenu à l'étape 3) ou de l'oxyde métallique utilisé à l'étape 2), pour provoquer la réduction dudit l'oxyde métallique et la sublimation concomitante du métal et/ou de l'oxyde métallique puis la fixation des atomes métalliques sur les atomes de phosphore des groupements -O-P ou sur les atomes de soufre des groupements O-S ou sur l'atome d'oxygène libre des groupements O-P-O ou -O-S-O liés au substrat. 4) a reduction step under a reducing atmosphere, at a temperature of between 0.1 T f and a temperature below T f , T f being the melting temperature, expressed in Kelvin, of the metal oxide obtained in step 3) or the metal oxide used in step 2), to cause the reduction of said metal oxide and the concomitant sublimation of the metal and / or the metal oxide and then the fixing of the metal atoms on the phosphorus atoms groups -OP or on the sulfur atoms of the OS groups or on the free oxygen atom of the groups OPO or -OSO bonded to the substrate.
2. Procédé selon la revendication 1, caractérisé en ce que l'étape de fonctionnalisation est réalisée par immersion du substrat dans un agent de phosphatation ou de sulfuration, lesdits agents étant liquides ou en solution dans un solvant.  2. Method according to claim 1, characterized in that the functionalization step is carried out by immersion of the substrate in a phosphating or sulfurization agent, said agents being liquid or in solution in a solvent.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'agent de phosphatation est choisi parmi l'acide phosphorique, les esters phosphoriques, l'éthylphosphate ou le butylphosphate. 3. Method according to claim 1 or 2, characterized in that the phosphating agent is chosen from phosphoric acid, phosphoric esters, ethylphosphate or butyl phosphate.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'agent de sulfuration est l'acide sulfurique. 4. Process according to any one of claims 1 to 3, characterized in that the sulphurizing agent is sulfuric acid.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de fonctionnalisation est réalisée à une température variant de 60 à 200°C.  5. Method according to any one of the preceding claims, characterized in that the functionalization step is carried out at a temperature ranging from 60 to 200 ° C.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la durée de l'étape de fonctionnalisation varie de 15 minutes à 4 heures.  6. Method according to any one of the preceding claims, characterized in that the duration of the functionalization step varies from 15 minutes to 4 hours.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat est choisi parmi les substrats sous forme de poudre, de microfibres et de nanofibres et les substrats plans.  7. Method according to any one of the preceding claims, characterized in that the substrate is chosen from substrates in the form of powder, microfibers and nanofibers and flat substrates.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les métaux et oxydes métalliques se sublimant à basse température sont choisis parmi les métaux et oxydes métalliques se sublimant à une température inférieure à 1000°C.  8. Method according to any one of the preceding claims, characterized in that the metals and metal oxides sublimating at low temperature are selected from metals and metal oxides sublimating at a temperature below 1000 ° C.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les métaux se sublimant à basse température sont choisis parmi le cuivre, le plomb, le nickel et le magnésium.  9. Process according to any one of the preceding claims, characterized in that the metals sublimating at low temperature are chosen from copper, lead, nickel and magnesium.
10. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les oxydes métalliques sont choisis parmi l'oxyde de cuivre dendritique, l'oxyde de plomb et l'oxyde de nickel.  10. Process according to any one of claims 1 to 7, characterized in that the metal oxides are chosen from dendritic copper oxide, lead oxide and nickel oxide.
1 1. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les particules de métal ou d'oxyde métallique utilisées lors de la deuxième étape ont une taille variant de 10 nm à 100 μηι.  1. Process according to any one of the preceding claims, characterized in that the particles of metal or metal oxide used during the second step have a size ranging from 10 nm to 100 μm.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape 4) de réduction est réalisée par exposition du substrat à une atmosphère d'argon à 5% en volume d'hydrogène pendant une durée variant de 1 à 2 heures.  12. Method according to any one of the preceding claims, characterized in that the reduction step 4) is carried out by exposing the substrate to an argon atmosphere at 5% by volume of hydrogen for a time varying from 1 to 2 hours.
13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de réduction est réalisée à une température variant de 200 à 700°C.  13. Method according to any one of the preceding claims, characterized in that the reduction step is carried out at a temperature ranging from 200 to 700 ° C.
14. Utilisation du procédé tel que défini à l'une quelconque des revendications 1 à 13, pour la préparation de renforts pour la métallurgie des poudres ou pour la fonderie. 14. Use of the method as defined in any one of claims 1 to 13, for the preparation of reinforcements for powder metallurgy or for foundry.
15. Utilisation du procédé tel que défini à l'une quelconque revendications 1 à 13, pour améliorer la conductivité thermique des matériaux. 15. Use of the method as defined in any one of claims 1 to 13, for improving the thermal conductivity of the materials.
EP11743287.2A 2010-07-05 2011-07-04 Method for forming a metal deposit on the surface of a substrate, and uses thereof Not-in-force EP2591144B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055422A FR2962140B1 (en) 2010-07-05 2010-07-05 PROCESS FOR FORMING A METAL DEPOSITION AT THE SURFACE OF A SUBSTRATE AND APPLICATIONS
PCT/FR2011/051563 WO2012004501A1 (en) 2010-07-05 2011-07-04 Method for forming a metal deposit on the surface of a substrate, and uses thereof

Publications (2)

Publication Number Publication Date
EP2591144A1 true EP2591144A1 (en) 2013-05-15
EP2591144B1 EP2591144B1 (en) 2017-05-10

Family

ID=43448783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11743287.2A Not-in-force EP2591144B1 (en) 2010-07-05 2011-07-04 Method for forming a metal deposit on the surface of a substrate, and uses thereof

Country Status (6)

Country Link
US (1) US9284646B2 (en)
EP (1) EP2591144B1 (en)
JP (1) JP5774101B2 (en)
KR (1) KR101787025B1 (en)
FR (1) FR2962140B1 (en)
WO (1) WO2012004501A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252389A (en) * 1986-04-23 1987-11-04 若松熱錬株式会社 Method of plating chinaware
JP3475260B2 (en) * 1994-12-07 2003-12-08 日本リーロナール株式会社 Method of forming functional coating on resin products
US6495290B1 (en) * 1999-07-19 2002-12-17 Sony Corporation Proton conductor, production method thereof, and electrochemical device using the same
US6872681B2 (en) * 2001-05-18 2005-03-29 Hyperion Catalysis International, Inc. Modification of nanotubes oxidation with peroxygen compounds
JP3846331B2 (en) * 2001-06-26 2006-11-15 奥野製薬工業株式会社 Method for producing fine particle dispersion
JP2004338186A (en) * 2003-05-14 2004-12-02 Fuji Photo Film Co Ltd Substrate for lithographic printing plate and original printing plate for lithographic printing plate
DK1828447T3 (en) 2004-11-16 2011-03-21 Hyperion Catalysis Int Process for preparing supported catalysts from metal-applied carbon nanotubes
US8313724B2 (en) * 2006-02-22 2012-11-20 William Marsh Rice University Short, functionalized, soluble carbon nanotubes, methods of making same, and polymer composites made therefrom
WO2008091402A2 (en) * 2006-09-15 2008-07-31 Eikos, Inc. DEPOSITION OF METALS ONTO NAαOTUBE TRANSPARENT CONDUCTORS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012004501A1 *

Also Published As

Publication number Publication date
KR20130124940A (en) 2013-11-15
FR2962140A1 (en) 2012-01-06
US9284646B2 (en) 2016-03-15
US20130209679A1 (en) 2013-08-15
KR101787025B1 (en) 2017-10-18
EP2591144B1 (en) 2017-05-10
JP5774101B2 (en) 2015-09-02
JP2013535568A (en) 2013-09-12
FR2962140B1 (en) 2012-08-17
WO2012004501A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
TWI259849B (en) Porous metal, metallic composite using it and method for manufacturing the same
JP5864596B2 (en) Method for producing graphite oxide
KR101303285B1 (en) Graphene paper which reduced graphene oxide layers and coating layers are stacked in sequence and preparation method thereof
FR2591529A1 (en) COMPOSITE MATERIAL BASED ON TITANIUM OR TITANIUM ALLOY AND PROCESS FOR PREPARING THE SAME
WO2007063243A1 (en) Protection against the oxidation of composite materials containing carbon
EP3146001B1 (en) Binder composition, method for producing a sacrificial protective coating against corrosion using said composition and a substrate coated with such a coating
Zhong et al. Growth of high quality, high density single-walled carbon nanotube forests on copper foils
JP4997561B2 (en) Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
FR2940980A1 (en) METAL COMPLEXES FOR PLATINUM VAPOR PHASE CHEMICAL DEPOSITION
EP2591144B1 (en) Method for forming a metal deposit on the surface of a substrate, and uses thereof
Hu et al. Surface mechanical and electrochemical properties of zirconium oxide embedded silicon carbonitride ceramic composite film by polysilazane preceramic precursor
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
EP1648842A2 (en) Protection against the oxidation of composite material parts containing carbon and parts thus protected
EP2436806B1 (en) Method for making a protective coating against oxidation at high temperature for refractory materials based on silicon and niobium.
KR101439782B1 (en) Environmentally friendly reduction method of oxidation of graphene films using a metal plate and brine
Hayat et al. Enhanced interfacial bonding in copper/diamond composites via deposition of nano-copper on diamond particles
US20140377462A1 (en) Suspended Thin Films on Low-Stress Carbon Nanotube Support Structures
Xiang et al. Supercritical fluid immersion deposition: a new process for selective deposition of metal films on silicon substrates
JP7442133B2 (en) Nitrogen-containing carbon material into which basal nitrogen is selectively introduced and method for producing the same
Mao et al. Preparation of ZrO2 in SiC coating via hydrothermal method and sintering process onto carbon/carbon composite
JPS6133701B2 (en)
KR20230014414A (en) Method of manufacturing aluminum - carbon composite thin film and aluminum - carbon composite thin film
FR2657550A1 (en) PROCESS FOR THE PREPARATION OF A COMPOSITE CERAMIC POWDER AND POWDER OBTAINED BY THE PROCESS
Roussel et al. Effect of boron addition on micro-aluminum-particle-based multifunctional high-temperature coatings
JPH0733565A (en) Carbon material coated with boron carbide and its production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011037822

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0022820000

Ipc: C23C0022730000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 22/73 20060101AFI20161209BHEP

INTG Intention to grant announced

Effective date: 20170105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011037822

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011037822

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110704

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 892416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200722

Year of fee payment: 10

Ref country code: FR

Payment date: 20200731

Year of fee payment: 10

Ref country code: DE

Payment date: 20200716

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200622

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011037822

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210704

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210704

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731