EP2584147A1 - Film-cooled turbine blade for a turbomachine - Google Patents

Film-cooled turbine blade for a turbomachine Download PDF

Info

Publication number
EP2584147A1
EP2584147A1 EP11186219.9A EP11186219A EP2584147A1 EP 2584147 A1 EP2584147 A1 EP 2584147A1 EP 11186219 A EP11186219 A EP 11186219A EP 2584147 A1 EP2584147 A1 EP 2584147A1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
inlet
thickening
wall
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11186219.9A
Other languages
German (de)
French (fr)
Inventor
Andreas Heselhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11186219.9A priority Critical patent/EP2584147A1/en
Publication of EP2584147A1 publication Critical patent/EP2584147A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the invention relates to a turbine blade for a turbomachine, wherein the turbine blade is film-cooled.
  • a turbomachine in particular a gas turbine, has a turbine, in which hot gas, which was previously compressed in a compressor and heated to a combustion chamber, is expanded to obtain work.
  • the turbine is designed in Axialbauweise, wherein the turbine is formed by a plurality of successively arranged in the flow direction blade rings.
  • the blade rings have circumferentially disposed blades and vanes, the blades being mounted on a rotor of the gas turbine and the vanes secured to the housing of the gas turbine.
  • thermodynamic efficiency of the gas turbine is the higher, the higher the inlet temperature of the hot gas into the turbine.
  • thermal load capacity of the turbine blades there are limits with regard to the thermal load capacity of the turbine blades.
  • corresponding materials and material combinations are available for the turbine blades, which, however, according to the current state of the art, only allow an insufficient expansion of the potential for increasing the thermal efficiency of the gas turbine.
  • it is known to cool the turbine blades during operation of the gas turbine whereby the turbine blade itself is exposed to a lower thermal load, as without the cooling due to the thermal load of the hot gas would be the case.
  • the blades are cooled, for example, by means of film cooling.
  • the blades are provided on their surface with a plurality of cooling air holes, via which the blade inner cooling air is transported to the surface of the turbine blades. After leaving the cooling air holes, the cooling air flows in the form of a film along the surface of the turbine blade, thus isolating the surface of the turbine blade from the hot gas. Furthermore, the film acts as a barrier, so that transport of the hot gas to the surface of the turbine blade is suppressed.
  • the object of the invention is to provide a turbine blade for a turbomachine, which is effectively coolable with a film cooling.
  • the turbine blade for a turbomachine has an outer wall defining an inner cavity of the turbine blade in which cooling fluid for cooling the turbine blade is provided, wherein in the outer wall at least one passage is provided through which the cooling fluid from the inner cavity to the outside of the turbine blade for training a cooling film on the outside of the outer wall is flowable and which is inclined to the trailing edge of the turbine blade, wherein the edge portion of the inlet of the passage channel is formed at its upstream side so sharp relative to the other edge portions of the inlet, that in the passage a separation region of the cooling fluid flow is formed, through which a centric transverse flow of the cooling fluid is induced, which is directed to the opposite side of the separation region of the passage channel, whereby a pair gegenlä in the passageway forms a common vortex in which the velocity vectors of the cooling fluid flow between show the vortex centers to the downstream side of the passageway.
  • the chimney vortex is attenuated and the transport of the hot gas to the outside of the turbine blade is reduced, thereby making the film cooling more effective.
  • the amount of cooling fluid necessary for the cooling of the turbine blade is smaller compared to a quantity of cooling fluid which would be necessary to cool a conventional turbine blade, which results in a higher efficiency of the turbomachine.
  • the arrangement density of the through-channels in the turbine blade can be chosen to be comparatively small, as a result of which fewer through-channels are required for the turbine blade according to the invention and a structural weakening of the turbine blade according to the invention is less.
  • a thickening is provided with an upstream front side in which the inlet is formed and which is inclined to the axis of the through-channel such that the edge portion of the inlet the passageway at its upstream side is formed sharp-edged than the opposite edge portion of the inlet.
  • the front the thickening is preferably arranged inclined substantially perpendicular to the inside of the outer wall or to the trailing edge of the turbine blade. In the inclined front of the thickening results in a particularly sharp-edged edge portion on the upstream side of the passage channel, whereby the pair of counter-rotating vortices is advantageously particularly strong.
  • the thickening is preferably dimensioned so large in its thickness extension, that in the always occurring during casting manufacturing inaccuracies of the passageway is always disposed within the thickening and the inlet is formed by the front of the thickening.
  • the rear side of the thickening facing away from the front side of the thickening is preferably substantially parallel to the through-channel.
  • the thickening is a cooling fin of the turbine blade. By providing the cooling fin, the surface of the inside of the turbine blade is increased, whereby the turbine blade is advantageously effectively cooled from the inside with the cooling fluid by convection.
  • the thickening is preferably a support web extending from the pressure side to the suction side of the turbine blade. By the support bar, the strength of the turbine blade is advantageously increased. By the support webs individual cooling channels of the blade are formed in the blade inside.
  • the thickening is a displacer in the inner cavity of the turbine blade, with which the flow velocity of the cooling fluid in the inner cavity can be increased for cooling the turbine blade, whereby the convection is increased by the cooling fluid in the inner cavity.
  • the turbine blade can also be cooled effectively from the inside.
  • the inner side of the portion of the outer wall in which the passageway is arranged is disposed substantially parallel to the outer side, and at the edge portion of the inlet of the passageway at its downstream side of a bead is formed such that this edge portion is formed blunt relative to the opposite edge portion of the inlet.
  • This shape for the turbine blade is easy to cast. In case of possible manufacturing inaccuracies in the casting of the turbine blade, the final position of the bead from the outset can not be accurately predicted. This can be determined with the help of an X-ray method, the position of the bead in retrospect. Based on this determined position, the passageway can be made from outside the turbine blade, for example by drilling relative to the bead properly positioned.
  • a recess is preferably provided with a downstream rear side, in which the inlet is formed and which is inclined to the axis of the through-channel such that the edge portion of the inlet of the through-channel at the upstream side is sharp-edged than the opposite edge portion of the inlet is formed.
  • the material requirement for producing the turbine blade is low.
  • the rear side of the recess is arranged inclined substantially perpendicular to the inside of the outer wall or to the trailing edge of the turbine blade.
  • the inclined rear side advantageously results in a particularly sharp-edged edge section on the upstream side of the through-channel.
  • the recess at its inlet edge is shaped round in such a way that the cooling fluid can be flowed into the recess without a release.
  • the shape of the turbine blade according to the invention is suitable for casting, which makes it possible for the turbine blade to be produced by casting without any further adjustments.
  • the through-channels are preferably produced by drilling, in particular laser drilling, or eroding. The drilling is usually done from outside the turbine blade.
  • the recess is preferably a groove into which opens a plurality of passage channels. In this case, it is advantageously easier to hit the groove during drilling to form the edge sections.
  • FIGS. 1 to 6 show a portion of an outer wall 1 of a turbine blade of a turbomachine.
  • the outer wall 1 defines an inner cavity 2 and has an outer side 7 and an inner side 8.
  • a hot gas flow 34 occurs on the outside 7 with a hot gas main flow direction 9 parallel to the outside 7, which is directed towards the trailing edge of the turbine blade (not shown in the figures).
  • a passage channel 3 is introduced with a circular cross-section 19, which in the direction of flow directed from the inside out to the rear edge of the turbine blade is inclined and with the outside 7 includes an acute inclination angle 6.
  • the passage 3 in FIGS. 1 to 6 has an inlet 10 on the inside and an outlet 11 on the outside. Furthermore, the through-channel 3 has an axis 26, an upstream side 12 and a downstream side 13. The inlet 10 of the through-channel 3 has an upstream edge section 14 on the upstream side 12 and a downstream edge section 15 on the downstream side 13.
  • a cooling fluid 4 which penetrates via the inlet 10 into the passageway 3 and via the outlet 11, the passageway 3 leaves again.
  • the inclination angle 6 is selected to be pointed so that the cooling fluid 4 forms a cooling film 5 on the outside 7 after leaving the through-channel 3.
  • FIG. 1 an embodiment of the turbine blade with a thickening 23 is shown.
  • the thickening 23 is arranged on the inside on the region of the outer wall 1, in which the through-channel 3 is arranged.
  • the thickening 23 has a downstream Aufdickungs Wegseite 28, which is parallel to the passage 3, and an upstream Aufdickungsvorderseite 27, in which the inlet 10 is arranged.
  • the thickening front side 27 is arranged substantially perpendicular to the inside 8 of the outer wall 1, wherein the upstream edge portion 14 is formed sharp-edged than the downstream edge portion 15.
  • the downstream edge portion 15 is blunt such that the cooling fluid flow 17 can follow this edge portion 15 free of transfer.
  • the upstream edge portion 14 is so sharp-edged that the cooling fluid flow 17 can not follow this edge portion 14, so that in the flow channel 3 on the upstream side 12, a separation region 16 of the cooling fluid flow 17 forms. From the separation region 16, a centric transverse flow 18 is induced in the through-channel 3, which is directed from the upstream side 12 to the downstream side 13.
  • a centric cross-flow 18 causesd by the centric cross-flow 18, an opposite vortex pair 20 with two vortex centers 21 is produced in the through-channel 3, the velocity vectors between the two vortex centers 21 pointing to the downstream side 13 of the through-channel 3.
  • the velocity vectors of the cooling fluid flow 17 between the vortex centers 21 are directed to the outer wall 1 immediately after leaving the through-channel 3.
  • the hot gas flow 34 flows around the exiting cooling air jet with the counter-rotating vortex pair 20, whereby a chimney vortex 33 forms from a hot gas.
  • the chimney vortex 33 has two swirl arms, which are arranged on opposite sides of the counter-rotating swirl pair 20. Each of the vortex arms is formed by a vortex, wherein the velocity vectors of the hot gas flow 34 are directed between the vortex centers 21 of the vortex arms to the outer wall 1 out. As a result, the hot gas is transported to the outside 7 of the outer wall 1.
  • the swirl arms have opposing directions of rotation, such as their each superimposed vortex of the pair of counter-rotating vortex 20 immediately after leaving the passageway 3, so that the chimney vortex 33 is weakened and the transport of the hot gas to the outside 7 of the outer wall 1 is reduced the heat input into the outer wall 1 of the turbine blade is reduced.
  • thickening front side 27 is inclined towards the rear edge of the turbine blade, wherein the upstream edge portion 14 is even more sharp-edged than in FIG. 1 is trained.
  • FIG. 2 is the thickening 23 off FIG. 1 represented with two extreme manufacturing inaccuracies each with a dashed line, with the first manufacturing inaccuracies an offset of the thickening 23 parallel to the outer wall 1 and in the second manufacturing accuracy, an offset parallel to the thickening front side 27 occurs.
  • the through-channel 3 is arranged inside the thickening 23 and the inlet 10 in the front-side of the thickening 27.
  • the embodiment of the turbine blade FIG. 3 has a support web 24 extending from the pressure side to the suction side of the turbine blade.
  • the passage 3 extends partially in the support web 24 and the inlet 10 is disposed in the upstream support web front side 35.
  • a bead 22 is integrally formed on the inside 8 of the outer wall 1 immediately adjacent to the downstream edge portion 15, whereby the downstream edge portion 15 is formed dull.
  • the bead 22 has a convex portion on its inward side. It is conceivable that the convex region extends as far as the downstream edge section 15 and / or into the through-channel 3. In this case, a separation region on the downstream side 13 of the through-channel 3 could be avoided particularly effectively. It is conceivable that the bead 22 is formed with a rectangular cross-section. Furthermore, it is conceivable that the bead 22 is also formed as a cooling fin.
  • a hat-shaped recess 25 with an upstream recess front side 29 and a downstream recess rear side 30 is arranged in the outer wall.
  • the inlet 10 is arranged in the recess rear side 30.
  • the recess 25 has a round shaped recess inlet edge 31 in order to avoid detachment of the cooling fluid flow 17 when entering the recess 25.
  • the recess 25 of the embodiment FIG. 6 inclined to the trailing edge of the turbine blade, wherein the upstream edge portion 14 particularly sharp-edged is formed. It is further conceivable that the recess 25 is designed as a groove into which a plurality of through channels 3 opens.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The turbine blade has an outer wall (1) that restricts an inner hollow space (2), in which cooling fluid (4) is provided for film cooling of the turbine blade. A passageway (3) is provided in the outer wall. The cooling fluid is flowed through the passageway from the internal hollow space to outside the turbine blade for forming a cooling film (5) on outer side of the outer wall. An edge section (14) of an inlet (10) of the passageway is formed upstream to a side (12) relative to another edge section of the inlet.

Description

Die Erfindung betrifft eine Turbinenschaufel für eine Strömungsmaschine, wobei die Turbinenschaufel filmgekühlt ist.The invention relates to a turbine blade for a turbomachine, wherein the turbine blade is film-cooled.

Eine Strömungsmaschine, insbesondere eine Gasturbine, weist eine Turbine auf, in der Heißgas, das zuvor in einem Verdichter verdichtet und einer Brennkammer erhitzt wurde, zur Arbeitsgewinnung entspannt wird. Für hohe Massenströme des Heißgases und somit für hohe Leistungsbereiche der Gasturbine ist die Turbine in Axialbauweise ausgeführt, wobei die Turbine von mehreren in Durchströmungsrichtung hintereinanderliegenden Schaufelkränzen gebildet ist. Die Schaufelkränze weisen über den Umfang angeordnete Laufschaufeln und Leitschaufeln auf, wobei die Laufschaufeln auf einem Rotor der Gasturbine und die Leitschaufeln an dem Gehäuse der Gasturbine befestigt sind.A turbomachine, in particular a gas turbine, has a turbine, in which hot gas, which was previously compressed in a compressor and heated to a combustion chamber, is expanded to obtain work. For high mass flows of the hot gas and thus for high power ranges of the gas turbine, the turbine is designed in Axialbauweise, wherein the turbine is formed by a plurality of successively arranged in the flow direction blade rings. The blade rings have circumferentially disposed blades and vanes, the blades being mounted on a rotor of the gas turbine and the vanes secured to the housing of the gas turbine.

Der thermodynamische Wirkungsgrad der Gasturbine ist umso höher, je höher die Eintrittstemperatur des Heißgases in die Turbine ist. Demgegenüber sind Grenzen gesetzt hinsichtlich der thermischen Belastbarkeit der Turbinenschaufeln. Somit ist es erstrebenswert Turbinenschaufeln zu schaffen, die trotz einer möglichst hohen thermischen Belastung eine für den Betrieb der Gasturbine ausreichende mechanische Festigkeit haben. Hierzu stehen für die Turbinenschaufeln entsprechende Werkstoffe und Werkstoffkombinationen zur Verfügung, die jedoch nach heutigem Stand der Technik nur eine unzureichende Ausreizung des Potentials zur Erhöhung des thermischen Wirkungsgrads der Gasturbine ermöglichen. Zur weiteren Erhöhung der zulässigen Turbineneintrittstemperatur ist es bekannt, die Turbinenschaufeln im Betrieb der Gasturbine zu kühlen, wodurch die Turbinenschaufel selbst einer geringeren thermischen Belastung ausgesetzt ist, wie es ohne der Kühlung aufgrund der thermischen Belastung durch das Heißgas der Fall wäre.The thermodynamic efficiency of the gas turbine is the higher, the higher the inlet temperature of the hot gas into the turbine. In contrast, there are limits with regard to the thermal load capacity of the turbine blades. Thus, it is desirable to provide turbine blades, which have sufficient mechanical strength despite the highest possible thermal load for the operation of the gas turbine. For this purpose, corresponding materials and material combinations are available for the turbine blades, which, however, according to the current state of the art, only allow an insufficient expansion of the potential for increasing the thermal efficiency of the gas turbine. To further increase the allowable turbine inlet temperature, it is known to cool the turbine blades during operation of the gas turbine, whereby the turbine blade itself is exposed to a lower thermal load, as without the cooling due to the thermal load of the hot gas would be the case.

Um die Temperatur der Turbinenschaufeln niedrig zu halten, sind die Schaufeln beispielsweise mittels einer Filmkühlung gekühlt. Dazu sind die Schaufeln an ihrer Oberfläche mit einer Mehrzahl von Kühlluftlöchern versehen, via die vom Schaufelinneren Kühlluft an die Oberfläche der Turbinenschaufeln transportiert wird. Nachdem die Kühlluft die Kühlluftlöcher verlassen hat, strömt sie in Form eines Films an der Oberfläche der Turbinenschaufel entlang und isoliert somit die Oberfläche der Turbinenschaufel von dem Heißgas. Ferner wirkt der Film als Barriere, so dass ein Transport des Heißgases an die Oberfläche der Turbinenschaufel unterdrückt ist.To keep the temperature of the turbine blades low, the blades are cooled, for example, by means of film cooling. For this purpose, the blades are provided on their surface with a plurality of cooling air holes, via which the blade inner cooling air is transported to the surface of the turbine blades. After leaving the cooling air holes, the cooling air flows in the form of a film along the surface of the turbine blade, thus isolating the surface of the turbine blade from the hot gas. Furthermore, the film acts as a barrier, so that transport of the hot gas to the surface of the turbine blade is suppressed.

Aufgabe der Erfindung ist es, eine Turbinenschaufel für eine Strömungsmaschine zu schaffen, die effektiv mit einer Filmkühlung kühlbar ist.The object of the invention is to provide a turbine blade for a turbomachine, which is effectively coolable with a film cooling.

Die erfindungsgemäße Turbinenschaufel für eine Strömungsmaschine weist eine Außenwand auf, die einen Innenhohlraum der Turbinenschaufel begrenzt, in dem Kühlfluid zur Filmkühlung der Turbinenschaufel bereitstellbar ist, wobei in der Außenwand mindestens ein Durchgangskanal vorgesehen ist, durch den das Kühlfluid vom Innenhohlraum nach außerhalb der Turbinenschaufel zur Ausbildung eines Kühlfilms auf der Außenseite der Außenwand strömbar ist und der zur Hinterkante der Turbinenschaufel hin geneigt ist, wobei der Randabschnitt des Einlaufs des Durchgangskanals an dessen stromauf liegenden Seite derart scharfkantig relativ zu den anderen Randabschnitten des Einlaufs ausgebildet ist, dass im Durchgangskanal ein Ablösegebiet der Kühlfluidströmung ausbildbar ist, durch das eine zentrische Querströmung des Kühlfluids induziert ist, die zu der dem Ablösegebiet gegenüberliegenden Seite des Durchgangskanals hin gerichtet ist, wodurch sich im Durchgangskanal ein Paar gegenläufiger Wirbel ausbildet, bei denen die Geschwindigkeitsvektoren der Kühlfluidströmung zwischen den Wirbelzentren zur stromab liegenden Seite des Durchgangskanals hin zeigen.The turbine blade for a turbomachine according to the invention has an outer wall defining an inner cavity of the turbine blade in which cooling fluid for cooling the turbine blade is provided, wherein in the outer wall at least one passage is provided through which the cooling fluid from the inner cavity to the outside of the turbine blade for training a cooling film on the outside of the outer wall is flowable and which is inclined to the trailing edge of the turbine blade, wherein the edge portion of the inlet of the passage channel is formed at its upstream side so sharp relative to the other edge portions of the inlet, that in the passage a separation region of the cooling fluid flow is formed, through which a centric transverse flow of the cooling fluid is induced, which is directed to the opposite side of the separation region of the passage channel, whereby a pair gegenlä in the passageway forms a common vortex in which the velocity vectors of the cooling fluid flow between show the vortex centers to the downstream side of the passageway.

Trifft Heißgas aus einer Brennkammer der Strömungsmaschine an der Außenseite der Turbinenschaufel auf einen Strahl des aus dem Durchgangskanal ausgetretenen Kühlfluids, so teilt sich die Strömung des Heißgases um den Strahl auf und es bildet sich durch die Schleppwirkung des Heißgases am Strahlrand ein Schornsteinwirbel mit zwei Wirbelarmen aus. Jeder der beiden Wirbelarme ist von einem Wirbel gebildet, wobei die Geschwindigkeitsvektoren des Heißgases an den beiden Innenseiten der Wirbelarme von der Außenwand weg zeigen. Dadurch wird das Heißgas in Richtung zur Außenseite der Turbinenschaufel transportiert. Die beiden Wirbelarme des Schornsteinwirbels haben entgegen gerichtete Drehsinne wie die mit ihr jeweils überlagerten Wirbel des Paars der gegenläufigen Wirbel des Kühlfluids. Somit wird der Schornsteinwirbel abgeschwächt und der Transport von dem Heißgas zur Außenseite der Turbinenschaufel ist vermindert, wodurch die Filmkühlung effektiver wird. Dadurch ist die für die Kühlung der Turbinenschaufel notwendige Kühlfluidmenge kleiner verglichen mit einer Kühlfluidmenge, die notwendig wäre eine herkömmliche Turbinenschaufel zu kühlen, womit ein höherer Wirkungsgrad der Strömungsmaschine einher geht. Ferner kann die Anordnungsdichte der Durchgangskanäle in der Turbinenschaufel vergleichsweise gering gewählt sein, wodurch insgesamt weniger Durchgangskanäle für die erfindungsgemäße Turbinenschaufel benötigt werden und eine strukturelle Schwächung der erfindungsgemäßen Turbinenschaufel geringer ist.If hot gas from a combustion chamber of the turbomachine on the outside of the turbine blade encounters a jet of cooling fluid discharged from the passage, the flow of the hot gas around the jet is divided and a chimney vortex with two vortex arms is formed by the drag effect of the hot gas at the jet edge , Each of the two vortex arms is formed by a vortex, wherein the velocity vectors of the hot gas on the two inner sides of the vortex arms point away from the outer wall. As a result, the hot gas is transported toward the outside of the turbine blade. The two swirl arms of the chimney vortex have opposite directions of rotation as the each with her superimposed vortex of the pair of opposite vortex of the cooling fluid. Thus, the chimney vortex is attenuated and the transport of the hot gas to the outside of the turbine blade is reduced, thereby making the film cooling more effective. As a result, the amount of cooling fluid necessary for the cooling of the turbine blade is smaller compared to a quantity of cooling fluid which would be necessary to cool a conventional turbine blade, which results in a higher efficiency of the turbomachine. Furthermore, the arrangement density of the through-channels in the turbine blade can be chosen to be comparatively small, as a result of which fewer through-channels are required for the turbine blade according to the invention and a structural weakening of the turbine blade according to the invention is less.

Es ist bevorzugt, dass an der Innenseite des Bereichs der Außenwand, in dem der Durchgangskanal angeordnet ist, eine Aufdickung mit einer stromauf angeordneten Vorderseite vorgesehen ist, in der der Einlauf ausgebildet und die zur Achse des Durchgangskanals derart geneigt ist, dass der Randabschnitt des Einlaufs des Durchgangskanals an dessen stromauf liegenden Seite scharfkantiger als der gegenüberliegende Randabschnitt des Einlaufs ausgebildet ist. Die Vorderseite der Aufdickung ist bevorzugt im Wesentlichen senkrecht zur Innenseite der Außenwand oder zur Hinterkante der Turbinenschaufel hin geneigt angeordnet. Bei der geneigten Vorderseite der Aufdickung ergibt sich ein besonders scharfkantiger Randabschnitt an der stromauf liegenden Seite des Durchgangskanals, wodurch das Paar der gegenläufigen Wirbel vorteilhaft besonders stark ausgebildet wird.It is preferred that on the inside of the region of the outer wall, in which the through-channel is arranged, a thickening is provided with an upstream front side in which the inlet is formed and which is inclined to the axis of the through-channel such that the edge portion of the inlet the passageway at its upstream side is formed sharp-edged than the opposite edge portion of the inlet. The front the thickening is preferably arranged inclined substantially perpendicular to the inside of the outer wall or to the trailing edge of the turbine blade. In the inclined front of the thickening results in a particularly sharp-edged edge portion on the upstream side of the passage channel, whereby the pair of counter-rotating vortices is advantageously particularly strong.

Die Aufdickung ist bevorzugt in ihrer Dickenerstreckung derart groß dimensioniert, dass bei den beim Gießen immer auftretenden Fertigungsungenauigkeiten der Durchgangskanal stets innerhalb der Aufdickung angeordnet und der Einlauf von der Vorderseite der Aufdickung gebildet ist. Die der Vorderseite der Aufdickung abgewandte Rückseite der Aufdickung ist bevorzugt im Wesentlichen parallel zum Durchgangskanal. Bevorzugtermaßen ist die Aufdickung eine Kühlrippe der Turbinenschaufel. Durch das Vorsehen der Kühlrippe ist die Oberfläche der Innenseite der Turbinenschaufel vergrößert, wodurch die Turbinenschaufel vorteilhaft effektiv von innen mit dem Kühlfluid durch Konvektion kühlbar ist. Alternativ ist die Aufdickung bevorzugt ein von der Druckseite zur Saugseite der Turbinenschaufel verlaufender Stützsteg. Durch den Stützsteg ist die Festigkeit der Turbinenschaufel vorteilhaft erhöht. Durch die Stützstege werden im Schaufelinneren einzelne Kühlkanäle der Schaufel geformt.The thickening is preferably dimensioned so large in its thickness extension, that in the always occurring during casting manufacturing inaccuracies of the passageway is always disposed within the thickening and the inlet is formed by the front of the thickening. The rear side of the thickening facing away from the front side of the thickening is preferably substantially parallel to the through-channel. Preferably, the thickening is a cooling fin of the turbine blade. By providing the cooling fin, the surface of the inside of the turbine blade is increased, whereby the turbine blade is advantageously effectively cooled from the inside with the cooling fluid by convection. Alternatively, the thickening is preferably a support web extending from the pressure side to the suction side of the turbine blade. By the support bar, the strength of the turbine blade is advantageously increased. By the support webs individual cooling channels of the blade are formed in the blade inside.

Es ist bevorzugt, dass die Aufdickung ein Verdrängungskörper im Innenhohlraum der Turbinenschaufel ist, mit dem zum Kühlen der Turbinenschaufel die Strömungsgeschwindigkeit des Kühlfluids im Innenhohlraum erhöhbar ist, wodurch die Konvektion durch das Kühlfluid im Innenhohlraum erhöht ist. Dadurch ist ebenfalls vorteilhaft die Turbinenschaufel effektiv von innen kühlbar.It is preferable that the thickening is a displacer in the inner cavity of the turbine blade, with which the flow velocity of the cooling fluid in the inner cavity can be increased for cooling the turbine blade, whereby the convection is increased by the cooling fluid in the inner cavity. As a result, the turbine blade can also be cooled effectively from the inside.

Alternativ ist es bevorzugt, dass die Innenseite des Bereichs der Außenwand, in dem der Durchgangskanal angeordnet ist, im wesentlichen parallel zur Außenseite angeordnet ist und am Randabschnitt des Einlaufs des Durchgangskanals an dessen stromab liegenden Seite eine Wulst derart angeformt ist, dass dieser Randabschnitt stumpf relativ zum gegenüberliegenden Randabschnitt des Einlaufs ausgebildet ist. Diese Formgebung für die Turbinenschaufel ist einfach gießbar. Bei eventuell auftretenden Fertigungsungenauigkeiten beim Gießen der Turbinenschaufel kann die letztendliche Position der Wulst von vorn herein nicht exakt vorhergesagt werden. Hierbei kann mit Hilfe eines Röntgenverfahrens die Position der Wulst im Nachhinein ermittelt werden. Anhand dieser ermittelten Position kann der Durchgangskanal von außerhalb der Turbinenschaufel beispielsweise durch Bohren relativ zur Wulst richtig positioniert hergestellt werden.Alternatively, it is preferable that the inner side of the portion of the outer wall in which the passageway is arranged is disposed substantially parallel to the outer side, and at the edge portion of the inlet of the passageway at its downstream side of a bead is formed such that this edge portion is formed blunt relative to the opposite edge portion of the inlet. This shape for the turbine blade is easy to cast. In case of possible manufacturing inaccuracies in the casting of the turbine blade, the final position of the bead from the outset can not be accurately predicted. This can be determined with the help of an X-ray method, the position of the bead in retrospect. Based on this determined position, the passageway can be made from outside the turbine blade, for example by drilling relative to the bead properly positioned.

An der Innenseite des Bereichs der Außenwand, in dem der Durchgangskanal angeordnet ist, ist bevorzugt eine Aussparung mit einer stromab angeordneten Hinterseite vorgesehen, in der der Einlauf ausgebildet und die zur Achse des Durchgangskanals derart geneigt ist, dass der Randabschnitt des Einlaufs des Durchgangskanals an dessen stromauf liegenden Seite scharfkantiger als der gegenüberliegende Randabschnitt des Einlaufs ausgebildet ist. Durch das Vorsehen der Aussparung ist der Materialbedarf zum Herstellen der Turbinenschaufel gering. Bevorzugt ist die Hinterseite der Aussparung im Wesentlichen senkrecht zur Innenseite der Außenwand oder zur Hinterkante der Turbinenschaufel hin geneigt angeordnet. Durch die geneigte Hinterseite ergibt sich vorteilhaft ein besonders scharfkantiger Randabschnitt an der stromauf liegenden Seite des Durchgangskanals. Bevorzugt ist die Aussparung an ihrem Eintrittsrand derart rund geformt, dass das Kühlfluid ablösefrei in die Aussparung einströmbar ist.On the inside of the region of the outer wall, in which the through-channel is arranged, a recess is preferably provided with a downstream rear side, in which the inlet is formed and which is inclined to the axis of the through-channel such that the edge portion of the inlet of the through-channel at the upstream side is sharp-edged than the opposite edge portion of the inlet is formed. By providing the recess, the material requirement for producing the turbine blade is low. Preferably, the rear side of the recess is arranged inclined substantially perpendicular to the inside of the outer wall or to the trailing edge of the turbine blade. The inclined rear side advantageously results in a particularly sharp-edged edge section on the upstream side of the through-channel. Preferably, the recess at its inlet edge is shaped round in such a way that the cooling fluid can be flowed into the recess without a release.

Die erfindungsgemäße Form der Turbinenschaufel ist gießgerecht, wodurch es ermöglicht ist, dass ohne weitere Anpassungen die Turbinenschaufel durch Gießen hergestellt werden kann. Die Durchgangskanäle sind bevorzugt durch Bohren, insbesondere Laserbohren, oder Erodieren herzustellen. Das Bohren erfolgt in der Regel von außerhalb der Turbinenschaufel. Die Aussparung ist bevorzugt eine Rille, in die eine Mehrzahl an Durchgangskanälen mündet. Hierbei ist es vorteilhaft einfacher, beim Bohren die Rille unter Ausbildung der Randabschnitte zu treffen.The shape of the turbine blade according to the invention is suitable for casting, which makes it possible for the turbine blade to be produced by casting without any further adjustments. The through-channels are preferably produced by drilling, in particular laser drilling, or eroding. The drilling is usually done from outside the turbine blade. The recess is preferably a groove into which opens a plurality of passage channels. In this case, it is advantageously easier to hit the groove during drilling to form the edge sections.

Im Folgenden werden bevorzugte Ausführungsformen der erfindungsgemäßen Turbinenschaufel anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:

Figuren 1 und 2
einen Längsausschnitt einer Außenwand der Turbinenschaufel mit einem Durchgangskanal und einer Aufdickung,
FIG 3
einen Längsausschnitt einer Außenwand der Turbinenschaufel mit einem Durchgangskanal und einem Stützsteg,
FIG 4
einen Längsausschnitt einer Außenwand der Turbinenschaufel mit einem Durchgangskanal und einer Wulst und
Figuren 5 und 6
einen Längsausschnitt einer Außenwand der Turbinenschaufel mit einem Durchgangskanal und einer Aussparung.
In the following, preferred embodiments of the turbine blade according to the invention will be explained with reference to the accompanying schematic drawings. Show it:
Figures 1 and 2
a longitudinal section of an outer wall of the turbine blade with a through-channel and a thickening,
FIG. 3
a longitudinal section of an outer wall of the turbine blade with a through-channel and a support web,
FIG. 4
a longitudinal section of an outer wall of the turbine blade with a through-channel and a bead and
FIGS. 5 and 6
a longitudinal section of an outer wall of the turbine blade with a through-channel and a recess.

Figuren 1 bis 6 zeigen einen Abschnitt einer Außenwand 1 einer Turbinenschaufel einer Strömungsmaschine. Die Außenwand 1 begrenzt einen Innenhohlraum 2 und weist eine Außenseite 7 sowie eine Innenseite 8 auf. Im Betrieb der Strömungsmaschine tritt an der Außenseite 7 eine Heißgasströmung 34 mit einer zu der Außenseite 7 parallelen Heißgashauptströmungsrichtung 9 auf, welche zu der Hinterkante der Turbinenschaufel (in den Figuren nicht gezeigt) hin gerichtet ist. In die Außenwand 1 ist ein Durchgangskanal 3 mit einem kreisförmigen Querschnitt 19 eingebracht, der in der von innen nach außen gerichteten Durchströmungsrichtung zur Hinterkante der Turbinenschaufel geneigt ist und mit der Außenseite 7 einen spitzen Neigungswinkel 6 einschließt. FIGS. 1 to 6 show a portion of an outer wall 1 of a turbine blade of a turbomachine. The outer wall 1 defines an inner cavity 2 and has an outer side 7 and an inner side 8. During operation of the turbomachine, a hot gas flow 34 occurs on the outside 7 with a hot gas main flow direction 9 parallel to the outside 7, which is directed towards the trailing edge of the turbine blade (not shown in the figures). In the outer wall 1, a passage channel 3 is introduced with a circular cross-section 19, which in the direction of flow directed from the inside out to the rear edge of the turbine blade is inclined and with the outside 7 includes an acute inclination angle 6.

Der Durchgangskanal 3 in Figuren 1 bis 6 weist innenseitig einen Einlauf 10 und außenseitig einen Auslauf 11 auf. Weiterhin weist der Durchgangskanal 3 eine Achse 26, eine stromauf liegende Seite 12 und eine stromab liegende Seite 13 auf. Der Einlauf 10 des Durchgangskanals 3 weist an der stromauf liegenden Seite 12 einen stromauf liegenden Randabschnitt 14 und an der stromab liegenden Seite 13 einen stromab liegenden Randabschnitt 15 auf. Im Innenhohlraum 2 befindet sich im Betrieb der Strömungsmaschine ein Kühlfluid 4, welches via den Einlauf 10 in den Durchgangskanal 3 eindringt und via den Auslauf 11 den Durchgangskanal 3 wieder verlässt. Der Neigungswinkel 6 ist derart spitz gewählt, dass das Kühlfluid 4 nach dem Verlassen des Durchgangskanals 3 einen Kühlfilm 5 auf der Außenseite 7 ausbildet.The passage 3 in FIGS. 1 to 6 has an inlet 10 on the inside and an outlet 11 on the outside. Furthermore, the through-channel 3 has an axis 26, an upstream side 12 and a downstream side 13. The inlet 10 of the through-channel 3 has an upstream edge section 14 on the upstream side 12 and a downstream edge section 15 on the downstream side 13. In the inner cavity 2 is located during operation of the turbomachine, a cooling fluid 4, which penetrates via the inlet 10 into the passageway 3 and via the outlet 11, the passageway 3 leaves again. The inclination angle 6 is selected to be pointed so that the cooling fluid 4 forms a cooling film 5 on the outside 7 after leaving the through-channel 3.

In FIG 1 ist eine Ausführungsform der Turbinenschaufel mit einer Aufdickung 23 gezeigt. Die Aufdickung 23 ist innenseitig an dem Bereich der Außenwand 1 angeordnet, in dem der Durchgangskanal 3 angeordnet ist. Die Aufdickung 23 weist eine stromab liegende Aufdickungsrückseite 28, welche parallel zum Durchgangskanal 3 verläuft, und eine stromauf liegende Aufdickungsvorderseite 27 auf, in der der Einlauf 10 angeordnet ist. Die Aufdickungsvorderseite 27 ist im Wesentlichen senkrecht zur Innenseite 8 der Außenwand 1 angeordnet, wobei der stromauf liegende Randabschnitt 14 scharfkantiger als der stromab liegende Randabschnitt 15 ausgebildet ist.In FIG. 1 an embodiment of the turbine blade with a thickening 23 is shown. The thickening 23 is arranged on the inside on the region of the outer wall 1, in which the through-channel 3 is arranged. The thickening 23 has a downstream Aufdickungsrückseite 28, which is parallel to the passage 3, and an upstream Aufdickungsvorderseite 27, in which the inlet 10 is arranged. The thickening front side 27 is arranged substantially perpendicular to the inside 8 of the outer wall 1, wherein the upstream edge portion 14 is formed sharp-edged than the downstream edge portion 15.

Im Folgenden werden die Strömungsverhältnisse an der Turbinenschaufel anhand FIG 1 beschrieben. Der stromab liegende Randabschnitt 15 ist derart stumpf, dass die Kühlfluidströmung 17 diesem Randabschnitt 15 ablösefrei folgen kann. Der stromauf liegende Randabschnitt 14 ist derart scharfkantig, dass die Kühlfluidströmung 17 diesem Randabschnitt 14 nicht folgen kann, so dass sich im Durchströmkanal 3 an der stromauf liegenden Seite 12 ein Ablösegebiet 16 der Kühlfluidströmung 17 bildet. Von dem Ablösegebiet 16 wird in dem Durchgangskanal 3 eine zentrische Querströmung 18 induziert, die von der stromauf liegenden Seite 12 zu der stromab liegenden Seite 13 gerichtet ist. Hervorgerufen durch die zentrische Querströmung 18 wird im Durchgangskanal 3 ein gegenläufiges Wirbelpaar 20 mit zwei Wirbelzentren 21 erzeugt, wobei die Geschwindigkeitsvektoren zwischen den beiden Wirbelzentren 21 zur stromab liegenden Seite 13 des Durchgangskanals 3 zeigen.The flow conditions on the turbine blade are described below FIG. 1 described. The downstream edge portion 15 is blunt such that the cooling fluid flow 17 can follow this edge portion 15 free of transfer. The upstream edge portion 14 is so sharp-edged that the cooling fluid flow 17 can not follow this edge portion 14, so that in the flow channel 3 on the upstream side 12, a separation region 16 of the cooling fluid flow 17 forms. From the separation region 16, a centric transverse flow 18 is induced in the through-channel 3, which is directed from the upstream side 12 to the downstream side 13. Caused by the centric cross-flow 18, an opposite vortex pair 20 with two vortex centers 21 is produced in the through-channel 3, the velocity vectors between the two vortex centers 21 pointing to the downstream side 13 of the through-channel 3.

Wie es aus FIG 1 ersichtlich ist, sind die Geschwindigkeitsvektoren der Kühlfluidströmung 17 zwischen den Wirbelzentren 21 unmittelbar nach Verlassen des Durchgangskanals 3 zur Außenwand 1 hin gerichtet. Die Heißgasströmung 34 umströmt den austretenden Kühlluftstrahl mit dem gegenläufigen Wirbelpaar 20, wodurch sich ein Schornsteinwirbel 33 aus einem Heißgas bildet. Der Schornsteinwirbel 33 weist zwei Wirbelarme auf, die auf gegenüberliegenden Seiten des gegenläufigen Wirbelpaares 20 angeordnet sind. Jeder der Wirbelarme ist von einem Wirbel gebildet, wobei die Geschwindigkeitsvektoren der Heißgasströmung 34 zwischen den Wirbelzentren 21 der Wirbelarme zur Außenwand 1 hin gerichtet sind. Dadurch wird das Heißgas an die Außenseite 7 der Außenwand 1 transportiert. Die Wirbelarme haben entgegen gerichtete Drehsinne wie die mit ihr jeweils überlagerten Wirbel des Paars der gegenläufigen Wirbel 20 unmittelbar nach dem Verlassen des Durchgangskanals 3, so dass der Schornsteinwirbel 33 abgeschwächt wird und der Transport des Heißgases an die Außenseite 7 der Außenwand 1 vermindert wird, wodurch der Wärmeeintrag in die Außenwand 1 der Turbinenschaufel verringert wird.Like it out FIG. 1 it can be seen, the velocity vectors of the cooling fluid flow 17 between the vortex centers 21 are directed to the outer wall 1 immediately after leaving the through-channel 3. The hot gas flow 34 flows around the exiting cooling air jet with the counter-rotating vortex pair 20, whereby a chimney vortex 33 forms from a hot gas. The chimney vortex 33 has two swirl arms, which are arranged on opposite sides of the counter-rotating swirl pair 20. Each of the vortex arms is formed by a vortex, wherein the velocity vectors of the hot gas flow 34 are directed between the vortex centers 21 of the vortex arms to the outer wall 1 out. As a result, the hot gas is transported to the outside 7 of the outer wall 1. The swirl arms have opposing directions of rotation, such as their each superimposed vortex of the pair of counter-rotating vortex 20 immediately after leaving the passageway 3, so that the chimney vortex 33 is weakened and the transport of the hot gas to the outside 7 of the outer wall 1 is reduced the heat input into the outer wall 1 of the turbine blade is reduced.

Denkbar ist, dass die Aufdickungsvorderseite 27 zu der Hinterkante der Turbinenschaufel hin geneigt ist, wobei der stromauf liegende Randabschnitt 14 noch scharfkantiger als in FIG 1 ausgebildet ist.It is conceivable that the thickening front side 27 is inclined towards the rear edge of the turbine blade, wherein the upstream edge portion 14 is even more sharp-edged than in FIG. 1 is trained.

In FIG 2 ist die Aufdickung 23 aus FIG 1 mit zwei extremen Fertigungsungenauigkeiten jeweils mit einer gestrichelten Linie dargestellt, wobei bei der ersten Fertigungsungenauigkeit ein Versatz der Aufdickung 23 parallel zur Außenwand 1 und bei der zweiten Fertigungsgenauigkeit ein Versatz parallel zur Aufdickungsvorderseite 27 auftritt. Bei beiden Fertigungsungenauigkeiten ist der Durchgangskanal 3 innerhalb der Aufdickung 23 und der Einlauf 10 in der Aufdickungsvorderseite 27 angeordnet.In FIG. 2 is the thickening 23 off FIG. 1 represented with two extreme manufacturing inaccuracies each with a dashed line, with the first manufacturing inaccuracies an offset of the thickening 23 parallel to the outer wall 1 and in the second manufacturing accuracy, an offset parallel to the thickening front side 27 occurs. In both manufacturing inaccuracies, the through-channel 3 is arranged inside the thickening 23 and the inlet 10 in the front-side of the thickening 27.

Die Ausführungsform der Turbinenschaufel aus FIG 3 weist einen von der Druckseite zur Saugseite der Turbinenschaufel verlaufenden Stützsteg 24 auf. Der Durchgangskanal 3 verläuft teilweise in dem Stützsteg 24 und der Einlauf 10 ist in der stromauf liegenden Stützstegvorderseite 35 angeordnet.The embodiment of the turbine blade FIG. 3 has a support web 24 extending from the pressure side to the suction side of the turbine blade. The passage 3 extends partially in the support web 24 and the inlet 10 is disposed in the upstream support web front side 35.

Wie es aus FIG 4 ersichtlich ist, ist an der Innenseite 8 der Außenwand 1 unmittelbar anschließend an dem stromab liegenden Randabschnitt 15 eine Wulst 22 angeformt, wodurch der stromab liegende Randabschnitt 15 stumpf ausgebildet ist. Die Wulst 22 weist an ihrer nach innen gerichteten Seite einen konvexen Bereich auf. Denkbar ist, dass sich der konvexe Bereich bis an den stromab liegenden Randabschnitt 15 und/oder bis in den Durchgangskanal 3 hinein erstreckt. In diesem Fall könnte ein Ablösegebiet an der stromab liegenden Seite 13 des Durchgangskanals 3 besonders effektiv vermieden werden. Denkbar ist, dass die Wulst 22 mit einem rechteckigen Querschnitt ausgebildet ist. Weiterhin ist denkbar, dass die Wulst 22 auch als eine Kühlrippe ausgebildet ist.Like it out FIG. 4 it can be seen, a bead 22 is integrally formed on the inside 8 of the outer wall 1 immediately adjacent to the downstream edge portion 15, whereby the downstream edge portion 15 is formed dull. The bead 22 has a convex portion on its inward side. It is conceivable that the convex region extends as far as the downstream edge section 15 and / or into the through-channel 3. In this case, a separation region on the downstream side 13 of the through-channel 3 could be avoided particularly effectively. It is conceivable that the bead 22 is formed with a rectangular cross-section. Furthermore, it is conceivable that the bead 22 is also formed as a cooling fin.

In den Ausführungsformen gemäß Figuren 5 und 6 ist in die Außenwand eine hutförmige Aussparung 25 mit einer stromauf liegenden Aussparungsvorderseite 29 und einer stromab liegenden Aussparungshinterseite 30 angeordnet. Der Einlauf 10 ist in der Aussparungshinterseite 30 angeordnet. Die Aussparung 25 weist einen rund geformten Aussparungseintrittsrand 31 auf, um eine Ablösung der Kühlfluidströmung 17 beim Eintreten in die Aussparung 25 zu vermeiden. Im Gegensatz zu der Ausführungsform aus FIG 5 ist die Aussparung 25 der Ausführungsform aus FIG 6 zu der Hinterkante der Turbinenschaufel hin geneigt, wobei der stromauf liegende Randabschnitt 14 besonders scharfkantig ausgebildet ist. Es ist weiterhin denkbar, dass die Aussparung 25 als eine Rille ausgeführt ist, in die eine Mehrzahl an Durchgangskanälen 3 mündet.In the embodiments according to FIGS. 5 and 6 a hat-shaped recess 25 with an upstream recess front side 29 and a downstream recess rear side 30 is arranged in the outer wall. The inlet 10 is arranged in the recess rear side 30. The recess 25 has a round shaped recess inlet edge 31 in order to avoid detachment of the cooling fluid flow 17 when entering the recess 25. In contrast to the embodiment of FIG. 5 is the recess 25 of the embodiment FIG. 6 inclined to the trailing edge of the turbine blade, wherein the upstream edge portion 14 particularly sharp-edged is formed. It is further conceivable that the recess 25 is designed as a groove into which a plurality of through channels 3 opens.

Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.While the invention has been further illustrated and described in detail by the preferred embodiments, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims (13)

Turbinenschaufel für eine Strömungsmaschine,
mit einer Außenwand (1), die einen Innenhohlraum (2) der Turbinenschaufel begrenzt, in dem Kühlfluid (4) zur Filmkühlung der Turbinenschaufel bereitstellbar ist,
wobei in der Außenwand (1) mindestens ein Durchgangskanal (3) vorgesehen ist, durch den das Kühlfluid (4) vom Innenhohlraum (2) nach außerhalb der Turbinenschaufel zur Ausbildung eines Kühlfilms (5) auf der Außenseite (7) der Außenwand (1) strömbar ist und der in zur Hinterkante der Turbinenschaufel hin geneigt ist,
wobei der Randabschnitt (14) des Einlaufs (10) des Durchgangskanals (3) an dessen stromauf liegenden Seite (12) derart scharfkantig relativ zu den anderen Randabschnitten des Einlaufs (10) ausgebildet ist, dass im Durchgangskanal (3) ein Ablösegebiet (16) der Kühlfluidströmung (17) ausbildbar ist, durch das eine zentrische Querströmung (18) des Kühlfluids (4) induziert ist, die zu der dem Ablösegebiet (16) gegenüberliegenden Seite (13) des Durchgangskanals (3) hin gerichtet ist, wodurch sich im Durchgangskanal (3) ein Paar gegenläufiger Wirbel (20) ausbildet, bei denen die Geschwindigkeitsvektoren der Kühlfluidströmung (17) zwischen den Wirbelzentren (21) zur stromab liegenden Seite (13) des Durchgangskanals (3) hin zeigen.
Turbine blade for a turbomachine,
with an outer wall (1) delimiting an inner cavity (2) of the turbine blade, in which cooling fluid (4) can be provided for film cooling of the turbine blade,
wherein in the outer wall (1) at least one passage channel (3) is provided, through which the cooling fluid (4) from the inner cavity (2) to the outside of the turbine blade to form a cooling film (5) on the outer side (7) of the outer wall (1) is flowable and which is inclined in towards the trailing edge of the turbine blade,
wherein the edge portion (14) of the inlet (10) of the passage channel (3) at its upstream side (12) is formed so sharp-edged relative to the other edge portions of the inlet (10) that in the passage channel (3) a detachment area (16) the cooling fluid flow (17) can be formed, through which a centric transverse flow (18) of the cooling fluid (4) is induced, which is directed to the separation region (16) opposite side (13) of the through-channel (3), whereby in the passage (3) forming a pair of counter-rotating vortices (20) in which the velocity vectors of the cooling fluid flow (17) between the vortex centers (21) point towards the downstream side (13) of the passageway (3).
Turbinenschaufel gemäß Anspruch 1,
wobei an der Innenseite (8) des Bereichs der Außenwand (1), in dem der Durchgangskanal (3) angeordnet ist, eine Aufdickung (23) mit einer stromauf angeordneten Vorderseite (27) vorgesehen ist, in der der Einlauf (10) ausgebildet und die zur Achse (26) des Durchgangskanals (3) derart geneigt ist, dass der Randabschnitt (14) des Einlaufs (10) des Durchgangskanals (3) an dessen stromauf liegenden Seite (12) scharfkantiger als der gegenüberliegende Randabschnitt (15) des Einlaufs (10) ausgebildet ist.
Turbine blade according to claim 1,
wherein on the inside (8) of the region of the outer wall (1), in which the through channel (3) is arranged, a thickening (23) is provided with an upstream front side (27), in which the inlet (10) is formed and which is inclined to the axis (26) of the passage channel (3) such that the edge portion (14) of the inlet (10) of the passage channel (3) on its upstream side (12) has a sharp-edged edge than the opposite edge portion (15) of the inlet (15). 10) is formed.
Turbinenschaufel gemäß Anspruch 2,
wobei die Vorderseite (27) der Aufdickung (23) im Wesentlichen senkrecht zur Innenseite (8) der Außenwand (1) oder zur Hinterkante der Turbinenschaufel hin geneigt angeordnet ist.
Turbine blade according to claim 2,
wherein the front side (27) of the thickening (23) is arranged substantially perpendicular to the inside (8) of the outer wall (1) or inclined to the trailing edge of the turbine blade.
Turbinenschaufel gemäß Anspruch 2 oder 3,
wobei die Aufdickung (23) in ihrer Dickenerstreckung derart groß dimensioniert ist, dass bei den beim Gießen immer auftretenden Fertigungsungenauigkeiten der Durchgangskanal (3) stets innerhalb der Aufdickung (23) angeordnet und der Einlauf (10) von der Vorderseite (27) der Aufdickung (23) gebildet ist.
Turbine blade according to claim 2 or 3,
wherein the thickening (23) in its thickness extension is dimensioned so large that in the always occurring during casting manufacturing inaccuracies of the passageway (3) always within the thickening (23) and the inlet (10) from the front (27) of the thickening ( 23) is formed.
Turbinenschaufel gemäß einem der Ansprüche 2 bis 4,
wobei die der Vorderseite (27) der Aufdickung (23) abgewandte Rückseite (28) der Aufdickung (23) im wesentlichen parallel zum Durchgangskanal (3) ist.
Turbine blade according to one of claims 2 to 4,
wherein the rear side (28) of the thickening (23) facing away from the front side (27) of the thickening (23) is substantially parallel to the passage channel (3).
Turbinenschaufel gemäß einem der Ansprüche 2 bis 5,
wobei die Aufdickung (23) eine Kühlrippe der Turbinenschaufel ist.
Turbine blade according to one of claims 2 to 5,
wherein the thickening (23) is a cooling fin of the turbine blade.
Turbinenschaufel gemäß einem der Ansprüche 2 bis 5,
wobei die Aufdickung (23) ein von der Druckseite zur Saugseite der Turbinenschaufel verlaufender Stützsteg (24) ist.
Turbine blade according to one of claims 2 to 5,
wherein the thickening (23) is a support web (24) running from the pressure side to the suction side of the turbine blade.
Turbinenschaufel gemäß einem der Ansprüche 2 bis 7,
wobei die Aufdickung (23) ein Verdrängungskörper im Innenhohlraum (2) der Turbinenschaufel ist, mit dem zum Kühlen der Turbinenschaufel die Strömungsgeschwindigkeit des Kühlfluids (4) im Innenhohlraum (2) erhöhbar ist, wodurch die Konvektion durch das Kühlfluid (4) im Innenhohlraum (2) erhöht ist.
Turbine blade according to one of claims 2 to 7,
wherein the thickening (23) is a displacement body in the inner cavity (2) of the turbine blade, with which the flow speed of the cooling fluid (4) in the inner cavity (2) can be increased for cooling the turbine blade, whereby the convection by the cooling fluid (4) in the inner cavity ( 2) is increased.
Turbinenschaufel gemäß Anspruch 1,
wobei die Innenseite (8) des Bereichs der Außenwand (1), in dem der Durchgangskanal (3) angeordnet ist, im Wesentlichen parallel zur Außenseite (7) angeordnet ist und am Randabschnitt (15) des Einlaufs (10) des Durchgangskanals (3) an dessen stromab liegenden Seite (13) eine Wulst (22) derart angeformt ist, dass dieser Randabschnitt (15) stumpf relativ zum gegenüberliegenden Randabschnitt (14) des Einlaufs (10) ausgebildet ist.
Turbine blade according to claim 1,
wherein the inner side (8) of the region of the outer wall (1) in which the through-channel (3) is arranged is arranged substantially parallel to the outer side (7) and at the edge portion (15) of the inlet (10) of the through-channel (3). on the downstream side (13) has a bead (22) is formed such that this edge portion (15) is formed blunt relative to the opposite edge portion (14) of the inlet (10).
Turbinenschaufel gemäß Anspruch 1,
wobei an der Innenseite (8) des Bereichs der Außenwand (1), in dem der Durchgangskanal (3) angeordnet ist, eine Aussparung (25) mit einer stromab angeordneten Hinterseite (30) vorgesehen ist, in der der Einlauf (10) ausgebildet und die zur Achse (26) des Durchgangskanals (3) derart geneigt ist, dass der Randabschnitt (14) des Einlaufs (10) des Durchgangskanals (3) an dessen stromauf liegenden Seite (12) scharfkantiger als der gegenüberliegende Randabschnitt (15) des Einlaufs (10) ausgebildet ist.
Turbine blade according to claim 1,
wherein on the inside (8) of the region of the outer wall (1), in which the through channel (3) is arranged, a recess (25) is provided with a downstream rear side (30), in which the inlet (10) is formed and which is inclined to the axis (26) of the passage channel (3) such that the edge portion (14) of the inlet (10) of the passage channel (3) on its upstream side (12) has a sharp-edged edge than the opposite edge portion (15) of the inlet (15). 10) is formed.
Turbinenschaufel gemäß Anspruch 10,
wobei die Hinterseite (30) der Aussparung (25) im Wesentlichen senkrecht zur Innenseite (8) der Außenwand (1) oder zur Hinterkante der Turbinenschaufel hin geneigt angeordnet ist.
Turbine blade according to claim 10,
wherein the rear side (30) of the recess (25) is arranged substantially perpendicular to the inner side (8) of the outer wall (1) or inclined to the trailing edge of the turbine blade.
Turbinenschaufel gemäß Anspruch 10 oder 11,
wobei die Aussparung (25) an ihrem Eintrittsrand (31) derart rund geformt ist, dass das Kühlfluid (4) ablösefrei in die Aussparung (25) einströmbar ist.
Turbine blade according to claim 10 or 11,
wherein the recess (25) is formed round at its inlet edge (31) in such a way that the cooling fluid (4) can be flowed into the recess (25) without a release.
Turbinenschaufel gemäß einem der Ansprüche 10 bis 12,
wobei die Aussparung (25) eine Rille ist, in die eine Mehrzahl an Durchgangskanälen (3) mündet.
Turbine blade according to one of claims 10 to 12,
wherein the recess (25) is a groove into which a plurality of through channels (3) opens.
EP11186219.9A 2011-10-21 2011-10-21 Film-cooled turbine blade for a turbomachine Withdrawn EP2584147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11186219.9A EP2584147A1 (en) 2011-10-21 2011-10-21 Film-cooled turbine blade for a turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11186219.9A EP2584147A1 (en) 2011-10-21 2011-10-21 Film-cooled turbine blade for a turbomachine

Publications (1)

Publication Number Publication Date
EP2584147A1 true EP2584147A1 (en) 2013-04-24

Family

ID=45033724

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11186219.9A Withdrawn EP2584147A1 (en) 2011-10-21 2011-10-21 Film-cooled turbine blade for a turbomachine

Country Status (1)

Country Link
EP (1) EP2584147A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995773A1 (en) * 2014-09-15 2016-03-16 United Technologies Corporation Gas turbine engine component, corresponding gas turbine engine and gas turbine engine component wall
US9915150B2 (en) 2014-08-26 2018-03-13 Siemens Aktiengesellschaft Turbine blade

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2262314A (en) * 1991-12-10 1993-06-16 Rolls Royce Plc Air cooled gas turbine engine aerofoil.
US5392515A (en) * 1990-07-09 1995-02-28 United Technologies Corporation Method of manufacturing an air cooled vane with film cooling pocket construction
US5624231A (en) * 1993-12-28 1997-04-29 Kabushiki Kaisha Toshiba Cooled turbine blade for a gas turbine
DE10236676A1 (en) * 2002-08-09 2004-02-19 Rolls-Royce Deutschland Ltd & Co Kg Turbine paddle, for a gas turbine, has at least one cooling passage opening with a structured cooling air flow linking the inner zone with the outer surface
US20040047724A1 (en) * 2002-09-05 2004-03-11 Siemens Westinghouse Power Corporation Combustion turbine with airfoil having enhanced leading edge diffusion holes and related methods
US20080279697A1 (en) * 2007-05-07 2008-11-13 Siemens Power Generation, Inc. Turbine airfoil with enhanced cooling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392515A (en) * 1990-07-09 1995-02-28 United Technologies Corporation Method of manufacturing an air cooled vane with film cooling pocket construction
GB2262314A (en) * 1991-12-10 1993-06-16 Rolls Royce Plc Air cooled gas turbine engine aerofoil.
US5624231A (en) * 1993-12-28 1997-04-29 Kabushiki Kaisha Toshiba Cooled turbine blade for a gas turbine
DE10236676A1 (en) * 2002-08-09 2004-02-19 Rolls-Royce Deutschland Ltd & Co Kg Turbine paddle, for a gas turbine, has at least one cooling passage opening with a structured cooling air flow linking the inner zone with the outer surface
US20040047724A1 (en) * 2002-09-05 2004-03-11 Siemens Westinghouse Power Corporation Combustion turbine with airfoil having enhanced leading edge diffusion holes and related methods
US20080279697A1 (en) * 2007-05-07 2008-11-13 Siemens Power Generation, Inc. Turbine airfoil with enhanced cooling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915150B2 (en) 2014-08-26 2018-03-13 Siemens Aktiengesellschaft Turbine blade
EP2995773A1 (en) * 2014-09-15 2016-03-16 United Technologies Corporation Gas turbine engine component, corresponding gas turbine engine and gas turbine engine component wall
US10006371B2 (en) 2014-09-15 2018-06-26 United Technologies Corporation Film hole with in-wall accumulator

Similar Documents

Publication Publication Date Title
DE1476796C3 (en) A component of a gas turbine system made integrally from a high-strength material
EP1621730B1 (en) Cooled turbomachinery element and casting method thereof
DE60018817T2 (en) Chilled gas turbine blade
EP1347153B1 (en) Non- contact sealing of gaps in gas turbines
EP2584148A1 (en) Film-cooled turbine blade for a turbomachine
EP2770260A2 (en) Impact effusion cooled shingle of a gas turbine combustion chamber with elongated effusion bore holes
EP2725193B1 (en) Method for detuning the blades in a gas turbine engine and corresponding gas turbine engine.
DE102016125091A1 (en) Turbine blades with tip shroud
EP2299124A1 (en) Rotor blade for an axial compressor
EP3155227B1 (en) Turbine blade
DE102010016620A1 (en) Turbine nozzle with Seitenwandkühlplenum
EP2132414A1 (en) Shiplap arrangement
EP2455665A2 (en) Gas turbine combustion chamber with a cooling air supply device
EP2787182A1 (en) Guide blade for a fluid flow engine, guide blade grid and method for the production of a guide blade or a guide blade grid
DE10020673A1 (en) Metal housing structure for running blade area of axially through-flowed compressor and turbine stages, particularly in gas turbine drive units, has circular ring-shaped, closed, mechanically stable outer wall and inner wall
CH709089A2 (en) The turbine blade having a chamber for receiving a cooling medium flow.
EP3473808B1 (en) Blade for an internally cooled turbine blade and method for producing same
EP2788583B1 (en) Turbine vane with a throttling element
DE102014119418A1 (en) Structural arrangements and cooling circuits in turbine blades
DE102016217093A1 (en) Coupling pin and turbine with coupling pin
CH710576A2 (en) Turbine blade having a plurality of cooling channels.
EP2489837A1 (en) Metering insert for turbine blade and corresponding turbine blade
DE2127454A1 (en) Gas turbine
EP3263838A1 (en) Turbine blade having internal cooling passage
CH706962B1 (en) Serpentine cooling of the vane end wall.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131028

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/18 20060101AFI20160506BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160802

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161213